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PREFACE

This volume contains the Proceedings of the HYP2012 International Conference
devoted to Theory, Numerics and Applications of Hyperbolic Problems, held in
Padova, June 24–29, 2012. This was the fourteenth in a highly successful series
of bi-annual meetings, which brought together several leading experts in the field,
practitioners, and young researchers, discussing the latest theoretical advances and
the most relevant applications.1

Hyperbolic conservation laws is a mathematical discipline deeply rooted in the
tradition of classical continuum mechanics, and yet replenished with challenging
open problems. It has experienced continued growth in recent years, thanks to the
introduction of new ideas and techniques, and a wealth of new applications. The
HYP2012 meeting highlighted a number of topics where recent progress has been
particularly significant: singular limits and dispersive equations in mathematical
physics, nonlinear wave patterns in several space dimensions, particle dynamics,
multiphase flow and interfaces, transport in complex environments, control prob-
lems for hyperbolic PDEs and related Hamilton-Jacobi equations, general relativity
and geometric PDEs.

The conference was attended by 340 participants from 30 different countries.
The social program included a boat excursion to the historical Villa Pisani and
to Villa Foscari - La Malcontenta, and a conference banquet in the great hall of
the 13-th century building “Palazzo della Ragione” in Padova, which was once the
seat of the City Council, with frescoes from the Giotto school. During the dinner,
Professor Constantine Dafermos, Professor James Glimm, and Professor Tai Ping
Liu were honored with the “Galileo medal” for scientific excellence conferred by the
Mayor of Padova, Flavio Zanonato. A keynote speech was delivered by Professor
James Glimm. Professor Glimm is credited with many pioneering contributions in
the general area of the theory and numerics of hyperbolic equations. His speech
provided an overview of the field, from its early days to the present time, with an
outlook toward the role of hyperbolic PDE models in interdisciplinary science. The
conference banquet also featured the brilliant performance of the Marco Castelli
quartet, one of the most talented Italian jazz groups, introduced by Silvia Faggian
from the University of Venice.

The present volume of proceedings contains 7 papers from plenary speakers, 9
from invited speakers, and 100 papers related to contributed talks. These contri-
butions cover a wide range of topics. A very partial list includes: new methods for
constructing turbulent solutions to multi-dimensional systems of conservation laws
based on Baire category, transport equations with non-Lipschitz velocity fields, rel-
ative entropy functionals and the stability of fluid systems, numerical methods for
hyperbolic systems with stiff relaxation terms and for multiphase flow, new advances

1The detailed program and the slides of all speakers as well as most of the video of the plenary
speakers of the HYP2012 conference can be found on the website http://www.hyp2012.eu/ .The
HYP2012 website will be accessible at this address untill 2020.
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in homogenization theory, optimal sensor location for solutions to multidimensional
wave equations, singularities in general relativity.

We believe that this volume will provide a timely survey of the state of the art,
and a stimulus for further progress in this exciting field.

We take this opportunity to thank the members of the HYP2012 Scientific Com-
mittee (listed at http://www.hyp2012.eu/organization/scientific-committee)
for their expertise in the selection of the plenary and invited speakers of the confer-
ence and for their contribution in reviewing the papers of the volume. We would like
also to express our warm appreciation to all other members of the HYP2012 Orga-
nizing Committee (listed at http://www.hyp2012.eu/organization/organizing-
committee) that in various ways have contributed to the successful realization of
this event. Finally, we are extremely thankful to the many graduate students and
post-docs of the Dipartimento di Matematica of Università di Padova, coordinated
by Khai T. Nguyen and Fabio S. Priuli, for their assistance and dedicated work
throughout the conference.

We gratefully acknowledge financial support from the following sponsors:

- ERC Starting Grant 2009 “Hyperbolic Systems of Conservation Laws: singu-
lar limits, properties of solutions and control problems”

- Research Project MIUR PRIN 2009 “Systems of Conservation Laws and Fluid
Dynamics: methods and Applications”

- GDRE CONEDP European Research Group on PDE control
- FP7-PEOPLE-2010-ITN European Research Network “Sensitivity Analysis

for Deterministic Controller Design”
- Progetto di Eccellenza Fondazione Cariparo 2009-2010 Nonlinear PDEs: mod-

els, analysis, and control-theoretic problems
- ERC Starting Grant 2010 Traffic Management by Macroscopic Models
- Dipartimento di Matematica, Università di Padova
- Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila
- University of Padova
- University of Zurich
- University of Basel
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SURPRISING SOLUTIONS TO THE ISENTROPIC EULER

SYSTEM OF GAS DYNAMICS

Camillo De Lellis, Elisabetta Chiodaroli
and Ondřej Kreml

Institut für Mathematik, Universität Zürich
Winterthurerstrasse 160

8056 Zürich, Switzerland

Abstract. In a recent paper, jointly with Elisabetta Chiodaroli and Ondřej
Kreml we consider the Cauchy problem for the isentropic compressible Euler

system in 2 space dimensions, with initial data which assume two different

constant values and have a discontinuity across a line. If we consider selfsimi-
lar solutions we then encounter a classical 1-dimensional Riemann problem for

the corresponding hyperbolic system of conservation laws. We show that for

some suitable choice of the pressure and of the initial data there exist infinitely
many bounded admissible solutions which are not selfsimilar and indeed are

genuinely 2-dimensional. We also show that some of these Riemann data are
generated by a 1-dimensional compression wave. Our theorem leads therefore

to Lipschitz initial data for which there are infinitely many global bounded

admissible weak solutions. Each of these solutions coincide as long as the clas-
sical (Lipschitz) solution exists and they differentiate themselves immediately

after the first blow-up time. Our approach is heavily influenced by a work of

László Székelyhidi which provides a similar result in the case of the classical
vortex-sheet problem for the incompressible Euler equations.

1. Introduction. Consider the isentropic compressible Euler equations of gas dy-
namics in n space dimensions. This system consists of n+1 scalar equations, which
state the conservation of mass and linear momentum. The unknowns are the density
ρ and the velocity v and the system takes the the form: ∂tρ+ divx(ρv) = 0

∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0
(1)

The pressure p is a function of ρ determined from the constitutive thermodynamic
relations of the gas under consideration and it is assumed to satisfy p′ > 0 (this
hypothesis guarantees also the hyperbolicity of the system on the regions where
ρ is positive). A common choice is the polytropic pressure law p(ρ) = κργ with
constants κ > 0 and γ > 1. The classical kinetic theory of gases predicts exponents
γ = 1 + 2

d , where d is the degree of freedom of the molecule of the gas.
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A lot of attention has been devoted in the literature to the Cauchy problem which
consists of solving (1) on a domain of the form R2 × [0, T [ (where T might also be
infinite), subject to an initial condition of type ρ(·, 0) = ρ0

v(·, 0) = v0 .
(2)

It is well known that, even starting from extremely regular initial data, the solutions
of the Cauchy problem for the system (1) develop singularities in finite time. It is
also well-known that after the appearance of the first singularity weak solutions
(i.e. solutions in the usual distributional sense, see Definition 2.1 for the precise
formulation) are not unique: the standard example is provided by “non-physical”
shocks, which can however be ruled out imposing that the weak solutions satisfy
some further admissibility condition. Much effort has been put in understanding
how this approach can give well-posedness results after the appearance of the first
singularity, leading to a quite mature and successful theory in one space dimension
(we refer the reader to the monographs [1],[8] and [19]).

Here we consider the case of two space dimensions and restrict our attention to
bounded weak solutions of (1) which satisfy the following additional inequality in
the sense of distributions (called usually entropy inequality, although for the specific
system (1) this is rather a weak form of the energy balance):

∂t

(
ρε(ρ) + ρ

|v|2

2

)
+ divx

[(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v

]
≤ 0 (3)

where the internal energy ε : R+ → R is given through the law p(r) = r2ε′(r).
Indeed, admissible solutions are required to satisfy a slightly stronger condition, i.e.
a form of (3) which involves also the initial data, see Definition 2.2.

Starting from the work [12] it was observed that (3) is in this case not enough to
restore uniqueness of admissible bounded solutions. The methods used in [12], in-
spired by techniques developed in the theory of differential inclusions, show a rather
surprising abundance of admissible solutions to the Cauchy problem with certain
particular initial data. However those specific initial data were rather irregular,
leaving open the question whether this fact alone was responsible for such behavior.

The investigations of [12] have been pushed further in [5] and in [6]: in the latter
paper, we have shown that the same nonuniqueness result holds even for Lipschitz
initial data, therefore leading to the following theorem.

Theorem 1.1. Let p(ρ) = ρ2. Then there are Lipschitz initial data ρ0 and v0, with
ρ0 ≥ c0 > 0 for which there are infinitely many admissible bounded weak solutions
(ρ, v) of the Cauchy problem (1)-(2), with inf ρ > 0. All these solutions coincide
with the classical one as long as it exists and differ immediately after the formation
of the first singularity.

2. Main results. We recall here the usual definitions of weak and admissible so-
lutions to (1).

Definition 2.1. By a weak solution of (1)-(2) on R2×[0,∞[ we mean a pair (ρ, v) ∈
L∞(R2 × [0,∞[) such that the following identities hold for every test functions
ψ ∈ C∞c (R2 × [0,∞[,R), φ ∈ C∞c (R2 × [0,∞[,R2):∫ ∞

0

∫
R2

[ρ∂tψ + ρv · ∇xψ] dxdt+

∫
R2

ρ0(x)ψ(x, 0)dx = 0 (4)
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0

∫
R2

[ρv · ∂tφ+ ρv ⊗ v : Dxφ+ p(ρ) divx φ] +

∫
R2

ρ0(x)v0(x) · φ(x, 0)dx = 0.

(5)

Definition 2.2. A bounded weak solution (ρ, v) of (1)-(2) is admissible if it satisfies
the following inequality for every nonnegative test function ϕ ∈ C∞c (R2 × [0,∞[):∫ ∞

0

∫
R2

[(
ρε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]

+

∫
R2

(
ρ0(x)ε(ρ0(x)) + ρ0(x)

∣∣v0(x)
∣∣2

2

)
ϕ(x, 0) dx ≥ 0 . (6)

The following is then the theorem proved in [12]:

Theorem 2.3 (De Lellis - Székelyhidi). For any p ∈ C1 with p′ > 0 there are pairs
ρ0, v0 ∈ L∞ such that there are infinitely many bounded admissible solutions (ρ, v)
of (1)-(2) with inf ρ > 0.

As already mentioned, the initial data constructed in [12] were however very
irregular. It was then proved by Chiodaroli that indeed the ill-posedness of Theorem
2.3 still holds even if ρ0 is regular. More precisely

Theorem 2.4 (Chiodaroli). For any p ∈ C1 with p′ > 0 and any ρ0 ∈ C1 with
inf ρ0 > 0 there is v0 ∈ L∞ such that there are infinitely many bounded admissible
solutions (ρ, v) of (1)-(2) with inf ρ > 0.

In [6] we consider first initial data of a very particular form. We denote the space
variable as x = (x1, x2) ∈ R2 and set

(ρ0(x), v0(x)) :=

 (ρ−, v−) if x2 < 0

(ρ+, v+) if x2 > 0,
(7)

where ρ±, v± are constants.
It is well-known that for some special choices of these constants there are solutions

of (1) which are rarefaction waves, i.e. self-similar solutions depending only on t
and x2 which are locally Lipschitz for positive t and constant on lines emanating
from the origin (see [8, Section 7.6] for the precise definition). Reversing their order
(i.e. exchanging + and −) the very same constants allow for a compression wave
solution, i.e. a solution on R2×] −∞, 0[ which is locally Lipschitz and converges,
for t ↑ 0, to the jump discontinuity of (7). When this is the case we will then say
that the data (7) are generated by a classical compression wave.

It follows from the usual treatment of the 1-dimensional Riemann problem that
for data as in (7) uniqueness holds if the admissible solutions are also required to
be self-similar, i.e. of the form (ρ, v)(x, t) =

(
r
(
x2

t

)
, w
(
x2

t

))
, and to have locally

bounded variation. In fact in this case the solutions are obtained “gluing” together
rarefaction waves and jump discontinuities across interfaces of type {(x, t) : x2 =
νt}.

In the paper [6] we show the existence of bounded admissible solutions which are
not selfsimilar. Although we expect such solutions to exist for very general pressure
laws, we show them only for some particular choice of the pressure p.

Theorem 2.5 (Chiodaroli-De Lellis-Kreml). There are smooth pressures p with
p′ > 0 and constants ρ±, v± for which, if (ρ0, v0) are as in (7), then there are
infinitely many bounded admissible solutions (ρ, v) of (1)-(2) with inf ρ > 0.
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Among the pressure laws of Theorem 2.5 there is also the quadratic law p(ρ) = ρ2.
The strongest results of [6] are indeed proved fur such law. More precisely we have
the following strengthened version of Theorem 2.5.

Theorem 2.6 (Chiodaroli-De Lellis-Kreml). Assume p(ρ) = ρ2. Then there are
constants ρ±, v± for which the conclusion of Theorem 2.5 holds and such that
(ρ0, v0) are generated by a classical compression wave.

Theorem 1.1 is then a simple corollary of Theorem 2.6: the solutions of Theorem
1.1 are simply obtained “patching” a classical compression wave with the nonstan-
dard solutions of Theorem 2.6.

3. h-principle and differential inclusions. The proof of Theorem 1.1 relies
heavily on the works of the first author and László Székelyhidi, who in the pa-
per [11] introduced methods from the theory of differential inclusions to explain the
existence of compactly supported nontrivial weak solutions of the incompressible
Euler equations (discovered in the pioneering work of Scheffer [20]; see also [21]).
Indeed the paper [12] is based on the observation that these methods could be ap-
plied to the compressible Euler equations and lead to the ill-posedness of bounded
admissible solutions, see [12].

The link with the incompressible Euler equations is provided by the following
elementary remark.

Remark 1. Assume Ω ⊂ R2 × R and let (ρ, v) be a distributional solution of (1)
with constant density ρ. Then the pair (v, 0) is a weak solution of the incompressible
Euler equations  ∂tv + div v ⊗ v +∇q = 0

div v = 0 .
(8)

Or in other words a “pressureless” solution, where q = 0: note however that q could
be set to be any given constant.

Although classical solutions of the incompressible Euler equations with constant
pressure are rather rare, the methods of [11] show that there are many such weak
solutions. In fact the constraints posed by the equations for weak solutions are so
much weaker than those posed for classical solutions, that all these irregular ones
can be constructed to satisfy the additional constraint |v| = const.. In particular
these methods yield the following crucial lemma (cf. with [6, Lemma 3.7]; here S2×2

0

denotes the set of symmetric traceless 2× 2 matrices and Id is the identity matrix).

Lemma 3.1. Let (ṽ, ũ) ∈ R2 × S2×2
0 and C > 0 be such that

ṽ ⊗ ṽ − ũ < C

2
Id . (9)

For any open set Ω ⊂ R2 × R there are infinitely many maps (v, u) ∈ L∞(R2 ×
R,R2 × S2×2

0 ) with the following property

(i) v and u vanish identically outside Ω;
(ii) divx v = 0 and ∂tv + divx u = 0;

(iii) (ṽ + v)⊗ (ṽ + v)− (ũ+ u) = C
2 Id a.e. on Ω.

For the relevance of the condition (9) and the techniques used to prove these
type of theorems we refer the reader to the survey article [13]: we give here just a
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brief comment. Observe that, inside Ω, the pair (v, u) = (ṽ + v, ũ + u) solves the
linear identities  ∂tv + div u = 0

div v = 0
(10)

and the algebraic constraint

u = v ⊗ v − C

2
Id . (11)

Since C is a constant, plugging (11) into (10) we actually conclude that v is a
solution (in Ω) of (8) with constant pressure (such constant being free for us to
decide). Moreover, since u is trace-free, we conclude that |v|2 equals the constant
C. So, (9) can be interpreted as a relaxation of (11), i.e. an inequality which would
be automatically satisfied by any weak limit of sequences of solutions as above.
The methods of [11]-[12] essentially show that for any such “candidate weak limit”
there are indeed many sequences of exact solutions converging to it (although such
solutions are rather irregular).

4. The main geometric idea. Coming back to compressible Euler consider now
any constant ρ0 > 0. The pair (ρ, v) = (ρ0, ṽ + v) is then a weak solution of (1) in
Ω, as it can be easily verified by the identities

∂tρ0 + div(ρ0v) = ρ0 div v

and

∂t(ρ0v) + div(ρ0v ⊗ v) +∇[p(ρ0)] = ρ0(∂tv + div v ⊗ v) .

In fact it also an admissible solution: since

ρ0ε(ρ0) + ρ0
|v|2

2

and

ρ0ε(ρ0) + ρ0
|v|2

2
+ p(ρ0)

are both constants, (3) amounts to div v = 0.
Observe however that the pair (ρ, v) ceases to give a solution of compressible

Euler on the whole space-time. Assume now to chop R2 × R into finitely many
open subsets Ωi and repeat on each Ωi the construction of the previous section,
starting from arbitrary constants for v, u and ρ. Define a resulting pair (ρ, v) by
setting it equal, in each separate Ωi, to the various functions given by Lemma 3.1 (in
particular we are free to set the constants ρi for the value of the pressure). Although
(ρ, v) is an admissible solution of (1) in each separate open set, it might fail to do
so on the entire space-time. However, a careful computation shows that in order
to be an admissible solution on the entire space-time, we just need to satisfy some
compatibility conditions at the interfaces, which are reminiscent of the Rankine-
Hugoniot conditions. We observe that some care is needed: due to the oscillatory
nature of the solutions, the traces of |v|2 do not coincide with the moduli squared
of the traces of v!

The relevant computations show that these compatibility conditions depend only
on the chosen “starting” constants. We are therefore ready to give an outline of
the main idea behind the construction in [6], which indeed stems out of several
conversations of the authors with László Székelyhidi and it is inspired by his work
[23].
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Consider first some data as in (7). We then partition the upper half space {t > 0}
in regions contained between half-planes meeting all at the line {t = x2 = 0}, see
Definition 5.1 and cf. Figure 1. We then define the density function ρ = ρ to be
constant in each region: this density function will indeed give the final ρ for all the
solutions we construct and it is therefore required to take the constant values ρ± in
the outermost regions P±.

x2

t

P−
P+

P1

P2

P3

Figure 1. A “fan partition” in five regions.

We then solve the compressible Euler equations (1) in each region P1, . . . , PN
using Lemma 3.1, so imposing that the modulus of the velocity is constant (in each
region): its square will be denoted by Ci.

The corresponding constant values (ρi, vi, ui) will then give a globally defined
(piecewise constant) function (ρ, v, u), which will be called a fan subsolution of the
compressible Euler equations. We then wish to choose our subsolution so that,
after solving (1) in each region Pi with the methods of [12], the resulting globally
defined (ρ, v) are admissible global solutions of (1). This leads to a suitable system
of PDEs for the piecewise constant functions (ρ, v, u) which are summarized in the
Definitions 5.2 and 5.3.

5. Subsolutions. The approach sketched in the previous section leads to the fol-
lowing rigorous definitions (cf. Definitions 3.3, 3.4 and 3.5 in [6]).

Definition 5.1 (Fan partition). A fan partition of R2×]0,∞[ consists of finitely
many open sets P−, P1, . . . , PN , P+ of the following form

P− = {(x, t) : t > 0 and x2 < ν−t} (12)

P+ = {(x, t) : t > 0 and x2 > ν+t} (13)

Pi = {(x, t) : t > 0 and νi−1t < x2 < νit} (14)

where ν− = ν0 < ν1 < . . . < νN = ν+ is an arbitrary collection of real numbers.
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Definition 5.2 (Fan Compressible subsolutions). A fan subsolution to the com-
pressible Euler equations (1) with initial data (7) is a triple (ρ, v, u) : R2×]0,∞[→
(R+,R2,S2×2

0 ) of piecewise constant functions satisfying the following requirements.

(i) There is a fan partition P−, P1, . . . , PN , P+ of R2×]0,∞[ such that

(ρ, v, u) =
N∑
i=1

(ρi, vi, ui)1Pi
+ (ρ−, v−, u−)1P− + (ρ+, v+, u+)1P+

where ρi, vi, ui are constants with ρi > 0 and u± = v± ⊗ v± − 1
2 |v±|

2Id;
(ii) For every i ∈ {1, . . . , N} there exists a positive constant Ci such that

vi ⊗ vi − ui <
Ci
2

Id . (15)

(iii) The triple (ρ, v, u) solves the following system in the sense of distributions:

∂tρ+ divx(ρ v) = 0 (16)

∂t(ρ v) + divx (ρ u) +∇x

(
p(ρ) +

1

2

(∑
i

Ciρi1Pi
+ ρ|v|21P+∪P−

))
= 0 (17)

Definition 5.3 (Admissible fan subsolutions). A fan subsolution (ρ, v, u) is said to
be admissible if it satisfies the following inequality in the sense of distributions

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v] + ∂t

(
ρ
|v|2

2
1P+∪P−

)
+ divx

(
ρ
|v|2

2
v1P+∪P−

)
+

N∑
i=1

[
∂t

(
ρi
Ci
2

1Pi

)
+ divx

(
ρi v

Ci
2

1Pi

)]
≤ 0 . (18)

The discussion of the previous section can then be summarized in the following
proposition.

Proposition 5.4. Let p be any C1 function and (ρ±, v±) be such that there exists
at least one admissible fan subsolution (ρ, v, u) of (1) with initial data (7). Then
there are infinitely many bounded admissible solutions (ρ, v) to (1)-(7) such that
ρ = ρ.

6. The algebra. As already mentioned, the various conditions given in the above
definitions can be easily reduced to Rankine-Hugoniot conditions on the (flat) in-
terfaces dividing the various regions. As shown in [6] it suffices consider fan sub-
solutions with a fan partition consisting of only three sets, namely P−, P1 and P+:
this rather restrictive assumption is already enough to show that subsolutions exist.

We introduce therefore the real numbers α, β, γ, δ, v−1, v−2, v+1, v+2 such that

v1 = (α, β), (19)

v− = (v−1, v−2) (20)

v+ = (v+1, v+2) (21)

u1 =

(
γ δ
δ −γ

)
. (22)

We are now ready to report the algebraic conditions that such numbers must satisfy
and which correspond to Proposition 5.1 in [6].
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x2ν+ν−

1

P1

P+

P−

t

Figure 2. The fan partition in three regions.

Proposition 6.1. Let N = 1 and P−, P1, P+ be a fan partition as in Definition
5.1. The constants v1, v−, v+, u1, ρ−, ρ+, ρ1 as in (19)-(22) define an admissible
fan subsolution as in Definitions 5.2-5.3 if and only if the following identities and
inequalities hold:

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β (23)

ν−(ρ−v−1 − ρ1α) = ρ−v−1v−2 − ρ1δ (24)

ν−(ρ−v−2 − ρ1β) = ρ−v
2
−2 + ρ1γ + p(ρ−)− p(ρ1)− ρ1

C1

2
; (25)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2 (26)

ν+(ρ1α− ρ+v+1) = ρ1δ − ρ+v+1v+2 (27)

ν+(ρ1β − ρ+v+2) = −ρ1γ − ρ+v
2
+2 + p(ρ1)− p(ρ+) + ρ1

C1

2
; (28)

• Subsolution condition:

α2 + β2 < C1 (29)(
C1

2
− α2 + γ

)(
C1

2
− β2 − γ

)
− (δ − αβ)

2
> 0 ; (30)

• Admissibility condition on the left interface:

ν−(ρ−ε(ρ−)− ρ1ε(ρ1)) + ν−

(
ρ−
|v−|2

2
− ρ1

C1

2

)

≤ [(ρ−ε(ρ−) + p(ρ−))v−2 − (ρ1ε(ρ1) + p(ρ1))β] +

(
ρ−v−2

|v−|2

2
− ρ1β

C1

2

)
; (31)
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• Admissibility condition on the right interface:

ν+(ρ1ε(ρ1)− ρ+ε(ρ+)) + ν+

(
ρ1
C1

2
− ρ+

|v+|2

2

)

≤ [(ρ1ε(ρ1) + p(ρ1))β − (ρ+ε(ρ+) + p(ρ+))v+2] +

(
ρ1β

C1

2
− ρ+v+2

|v+|2

2

)
. (32)

Although there seems to be an abundance of constants satisfying the require-
ments of the proposition above, it has proved rather difficult to find an efficient
way of finding them. A large portion of the paper [6] is spent to give two dif-
ferent methods to generate some constants fulfilling the inequalities and identities
(23)-(32).

7. Specific solutions. The first of these methods makes the specific choice p(ρ) =
ρ2. It is with this specific pressure law that we reach Theorem 2.6 and hence
our main result Theorem 1.1. More precisely we show that there are constants
satisfying the requirements of Proposition 6.1 for which, in addition, the initial data
(7) is generated by a compression wave. Such data are in fact easy to characterize,
following classical computations.

Lemma 7.1. Let 0 < ρ− < ρ+, v+ = (− 1
ρ+
, 0) and v− = (− 1

ρ+
, 2
√

2(
√
ρ+−

√
ρ−)).

Then there is a pair (ρ, v) ∈W 1,∞
loc ∩ L∞(R2×]−∞, 0[,R+ × R2) such that

(i) ρ+ ≥ ρ ≥ ρ− > 0;
(ii) The pair solves the hyperbolic system ∂tρ+ divx(ρv) = 0

∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0
(33)

with p(ρ) = ρ2 in the classical sense (pointwise a.e. and distributionally);
(iii) for t ↑ 0 the pair (ρ(·, t), v(·, t)) converges pointwise a.e. to (ρ0, v0) as in (7);
(iv) (ρ(·, t), v(·, t)) ∈W 1,∞ for every t < 0.

A clever choice of some of the constants combined with some careful algebraic
computations show then the following

Lemma 7.2. Let p(ρ) = ρ2. There exist ρ±, v± satisfying the assumptions of
Lemma 7.1 and ρ1, C1, v1, u1, ν± satisfying the algebraic identities and inequalities
(23)-(32).
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[9] S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equa-

tions, Preprint (2013).
[10] C. De Lellis, Notes on hyperbolic systems of conservation laws and transport equations, in

“Handbook of differential equations: evolutionary equations. Vo. III” (eds. C. M. Dafermos

and E. Dafermos), (2007), 277–382.
[11] C. De Lellis and L. J. Székelyhidi, The Euler equations as a differential inclusion, Ann. Math.,

170 (2009), 1417–1436.
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[13] C. De Lellis and L. J. Székelyhidi, The h-principle and the equations of fluid dynamics, Bull.

Amer. Math. Soc. (N.S.), 49 (2012), 347–375 (2012)
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Žitná 25, 115 67 Praha 1, Czech Republic
and

Charles University in Prague, Faculty of Mathematics and Physics

Mathematical Institute
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Abstract. We discuss the role of relative entropies in the analysis of complete
fluid systems. The relative entropy, or rather relative energy functional mea-

sures the “distance” between a weak solution of a given system of equations

and any other trajectory ranging in the same function space. We introduce a
relative entropy functional for the full Navier-Stokes-Fourier system based on

the ballistic free energy and discuss possible applications in the mathematical

analysis of singular limits.

1. Introduction. The method of relative entropies has been widely used in rather
different areas of the modern theory of partial differential equations, see Berthe-
lin and Vasseur [3], Carrillo [5], Dafermos [7], Saint-Raymond [31], among others.
To introduce the concept of relative entropy, we consider an abstract (infinite-
dimensional) dynamical system generated by the solution operator of the evolu-
tionary problem

d

dt
U(t) = A(t, U(t)), t > 0, U(0) = U0, (1)

where A is a (non-linear) generator. We suppose that the problem (1) admits a
(not necessarily) unique solution U ranging in a Banach space X. Here, we suppose
that U is a kind of generalized (weak) solution and the space X chosen as large
as possible. In the applications studied in the present paper, the system (1) will
be a system of partial differential equations governing the time evolution of a fluid,
while U is its distributional solution. Besides, we introduce a target space for regular
(smooth) solutions Y ⊂ X.

We say that a functional

E
(
U
∣∣∣V ) : X × Y, Y ⊂ X → R (2)

is a relative entropy for the problem (1) if E enjoys the following properties:

2000 Mathematics Subject Classification. Primary: 35Q30, 35B25; Secondary: 35Q31.
Key words and phrases. Relative entropy, Navier-Stokes-Fourier system, low Mach number

limit, inviscid limit.
The author acknowledges the support of the project LL1202 in the programme ERC-CZ funded

by the Ministry of Education, Youth and Sports of the Czech Republic.
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• Distance property. We have E(U |V ) ≥ 0 and

E
(
U
∣∣∣V ) = 0 only if U ≡ V.

• Lyapunov functional. Let V be an equilibrium solution of the system (1),
meaning

A(t, V ) = 0 for all t.

Then V ∈ Y and
d

dt
E
(
U(t)

∣∣∣V ) ≤ 0 (3)

for any (weak) solution U of (1).
• Gronwall inequality. Let U be a (weak) solution of the system (1) ranging

in the space X and V a more regular (strong) solution of the same problem
ranging in the space Y . Then

E
(
U(τ)

∣∣∣V (τ)
)
≤ E

(
U(0)

∣∣∣V (0)
)

+ c

∫ τ

0

E
(
U(t)

∣∣∣V (t)
)

dt for a.a. τ ≥ 0. (4)

Possessing a relative entropy provides a valuable piece of information concerning
a given system of equations, in particular in the case when the latter is known
to admit only global-in-time weak solutions - the situation typical for the Navier-
Stokes system and related problems posed in the natural 3D-topology, see Fefferman
[13]. With a relative entropy at hand, it is possible to introduce the concept of
dissipative solution and show the principle of weak-strong uniqueness. Specifically,
the weak (dissipative) and strong solution coincide as long as the latter exists,
meaning, the strong solutions are unique in the class of weak solutions - this is a
direct consequence of (4). Another application of the relative entropy discussed
in the present paper is the rigorous justification of several singular limits in fluid
mechanics, in particular in the cases where viscosity becomes negligible.

The paper is organized as follows. In the first part, consisting in Sections 2 - 4
we introduce the concept of relative entropy and dissipative solutions to the Navier-
Stokes-Fourier system describing the motion of a general compressible, viscous, and
heat conducting fluid and compare it to the quantity introduced by Dafermos [7] in
the context of hyperbolic conservation laws. Section 5 is devoted to the analysis of
singular limits of the scaled problem by means of the method of relative entropies,
in particular, the case of the inviscid incompressible limit. We present frequency
localized Strichartz estimates for the acoustic equation and extend the result of [16]
to more general physical domains.

2. Thermostatics, relative entropies. To begin, we review some basic concepts
of continuum fluid mechanics. We suppose that the state of a fluid in thermo-
dynamic equilibrium is fully determined by its mass density % and the absolute
temperature ϑ. Alternatively, we may also replace % by the specific volume V = 1/%
and ϑ by the internal energy e. The internal energy e, the pressure p, and the
entropy s satisfy Gibbs’ equation:

ϑDs = De+ pDV, V =
1

%
. (5)

In this section, we discuss relative entropies η(%, ϑ|%̃, ϑ̃) relating the thermostatic

variables %, ϑ to some reference values %̃, ϑ̃.
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2.1. Thermodynamic stability. The concept of relative entropy in hyperbolic
systems of conservation laws was proposed by Dafermos [7] in order to study the
stability issues. Following [7], we consider first the standard entropy s = s(V, e)
expressed as a function of the specific volume V and the internal energy e. Further-
more, we impose the hypothesis of thermodynamic stability :

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0, (6)

where the former condition expresses positive compressibility of the fluid, while the
latter enforces positivity of the specific heat at constant volume. Both conditions
are rather natural and form one of the main building blocks of the theory developed
below.

Expressing the thermodynamic functions p, s, as well as the absolute temperature
ϑ in terms of %, e we deduce from (5), (6) that the mapping

(V, e) 7→ −s(V, e) is convex in (V, e),

cf. Bechtel, Rooney, and Forest [2]. Consequently, a natural candidate for the
relative entropy evaluated in terms of the thermostatic variables V , e is the quantity
η,

η
(
V, e
∣∣∣Ṽ , ẽ) = −

(
s(V, e)− ∂V s(Ṽ , ẽ)(V − Ṽ )− ∂es(Ṽ , ẽ)(e− ẽ)− s(Ṽ , ẽ)

)
.

Going back to the independent variables %, ϑ and using Gibbs’ relation (5) we
obtain

η
(
%, ϑ
∣∣∣%̃, ϑ̃) = −

(
s(%, ϑ)− p(%̃, ϑ̃)

ϑ̃

(
1

%
− 1

%̃

)
− 1

ϑ̃

(
e(%, ϑ)− e(%̃, ϑ̃)

)
− s(%̃, ϑ̃)

)
,

which may be viewed as a “specific” relative entropy related to unit mass. For ap-
plications to conservation laws, it is more convenient to replace η ≈ %η, specifically
we take

η
(
%, ϑ
∣∣∣%̃, ϑ̃) = −%

(
s(%, ϑ)− p(%̃, ϑ̃)

ϑ̃

(
1

%
− 1

%̃

)
− 1

ϑ̃

(
e(%, ϑ)− e(%̃, ϑ̃)

)
− s(%̃, ϑ̃)

)
(7)

2.2. Ballistic free energy. In applications to dissipative equations like the Navier-
Stokes system, we further modify the functional η by introducing:

ξ
(
%, ϑ
∣∣∣%̃, ϑ̃) = ϑ̃ η

(
%, ϑ
∣∣∣%̃, ϑ̃)

=
(
%e(%, ϑ)− ϑ̃%s(%, ϑ)

)
−
(
%̃e(%̃, ϑ̃)− ϑ̃%̃s(%̃, ϑ̃)

)
+

[
p(%̃, ϑ̃)

%̃
+ e(%̃, ϑ̃)− ϑ̃s(%̃, ϑ̃)

]
(%̃− %).

Consequently, using once more Gibbs’relation (5) we arrive at

ξ
(
%, ϑ
∣∣∣%̃, ϑ̃) = Hϑ̃(%, ϑ)−

∂Hϑ̃(%̃, ϑ̃)

∂%
(%− %̃)−Hϑ̃(%̃, ϑ̃), (8)

where we have introduced another thermodynamic potential called ballistic free
energy (cf. Ericksen [11]),

Hϑ̃(%, ϑ) = %
(
e(%, ϑ)− ϑs(%, ϑ)

)
,
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see [17]. Note that ξ has the physical dimension of energy rather than entropy.

3. Fluids in motion. Up to now, we have considered fluids in thermodynamic
equilibrium characterized by the thermostatic variables %, ϑ. Now, we suppose that
the fluid moves with a macroscopic velocity u = u(t, x), which is a function of
the time t and the spatial position x. In accordance with the commonly accepted
principles of continuum thermodynamics, we assume that the state of the fluid
at each instant t is still described by the density % = %(t, x) and the absolute
temperature ϑ = ϑ(t, x). Thus the trio [%, ϑ,u] provides a full description of the
fluid at any time and any spatial position of a given physical domain Ω ⊂ R3.

3.1. Navier-Stokes-Fourier system. Given the initial state of the fluid

%(0, ·) = %0, u(0, ·) = u0, ϑ(0, ·) = ϑ0, (9)

the time evolution of the state variables is described by means of the following
Navier-Stokes-Fourier system that expresses the fundamental physical principles:

mass conservation

∂t%+ divx(%u) = 0; (10)

momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu) + %f ; (11)

energy balance

∂t

(
1

2
%|u|2 + %e(%, ϑ)

)
+ divx

[(
1

2
%|u|2 + %e(%, ϑ)

)
u + p(%, ϑ)u− S(ϑ,∇xu) · u

]
(12)

+divxq(ϑ,∇xϑ) = %f · u;

where f is an external force, S(ϑ,∇xu) is the viscous stress tensor here determined
by

Newton’s law

S(ϑ,∇xu) = µ(ϑ)

(
∇xu +∇txu−

2

3
divxuI

)
+ η(ϑ)divxuI; (13)

and q(ϑ,∇xϑ) is the heat flux given by
Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (14)

3.2. Physical domains, boundary conditions. In the case ∂Ω 6= ∅, relevant
boundary conditions must be prescribed. We focus on the domains with imper-
meable boundaries, both mechanically and thermally. Accordingly, we impose the
boundary conditions

u · n|∂Ω = 0 (15)

and
q(ϑ,∇xϑ) · n|∂Ω = 0. (16)

In addition to (15), we suppose that the behavior of the fluid in the tangential
direction to ∂Ω obeys
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Navier’s slip boundary condition

[S(ϑ,∇xu) · n]tan + β[u]tan|∂Ω = 0, (17)

where β ∈ [0,∞] plays the role of a friction coefficient. We focus on the two extremal
situations where either β = 0 and (17) reduces to the complete slip boundary
condition

[S(ϑ,∇xu) · n]× n|∂Ω = 0, (18)

or β =∞, for which (15), (17) give rise to the very common no slip condition

u|∂Ω = 0. (19)

The boundary conditions (15), (16), supplemented with either (18) or (19), are
conservative and give rise, by integrating (12), to

total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx =

∫
Ω

%f · u dx (20)

at least if Ω ⊂ R3 is a bounded domain.
If Ω ⊂ R3 is unbounded, the far-field behavior of the state variables must be

prescribed, for instance,

%→ %∞, ϑ→ ϑ∞, u→ u∞ as |x| → ∞, (21)

and the total energy balance (20) must be modified accordingly.

3.3. Equivalent formulation of the energy balance. The energy balance equa-
tion (12) is very often replaced by another balance law that is equivalent to (12) at
least in the framework of classical solutions to the Navier-Stokes-Fourier system.

3.3.1. Thermal energy. Introducing the specific heat at constant volume (cf. (6))

cV (%, ϑ) =
∂e(%, ϑ)

∂ϑ

we may rewrite (12) in the form of
thermal energy equation

%cv(%, ϑ)
(
∂tϑ+ u · ∇xϑ

)
− divx

(
κ(ϑ)∇xϑ

)
= S(ϑ,∇xu) : ∇xu− ϑ

∂p(%, ϑ)

∂ϑ
divxu,

(22)
where, of course, we have exploited several identities resulting from the remaining
equations in the Navier-Stokes-Fourier system.

The formulation of the Navier-Stokes-Fourier system by means of the equations
(10), (11), and (22) is frequently used in the literature, in particular, the nowadays
standard existence theory in the framework of classical solutions developed by Mat-
sumura and Nishida [28], [29], Tani [35], Valli [36], [37], Valli and Zajackowski [38]
uses this setting.
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3.3.2. Entropy equation and the Second law of thermodynamics. Unlike (12), the
thermal energy equation (22) is not in a divergence form that is more convenient
for the weak formulation, where the differential operators are typically transferred
on suitable smooth test functions. To this end, it seems more convenient to use

entropy production equation

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
= σ, (23)

with the entropy production rate

σ =
1

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ
ϑ

)
, (24)

which can be obtained dividing (22) on ϑ and using the continuity equation.
In accordance with the Second law of thermodynamics, the entropy production

rate σ must be non-negative. On the other hand, it is difficult to establish (24) in
the framework of weak solutions to the Navier-Stokes-Fourier system. The problem
seems to be of the same origin as its counterpart in the theory of incompressible
fluid flows discussed by Duchon and Robert [9], Eyink [12], Nagasawa [30], Shvydkoy
[32], or, in the context of inviscid incompressible fluids by DeLellis and Székelyhidi
[8]. In other words, the weak solutions may, hypothetically, dissipate more kinetic
energy than expressed by the quantity on the right-hand side of (24), specifically

σ ≥ 1

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ
ϑ

)
. (25)

On the other hand, under the conservative boundary conditions specified in Sec-
tion 3.2, the balance of the total energy (20) remains valid. Consequently, we may
use the equations (10), (11), together with the entropy production equation (23),
where σ satisfies (25), and the total energy balance (20) as a new formulation of the
Navier-Stokes-Fourier system. It can be shown (see [15, Chapter 2]) that this new
formulation is perfectly equivalent to the original system of equations, in particular
the entropy production rate is given by (24), as soon as the state variables [%, ϑ,u]
are smooth. As we will see below, the new formulation can be suitably adapted in
the context of weak (distributional) solutions to obtain a mathematically tractable
object.

4. Weak and dissipative solutions. In accordance with the previous discussion,
one of possible weak formulations of the Navier-Stokes-Fourier system consists of
the equation of continuity (10), the momentum equation (11), together with entropy
production inequality (23), (25), supplemented with the total energy balance (20),
where the derivatives as well as the boundary conditions are satisfied in the sense
of distributions and their traces, see [15, Chapter 3] for details. Here, we introduce
even more general class of the so-called dissipative solutions characterized by the
satisfaction of the relative entropy inequality specified below.

4.1. Relative entropy. Motivated by the discussion in Section 2.2, specifically by
formula (8), we introduce a relative entropy

E
(
%, ϑ,u

∣∣∣ r,Θ,U) (26)

=

∫
Ω

[
1

2
%|u−U|2 +HΘ(%, ϑ)− ∂HΘ(r,Θ)

∂%
(%− r)−HΘ(r,Θ)

]
dx.
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If [%, ϑ,u] is a smooth solution of the Navier-Stokes-Fourier system, supplemented
with the no-slip condition (19) or the complete slip condition (15), (18), and if
[r,Θ,U] is and arbitrary trio of smooth test functions satisfying

r > 0, Θ > 0, and U|∂Ω = or U · n|∂Ω = 0, (27)

then it is a routine matter to check that the following relative entropy inequality
holds:[
E
(
%, ϑ,u

∣∣∣r,Θ,U)]t=τ
t=0

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xU) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ
ϑ

)
dx dt

(28)

≤
∫ τ

0

∫
Ω

(
%(U− u) · ∂tU + %(U− u)⊗ u : ∇xU− p(%, ϑ)divxU

)
dx dt

+

∫ τ

0

∫
Ω

(
S(ϑ,∇xu) : ∇xU + %f · (u−U)

)
dx dt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r,Θ)

)
u · ∇xΘ

)
dx dt

+

∫ τ

0

∫
Ω

q(ϑ,∇xϑ)

ϑ
· ∇xΘ dx dt

+

∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt

for a.a. τ ∈ [0, T ].
Now, the crucial observation exploited in [17] is that the relative entropy in-

equality (28) remains valid also for any weak solution [%, ϑ,U] as long as the test
functions [r,Θ,U] are sufficiently smooth and satisfy the compatibility condition
(27).

4.2. Dissipative solutions. Following the idea of DiPerna and Lions [25] we say
that [%, ϑ,u] is a dissipative solution of the Navier-Stokes-Fourier system if

% ∈ L∞(0, T ;Lp(Ω)) for a certain p > 1, % ≥ 0 a.a. in (0, T )× Ω,

ϑ ∈ L∞(0, T ;Lp(Ω))∩Lr(0, T ;W 1,r(Ω)) for certain q, r > 1, ϑ > 0 a.a. in (0, T )×Ω,

u ∈ Ls(0, T ;W 1,s(Ω;R3)) for a certain s > 1, u|∂Ω = 0 or u · n|∂Ω = 0,

and the relative entropy inequality (28) holds for any trio of smooth test functions
[r,Θ,U] satisfying (27). Of course, the exponents p, q, r, and s are not arbitrary
and must be adjusted so that all integrals appearing in (28) make sense. This issue
will be discussed in detail in the following part of the paper.

4.3. Existence theory. The main advantage of the weak formulation of the Navier-
Stokes-Fourier system based on the entropy production balance discussed in Section
3.3.2 is that the resulting problem is mathematically tractable, specifically, we can
establish an existence theory of global-in-time solutions in the spirit of Leray’s sem-
inal paper [24].
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4.3.1. Hypotheses. In order to present the main existence result in the framework
of weak solutions, the class of thermodynamic functions p, e, and s as well as the
transport coefficient µ, η and κ must be restricted.

To begin, we assume that the pressure p obeys a state equation in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (29)

with P ∈ C1[0,∞). The first expression on the right-hand side is a general pressure
of a monoatomic gas, while the second one accounts for the effect of radiation,
see Eliezer, Ghatak, and Hora [10]. The reader may consult [15, Chapter 1] for
details concerning the physical background of (29) as well as the other hypotheses
introduced below.

The specific internal energy will be taken in the form

e(%, ϑ) =
3

2

ϑ5/2

%
P
( %

ϑ3/2

)
+
a

%
ϑ4, (30)

and

s(%, ϑ) = S
( %

ϑ3/2

)
+

4a

3

ϑ3

%
, (31)

where

S′(Z) = −3

2

5
3P (Z)− P ′(Z)Z

Z2
. (32)

In accordance with the hypothesis of thermodynamic stability, we further suppose
that

P ′(Z) > 0 for any Z ≥ 0,
5
3P (Z)− P ′(Z)Z

Z
> 0 for any Z > 0, (33)

and

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (34)

Finally, we impose technical but physically grounded hypotheses (cf. [15, Chapter
1])

P (0) = 0,
5
3P (Z)− P ′(Z)Z

Z
< c for all Z > 0. (35)

The transport coefficients µ, η, and κ are continuously differentiable for ϑ ∈
[0,∞) satisfying

µ(1 + ϑΛ) ≤ µ(ϑ) ≤ µ(1 + ϑΛ), |µ′(ϑ)| < c for all ϑ ∈ [0,∞) for some
2

5
< Λ ≤ 1,

(36)

0 ≤ η(ϑ) ≤ η(1 + ϑΛ) for all ϑ ∈ [0,∞), (37)

κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3) for all ϑ ∈ [0,∞). (38)

4.3.2. Global-in-time existence. Having specified the basic hypotheses, we are ready
to state the following global-in-time existence result for the Navier-Stokes-Fourier
system in the framework of weak solutions, see [15, Theorem 3.1].

Theorem 4.1. Let Ω ⊂ R3 be a bounded domain of class C2+ν , ν > 0. Assume
that the initial data satisfy

%0 ∈ L∞(Ω), ϑ0 ∈ L∞(Ω), (%u)0 ∈ L∞(Ω;R3), %0 > 0, ϑ0 > 0 a.a. in Ω,

and let f ∈ L∞((0, T )×Ω;R3) be given. Let the functions p, e, s and the transport
coefficients µ, η, and κ satisfy the hypotheses (29 - 38).
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Then the Navier-Stokes-Fourier system admits a weak solution [%, ϑ,u] in the set
(0, T )× Ω for any T > 0.

4.3.3. Weak-strong uniqueness and regularity criterion. As observed in [17], any
weak solution satisfies the relative entropy inequality (28). This fact can be used
for deriving a version of the Gronwall inequality (4), in particular, the weak and
strong solutions emanating from the same initial data coincide as long as the latter
exists. This is the weak-strong uniqueness property shown in [17, Theorem 2.1]:

Theorem 4.2. In addition to the hypotheses of Theorem 4.1 suppose that the initial
data belong to the class:

%0, ϑ0 ∈W 3,2(Ω), u0 ∈W 3,2(Ω;R3). (39)

Let [%, ϑ,u] be the weak solution of the Navier-Stokes-Fourier system, the exis-

tence of which is guaranteed by Theorem 4.1, and let [%̃, ϑ̃, ũ] be a strong solution
of the same problem belonging to the class

%̃, ϑ̃ ∈ C([0, T ];W 3,2(Ω)), ũ ∈ C([0, T ];W 3,2(Ω;R3)),

ϑ̃ ∈ L2(0, T ;W 4,2(Ω)), ∂tϑ̃ ∈ L2(0, T ;W 2,2(Ω)),

ũ ∈ L2(0, T ;W 4,2(Ω;R3)), ∂tũ ∈ L2(0, T ;W 2,2(Ω;R3)),

and emanating from the same initial data.
Then % = %̃, ϑ = ϑ̃, and u = ũ in [0, T ].

Note that local-in-time strong solutions in the afore-mentioned class were con-
structed by Valli [36], [37], Valli and Zajackowski [38]. Since the proof uses only
the relative entropy inequality, the same result is valid in the class of dissipative
solutions.

Finally, we report a conditional regularity result in the spirit of Beale, Kato, and
Majda [1], see [18, Theorem 2.1]:

Theorem 4.3. In addition to the hypotheses of Theorem 4.1 suppose that the initial
data belong to the regularity class (39) and satisfy the compatibility conditions:

∇xϑ0 · n|∂Ω = u0|∂Ω = 0, ∇xp(%0, ϑ0)|∂Ω = divxS(ϑ0,∇xu0) + %0f |∂Ω. (40)

Let [%, ϑ,u] be a weak (dissipative) solution of the Navier-Stokes-Fourier system
satisfying

ess sup
(t,x)∈(0,T )×Ω

|∇xu(t, x)| <∞.

Then [%, ϑ,u] is a classical solution in the open space-time cylinder (0, T )× Ω.

The reader will have noticed that the compatibility conditions (40) reflex the
no-slip boundary condition for the velocity. The same result, with an obvious
modification, applies to a general Navier slip boundary condition.

5. Singular limits. Singular limits are closely related to scale analysis of differ-
ential equations - an efficient tool used both theoretically and in numerical experi-
ments to reduce the undesirable and mostly unnecessary complexity of the underly-
ing physical system. The Navier-Stokes-Fourier system, in the entropy formulation,
can be written in the dimensionless form:

Sr ∂t%+ divx(%u) = 0, (41)

Sr ∂t(%u) + divx(%u⊗ u) +
1

Ma2∇xp =
1

Re
divxS(ϑ,∇xu) +

1

Fr2 %∇xF, (42)
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Sr ∂t(%s) + divx(%su) +
1

Pe
divx

(q(ϑ,∇xϑ)

ϑ

)
= σ, (43)

Sr
d

dt

∫
Ω

(Ma2

2
%|u|2 + %e− Ma2

Fr2 %F
)

dx = 0, (44)

with the scaled entropy production rate

σ ≥ 1

ϑ

(Ma2

Re
S : ∇xu−

1

Pe

q · ∇xϑ
ϑ

)
, (45)

where we have taken the potential driving force f = ∇xF (x).
The dimensionless characteristic numbers appearing in the preceding system are

defined as follows, see Klein et al. [23]:

Symbol Definition Name

Sr Lref/(TrefUref) Strouhal number

Ma Uref/
√
pref/%ref Mach number

Re %refUrefLref/µref Reynolds number

Fr Uref/
√
Lreffref Froude number

Pe prefLrefUref/(ϑrefκref) Péclet number

Here Lref stands for the characteristic length, Tref is the characteristic time, and
Uref is the characteristic velocity.

5.1. Inviscid incompressible limits. In many real world applications, in par-
ticular in meteorology, the fluid motion is rather slow, and, at the same time, the
transport coefficients are small. This the situation corresponding to the choice:

Sr = 1, Ma = ε, Re = ε−a, Pe = ε−b, a, b > 0,

where ε → 0 is a small parameter. Moreover, for the sake of simplicity, we set
F = 0.

The initial data are ill-prepared, specifically,

%(0, ·) = %0,ε = %+ ε%
(1)
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ

(1)
0,ε, u(0, ·) = u0,ε, (46)

where %, ϑ are positive constants, and the perturbations %
(1)
0,ε, ϑ

(1)
0,ε are allowed to be

large.
For [%ε, ϑε,uε] a family of solutions to the scaled Navier-Stokes-Fourier system,

we may anticipate that

%ε → %, ϑε → ϑ, uε → v,
ϑε − ϑ
ε

→ T, (47)

where the limit velocity v and the temperature deviation T satisfy

divxv = 0, (48)

∂tv + v · ∇xv +∇xΠ = 0, (49)

∂tT + v · ∇xT = 0, (50)

cf. [16]. The system (48), (49) is nothing other than the incompressible Euler
system known to possess a local in time strong solution for any regular initial data.
The equation (50) represents pure transport of the temperature deviation.
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5.2. Mathematical analysis. A rigorous justification of the limit (47), carried
over in [16], is rather technical and demonstrates the strength of the method of
relative entropies. Results of this type for a simpler compressible Navier-Stokes
system (without temperature) were obtained by Masmoudi [26], [27].

The leading idea of the analysis is rather simple, namely, take the trio

U = ∇xΦε + v, r = %+ εRε, Θ = ϑ+ εTε

as test functions in the relative entropy inequality (28). The function v is the
solution of the Euler system (48), (49), while Rε, Tε, and Φε solve the acoustic-
transport system:

ε∂t(αRε + βTε) + ω∆Φε = 0, (51)

ε∂t∇xΦε +∇x(αRε + βTε) = 0, (52)

∂t(δTε − βRε) + Uε · ∇x(δTε − βRε) + (δTε − βRε)divxUε = 0, (53)

with the constants

α =
1

%

∂p(%, ϑ)

∂%
, β =

1

%

∂p(%, ϑ)

∂ϑ
, δ = %

∂s(%, ϑ)

∂ϑ
, ω = %

(
α+

β2

δ

)
.

For Zε = αRε + βTε, the system (51), (52) can be written in the form of
acoustic equation

ε∂tZε + ω∆Φε = 0, ε∂tΦε + Zε = 0. (54)

The system (54) governs the propagation of acoustic waves supposed to “disappear”
in the incompressible limit. The principal idea of the analysis is therefore to show
that

Φε → 0, Zε → 0 in some sense, (55)

and to recover the limit equation (50) from (53). In order to show (55), we use the
dispersive (Strichartz type) estimates discussed in the next section.

5.3. Propagation of acoustic waves. We consider a fluid flow confined to a gen-
eral (unbounded) domain Ω ⊂ R3, where the velocity uε satisfies the complete slip
boundary conditions (15), (18). Accordingly, the acoustic potential Φε appearing
in (54) satisfies the homogeneous Neumann boundary condition

∇xΦε · n|∂Ω = 0. (56)

Note that the complete slip boundary conditions are also necessary in order to
avoid the up to now unsurmountable difficulties connected with the presence of a
boundary layer in the inviscid limit, see e.g. Kato [21].

5.3.1. Frequency localized Strichartz estimates. A short inspection of the solution
formula associated to the acoustic problem (55), (56) reveals that solutions may be
expressed by means of the wave propagator

h 7→ exp

(
±i
t

ε

√
−∆N

)
[h],

where ∆N denotes the L2-realization of the Neumann Laplacean on Ω. Our goal
will be to show∫ ∞
−∞

∥∥∥G(−∆N ) exp
(
±i
√
−∆N t

)
[h]
∥∥∥p
Lq(Ω)

≤ c(G)‖h‖pH1,2(Ω),
1

2
=

1

p
+

3

q
, q <∞,

(57)



22 EDUARD FEIREISL

where G ∈ C∞c (0,∞), and where H1,2 denotes the homogeneous Sobolev space.
The estimate (57) can be viewed as frequency localized Strichartz estimates, cf.
[34]. They provide the necessary piece of information in order to show the (local)
decay of acoustic waves claimed in (55), cf. [16]. In the remaining part of this
section, we show (57) by means of the arguments of developed by Burq [4], Smith
and Sogge [33]. To this end, we suppose that Ω = R3 \ K is a regular exterior
domain, K a compact set in R3 with a smooth boundary.

5.3.2. Dispersive estimates for the free Laplacean. We recall the standard Strichartz
estimates for the free Laplacean ∆ in R3,∫ ∞

−∞

∥∥∥exp
(
±i
√
−∆t

)
[h]
∥∥∥p
Lq(R3)

dt ≤ ‖h‖pH1,2(R3),
1

2
=

1

p
+

3

q
, q <∞, (58)

see Keel and Tao [22], Strichartz [34].
In addition, the free Laplacean satisfies the local energy decay in the form∫ ∞

−∞

∥∥∥ϕ exp
(
±i
√
−∆t

)
[h]
∥∥∥2

Hα,2(R3)
dt ≤ c(ϕ)‖h‖2Hα,2(R3), α ≤

3

2
, (59)

see Smith and Sogge [33, Lemma 2.2].

5.3.3. Frequency localized estimates. To show (57), we decompose the function

U(t, ·) = G(−∆N ) exp
(
±i
√
−∆N t

)
[h] = exp

(
±i
√
−∆N t

)
G(−∆N )[h]

as

U = v + w, v = χU, w = (1− χ)U,

where

χ ∈ C∞c (R3), 0 ≤ χ ≤ 1, χ(x) = 1 for |x| ≤ R.
Here R is chosen so large that the complement K of Ω is contained in the ball of
the radius R.

Thus we write

w = w1 + w2,

where w1 solves the homogeneous wave equation

∂2
t,tw

1 −∆w1 = 0 in R3,

supplemented with the initial conditions

w1(0) = (1− χ)G(−∆N )[h], ∂tw
1(0) = ±i(1− χ)

√
−∆NG(−∆N )[h],

while

∂2
t,tw

2 −∆w2 = F in R3,

w2(0) = ∂tw
2(0) = 0,

with

F = −∇xχ∇xU − U∆χ.

As a direct consequence of the standard Strichartz estimates (58), we obtain∫ ∞
−∞

∥∥w1
∥∥p
Lq(R3)

dt ≤ c(G)‖h‖pH1,2(R3),
1

2
=

1

p
+

3

q
, q <∞. (60)

As the next step, we use Duhamel’s formula to deduce

w2(τ, ·) =
1

2
√
−∆

[
exp

(
i
√
−∆τ

)∫ τ

0

exp
(
−i
√
−∆s

)
[η2F (s)] ds

]
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− 1

2
√
−∆

[
exp

(
−i
√
−∆τ

)∫ τ

0

exp
(

i
√
−∆s

)
[η2F (s)] ds

]
,

with

η ∈ C∞c (R3), 0 ≤ η ≤ 1, η = 1 on supp[F ].

Now, similarly to Burq [4], we use the following result of Christ and Kiselev [6]:

Lemma 5.1. Let X and Y be Banach spaces and assume that K(t, s) is a contin-
uous function taking its values in the space of bounded linear operators from X to
Y . Set

T [f ](t) =

∫ b

a

K(t, s)f(s) ds, W[f ](t) =

∫ t

a

K(t, s)f(s) ds,

where

0 ≤ a ≤ b ≤ ∞.
Suppose that

‖T [f ]‖Lp(a,b;Y ) ≤ c1‖f‖Lr(a,b;X)

for certain

1 ≤ r < p ≤ ∞.
Then

‖W[f ]‖Lp(a,b;Y ) ≤ c2‖f‖Lr(a,b;X),

where c2 depends only on c1, p, and r.

We apply Lemma 5.1 to

X = L2(R3), Y = Lq(R3), q <∞, 1

2
=

1

p
+

3

q
, r = 2,

and

f = F, K(t, s)[F ] =
1√
−∆

exp
(
±i
√
−∆(t− s)

)
[η2F ].

Writing∫ ∞
0

K(t, s)F (s) ds = exp
(
±i
√
−∆t

) 1√
−∆

∫ ∞
0

exp
(
∓i
√
−∆s

)
[χ2F (s)] ds,

we have to show, in accordance with the Strichartz estimates (58), that∥∥∥∥∫ ∞
0

exp
(
±i
√
−∆s

)
[η2F (s)] ds

∥∥∥∥
L2(R3)

≤ c‖F‖L2(0,∞;L2(R3)). (61)

On the other hand, however,∥∥∥∥∫ ∞
0

exp
(
±i
√
−∆s

)
[χ2F (s)] ds

∥∥∥∥
L2(R3)

= sup
‖v‖L2(R3)≤1

∫ ∞
0

〈
exp

(
±i
√
−∆s

)
[χ2F (s)]; v

〉
ds

= sup
‖v‖L2(R3)≤1

∫ ∞
0

〈
χF (s);χ exp

(
−i
√
−∆s

)
[v]
〉

ds;

whence the desired conclusion (61) follows from the local energy decay estimates
(59). As the norm of F is bounded, we may infer that∫ ∞

−∞

∥∥w2
∥∥p
Lq(R3)

dt ≤ c(G)‖h‖pH1,2(R3),
1

2
=

1

p
+

3

q
, q <∞. (62)
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Finally, since v = χU is compactly supported, we deduce form the standard
elliptic regularity for −∆N that∫ ∞

0

‖v‖2Lq(Ω) dt ≤ c(G)‖h‖2H1,2(Ω); (63)

while, by virtue of the standard energy estimates,

sup
t>0
‖v(t, ·)‖Lq(Ω) ≤ c(G)‖h‖H1,2(Ω). (64)

where q < ∞ is the same as in (58). Interpolating (63), (64), we get the desired
conclusion (57).

To conclude this section, we note that similar estimates on exterior domain can
be obtained by the method of Isozaki [19]. On the other hand, the present method
seems more versatile and applicable to a larger class of unbounded domains, for
instance to a perturbed half-space or wave operators with non-constant coefficients
arising in the stratified limits, cf. [14].

5.4. Singular limit - main result. In order to formulate our main result, several
remarks are in order. In agreement with the previous section, we consider the fluid
confined to an unbounded domain Ω ⊂ R3 with a compact and regular boundary
∂Ω, on which the velocity field uε satisfies the complete slip boundary conditions
(15), (18). Moreover, the initial data are taken in the form (46), where

%
(1)
0,ε → %

(1)
0 in L2(Ω), ϑ

(1)
0,ε → ϑ

(1)
0 in L2(Ω), ‖%(1)

0,ε‖L∞(Ω), ‖%
(1)
0,ε‖L∞(Ω) ≤ c, (65)

and

u0,ε → u0 in L2(Ω;R3). (66)

Since the spatial domain is un bounded, the far field conditions must be pre-
scribed. In agreement with (65), (66), we take

%ε → %, ϑε → ϑ, uε → 0 as |x| → ∞. (67)

Accordingly, the natural function spaces the solution is sought in read

%ε − %
ε
∈ L∞(0, T ;L5/3 + L2(Ω)),

ϑε − ϑ
ε

∈ L∞(0, T ;L4 + L2(Ω)), (68)

and, if we fix Λ = 1 in the hypotheses (36 - 38),

ϑε ∈ L2(0, T ;W 1,2(Ω)), uε ∈ L2(0, T ;W 1,2(Ω;R3)). (69)

Finally, we denote

v0 = H[u0], where H denotes the standard Helmholtz projection,

and suppose that

v0 ∈W k,2(Ω;R3), k >
5

2
.

Our result concerning the inviscid, incompressible limit of the Navier-Stokes-
Fourier system will be formulated directly in terms of the dissipative solutions,
meaning the functions [%ε, ϑε,uε] satisfying the relative entropy inequality (28).
Since the domain Ω is unbounded, we have to modify the space of test functions
accordingly, namely

r > 0, Θ > 0, and U · n|∂Ω = 0, r − %,Θ− ϑ, U in C∞c ([0, T ]× Ω).

Combining the dispersive estimates obtained in Section 5.3 with the method of
[16] we obtain the following generalization of [16, Theorem 3.1]:



RELATIVE ENTROPIES AND SINGULAR LIMITS 25

Theorem 5.2. Let Ω ⊂ R3 be an unbounded domain with a compact boundary of
class C2+ν . Suppose that the thermodynamic functions p, e, and s and the transport
coefficients µ, η, κ satisfy the hypotheses (29 - 38), with Λ = 1. Let

b > 0,
10

3
> a > 0.

Furthermore, suppose that the initial data (46) are chosen in such a way that

{%(1)
0,ε}ε>0, {ϑ(1)

0,ε}ε>0 are bounded in L2∩L∞(Ω), %
(1)
0,ε → %

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 in L2(Ω),

and

{u0,ε}ε>0 is bounded in L2(Ω;R3), u0,ε → u0 in L2(Ω;R3),

where

%
(1)
0 , ϑ

(1)
0 ∈W 1,2 ∩W 1,∞(Ω), H[u0] = v0 ∈W k,2(Ω;R3) for a certain k >

5

2
.

Let Tmax ∈ (0,∞] denote the maximal life-span of the regular solution v to the Euler
system (48), (49) satisfying v(0, ·) = v0. Finally, let {%ε, ϑε,uε} be a dissipative
solution of the scaled Navier-Stokes-Fourier system in (0, T )× Ω, T < Tmax, with

Sr = 1, Ma = ε, Re = ε−a, Pe = ε−b.

Then

ess sup
t∈(0,T )

‖ %ε(t, ·)− % ‖L2+L5/3(Ω) ≤ εc,

√
%εuε →

√
% v in L∞loc((0, T ];L2

loc(Ω;R3)) and weakly-(*) in L∞(0, T ;L2(Ω;R3)),

and
ϑε − ϑ
ε

→ T in L∞loc((0, T ];Lqloc(Ω;R3)), 1 ≤ q < 2,

and weakly-(*) in L∞(0, T ;L2(Ω)),

where v, T is the unique solution of the Euler-Boussinesq system (48 - 50), with
the initial data

v0 = H[u0], T0 = %
∂s(%, ϑ)

∂ϑ
ϑ

(1)
0 −

1

%

∂p(%, ϑ)

∂ϑ
%

(1)
0 .

Finally, we note that existence of the dissipative solutions for the Navier-Stokes-
Fourier system in general (unbounded) domains was shown by Jesslé, Jin, and
Novotný [20].
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Abstract. In this paper we study the homogenization of elliptic systems with

Dirichlet boundary condition, when both the coefficients and the boundary

datum are oscillating, namely ε-periodic. In particular, in the paper [9], we
showed that, as ε → 0, the solutions converge in L2 with a power rate in ε,

and we identified the homogenized limit system and the homogenized boundary

data. Due to a boundary layer phenomenon, this homogenized system depends
in a non trivial way on the boundary. The analysis in [9] answers a longstanding

open problem, raised for instance in [4].

1. Introduction. Homogenization of elliptic systems arises in several physical
problems where a mixture is present. Some of the main applications of the the-
ory are the diffusion of heat or electricity in a non-homogeneous media, the theory
of elasticity of mixtures, ... Physically, the main goal of the theory is to try to
compute accurate and effective properties of these mixtures. Mathematically, we
have to find a limit system towards which the solutions of homogenization problem
converge. This passage from “microscopic” to “macroscopic” description is called
in the literature “homogenization”.

When both the coefficients of the system and the boundary datum are oscillating
(ε-periodic) and due to a boundary layer phenomenon, this homogenized system
depends in a non trivial way on the boundary. In this talk, we answer a longstanding
open problem, raised for instance by Bensoussan, Lions and Papanicolaou in their
book “Asymptotic analysis for periodic structures” [4, page xiii]:

Of particular importance is the analysis of the behavior of solutions near
boundaries and, possibly, any associated boundary layers. Relatively lit-
tle seems to be known about this problem.

In particular this result extends substantially previous works obtained for polyg-
onal domains with sides of rational slopes as well as our previous paper [8] where
the case of irrational slopes was considered. We hope that these notes give a better
understanding of the proof of the result in [9].
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2. The homogenization problem. We consider the homogenization of elliptic
systems in divergence form

−∇ · (A (·/ε)∇u) (x) = f, x ∈ Ω, (1)

set in a bounded domain Ω of Rd, d ≥ 2, with an oscillating Dirichlet data

u(x) = ϕ(x, x/ε), x ∈ ∂Ω. (2)

As is customary, ε > 0 is a small parameter, and A = A(y) takes values in
Md (MN (R)), namely Aαβ(y) ∈ MN (R) is a family of functions of y ∈ Rd, in-
dexed by 1 ≤ α, β ≤ d, with values in the set of N × N matrices. Here, u = u(x)
and ϕ = ϕ(x, y) take their values in RN . We recall, using Einstein convention for
summation, that for each 1 ≤ i ≤ N ,

(∇ ·A (·/ε)∇u)i(x) := ∂xα

[
Aαβij (·/ε) ∂xβuj

]
(x).

In the sequel, Greek letters α, β, ... will range between 1 and d and Latin letters
i, j, k, ... will range between 1 and N .

In the context of thermics, d = 2 or 3, N = 1, u is the temperature, and
σ = A(·/ε)∇u is the heat flux given by Fourier law. The parameter ε models
heterogeneity, that is short-length variations of the material conducting properties.
The boundary term ϕ in (2) corresponds to a prescribed temperature at the surface
of the body and f is a source term. In the context of linear elasticity, d = 2 or 3,
N = d, u is the unknown displacement, f is the external load and A is a fourth
order tensor that models Hooke’s law.

We make three hypotheses:

i): Ellipticity: For some λ > 0, for all family of vectors ξ = ξαi ∈ RNd

λ
∑
α

ξα · ξα ≤
∑
α,β,i,j

Aα,βij ξβj ξ
α
i ≤ λ−1

∑
α

ξα · ξα.

ii): Periodicity: ∀y ∈ Rd, ∀h ∈ Zd, ∀x ∈ ∂Ω, A(y + h) = A(y), ϕ(x, y) =
ϕ(x, y + h).

iii): Smoothness: The functions A, f and ϕ, as well as the domain Ω are smooth.
It is actually enough to assume that ϕ and Ω are in some Hs for s big enough,
but we will not try to compute the optimal regularity.

The main question we are trying to answer is the following:

Question: What is the limit behavior of the solutions uε as ε → 0 ? Can we go
beyond the limit and compute a full expansion of uε ?

This question goes back at least to the 1970’s, and a classical approach consists
in trying a two-scale expansion:

Classical approach: Two-scale asymptotic expansion:

uεapp = u0(x) + εu1(x, x/ε) + . . . + εnun(x, x/ε) (3)

with ui = ui(x, y) periodic in y.
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3. Case without boundary. The two-scale approach works well in the case with-
out boundary, namely in the whole space case or in the case of a periodic domain
(say of period 1 and ε is taken to be equal to 1/n with n an integer). In particular
one can construct inductively all the terms in the expansions. Let us recall few
classical facts (see for instance [23, 20, 13, 6]) :

i): The construction of the ui’s involves the famous cell problem

−∇ · (A∇χγ) (y) = ∇α ·Aαγ (y), y in Td (4)

with solution χγ ∈MN (R).
ii): The solvability condition for u2 yields the equation satisfied by u0, namely
u0 (which does not depend on y) satisfies

∇ ·A0∇u0 = f (5)

where the constant homogenized matrix is given by

A0,αβ =

∫
Td
Aαβ(y) dy +

∫
Td
Aαγ(y)∂yγχ

β(y) dy.

The second term in the expansion (3) reads

u1(x, y) := ũ1(x, y) + ū1(x) := −χα(y)∂xαu
0(x) + ū1(x), (6)

where χ is again the solution of (4).
To find an equation for the average part ū1(x), one needs to introduce another

family of 1-periodic matrices

Υαβ = Υαβ(y) ∈Mn(R), α, β = 1, ..., d,

satisfying

−∇y ·A∇yΥαβ = Bαβ −
∫
y

Bαβ ,

∫
y

Υαβ = 0, (7)

where

Bαβ := Aαβ −Aαγ ∂χ
β

∂yγ
− ∂

∂yγ

(
Aγαχβ

)
.

Formal considerations yield

u2(x, y) := Υα,β ∂2u0

∂xα∂xβ
− χα∂αū

1 + ū2 (8)

and that the average term ū1 = ū1(x) formally satisfies the equation

−∇ ·A0∇ū1 = cαβγ
∂3u0

∂xα∂xβ∂xγ
, cαβγ :=

∫
y

Aγη
∂Υαβ

∂yη
−Aαβχγ . (9)

We refer to [2] for more details.
Inductively, one can keep constructing all the terms of the expansion by introduc-

ing new corrector families as in (7) and solving homogenized systems to determine
ūk as in (9). Note that in this case, we do not need an extra boundary condition
to solve (9).
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4. Case with boundary. Two boundary conditions have been widely studied and
are by now well understood as long as we are only interested in the first term of the
expansion:

1. The non-oscillating Dirichlet problem, that is (1) and (2) with ϕ = ϕ(x).
2. The oscillating Neumann problem, that is (1) and

n(x) · (A(·/ε)∇u) (x) = ϕ(x, x/ε), x ∈ ∂Ω, (10)

where n(x) is the normal vector and with a standard compatibility condition
on ϕ. Note that in thermics, this boundary condition corresponds to a given
heat flux at the solid surface.

Notice that in both problems, the usual energy estimate provides a uniform bound
on the solution uε in H1(Ω).

For the non-oscillating Dirichlet problem, one shows that uε weakly converges in
H1(Ω) to the solution u0 of the homogenized system{

−∇ ·
(
A0∇u0

)
(x) = f, x ∈ Ω,

u0(x) = ϕ(x), x ∈ ∂Ω.
(11)

It is also proved in [4] that

uε(x) = u0(x) + εu1(x, x/ε) + O(
√
ε), in H1(Ω). (12)

Actually, an open problem in this area was to compute the next term in the expan-
sion in the presence of a boundary, namely to compute u1(x, x/ε). Indeed, it is not
difficult to see that

u1(x, y) = −χα(y)∂xαu
0(x) + ū1(x), (13)

where ū1(x) solves the homogenized equation (9). However, the main difficulty is
to find the boundary data for ū1(x). The new analysis of [9] gives an answer to this
problem (see also next section).

For the oscillating Neumann problem, two cases must be distinguished. On one
hand, if ∂Ω does not contain flat pieces, or if it contains finitely many flat pieces
whose normal vectors do not belong to RZn, then

ϕ(·, ·/ε)→ ϕ :=

∫
[0,1]d

ϕ weakly in L2(∂Ω)

and uε converges weakly to the solution u0 of{
−∇ ·

(
A0∇u0

)
(x) = 0, x ∈ Ω,

n(x) ·
(
A0∇u0

)
(x) = ϕ(x), x ∈ ∂Ω.

(14)

On the other hand, if ∂Ω does contain a flat piece whose normal vector belongs
to RQd, then the family ϕ(·, ·/ε) may have a continuum of accumulation points
as ε → 0. Hence, uε may have a continuum of accumulation points in H1 weak,
corresponding to different Neumann boundary data. We refer to [4] for all details.
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5. Case of an oscillating Dirichlet data. Here we study (1) with the boundary
data (2). One of the motivation to study this case is actually to understand the
boundary condition for ū1(x) which appears in (6).

Let us explain the two main sources of difficulties in studying (1)-(2):

i): One has uniform Lp bounds on the solutions uε of (1)-(2), but no uniform
H1 bound a priori. This is due to the fact that

‖x 7→ ϕ(x, x/ε)‖H1/2(∂Ω) = O(ε−1/2), resp. ‖x 7→ ϕ(x, x/ε)‖Lp(∂Ω) = O(1), p > 1.

The usual energy inequality, resp. the estimates in article [3, page 8, Thm 3]
yields

‖uε‖H1(Ω) = O(ε−1/2), resp. ‖uε‖Lp(Ω) = O(1), p > 1.

This indicates that singularities of uε are a priori stronger than in the usual
situations. It is rigorously established in the core of the paper [9].

ii): Furthermore, one can not expect these stronger singularities to be periodic
oscillations. Indeed, the oscillations of ϕ are at the boundary, along which
they do not have any periodicity property. Hence, it is reasonable that uε

should exhibit concentration near ∂Ω, with no periodic character, as ε → 0.
This is a so-called boundary layer phenomenon. The key point is to describe
this boundary layer, and its effect on the possible weak limits of uε.

It is important to note that there is also a boundary layer in the non-oscillating
Dirichlet problem, although it has in this case a lower amplitude (it is only necessary
to compute the boundary data of ū1 to solve (9)). More precisely, it is responsible
for the O(

√
ε) loss in the error estimate (12). If either the L2 norm, or the H1

norm in a relatively compact subset ω ⊂ Ω is considered, one may avoid this loss
as strong gradients near the boundary are filtered out. Following Allaire and Amar
(see [2, Theorem 2.3]), we can give a more precise description than (12):

uε = u0(x)+O(ε) in L2(Ω), uε(x) = u0(x)+εu1(x, x/ε)+O(ε) in H1(ω). (15)

Still following [2], another way to put the emphasis on the boundary layer is to

introduce the solution u1,ε
bl (x) of−∇ ·A

(x
ε

)
∇u1,ε

bl = 0, x ∈ Ω ⊂ Rd,

u1,ε
bl = −u1(x, x/ε), x ∈ ∂Ω.

(16)

Actually, understanding this system and requiring that u1,ε
bl goes to zero inside the

domain Ω allows to determine the right boundary condition for ū1. Hence, one can
show that

uε(x) = u0(x) + εu1(x, x/ε) + εu1,ε
bl (x) + O(ε), in H1(Ω). (17)

or

uε(x) = u0(x) + εu1(x, x/ε) + εu1,ε
bl (x) + O(ε2), in L2(Ω). (18)

Note that system (16) is a special case of (1)-(2). Thus, the homogenization of
the oscillating Dirichlet problem may give a refined description of the non-oscillating
one.
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6. Prior results. Until recently, results were all limited to convex polygons with
rational normals. This means that

Ω := ∩Kk=1

{
x, nk · x > ck

}
is bounded by K hyperplanes, whose unit normal vectors nk belong to RQd. Under
this assumption, the study of (1)-(2) can be carried out. The keypoint is the
addition of boundary layer correctors to the formal two-scale expansion:

uε(x) ∼ u0(x) + εu1(x, x/ε) +
∑
k

vkbl

(
x,
x

ε

)
, (19)

where vkbl = vkbl(x, y) ∈ Rn is defined for x ∈ Ω, and y in the half-space

Ωε,k =
{
y, nk · y > ck/ε

}
.

These correctors satisfy{
−∇y · A(y)∇y vkbl = 0, y ∈ Ωε,k,

vkbl = ϕ(x, y)− u0(x), y ∈ ∂Ωε,k.
(20)

We refer to the papers by Moskow and Vogelius [19], and Allaire and Amar [2] for
more details. These papers deal with the special case (16), but the results adapt to
more general oscillating data. Note that x is just a parameter in (20) and that the
assumption nk ∈ RZd yields periodicity of the function A(y) tangentially to the
hyperplanes. The periodicity property is used in a crucial way in the aforementioned
references. First, it yields easily well-posedness of the boundary layer systems (20).
Second, as was shown by Tartar in [18, Lemma 10.1] (see also subsection 7.2), the
solution vkbl(x, y) converges exponentially fast to some vkbl,∗(x) = ϕk∗(x)−u0(x), when
y goes to infinity transversely to the k-th hyperplane. In order for the boundary
layer correctors to vanish at infinity (and to be o(1) in L2), one must have vkbl,∗ = 0,

which provides the boundary condition for u0. Hence, u0 should satisfy a system of
the type {

−∇ ·
(
A0∇u0

)
(x) = f, x ∈ Ω,

u0(x) = ϕ∗(x), x ∈ ∂Ω.
(21)

where ϕ∗(x) := ϕk∗(x) on the k-th side of Ω. Nevertheless, this picture is not
completely correct. Indeed, there is still a priori a dependence of ϕk∗ on ε, through
the domain Ωε,k. In fact, Moskow and Vogelius exhibit examples for which there
is an infinity of accumulation points for the ϕk∗’s, as ε → 0. Eventually, they show
that the accumulation points of uε in L2 are the solutions u0 of systems like (21),
in which the ϕk∗’s are replaced by their accumulation points. See [19] for rigorous
statements and proofs. We stress that their analysis relies heavily on the special
shape of Ω, especially the rationality assumption.

A step towards more generality has been made in our recent paper [8] (see also
[7]), in which generic convex polygonal domains are considered. Indeed, we assume
in [8] that the normals n = nk satisfy the Diophantine condition:

For all ξ ∈ Zd \ {0} |Pn⊥(ξ)| > κ |ξ|−l, for some κ, l > 0, (22)

where Pn⊥ is the projector orthogonal to n. Note that for dimension d = 2 this
condition amounts to:

For all ξ ∈ Zd \ {0} |n⊥ · ξ| := | − n2ξ1 + n1ξ2| > κ |ξ|−l, for some κ, l > 0,
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whereas for d = 3, it is equivalent to:

For all ξ ∈ Zd \ {0} |n× ξ| > κ |ξ|−l, for some κ, l > 0.

Condition (22) is generic in the sense that it holds for almost every n ∈ Sd−1.

Under this Diophantine assumption, one can perform the homogenization of
problem (1)-(2). Stricto sensu, only the case (16), d = 2, 3 is treated in [8], but our
analysis extends straightforwardly to the general setting. Despite a loss of period-
icity in the tangential variable, we manage to solve the boundary layer equations,
and prove convergence of vkbl away from the boundary. The main idea is to work
with quasi-periodic functions instead of periodic ones (see also subsection 7.3). In-
terestingly, and contrary to the “rational case”, the field ϕk∗ does not depend on ε.
As a result, we establish convergence of the whole sequence uε to the single solution
u0 of (21). We stress that, even in this polygonal setting, the boundary datum ϕ∗
depends in a non trivial way on the boundary. In particular, it is not simply the
average of ϕ with respect to y, contrary to what happens in the Neumann case.

7. Main new result and sketch of proof. The main new result of [9] is to treat
the case of a smooth domain:

Theorem 7.1. (Homogenization in smooth domains)

Let Ω be a smooth bounded domain of Rd, d ≥ 2. We assume that it is uniformly
convex (all the principal curvatures are bounded from below).

Let uε be the solution of system (1)-(2), under the ellipticity, periodicity and smooth-
ness conditions i)-iii).

There exists a boundary term ϕ∗ (depending on ϕ, A and Ω), with ϕ∗ ∈ Lp(∂Ω) for
all finite p, and a solution u0 of (21), with u0 ∈ Lp(Ω) for all finite p, such that:

‖uε − u0‖L2(Ω) ≤ Cα ε
α, for all 0 < α <

d− 1

3d+ 5
. (23)

We will present a sketch of the proof of theorem 7.1:
From the two difficulties explain in section 5, we know that the first term in the

expansion (3) should be independent of y and should solve (5). The main question
is :

Question: What is the boundary value ϕ0 of u0 ?
Solution: We need a boundary layer corrector
Difficulty: There is no clear structure for the boundary layer.
Guess: The boundary layer has typical scale ε and there are no curvature effect:

• Near a point x0 ∈ ∂Ω, we replace ∂Ω by the tangent plane at x0:

T0(∂Ω) := {x, x · n0 = x0 · n0}

• We dilate by a factor ε−1.

Formally, for x ≈ x0, one looks for

uε,bl(x) ≈ U0(x/ε)

where the profile U0 = U0(y) is defined in the half plane

Hε
0 = {y, y · n0 > ε−1x0 · n0}.
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It satisfies the system:{
∇y · (A∇yU0) = 0 in Hε

0 ,

U0|∂Hε0 = ϕ− ϕ0(x0).
(24)

Notice that in this system, x0 is just a parameter.

7.1. Study of an auxiliary boundary layer system. The previous heuristic
justifies the study of {

∇y · (A∇yU) = 0 in H,

U |∂H = φ.
(BL)

where H := {y, y · n > a} and φ is 1-periodic in y.
We expect that the solution U of (BL) satisfies:

U → U∞(φ), as y · n→ +∞,
for some constant U∞ = U∞(φ) that depends linearly on φ.

If we go back to U0 which solves (24), one can derive the homogenized boundary
data ϕ0. Indeed:

• On one hand, one wants U0 → 0 (localization property) when y · n→ +∞.
• On the other hand,

U0 → U∞(ϕ− ϕ0(x0)) = U∞(ϕ)− ϕ0(x0)

so that we need to take:

ϕ0(x0) := U∞(ϕ).

This formal reasoning raises many problems :

1. The well-posedness of (BL) is unclear:

- No natural functional setting (no decay along the boundary).
- No Poincaré inequality.
- No maximum principle.

2. The existence of a limit U∞ for (BL) is unclear:
There is an underlying problem of ergodicity.

3. U∞ depends also on H, that is on n and a:

- There is no obvious regularity of U∞ with respect to n.

- Back to the original problem, our definition of ϕ0(x0) depends on x0, but
also on the subsequence ε. Indeed, there is possibly many accumulation points
as ε→ 0 (see [19]).

7.2. Polygons with sides of rational slopes. In this cases, the boundary layer
systems of type (BL) can be fully understood (see [19, 2]). For simplicity, we only
concentrate on the case d = 2.

1. Well-posedness: The coefficients of the systems are periodic tangentially to
the boundary. After rotation, they turn into systems of the type{

∇z · (B∇zV ) = 0, z2 > a,

V |z2=a = ψ,
(BL1)
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with coefficients and boundary data that are periodic in z1 which yields a
natural variational formulation.

2. Existence of the limit : Saint-Venant estimates on (BL1).
One shows that F (t) :=

∫
z2>t
|∇zV |2 dz satisfies the differential inequality.

F (t) ≤ −CF ′(t).
From there, one gets exponential decay of all derivatives, and the fact that:

V → V∞, exponentially fast, as z2 → +∞
and hence going back to (BL), we get

U → U∞, exponentially fast, as y · n→ +∞.
A Key ingredient in this case is the Poincaré inequality for functions peri-

odic in z1 with zero mean.
3. In polygonal domains, the regularity of U∞ with respect to n does not matter.

However, for rational slopes, the limit U∞ does depend on a. This means that
if we go back to our original problem (in polygons with rational slopes), The
analogue of our theorem is only available up to subsequences in ε. Moreover,
the boundary data of the homogenized system may depend on the subse-
quence. Indeed, there are examples with a continuum of accumulation points
(see [19]).

7.3. More general treatment of (BL). It is worth pointing out that one can not
be fully general: The existence of U∞ requires some ergodicity property. A simple
example is :

∆U = 0 in {y2 > 0}, U |y2=0 = φ .

• If φ 1-periodic, then U(0, y2)→
∫ 1

0
φ exponentially fast.

• But there exists φ ∈ L∞ such that U(0, y2) has no limit.

Indeed, we have an explicit formula: U(0, y2) =
1

π

∫
R

y2

y2
2 + t2

φ(t) dt. For φ with

values in {+1,−1}, the asymptotics relates to coin tossing. Hence, we need some
extra structure (or ergodicity) to solve the problem.

In our case, we have some ergodicity property ! For general half planes, the
coefficients of (BL) or (BL1) are not periodic, but they are quasiperiodic in the
tangential variable. We recall that a function F = F (z1) is quasiperiodic if it reads

F (z1) = F(λz1) ,

where λ ∈ RD and F = F(θ) is periodic over RD ( D ≥ 1). As an example: For
(BL1), D = 2 , and λ = n⊥ (the tangent vector).

Notice that the previous results (subsection 7.2) correspond to the case: n ∈
RQ2. Now, we replace this by the small divisor assumption:

(H) ∃κ > 0, |n · ξ| ≥ κ|ξ|−2, ∀ξ ∈ Z2 \ {0}.
Note that the assumption (H) is generic in the normal n: It is satisfied by a set

of full measure in S1. But it does not include the previous result of subsection 7.2.

Proposition 1. If n satisfies (H), the system (BL) is “well-posed”, with a smooth
solution U that converges fast to some constant U∞. Moreover, U∞ does not depend
on a.
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Proof of the proposition:

1. Well-posedness: involves quasiperiodicity. One has:{
∇z · (B∇zV ) = 0, z2 > a,

V |z2=a = ψ,

where B(z) = B(λz1, z2), ψ(z) = P(λz1, z2).
Notice that the functions B = B(θ, t) and P = P(θ, t) are periodic in

θ ∈ T2.
The idea is to consider an enlarged system in θ, t, of unknown V = V(θ, t):{

D · (BDV) = 0, t > a,

V|t=a = P
(BL2)

where D is the “degenerate gradient” given by D = (λ · ∇θ, ∂t)

Advantage: Back to a periodic setting (θ ∈ T2).

Drawback: We have a degenerate elliptic equation. However, we are still
able to prove the following :

- Variational formulation with a unique weak solution V.

- One can prove through energy estimates than V is smooth.

- Allows to recover V through the formula V (z) = V(λz1, z2).
2. To prove the convergence to a constant at infinity, we rely again on Saint-

Venant type estimates, adapted to (BL2). Thanks to (H), we prove that

F (t) :=

∫
t′>t

|DV|2 dθ dt′ satisfies

F (t) ≤ C(−F ′(t))α, ∀α < 1.

But, we have only polynomial convergence towards a constant.

We point out that this better understanding of the auxiliary boundary layer
systems allows to handle the generic polygonal domains in the next subsection.

7.4. Extension to smooth domains. The are at least three main difficulties to
extend the previous analysis to smooth domain :

1. The none smoothness of U∞ with respect to n. Indeed, U∞ is only defined
almost everywhere (diophantine assumption).

Idea: For any κ > 0, we can prove that U∞ is Lipschitz when it is restricted
to

Aκ :=

{
n ∈ S1, |n · ξ| ≥ κ

|ξ|2
, ∀ξ ∈ Z2 \ {0}

}
.

Moreover, we have that |Acκ| = O(κ).
In the course of the proof, the construction of the boundary layer corrector

can be performed in the vicinity of points x such that n(x) ∈ Aκ. In some
sense, the contribution of the remaining part of the boundary is negligible
when κ� 1. More precisely,

2. We have to approximate the smooth domains by some polygons with sides
having normal vectors in the set Aκ. In doing so, we will introduce another
small parameter εα.
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3. We have to construct a more accurate approximation due to the many errors
made in the previous two points.

Broadly, optimizing in κ, α and ε yields a rate of convergence. We refer to [9]
for the details.

8. Conclusions. We would like to conclude by mentioning a few related results.
Recently there was many activity in the theory of homogenization and many new
problems were addressed. We would like to mention some of them since we think
they may give a better understand of our result or/and may be combined with our
result:

• Our results on the boundary data problem were recently extended to the
eigenvalue problem, see [21]. Also, the behavior of the reduced boundary
layer system (BL) was recently investigated by C. Prange in [22], without any
diophantine assumption.
• The Avellaneda-Lin type estimates were extended to the case of Neumann

boundary conditions by Kenig, Lin and Shen [14, 15, 16] (see also [5] for a
related work). These estimates should be helpful to study the next order
approximation for the Neumann boundary condition case
• Many new probabilistic results were proved when an interface is present (see

[12]) or in the trying to compute the accurate value of the homogenized matrix
(see [10, 11]).
• Some different method was used to compute homogenized boundary data for

none oscillating coefficient ([17, 1]).
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Abstract. We present a radiation MHD model based on moments (M1) of the
radiative transport equation. This M1 model is approximated numerically by

robust finite volume schemes. We compare explicit and semi-implicit schemes

and show how radiation affects wave propagation in stratified atmospheres.

1. The model. Radiation and plasma dynamics play significant roles in energy
transfer by wave propagation in stratified magneto-atmospheres. Such a configura-
tion is modeled [1] by the equations of stratified radiation magnetohydrodynamics
(stratified RMHD) given by,

ρt + div (ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2

∣∣B̄∣∣2) I − B̄⊗ B̄

)
= −ρge3,

B̄t + div
(
u⊗ B̄− B̄⊗ u

)
= 0,

Et + div

((
E + p+

1

2

∣∣B̄∣∣2)u−
(
u · B̄

)
B̄

)
= −ρg (u · e3) +Qrad,

div(B̄) = 0,

(1.1a)

where ρ is the density, u = {u1, u2, u3} and B̄ = {B̄1, B̄2, B̄3} are the velocity and
magnetic fields respectively, p is the thermal pressure, g is the constant acceleration
due to gravity , e3 represents the unit vector in the vertical (z-) direction. E is the
total energy, for simplicity determined by the ideal gas equation of state:

E =
p

γ − 1
+

1

2
ρ |u|2 +

1

2

∣∣B̄∣∣2 ,
where γ > 1 is the adiabatic gas constant.
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The term Qrad in (1.1a) represents energy transfer due to radiation and depends
on the radiative intensity I = I(x, t,Ω, ν) which is a function of space x ∈ R3, time
t ∈ R, the angle Ω ∈ S2 and the frequency ν ∈ R. The radiative intensity evolves
in accordance with the time-dependent radiative transport equation,

1

c
It + Ω · ∇xI = S − σextI +

σsc

4π

∫
S2

K(Ω,Ω′)I(Ω′)dΩ′dν, (1.1b)

where ∇x denotes the spatial gradient, c is the speed of light, σext = σ + σsc is
the extinction opacity, σ is the absorption opacity and σsc is the scattering opacity.
Furthermore, S = S(T ) is the emission term with T = p

ρgH being the local tem-

perature. For simplicity, we can assume locally thermodynamic equilibrium (LTE)
which implies that

S = σB(T ), (1.2)

with B = aT 4 being the Planck function. The scattering term in (1.1b) is given in
terms of the kernel K. More details regarding the derivation of (1.1) can be checked
from [4].

The term Qrad in (1.1a) is determined by minus the integral over all frequencies
ν and angles Ω of the right hand side (sources) of equation (1.1b). Since the integral
over the scattering term equals σscI, this Qrad is given by the integral of S − σI.

The main difficulty associated with the numerical simulation of (1.1) lies in the
fact that the radiative intensity is a seven dimensional function as it depends on
space (3), time (1), angle (2) and frequency (1) variables. None of the currently
available methods are able to resolve such a high-dimensional problem efficiently.
Hence, we need to simplify the radiative transport model by reducing dimensions.
Notice that the radiative energy flux Qrad involves integrating over angle and fre-
quency, so a detailed approximation of the radiative intensity may not be necessary
in order to account for the role of radiation in MHD.

1.1. A moments based model (M1) for radiative transfer. As we have al-
ready pointed out, a direct simulation of the equation for radiative transfer (1.1b)
is too costly. An analogous situation prevails in fluid mechanics as the Boltz-
mann equation modeling mesoscopic scales of the flow is high-dimensional. Suitable
macroscopic scale approximations are obtained by taking moments of the Boltzmann
equation that yield the Navier-Stokes equations of fluid dynamics, including closure
models for completing the system of equations. Similarly, (see [5, 6] and references
therein) we consider the first three angular moments of the radiative intensity I in
equation (1.1b),

E =
1

c

∫
S2

I(Ω)dΩ,

F =
1

c

∫
S2

ΩI(Ω)dΩ,

P =
1

c

∫
S2

Ω⊗ ΩI(Ω)dΩ.

(1.3)

Here, E(ν), cF(ν) and P(ν) are the spectral radiative energy, spectral radiative flux
and spectral radiative pressure, respectively. All the quantities in the above expres-
sions depend on the frequency variable. For simplicity, we neglect the frequency
dependence and therefore work with a uni-group model. A multi-group model with
explicit frequency dependence will be considered in a later paper.
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Taking the zeroth and first angular moments of (1.1b) and neglecting scattering
terms (σsc = 0), we obtain the M1 radiation model ([5]),

Et + cdivF = cσ(aT 4 − E),

F t + cdivP = −cσF .
(1.4)

In our units the speed of light is c = 3 · 104. For wave propagation in stratified
atmospheres, the absorption opacity σ(x, t) scales as the density ρ.

The equations have to be closed by specifying the radiative pressure P in terms
of the lower moments. An entropy maximization method was employed in [5] to
obtain the following moment closure,

P = DE , D =
1− χ

2
Id +

3χ− 1

2

F ⊗F
‖F‖2 , χ =

3 + 4f2

5 + 2
√

4− 3f2
, f =

∥∥∥∥FE
∥∥∥∥ .

(1.5)
Here, Id is the 3× 3 identity matrix, D is referred to as the Eddington tensor and
χ as the Eddington factor.

Remark 1.1. Although, the M1 model is derived by integrating over all angles Ω
and frequencies ν, directional information is partly recovered through the radiative
flux cF . In addition, frequency dependence can be recovered by using a multi-group
model.

Combining the M1 model (1.4), (1.5) with stratified MHD, based on the Godunov-
Powell form and embedded steady states [3], we obtain the following reduced model,
henceforth called reduced stratified radiation MHD equations,

ρt + div(ρu) = 0,

(ρu)t + div

(
ρu⊗ u +

(
p+

1

2
|B|2 + B̃ ·B

)
I −B⊗B− B̃⊗B−B⊗ B̃

)
= −

(
B + B̃

)
(div B)− ρge3,

Bt + div
(
u⊗B−B⊗ u + u⊗ B̃− B̃⊗ u

)
= −u(divB),

Et + div

((
E + p+

1

2
|B|2 + B · B̃

)
u− (u ·B)B−

(
u · B̃

)
B̃

)
= −(u ·B)(div B)− ρg (u · e3)− cσ(aT 4 − E),

Et + cdivF = +cσ(aT 4 − E),

F t + cdivP = −cσF .
(1.6)

Here, the radiative pressure P is determined by the moment closure (1.5) and B̃ is
any potential background magnetic field with

div(B̃) ≡ 0, curl(B̃) ≡ 0.

The stratified radiation MHD model (1.6) can be written in the following balance
law form,

Umhd
t + div

(
Fmhd(Umhd)

)
= SGP + Sg + Srad(T, E),

Urad
t + div

(
Frad(Urad)

)
= S̃rad(T, E),

(1.7)

where Umhd = {ρ,u,B, E} denote the plasma variables and Urad = {E ,F} are the
radiation variables, and T = p

ρgH . Note that (1.7) brings out the split structure of
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(1.6) quite clearly as the flux Fmhd is independent of Urad, and Frad is independent
of Umhd. The only coupling between the radiative and plasma variables in (1.7)
is through the source term cσ(aT 4 − E). This split structure can be employed in
designing suitable numerical schemes for (1.6) by combining efficient schemes for
the ideal MHD equations together with schemes for the M1 model.

It is essential to consider some theoretical properties of (1.6) in order to design
robust numerical schemes to approximate the solutions of the stratified RMHD
equations.

1.2. Theoretical properties of the stratified RMHD equations. The strati-
fied RMHD equations (1.6) have many desirable physical properties. It is important
for the design of numerical schemes to inherit those. We summarize some properties
below, starting with the hyperbolicity of RMHD.

• Hyperbolicity. Consider (1.6) in the x-direction and evaluate the flux Jaco-
bian A of the flux f =

(
Fmhd,Frad

)
. The split structure of (1.7) is reflected

in the block diagonal form of the Jacobian,

A =

(
Amhd 0

0 Arad

)
,

where Amhd, Arad are the Jacobians corresponding to Fmhd and Frad, respec-
tively. The eigenvalues of Amhd are well-known ([2]), and the eigenvalues of
Arad can be explicitly calculated ([6]), and are listed below. The strict hy-
perbolicity of the M1 model is a consequence of its derivation by an entropy
principle.
• Positivity. The standard positivity requirement is that

ρ ≥ 0, p ≥ 0, E ≥ 0. (1.8)

A solution of the stratified RMHD equations (1.6) with initial conditions sat-
isfying (1.8) remains positive for all time, see [6].
• Flux limitation. For the eigenvalues to be less than the speed of light, the

normalized radiative flux needs to be limited, i.e.

f =

∥∥∥∥FE
∥∥∥∥ ≤ 1. (1.9)

Again, a solution of the stratified RMHD equations (1.6) with initial condi-
tions satisfying (1.9) has a limited flux for all time, see [6].
• Energy balance. The variation of the total energy

Ẽ = E + E

is only due to the Godunov-Powell source term and the gravity term in (1.6).
In particular, if div B ≡ 0 and g = 0, then the total energy is conserved.
• Steady states. The steady state of interest for (1.6) is given by,

u ≡ 0, B ≡ 0, p = p0e
−z
H , ρ = ρ0e

−z
H ,

E = aT 4
0 , F = 0,

(1.10)

where T0 = p0
gHρ0

is the constant model temperature and p0, ρ0 = p0
gHT0

are

the pressure and density at the bottom z = 0. The embedded magnetic field
B̃ can be ANY divergence- and curl-free field.
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• Asymptotic behavior. As pointed out in [6], the M1 system recovers the
equilibrum diffusion regime for large absorption coefficients σ. That is, as
σ →∞ (the limit for an opaque medium), the M1 model recovers the correct
equlibrium diffusion equation for the temperature.

Remark 1.2. Eigensystem. The eigenvalues of the radiation part of the flux
in (1.7), i.e. Frad, are scaled with the speed of light c. Both the diffusion and
transport limit are captured by the equations. At equilibrium, when the flux is
zero, i.e. f = ‖f‖ = 0, the correct diffusion limit is recovered. That is, P = E/3
and the largest eigenvalues are λ± = ± c√

3
.On the other hand, in the case of extreme

non-equilibrium, i.e. ‖f‖ = 1, the proper transport limit is recovered, i.e. P = E .
Regarding the eigenvalues in this case, we have that the largest eigenvalues are
λ± = ±c.

In 2 dimensions the eigenvalues of the Jacobian Arad can be explicitly calculated
to be (see [6])

λ± = c

(
f1

ξ
±
√

2(ξ − 1)(ξ + 2)(2(ξ − 1)(ξ + 2) + 3f2
3 )√

3ξ(ξ + 2)

)
,

λ0 =
c(2− ξ)f1

f2
.

(1.11)

Here, ξ =
√

4− 3f2 and f = (f1, f3) = (F1

E ,
F3

E ). The eigenvalues of the Jacobian
in the z-direction can be calculated by replacing f1 with f3 in the above expression.
The eigenvalues of the Jacobian in 2d are depicted in figure 1. It is easy to see that

Figure 1. The dimensionless eigenvalues of M1 in 2d.

the eigenvalues coincide if ‖f‖ = 1, i.e. we have that

λ+ = λ0 = λ− = cf1, if ‖f‖ = 1.

Moreover, the characteristic fields associated with λ± are genuinely nonlinear,
whereas the field associated with λ0 is linearly degenerate, see [6].

Remark 1.3. Diffusion limit and boundary conditions. The diffusion limit
(f = 0) is of importance for simulations concerning the solar atmosphere, as the
bottom boundary conditions can be derived by using this limit. At the bottom
of the photosphere the Sun becomes opaque to visible light, i.e. σ → ∞. The
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asymptotic behavior as σ → ∞ is captured by the diffusion limit where f = 0.
Therefore, the bottom boundary condition for the radiative flux should be

F(z = 0) = 0, (1.12)

and for the radiative energy we can use Neumann boundary conditions or set E(z =
0) = aE4(z = 0).

Due to the steady state structure we can model waves in stratified atmospheres
(at least in the chromosphere) as perturbations of an equilibrium given in equation
(1.10). Waves introduced at the bottom boundary will perturb the radiative equi-
librium as they move up the domain and numerical simulations will be focused on
the dynamical behavior. However, the main difficulty in numerical computations is,
that the fastest wave speeds for equation (1.6) are of the order of the speed of light.
Hence, they are much faster than the fast magneto-sonic waves in stratified MHD.
According to the CFL condition, an explicit numerical scheme will suffer from a
severe restriction of the time step of the order of ∆t = O(∆x/c). In the following,
we will describe a semi-implicit scheme that circumvents this problem and compare
it to the explicit scheme.

2. Finite volume schemes. We need to design a robust and efficient finite volume
scheme that preserves at least some of the properties outlined above. For simplicity,
we approximate (1.6) in a Cartesian domain x = (x, y, z) ∈ [Xl, Xr] × [Yl, Yr] ×
[Zb, Zt] and discretize it by a uniform grid in all directions with the grid spacing
∆x,∆y and ∆z. We set xi = Xl + i∆x , yj = Yl + j∆y and zk = Zb + k∆z. The
indices are 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny and 0 ≤ k ≤ Nz. Set xi+1/2 = xi + ∆x/2,
yj+1/2 = yj + ∆y/2 and zk+1/2 = zk + ∆z/2, and let Ci,j,k = [xi−1/2, xi+1/2) ×
[yj−1/2, yj+1/2) × [zk−1/2, zk+1/2) denote a typical cell. The cell average of the
unknown state vector U over Ci,j,k at time tn is denoted Ui,j,k. Given the decoupled
structure of the RMHD equations (1.7), we use the following finite volume scheme
(in semi-discrete form),

d

dt
Umhd
i,j,k = − 1

∆x
(F̃1,mhd

i+1/2,j,k − F̃1,mhd
i−1/2,j,k)− 1

∆y
(F̃2,mhd

i,j+1/2,k − F̃2,mhd
i,j−1/2,k)

− 1

∆z
(F̃3,mhd

i,j,k+1/2 − F̃3,mhd
i,j,k−1/2) + S̃1

i,j,k + S̃2
i,j,k + S̃3

i,j,k + Sgi,j,k + Sradi,j,k,

d

dt
Urad
i,j,k = − 1

∆x
(F̃1,rad

i+1/2,j,k − F̃1,rad
i−1/2,j,k)− 1

∆y
(F̃2,rad

i,j+1/2,k − F̃2,rad
i,j−1/2,k)

− 1

∆z
(F̃3,rad

i,j,k+1/2 − F̃3,rad
i,j,k−1/2) + S̃radi,j,k.

(2.1)
Here

Umhd
i,j,k = {ρi,j,k,ui,j,k,Bi,j,k, Ei,j,k}, Urad

i,j,k = {Ei,j,k,F i,j,k},
are cell averages of the unknowns in the cell Ci,j,k. The numerical fluxes F̃1,mhd

i+1/2,j,k,

F̃2,mhd
i,j+1/2,k and F̃3,mhd

i,j,k+1/2 , the Godunov Powell sources S̃1,2,3
i,j,k , and the gravity source

Sgi,j,k are all independent of Urad
i,j,k. We can therefore directly use any numerical

scheme devised for approximating the solutions of stratified MHD equations. In
particular, the well-balanced three-wave HLLC fluxes with the upwind discretization
of the Godunov-Powell source terms S1,2,3 of (1.7) described in [3] is a suitable
choice. In this case, the gravity term Sg is discretized in a well balanced manner
(see [3]) that differs from the standard pointwise evaluation of the source. We are
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left with having to design suitable discretizations of F̃rad and the source terms
Srad, S̃rad. We start by describing an explicit discretization. Due to the large
restriction on the time step for an explicit scheme in this case, we propose a semi-
implicit scheme that allows for much larger time steps.

2.1. Explicit discretization of the radiative terms. The key step in complet-
ing (2.1) is to define the radiation flux F̃rad. For simplicity, we choose an HLL

two-wave flux. We start with the description of the numerical flux F̃1,rad
i+1/2.j,k which

is defined in terms of an approximate solution to the following Riemann problem,

Et + cF1
x = 0,

F1
t + c(ED1)x = 0,

F2
t + c(ED2)x = 0,

F3
t + c(ED3)x = 0,

Urad(x, tn) =

{
Urad
L = Urad

i,j,k, if x ≤ xi+1/2,

Urad
R = Urad

i+1,j,k, if x > xi+1/2,

(2.2)

Here,

D1 =
1− χ

2
+

3χ− 1

2

(F1)2

‖F‖2 , D2 =
3χ− 1

2

F1F2

‖F‖2 , D3 =
3χ− 1

2

F1F3

‖F‖2 , (2.3)

and χ is the Eddington factor defined in (1.5).
We approximate the solution of (2.2) with the following wave structure,

Urad
H2 =


Urad
L if x

t ≤ sL,

Urad
∗ if sL <

x
t < sR,

Urad
R if sR ≤ x

t ,

F1,rad
H2 =


F1,rad
L if x

t ≤ sL,

F1,rad
∗ if sL <

x
t < sR,

F1,rad
R if sR ≤ x

t .

(2.4)

Note that we have used the standard HLL two-wave solver in (2.4). A straight-
forward calculation using the Rankine-Hugoniot condition leads to the following
middle flux,

F1,rad
∗ =

sRF1,rad
L − sLF1,rad

R + sLsR(Urad
R −Urad

L )

sR − sL
. (2.5)

The resulting numerical flux is

F̃1,rad
i+1/2,j,k =


F1,rad
i,j,k , if (sL)i+1/2,j,k > 0,

F1,rad,∗
i,j,k , if (sL)i+1/2,j,k ≤ 0 ∧ (sR)i+1/2,j,k ≥ 0,

F1,rad
i+1,j,k , if (sR)i+1/2,j,k < 0.

(2.6)

Choice of wave speeds. The wave speeds sL,R in (2.4) need to be chosen suitably.
As they approximate the fastest waves in the M1-system (1.4), the simplest stable
choice of wave speeds is,

sL = −c, sR = +c, (2.7)

where c is the constant speed of light. Note that this choice leads to a Rusanov
type scheme (with a global sL = −sR rather than a local one) for the M1 model.
That means we always use the middle state and the numerical flux is given by

F̃1,rad
i+1/2,j,k =

1

2
(F1,rad

i,j,k + F1,rad
i+1,j,k)− c

2
(Urad

i+1,j,k −Urad
i,j,k). (2.8)



48 F. FUCHS, A. MCMURRY, N.H. RISEBRO AND S. MISHRA

This choice will be dissipative (particularly at first order) but some accuracy is
recovered with a second-order approximation.

A more accurate choice follows [6] and leads to,

sL = min{0, cf1
L, c

f1
L − χL
1− f1

l

, c
f1
L − χL
1 + f1

l

, λ−(Urad
L )},

sR = max{0, cf1
R, c

f1
R − χR
1− f1

l

, c
f1
R − χR
1 + f1

l

, λ+(Urad
R )},

(2.9)

where f1 = F1

E , and χL,R = χ(f1
L,R) is the Eddington factor (1.5). Similarly, λ±

are the eigenvalues for a given state defined in (1.11). The results of [6] show that
the above choice is robust.

The fluxes in the y- and z-directions are obtained by replacing the appropriate
quantities in (2.5) and (2.6). This completes the description of the scheme (2.1).
Second-order accuracy can be obtained by the reconstruction routines of [3].

Radiative source terms. We are left with describing the discretization of
the radiative source terms. The simplest way would be a point-wise evolution of
the source at the current time step n (explicit). But, depending on the constants
the source term is potentially stiff. Hence, we use an implicit discretization of the
radiative source term.

Srad,n+1
i,j,k = {0,0,0,−cσn+1

i,j,k(a(Tn+1
i,j,k )4 − En+1

i,j,k )},

S̃rad,n+1
i,j,k = {cσn+1

i,j,k(a(Tn+1
i,j,k )4 − En+1

i,j,k ), cσn+1
i,j,kF

n+1
i,j,k}.

(2.10)

Observe, that we still call our scheme explicit, although we discretize the radia-
tion sources implicitly. This is because it is only locally implicit and the resulting
nonlinear systems can be solved for each cell independently.

The main difficulty associated with (2.1) is the presence of time scales dominated
by the speed of light c, dictating a very small time step for explicit finite volume
schemes. However, we are only interested in the effect of radiation on the plasma
(stratified MHD equation) and do not need to approximate the solutions of the M1
model accurately. Therefore, we devise semi-implicit schemes in the next section
that remove this limitation on the time step.

2.2. Semi-implicit solvers for Radiation-MHD. In typical applications, the
fast magneto-acoustic wave speeds are at least two to three orders of magnitude
smaller than the speed of light c. Hence, due to the CFL condition any explicit
scheme desigend to resolve time scales of the MHD model will be extremely slow. In
order to be able to do realistic simulations, we need to devise semi-implicit schemes
that allow us to increase the time step by some orders of magnitude. In this section
we will describe semi-implicit solvers for approximating the solutions of RMHD
(1.6). Since the only coupling of the MHD part to the M1 model for radiative
transport is given by the source term, we can devide our numerical scheme into two
parts.

We discretize the MHD part, i.e. the fluxes Fmhd, the Powell source SGP and the
gravity source Sg explicitly. The M1 model along with the radiative source Srad

in the energy equation on the other hand are discretized in an implicit manner.
We present the resulting nonlinear system that has to be solved in order to get
an approximation to the solution at the next time level. For the sake of clarity
we restrict ourself to one space dimension in the description. It is straightforward
to extend this approach to several space dimensions. In one dimension we set
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(F2,F3) = (0, 0) and the system of equations to be discretized implicitly simplifies
to

Et +H = −cσ(aT 4 − E),

Et + cF1
x = +cσ(aT 4 − E),

F1
t + c(Eχ)x = −cσF1.

(2.11)

Here, H contains the energy-flux, the gravity source and the Powell source of the
energy equation. The semi-implicit numerical solver has the following form

En+1
i − Eni + ∆tHn = −∆tcσn+1

i (a(Tn+1
i )4 − En+1

i ),

En+1
i − Eni +

∆t

∆x
(An+1

i+1/2 −A
n+1
i−1/2) = +∆tcσn+1

i (a(Tn+1
i )4 − En+1

i ),

F1,n+1
i −F1,n

i +
∆t

∆x
(Bn+1

i+1/2 −B
n+1
i−1/2) = −∆tcσn+1

i F1,n+1
i .

(2.12)

Note that the discretization of H in the energy equation is explicit and is readily
provided by the solver for the MHD part of equation (1.6). Using the first order
HLL flux (2.8) with sR = −sL = c, the flux differences simplify to

An+1
i+1/2 −A

n+1
i−1/2 =

c

2
(F1,n+1

i+1 −F1,n+1
i−1 − En+1

i+1 + 2En+1
i − En+1

i−1 ),

Bn+1
i+1/2 −B

n+1
i−1/2 =

c

2
(En+1
i+1 χ

n+1
i+1 − E

n+1
i−1 χ

n+1
i−1 −F

1,n+1
i+1 + 2F1,n+1

i −F1,n+1
i−1 ).

(2.13)

The update at the new time level ξi = (~α, ~β, ~δ)i = (En+1
i , En+1

i ,Fn+1
i ) is given by

finding a root of the following function

Fi(~α, ~β, ~δ) =

 αi − En
i + ∆tHn + ∆tcσn+1

i (wn+1
i (αi − vn+1

i )4 − βi)
βi − Eni + ∆t

∆x
A(ξi−1, ξi, ξi+1)−∆tcσn+1

i (wn+1
i (αi − vn+1

i )4 − βi)
δi −Fn

i + ∆t
∆x
B(ξi−1, ξi, ξi+1) + ∆tcσn+1

i δi

 ,

(2.14)

where we have defined wn+1
i = a

(
γ−1

ρn+1
i

)4

and vn+1
i = 1

2ρ
n+1
i (un+1

i )2 + 1
2 (B̄n+1

i )2.

The values of ρn+1
i , un+1

i , B̄n+1
i and Hn are directly available from the explicit

solver for the MHD equations. The expressions for the fluxes A and B depend on
the flux discretization. For the flux (2.8) we have that

A(ξi−1, ξi, ξi+1) =
c

2
(δi+1 − δi−1 − βi+1 + 2βi − βi−1),

B(ξi−1, ξi, ξi+1) =
c

2

(
βi+1χ

(
|δi+1|
βi+1

)
− βi−1χ

(
|δi−1|
βi−1

)
− δi+1 + 2δi − δi−1

)
.

(2.15)
A solution ξ′ with F (ξ′) = 0 provides the values at the new time level n + 1,

namely (En+1
i , En+1

i ,Fn+1
i ) = ξ′i. In order to find a root of F (ξ) we use Newton

iteration

DF (ξj)(ξj+1 − ξj) = −F (ξj), (2.16)

with the start value (ξ0)i = (Eni , Eni ,Fni ). We stop the iteration, if ‖F (ξj)‖ ≤ tol
or after a certain number of iterations. The Jacobian has the following structure

DF =

DF1,1 DF1,2 0
DF2,1 DF2,2 DF2,3

0 DF3,2 DF3,3

 , (2.17)
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where DF1,1, DF1,2 and DF2,1 are diagonal matrices with the diagonal entries

given by df1,1 = 1 + 4∆tcσn+1
i wn+1

i (x1
i − v

n+1
i )3, df1,2 = −∆tcσn+1

i and df2,1 =

−∆tcσn+1
i wn+1

i (x1
i − v

n+1
i )3, respectively.

For p, q ∈ {2, 3} we have the following tridiagonal structure

DFp,q =



. . .
. . . 0 0 0

. . .
. . .

. . . 0 0
0 dlp,q dp,q drp,q 0

0 0
. . .

. . .
. . .

0 0 0
. . .

. . .


. (2.18)

The components of DF2,2 and DF2,3 can be calculated as

dl2,2 = dr2,2 = − c∆t
2∆x

, d2,2 = 1 + ∆tcσn+1
i +

c∆t

∆x
,

dl2,3 = − c∆t
2∆x

, dr2,3 = +
c∆t

2∆x
, d2,3 = 0.

(2.19)

The derivatives of the third component of F are more complicated, due to the
non-linearity of the flux function. However, for the Newton iteration to work we
only need an approximation of the Jacobian of F . The function χ is a monotone
function with 1

3 ≤ χ ≤ 1. It is therefore reasonable to assume that χ is independent

of F
E in order to approximate the Jacobian. That means we have

∂βiχ
(
|δi|
βi

)
∂βi

≈ χ
(
|δi|
βi

)
,

∂βiχ
(
|δi|
βi

)
∂δi

≈ 0. (2.20)

Using this assumpition, it follows that the compontents of DF3,2 and DF3,3 are
given by

dl3,2 = − c∆t
2∆x

χi−1, dr3,2 = +
c∆t

2∆x
χi+1, d3,2 = 0,

dl3,3 = dr3,3 = − c∆t
2∆x

, d3,3 = 1 + ∆tcσn+1
i +

c∆t

∆x
.

(2.21)

This concludes the description of the implicit solver for the interior points. For
the Newton (2.16) iteration to be complete, we need to implement boundary con-
ditions for both the right hand side F and the Jacobian DF . Using Neumann
boundary conditions for the M1 model in the explicit solver, translates to the fol-
lowing boundary conditions for the implicit solver. For F (x) in equation (2.14) we
need to define values for the spatial derivatives at the boundaries, namely

A(ξ0, ξ1, ξ2) =
c

2
(δ2 − δ1 − β2 + β1),

A(ξNx−1, ξNx
, ξNx+1) =

c

2
(δNx

− δNx−1 + βNx
− βNx−1),

B(ξ0, ξ1, ξ2) =
c

2

(
β2χ

(
|δ2|
β2

)
− β1χ

(
|δ1|
β1

)
− δ2 + δ1

)
,

B(ξNx−1, ξNx , ξNx+1) =
c

2

(
βNxχ

(
|δNx
|

βNx

)
− βNx−1χ

(
|δNx−1|
βNx−1

)
+ δNx − δNx−1

)
.

(2.22)
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Furthermore, for the Jacobian DF in (2.17) we define

χ

(
|δNx+1|
βNx+1

)
= χ

(
|δNx
|

βNx

)
, χ

(
|δ0|
β0

)
= χ

(
|δ1|
β1

)
(2.23)

at the boundaries. For different types of boundary conditions those definitions will
change.

This semi-implicit approach is easily extended to multi space dimensions. We
omit the description in this article, and continue with describing the properties of
the various schemes.

2.3. Properties of the explicit and semi-implicit schemes. We consider finite
volume schemes of type (2.1) approximating the solutions of the stratified RMHD
equations (1.6). In the numerical experiments of this paper we choose to test and
compare the following two numerical schemes. Since it is essential to preserve dis-
crete versions of the steady states, we use the well-balanced three-wave HLLC solver
of [3] (with the corresponding discretiziations of the Powell source and the gravi-
tational source term as well as the balanced Neumann type boundary conditions).
For the radiative part of (1.6) we choose the HLL solver described in sections 2.1
and 2.2.

Therefore, we have the following two possiblities.

• Explicit solver MHLLCRHLLe
: explicit well-balanced HLLC solver for MHD

combined with the explicit HLL scheme for the radiation part, and
• semi-implicit solver MHLLCRHLLi

: explicit well-balanced HLLC solver for
MHD combined with the implicit HLL scheme for the radiation part.

We want to remark that the fully explicit solver MHLLCRHLLe
uses a locally implicit

time discretization for the sources radiative sources. In one dimension the general
numerical scheme has the form

Umhd,n+1
i,j,k −Umhd,n

i,j,k +
∆t

∆x
(F̃1,mhd,n

i+1/2,j,k − F̃1,mhd,n
i−1/2,j,k) = ∆tS̃1,n

i,j,k + ∆tSg,n
i,j,k+

+ ∆tSrad,n+1
i,j,k ,

En+1
i,j,k(1 + ∆tcσn+1

i,j,k)− Eni,j,k +
∆t

∆x
(Ap

i+1/2,j,k −A
p
i−1/2,j,k) = +∆tcσn+1

i,j,ka(Tn+1
i,j,k )4,

F1,n+1
i,j,k (1 + ∆tcσn+1

i,j,k)−F1,n
i,j,k +

∆t

∆x
(B1,p

i+1/2,j,k −B
1,p
i−1/2,j,k) = 0,

F2,n+1
i,j,k (1 + ∆tcσn+1

i,j,k)−F2,n
i,j,k +

∆t

∆x
(B2,p

i+1/2,j,k −B
2,p
i−1/2,j,k) = 0,

F3,n+1
i,j,k (1 + ∆tcσn+1

i,j,k)−F3,n
i,j,k +

∆t

∆x
(B3,p

i+1/2,j,k −B
3,p
i−1/2,j,k) = 0,

(2.24)

where we get the explicit scheme MHLLCRHLLe
for p = n, and the semi-implicit

scheme MHLLCRHLLi
for p = n+ 1. Moreover, the flux differences for the Rusanov

type scheme are given by

Api+1/2 −A
p
i−1/2 =

c

2
(F1,p

i+1 −F
1,p
i−1 − E

p
i+1 + 2Epi − E

p
i−1),

Bk,pi+1/2 −B
k,p
i−1/2 =

c

2
(Epi+1D

k,p
i+1 − E

p
i−1D

k,p
i−1 −F

k,p
i+1 + 2Fk,pi −Fk,pi−1),

(2.25)

with Dk defined in (2.3).
In the following theorem we summarize the properties of the finite volume schemes

MHLLCRHLLe , MHLLCRHLLi approximating the solutions of the stratified RMHD
equations (1.6).
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Theorem 2.1. Consider the finite volume schemes MHLLCRHLLe , MHLLCRHLLi

approximating the solutions of equation (1.6). Both schemes

• are consistent with (1.6) and first order accurate in both space and time (for
smooth solutions),
• preserve E ≥ 0 and ‖F/E‖ ≤ 1 discretely provided c, a, σ ≥ 0,
• are well-balanced, i.e. preserve discrete versions of the steady states (1.10) for

any background magnetic field B̃.

Proof. The schemes are first order accurate by construction
Next, we show positivity and flux limitation for the explicit scheme. In 1d we

have F2,n
i = F3,n

i = 0. Let us assume that for a fixed n, the two inequalities

Eni ≥ 0, |F1,n
i | ≤ E

n
i (2.26)

hold true for all i. In that case we can write ±F1,n
i − Eni ≤ 0, which will be used

several times in the sequel. Then from the discrete equation (2.24) for radiative
energy

En+1
i (1+∆tcσn+1) = Eni −

c∆t

2∆x
(F1,n

i+1−F
1,n
i−1−E

n
i+1+2Eni −Eni−1)+∆tcσn+1a(Tn+1

i )4,

we can conclude that

En+1
i (1 + ∆tcσn+1) ≥ Eni −

∆t

∆x
cEni + ∆tcσn+1a(Tn+1

i )4 ≥ Eni (1− ∆t

∆x
c),

by using that ±F1,n
i − Eni ≤ 0. So we have that the radiative energy remains

positive, if the CFL condition ∆t ≤ ∆x
c is fulfilled.

In order to show that the flux is limited, we proceed as follows. Assume that
(2.26) holds true for a fixed n and all i. Then we need the prove the following two

inequalities ±F1,n+1
i − En+1

i ≤ 0, using that we have already shown that Eni ≥ 0
for all i and n. For the scheme (2.24), we have

(±F1,n+1
i − En+1

i )(1 + ∆tcσn+1) =(±F1,n
i − Eni )(1− ∆t

∆x
c) + ∆tcσn+1

i a(Tn+1
i )4

− c∆t

2∆x
(±Eni+1χ

n
i+1 ∓ Eni−1χ

n
i−1 ∓F

1,n
i+1 ∓F

1,n
i−1

−F1,n
i+1 + F1,n

i−1 + Eni+1 + Eni−1).

So the flux stays limited if the above expression on the right hand side is always
negative. This is the case, if the CFL condition ∆t ≤ ∆x

c is fulfilled and the following
holds for all i

(−1∓ 1)F1,n
i + (1± χni )Eni ≥ 0,

(1∓ 1)F1,n
i + (1∓ χni )Eni ≥ 0,

All of them are fulfilled. First of all we have (1 − χni )Eni ≥ 1
3E

n
i ≥ 0, under

condition (2.26). Second, we see that the expression ±2F1,n
i + (1 +χni )Eni is always

positive under condition (2.26), by looking at the function (divide by Eni > 0. For
Eni = 0⇒ Fni = 0 and the above inequalities hold trivially)

h±(z) = ±2z + 1 +
3 + 4z2

5 + 2
√

4− 3z2
, −1 ≤ z ≤ 1

In the interval [−1, 1] the function h± is continuous and therefore has a minimum.
The derivative of this function is nonzero for all z ∈ (−1, 1). Furthermore, we have
that h±(∓1) = 0 and h±(±1) = 4. From this we conclude that h±(z) ≥ 0 for
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|z| ≤ 1. Summarizing, we have shown that ±F1,n+1
i − En+1

i ≤ 0 and therefore that
the flux stays bounded.

The explicit scheme preserves the steady states up to machine precision. First
of all, the radiation fluxes are all equal to zero at the steady state. Second, the
radiation sources are equal to zero and stable points of the remaining ordinary
differential equations. In combination with the fact that the MHD part is well-
balanced (see [3]) we have that steady states are preserved up to machine precision.

The proof of flux limitation and steady state preservation for the implicit scheme
is very similar to the above proof for the explicit scheme and we omit it here.

The numerical experiments for (1.6) fall into two different categories. First we
test and compare the explicit and semi-implicit scheme described above for wave
propagation. It turns out that the semi-implicit solver is several orders of magni-
tude more efficient in comparison with the explicit solver for radiation hydrodynam-
ics/MHD. The second category consists of a suit of numerical experiments showing
the effects of radiation on wave propagation in stratified magneto-atmospheres.

3. Numerical experiments in 1 dimension/Efficiency study. In this sec-
tion we present numerical experiments for testing how robustly and efficiently our
schemes of type (2.1) work, comparing the explicit MHLLCRHLLe

with the semi-
implicit MHLLCRHLLi solver. We show that for the radiation hydrodynamic/MHD
equations (1.6) the semi-implicit solver is several orders of magnitude more efficient
than the explicit solver.

To begin with, we compare our numerical schemes for radiation hydrodynamics,
given by (1.6) with a zero magnetic field B̃ = 0. The initial conditions are a discrete
version of the steady state background (1.10) with γ = 5/3, a = 1, p0 = 1.13, H =

0.158 and a gravity constant of g = 2.74. Furthermore, we choose σ(z, t) = ρ(z,t)
ρ(0,0) ,

so that the medium is opaque at the bottom z = 0 at time t = 0. The domain is
given by z ∈ [0, 1].

For numerical simulations concerned with wave propagation in stratified atmo-
spheres it is desirable, if not necessary, to use a well-balanced finite volume scheme,
see [3]. As shown in theorem 2.1, both the explicit MHLLCRHLLe

and the semi-
implicit MHLLCRHLLi

preserve the steady state discretely, and are therefore suit-
able for our task. On top of this steady state background we model the waves by
introducing a local sinusoidal (in time) driving of the velocity field perpendicular
to the boundary, given by the following boundary condition for the normal velocity
at the bottom

u3(0, t) = 0.3 sin(6πt). (3.1)

As time evolves, those waves move up through the domain and are modified by the
stratified RMHD equations. In figure 2 we present the results for the well-balanced
explicit MHLLCRHLLe and semi-implicit MHLLCRHLLi schemes at time t = 0.8 for
different meshes. We can see that the waves are resolved very well and the semi-
implicit solver seems to have slightly more accuracy compared to the explicit solver
on the same grid, at least in the plasma variables ρ, m3 and E, despite the fact
that it uses much less computational time.

To quantify the efficiency of the explicit MHLLCRHLLe
compared with the semi-

implicit MHLLCRHLLi scheme, we first compute a reference solution with the explicit
scheme on a very fine grid. Then we plot the computational time over the relative
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Figure 2. Comparison of explicit solver MHLLCRHLLe
with semi-

implicit solver MHLLCRHLLi
for different CFL numbers at time t =

0.8. From top to bottom and left to right: density ρ, momentum
m3, energy E, radiative energy E and radiative flux F .

errors with respect to this reference solution for both the explicit and semi-implicit
scheme on different mesh resolutions. We can learn from figure 3 that for the same
relative error the explicit MHLLCRHLLe

solver is O(104) slower compared with the
semi-implicit MHLLCRHLLi

solver. The reason for this tremendous difference in
efficiency is the following. The maximum eigenvalue of the hydrodynamic equations
compared to the speed of light is c/max(λhydro(t)) = O(104). That means we do
O(104) more time steps with the explicit solver. There is no loss of accuracy due
to the large time steps because the waves in stratified RMHD (1.6) are induced by
a forcing of the hydrodynamic variable u3. Therefore, the waves in the radiation
variables Urad are rather weak and without strong shocks, and the radiation part
can be well approximated by a rather diffusive implicit solver. We can conclude
that the higher cost of solving a system of nonlinear equations at each time step is
more than compensated for by allowing much larger time steps. So in this case the
semi-implicit scheme MHLLCRHLLi

clearly wins over the explicit version in terms of
efficiency.

In the next section we focus on the influence of radiative transfer on wave prop-
agation in stratified atmospheres.

4. Numerical experiments in 2 dimensions/Comparison of MHD with
radiation MHD. In this section we compare the solution of the MHD equations
with the solution of the RMHD equations on a suit of numerical experiments using
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Figure 3. Comparison of the efficiency of the explicit
MHLLCRHLLe

and semi-implicit MHLLCRHLLi
solver for the solu-

tion at time t = 0.8. The relative error is the sum of the relative
errors of all variables (divided by number of variables).

the explicit solver MHLLCRHLLe
. The first order scheme is run with a CFL number

of 0.45 and for the constants in the model we choose for the acceleration due to
gravity, g = 2.74, constant H = 0.158, gas constant γ = 5/3 and initial pressure
p0 = 1.13. All subsequent two-dimensional experiments are performed on the do-

main [x, z] ∈ [0, 4]× [0, 1]. Again, we choose σ(z, t) = ρ(z,t)
ρ(0,0) , so that the medium is

opaque at the bottom z = 0 at time t = 0.
We want to compare the MHD equations with the radiation MHD equations

(1.6). Since we are concerned with wave propagation in startified atmospheres we
follow the setup described in articles [1, 2, 3]. We choose a discrete version of

the steady state (1.10) with different background magnetic fields B̃. A small part
of the bottom boundary acts a piston and sends in temporally sinusoidal waves,
perturbing the steady state. Those boundary conditions are given by a forcing in
the normal velocity field, namely

u3(x, 0) = 0.3e−100(x−1.9)2 sin (6πt) 1{[1.65,2.15]}. (4.1)

We start with the simplest case, i.e. in absence of a magnetic field.

4.1. Hydrodynamics vs radiation hydrodynamics. The setup in the pure hy-
drodynamic case is given by chosing the embedded magnetic field B̃ to be zero. The
results are shown in figure 4. The top row depicts the solution at time t = 1 for
standard hydrodynamics and the bottom row the one for hydrodynamics combined
with the M1 model. In order to better compare the two cases, the solution for each
variable uses the same scaling for MHD and RMHD in the figure. By comparing
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Figure 4. Comprison of hydrodynamics with radiation hydrody-
namics. Solution from the explicit solver RHLLeSi

at t = 1 for
400 × 100 mesh points. Left: relative temperature change. Right:
vertical velocity u3. Each variable has the same scaling for MHD
and RMHD.

the plots for temperature in figure 4 we can immediatly see that the temperature
variations introduced by the boundary conditions (4.1) of radiation hydrodynamics
are too small to be seen compared to the results of hydrodynamics. This means
that radiative transfer compensates the (by the boundary conditions) introduced
temperature variations. This has a profound effect on the velocity of the wave fronts
propagating through the medium. We can see on the right of figure 4 that the first
wave front for hydrodynamics without radiation is about to exit the domain on the
top at time t = 1. In contrast, the velocity plot for radiation hydrodynamics at the
same time t = 1 reveals that the leading wave front is still a distance away from
the top boundary and is therefor clearly propagating with a slower speeed due to
the action of radiative transfer. Furthermore, we can see that the amplitude of the
velocity disturbances is reduced if we account for radiative transport. The overall
dynamics are, however, comparable for both cases.

We continue by studying the effects of radiative transport in the case of compli-
cated nontrivial magnetic fields.

4.2. Comparison of MHD with Radiation MHD. The above experiment was
the comparison of hydrodyamics with radiation hydrodynamics since the magnetic
field stayed zero during the whole computation. In order to see the effect of radiative
transfer on the solution of the MHD equations in two dimensions, we choose a
realistic two-dimensional background magnetic field in the following way. We let

B̃3(x, 0, 0) approximate

B̃3(x, 0, 0) = 2.7e−7.2r2 − 1.3e−40(r−0.6)2 , r = |x− 2|, x ∈ [0, 4] (4.2)

by using a Fourier expansion of vector harmonic functions (see also [1, 2, 3]), i.e.

B̃1(x, y, z) =
L∑
l=0

fl sin (2πlx) e−2πlz, B̃3(x, y, z) =
L∑
l=0

fl cos (2πlx) e−2πlz,

B2(x, y, z) ≡ 0,

(4.3)

where the fl’s are Fourier coefficients corresponding to the background magnetic
field at the bottom of the domain and L is the total number of Fourier modes.
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The computations presented here use the first fourteen terms in the Fourier series.

The full magnetic field B̃(x, y, z) follows then from the potential field assumption,
i.e. (4.3). The resulting potential field consists of a large unipolar magnetic flux
concentration surrounded on each side by two smaller concentrations of opposite
polarity field ( see[1], figure 1 for an illustration). The rest of the constants and σ
is chosen as in the case above.

The numerical results are presented in figure 4.2. Again, each variable is scaled
in the same way, in order to allow for a good comparison of the solutions of MHD
and RMHD. As is expected (see [1, 2, 3]), the waves are more focused compared to

Figure 4.2. Comprison of MHD with
radiation MHD for the weak magnetic
field. Solution from the explicit solver
RHLLeSi at t = 1 for 400 × 100 mesh
points. Top left: relative temperature
change. Top right: speed in the direction
of magnetic field lines. Bottom left:
speed perpendicular to magnetic field
lines. Each variable has the same scaling
for MHD and RMHD.

the hydrodynamics case due to the presence of the nonzero magentic field. Looking
at the temperature plot, we again see that the radiative transport results in an
almost constant temperature distribution compared to the solution of the standard
MHD equations. Looking at the velocity in the direction of the magentic field, we
again see that the wave fronts are propagating with a smaller speed in the case of
RMHD. This difference is less prominent if we consider the velocity perpendicular
to the magentic field.

In this example the magentic field is still of moderate strength. We therefor
increase our the magnetic field (4.2) by a factor of 3. The results are presented in
figure 4.2. In this case the waves are even more focused due to the action of the
Lorentz force, and follow the magnetic field lines (white). As before, it becomes
apparent from the temperature plot that the temperature is kept almost constant
in the case of RMHD in contrast to the solution of the MHD equations. Looking
at the velocity in the direction of the magnetic field, we can again conclude that
the overall behaviour is the same, but the speed of the wave fronts as well as the
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Figure 4.2. Comprison of MHD with
radiation MHD in the case of the strong
magnetic field. Solution from the explicit
solver RHLLeSi at t = 1 for 400×100 mesh
points. Top left: relative temperature
change. Top right: speed in the direction
of magnetic field lines. Bottom left:
speed perpendicular to magnetic field
lines. Each variable has the same scaling
for MHD and RMHD.

amplitude of them is reduced due to radiative transfer. This can also be seen in the
plot for the velocity in the direction perpendicular to the magnetic field.

5. Conclusion. Wave propagation in the solar atmosphere is a very important
mode of energy transport in the sun and plays an essential role in many interesting
solar phenomena, particularly in chromospheric and coronal heating. Solar wave
propagation can be modeled in terms of the equations of stratified radiative MHD.
As the standard radiative transport equation is high-dimensional, reduced models
are preferred. We focus on a particular reduced model, the so-called M1 model
that accounts for radiation in terms of spectral radiative moments. The resulting
M1-stratified MHD coupled system is then simulated using numerical schemes.

We consider two sets of numerical schemes in this paper. Both schemes are
based on the coupling between the MHD and radiation parts in terms of source
terms. Thus, standard HLLC and two-wave HLL solvers can be used to form the
numerical fluxes in a finite volume framework. The simplest form of time stepping
is the forward Euler time stepping. It has to augmented with implicit treatment of
the stiff radiative source term. The resulting scheme works quite well. However, it
is computationally very expensive as the relevant speed of the system, that is used
in setting the time step through the CFL condition for the explicit scheme, is given
by the speed of light. This is three to four orders of magnitude larger than the
fastest magneto sonic waves of the system.

Consequently, we couple an explicit forward Euler discretization of the MHD flux
and source terms with an implicit backward Euler discretization of the radiative flux
and source terms. This coupled semi-implicit scheme allows us to determine the time
step in terms of the magneto sonic waves and allows for time steps that are orders
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of magnitude larger than the fully explicit scheme. Numerical experiments show
that the semi-implicit scheme is three to four orders of magnitude more efficient
than the fully explicit scheme.

We conclude with a suit of numerical experiments for the propagation of waves
in the sun. Both weak and strong magnetic fields are used and the numerical exper-
iments indicate that the schemes work quite well with sharp resolution of the waves.
Compared to the absence of radiation, adding radiation implies greater uniformity
in temperature distributions as a consequence of radiative cooling. Furthermore,
this cooling leads to the slowing down of propagating waves. Furthermore, the
wave amplitude is also reduced as energy is taken out of the system on account of
radiative cooling. This energy loss poses a considerable obstacle for wave propaga-
tion explaining coronal heating. More elaborate physical mechanisms are needed to
explain this heating.

In terms of implementation, we use a Newton method to solve the resulting non-
linear algebraic system of equations at each time step. Currently, a direct method
for inverting the linearized equations within each Newton step, is used. However,
practical efficiency dictates the use of an iterative krylov type methods for solving
the resulting linear equations. Such iterative methods suffer from ill-conditioning.
The design of an efficient preconditioner is a prerequisite for the efficient solution
of the nonlinear equations and will be the subject of a forthcoming paper.
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Abstract. In this paper we give an overview of Implicit-Explicit Runge-Kutta

schemes applied to hyperbolic systems with stiff relaxation. In particular, we

focus on some recent results on the uniform accuracy for hyperbolic systems
with stiff relaxation [6], and hyperbolic system with diffusive relaxation [7, 5, 4].

In the latter case, we present an original application to a model problem arising

in Extended Thermodynamics.

1. Introduction. Many physical models are described by hyperbolic systems with
relaxation of the form

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R, (1)

with U = U(x, t) ∈ RN , F : RN → RN . Such systems are said hyperbolic if the
Jacobian matrix F ′(U) has real eigenvalues and a basis of eigenvectors ∀U ∈ RN .
Usually, the parameter ε is called the relaxation time, which is small in many
physical situations. Here we use the term relaxation in the sense of Whitham [25]
and Liu ([19]), which in practice means that if ε → 0, the system formally relaxes
to a quasilinear hyperbolic system with a smaller number of dimensions. Chen,
Levermore, and Liu [10] provide the proper condition that ensures that the solution
of the relaxation system actually converges to the solution of the relaxed system.

Typical examples of such systems are: gas dynamics with chemical reactions,
shallow water with friction, discrete kinetic models, extended thermodynamics, hy-
drodynamical models for semiconductors, traffic flow models, granular gases (see
[21] and references therein).

A simple prototype example of relaxation system is given by

∂tu+ ∂xv = 0,

∂tv + ∂xp(u) = −1

ε
(v − f(u)),

which corresponds to U = (u, v), F (U) = (v, p(u)), R(U) = (0, f(u)− v). As ε→ 0
we get, formally, the local equilibrium v = f(u) while u satisfies the conservation
equation

∂tu+ ∂xf(u) = 0.
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In [10] the authors proved that the solution u actually converges to the solution of
the relaxed equation if the characteristic speed of the relaxed equation is contained
in the interval identified by the speed of the original system,i.e. p′(u) ≥ (f ′(u))2,
i.e.the subcharacteristic condition.

The most commonly used approach for the numerical solution of hyperbolic sys-
tem with relaxation is based on the Method Of Line (MOL). First we discretize the
system in space, leading to a large system of ODEs defined on a grid. The semi dis-
crete scheme should be high resolution shock capturing, which provide correct shock
location without numerical oscillations. Among space discretization techniques we
mentioned several possibilities: Finite Volume (FV), Finite Difference (FD), Dis-
continuous Galerkin (DG). Method of lines based on conservative finite difference
is the simplest choice for the construction of high order schemes in space and time
[22, 21]. For example, in one space dimension, the scheme reads:

duj
dt

= −
f̂j+1/2 − f̂j−1/2

dx
− g(uj)

with

f̂j+1/2 = f̂+
j+1/2(x−j+1/2) + f̂−j+1/2(x+

j+1/2).

The numerical flux {f̂±j+1/2(x)} being reconstructed from the fluxes f±(xj), which in

turn split the analytical flux: f = f+ + f−, λ(∇f+) ≥ 0, λ(∇f+) ≤ 0. High order
reconstruction can be obtained, for example, by ENO or WENO reconstruction
from cell averages to pointwise values,

{f±j }
WENO−−−−−→ f̂±j (xj±1/2)

Since source term g(uj) is computed pointwise then the various cells are not coupled
at the level of the source, and the implicit equations in each cell are independent
from each other.

Applying MOL to hyperbolic system with relaxation, the PDEs become a system
of ODEs of the form

u′ = f(u) +
1

ε
g(u), (2)

with initial vector u0 = (U(x1, t0), · · · , U(xN , t0))T , where {xi}Ni=1 denote the spa-
tial computational mesh. The solution at time t is u(t) = (u(t1), u2(t), · · · , uN (t))T

where ui(t) ≈ U(xi, t). The term f(u) represents the discretization of the convec-
tive derivative term, −∂xF (U), while g(u) represents the discrete approximation of
the source term, G(U), on the grid nodes (and possibly the boundary conditions).
Then a suitable time integrator is used to solve ODEs.

In most cases f(u) is non stiff and non linear while 1
εg(u) contains the stiffness, so

we look for numerical schemes which are explicit in f and implicit in g. In particular
it is essential that the numerical scheme is accurate for ε → 0 (possibly also for
intermediate regimes of such parameters, i.e. when ε is not too small). Moreover
some stability restrictions are required, i.e. for the convection term ∆t ≤ ρ(∇uF )∆x
(CFL condition). The stiff term has to be treated implicitly to avoid restrictions
∆t ≤ Cε.

IMEX Runge-Kutta methods represents a very effective tool to guarantee the
simplicity of the explicit treatment of the non-stiff term f(u) and to avoid time
restriction because of the stiffness in the source term g(u).



IMEX RUNGE-KUTTA SCHEMES FOR STIFF RELAXATION 63

An Implicit-Explicit (IMEX) Runge-Kutta scheme applied to system (2) takes
the form

Yi = y0 + h
i−1∑
j=1

ãijf(t0 + c̃jh, Yj) + h
i∑

j=1

aij
1

ε
g(t0 + cjh, Yj),

y1 = y0 + h
s∑
i=1

b̃if(t0 + c̃ih, Yi) + h
s∑
i=1

bi
1

ε
g(t0 + cih, Yi).

where Ã = (ãij), ãij = 0, j ≥ i and A = (aij) are s× s (lower triangular) matrices

and c̃, b̃, c, b ∈ Rs, coefficient vectors. A classical representation of a IMEX R-K
method is given by

Double Butcher tableau:
c̃ Ã

b̃T

c A

bT
.

We restrict to consider IMEX schemes in which the implicit part is a diagonally
implicit Runge-Kutta (DIRK). Besides it simplicity, this will ensure that f is always
evaluated explicitly.

We can classify each IMEX Runge-Kutta scheme by considering the different
structures of the matrix A = (aij)

s
i,j=1, of the implicit scheme:

• (Methods of Type A) The matrix A is invertible.
• (Methods of Type CK)

A =

(
0 0

a Â

)
The submatrix Â is invertible.

CK methods with a = 0 are called ARS methods [1]. Type A methods are somehow
more difficult to construct, but easier to analyze than methods of type CK [9] or
ARS.

The rest of the paper is organized as follows. Section 2 review some recent
results on the development of high-order implicit-explicit (IMEX) Runge-Kutta (R-
K) schemes suitable for time-dependent partial differential systems [6]. In section
3 we discuss hyperbolic systems with stiff diffusive relaxation. The last section is
devoted to some applications to some models of diffusive relaxation, which confirm
practice the advantageous effects of the approaches introduced the earlier sections.
In particular, Sec. 4.2 is devoted to an original application of IMEX-I schemes
without parabolic restriction to a one dimensional model problem arising in the
context of Extended Thermodynamics.

2. On the uniform accuracy of IMEX Runge-Kutta schemes and appli-
cations to hyperbolic systems with relaxation. Usually, under-resolved nu-
merical schemes may yield spurious numerical solutions that are unphysical. Other
times, in the case of hyperbolic systems with stiff terms, high order schemes may
reduce to lower order when the time step fails to resolve the small relaxation time.

IMplicit-EXplicit (IMEX) Runge-Kutta (R-K) schemes have been widely used
for the time evolution of hyperbolic partial differential equations but some of the
schemes existing in literature do not exhibit uniform accuracy with respect to the
relaxation time. Classical high-order IMEX R-K schemes fail to maintain the high-
order accuracy in time in the whole range of the relaxation time and in particular
in the asymptotic limit ε→ 0.
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In [6] we developed new IMEX R-K schemes for hyperbolic systems with relax-
ation that present better uniform accuracy than the ones existing in the literature
and in particular produce good behavior with high order accuracy in the asymptotic
limit, i.e. when ε is very small. In particular, these schemes are able to handle the
stiffness of the system (1), in a whole range of the relaxation time.

The schemes are obtained by imposing new additional conditions on their coef-
ficients, in order to guarantee better accuracy over a wide range of the relaxation
time. Following the same technique proposed in [11], the additional conditions
are obtained by performing an asymptotic expansion of the exact and numerical
solution in the small parameter ε (Hilbert expansion), and by matching the two
solutions to various order in ε, [3].

The construction of a high-order accurate IMEX R-K scheme is obtained by im-
posing the extra order conditions, that ensure the agreement between exact and
numerical solution up to a given order in ε. The scheme, called BHR(5,5,3),
is presented in [3, 6]. Numerical tests on several ordinary differential systems
and hyperbolic systems with relaxation term present better behavior for the new
scheme BHR(5,5,3) over other IMEX R-K methods previously existing in litera-
ture [1, 9, 21]. For example, by imposing the additional order conditions to the
zeroth-order in ε, the classical ARS(4,3,4) scheme can be modified (hereafter called
Mod-ARS(3,4,3)), imposing its accuracy in the algebraic variable. Furthermore,
by imposing conditions to terms up to fist order in ε and we constructed scheme
RHR(5,5,3), a third order five stage scheme.

The construction of this type of IMEX R-K scheme is motivated by the order
reduction of classical IMEX schemes observed when applying them to several stiff
systems. An example of such behavior is illustrated in Figure 1, where the classical
Van rer Pol equation is solved by ARS(3,4,3), Mod-ARS(3,4,3) and BHR(5,5,3)
schemes derived in [1, 9, 21, 3, 6],

y′ = z,
εz′ = (1− y2)z − y, (3)

(for details of this problem and its initial conditions see, for example, [11]). The
global error behaves like C∆tr with r the slope of the straight line and C is a
constant. We observe that, while classical schemes, as ARS(3,4,3), are able to
maintain the classical order of accuracy in the differential variable y, they lose
accuracy in the algebraic variable z. BHR(5,5,3) method exhibits the better error
estimate with respect to ARS(3,4,3) and Mod-ARS(3,4,3) schemes and no order
reduction appears when ε is very small.

Concerning hyperbolic systems with stiff relaxation we report here a numerical
test the Broadwell model equations

ρt +mz = 0,
mt + zx = 0,
zt +mx = 1

ε (ρ2 +m2 − 2ρz)
(4)

(for details see [6]), which, in one space dimension, is a 3×3 semilinear hyperbolic
system that, in in the relaxed limit, becomes a quasilinear hyperbolic system for the
two two differential variables (ρ and m), while z becomes a function of the other
two variables.

Figure 2 represents the convergence rate of some IMEX R-K scheme computed
on a smooth test problem by grid refinement using three different grids. We have
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Figure 1. Global error versus the stepsize in the Van der Pol
equation calculated with ε = 10−6.
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Figure 2. Convergence rate vs ε for the density ρ (◦) (differential
component) and the flux of the momentum z (∗) (stiff component).
Top: left panel ARS(3,4,3) scheme, right panel Mod-ARS(3,4,3)
scheme. Botton: BHR(5,5,3) scheme.
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obtained an improvement for the convergence of algebraic component for the Mod-
ARS(4,3,4) scheme. In fact, on the left panel we have increased the convergence
rate for sufficiently stiff parameters (ε < 10−4). These results show a third-order
accuracy for small and large values of ε and note that for intermediate values of the
parameter ε (10−4 < ε < 10−2) we have a slight deterioration of the accuracy. As it
is evident in the right panel from the figure 2 BHR(5,5,3) shows an almost uniform
third-order accuracy in the whole range of ε.

3. IMEX Runge-Kutta schemes for hyperbolic systems with diffusive
relaxation. The purpose of this section is to give a review on effective methods
for the numerical solution of hyperbolic systems with diffusive relaxation.

As the relaxation parameter vanishes, the characteristic speeds of the system
diverge, and the system reduces to a parabolic-type equation (typically a convection-
diffusion equation).

A simple prototype of hyperbolic system with relaxation term is given by:

∂τu+ ∂ξV = 0,

∂τV + ∂ζp(u) = −1

ε
(V −Q(u))

where u = u(x, τ), V = V (x, τ) ∈ R, and ε > 0 is the relaxation time.
When looking for long time behavior of the solution of the previous system, it

is more appropriate to rescale time and the variable V , according to the so called
diffusive scaling:

τ = t/ε, V = εv, ξ = x, q(u) = Q(u)/ε,

thus obtaining the general diffusive relaxation system given by:

∂tu+ ∂xv = 0,

∂tv +
1

ε2
∂xp(u) = − 1

ε2
(v − q(u))

, (5)

where p′(u) > 0. This system is hyperbolic with two distinct real characteristics

speed
√
p′(u)/ε.

In the small relaxation limit, ε→ 0 the system relaxes towards the system

∂tu+ ∂xq(u) = ∂xxp(u),
v = q(u)− ∂xp(u).

(6)

The sub characteristic conditions, [10], is automatically satisfied for small ε
(|q′(u)|2 < p′(u)/ε2), i.e. the main stability condition for the diffusive relaxation
system. The simplest form of (5) is to assume p(u) = u and q(u) = 0, then from
(6) we obtain the classical heat equation ut = uxx.

The attention is devoted to the construction of methods for the numerical solution
of system (5) that are able to capture the asymptotic behavior as ε→ 0. Solving (5)
numerically is challenging due to the stiffness of the problem both in the convection
and in the relaxation terms.

In general, Implicit-Explicit (IMEX) Runge-Kutta schemes represent a powerful
tool for the time discretization of stiff systems. Unfortunately, since the charac-
teristic speed of the hyperbolic part is of order 1/ε, standard IMEX Runge-Kutta
schemes developed for hyperbolic systems with stiff relaxation [1, 9, 21, 6] fail in
such parabolic scaling, because the CFL condition would require ∆t = O(ε∆x). Of
course, in the diffusive regime where ε < ∆x, this is very restrictive since for an
explicit method a parabolic condition ∆t = O(∆x2) should suffice.
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Most previous work on asymptotic preserving schemes for hyperbolic systems and
kinetic equations with diffusive relaxation focus on schemes which in the limit of in
the finite stiffness become consistent explicit schemes for the diffusive limit equation
[20, 14, 16, 18]. In those paper the authors separate the hyperbolic part into a non
stiff and a stiff part and bring the stiff part to the r.h.s., treating it implicitly. As
we shall see, this can be explicitly done in several diffusive relaxation models. In all
above approaches the resulting schemes, the limit scheme as ε → 0 are an explicit
scheme for the diffusion-like equation, with the usual parabolic CFL restriction on
the time step: ∆t ≈ ∆x2. Schemes that avoid such time step restriction and provide
fully implicit solvers have been analyzed in [7, 5], where a new formulation of the
problem (5) was introduced. In the next section we review two different approaches
in order to treat problem (5) and some generalizations.

3.1. Removing parabolic stiffness. The schemes constructed with the approach
outlined above converge to an explicit scheme for the limit diffusion equation, i.e.
heat equation, and therefore they are subject to the classical parabolic CFL restric-
tion ∆t ≤ C∆x2. In order to overcome such a restriction we adopt a penalization
technique, based on adding two opposite terms to the first equation in (5), and
treating one explicitly and one implicitly.

Let us consider the simplest example of hyperbolic system with parabolic re-
laxation, obtained by setting q(u) = 0 and p(u) = u in Eqs.(5). By adding and
subtracting the same term on the right hand side we obtain:

ut = −(v + µux)x + µuxx,
vt = − 1

ε2 (ux + v).
(7)

In the first equation the term −(v + µux)x will be treated explicitly, while the
second term is treated implicitly. IMEX schemes based on this approach will be
called IMEX-I, to remind that the term containing ux in the second equation is
implicit, in the sense that it appears at the new time level.

Notice that the term v+ux appearing in the second equation is formally treated
implicitly, but in practice ux is computed at the new time from the first equation,
so it can in fact explicitly computed.

The function µ : R+ → [0, 1] must be such that µ(0) = 1, so that in the limit
ε → 0 the quantity (v + µux)x vanishes. For ε � 1 such a quantity is very small,
and so this term can be treated explicitly. As ε→ 0 the method becomes an implicit
scheme for the limit equation, therefore the parabolic restriction on the time step
is removed.

Linear stability analysis can be performed on this simple problem, for the first or-
der IMEX scheme, i.e. a backward-forward Euler method, both in the space continu-
ous case, and using classical central differencing to approximate the first derivatives.
For small values of ε and for µ = 1 one obtains the following stability conditions
(in the continuous case in space)

ξ2∆t ≤ 1− 4ε2ξ2

4ε2ξ2 ,

the latter showing that there is almost no restriction for small values of ε, even if
we use central differences coupled with forward Euler time discretization.

High order extensions of this approach are possible, by using high order IMEX
(for details see [5]). However, if we want the scheme to be accurate also in the cases
in which ε is not too small, then we need to add two main ingredients:
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• no term should be added when not needed, i.e. for large enough values of ε,
since in such cases the additional terms degrade the accuracy; this can be
achieved by letting µ(ε) decrease as ε increases. A possible choice which is
adopted in all numerical tests is, for example

µ(ε) = exp(−ε2/∆x);

this choice guarantees µ(0) = 1, µ(1) = exp(−1/∆x) ≈ 0 for small ∆x (we
assume the equations are written in non dimensional form, so that ∆x is a
small pure number).
• when the stabilizing effect of the dissipation vanishes, i.e. as µ→ 0, then cen-

tral differencing is no longer suitable, and one should adopt some upwinding;
this can be obtained for example by blending central and upwind differencing
as

Dx = (1− ν)Dupw
x + νDcen

x .

with ν = ν(ε) and ν(0) = 1. A possible choice for ν(ε) is ν = µ, but other
functions may be adopted.

The idea of blending between upwind and central difference has already been pro-
posed in [13]. In such paper the authors use a blending function which in our
notation becomes

µJL =
1

1 + 2ε2/∆x

which is the [0/1]-Padé approximant of exp(−2ε2/∆x).
In the IMEX-I approach, applying MOL, the diffusive system (7) can be written

as a ODEs system of the form

u′ = f1(u, v) + f2(u),

ε2v′ = g(u, v).

where f1(u, v) represents the discretization of the term −∂x(v + µ∂xp(u)), f2(u)
represents the discretization of µ∂xxp(u) and g(u, v) the discretization of the term
(−∂xp(u)− v + q(u)).

When ε→ 0 the solution is projected onto the manifoldM = {(u, v) ∈ R|g(u, v)
= 0}. If we assume that the equation g(u, v) = 0 can always be solved for v, and
denote v = G(u) the solution, then the differential variable u satisfies

u′ = f̂1(u) + f2(u),

with f̂1(u) = f(u,G(u)). The previous system is called the reduced system.
It would be desirable that the IMEX scheme projects the numerical solution onto

the manifold M as ε→ 0. In paper [5] we proved that a sufficient condition for an
IMEX scheme to project the solution onto the manifold M is that the scheme is
globally stiffly accurate.

An implicit RK scheme is said stiffly accurate if the last row of the matrix A is
equal to the weights bT . This ensures that the last stage is equal to the numeri-
cal solution. This guarantees nice stability properties of the scheme for very stiff
equations (for example it ensures that the absolute stability function vanishes at
infinity).

In [5, 7] we extended the definition of stiff accuracy to IMEX schemes, and say
that an IMEX scheme is globally stiffly accurate if the last row of both explicit and
implicit RK schemes that define the IMEX are equal to the corresponding weights,
i.e. eTs A = bT , eTs Ã = b̃T with eTs = (0, ..., 0, 1).
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Usually the numerical solution (un, vn) for all n when ε → 0 will not lie on the
manifold g(u, v) = 0 since the quantity g(un, vn) is not necessarily zero. The IMEX-
I approach with a globally stuffy accurate scheme guarantees that in the limit ε→ 0
we obtain a globally stiffly accurate implicit scheme and therefore g(un, vn) = 0 for
all n.

Finally in [5] we derived additional order conditions, called algebraic conditions,
that guarantee the correct behavior of the numerical solution in the limit ε main-
taining the classical accuracy in time of the scheme. We obtained such algebraic
order conditions using the classical technique by comparing the Taylor expansion
in time of the numerical solution with the one of the exact solution. More details
about this approach, as well as some rigorous analysis can be found in [5].

3.2. Additive Approach. In the previous approach there may be a subtle dif-
ficulty when it comes to applications, namely it is not clear how to identify the
hyperbolic part of the system, i.e. what is the term that should be included in the
numerical flux if I want to use my favorite shock capturing FV or FD scheme? We
proposed in [7] an alternative approach, in which we treat the whole hyperbolic
part explicitly. For practical applications, it would be very nice to treat the whole
term containing the flux explicitly, while reserving the implicit treatment only to
the source, according the scheme:

ut
vt

=
=

−vx
−ux/ε2

[Explicit]

− v/ε2

[Implicit]

(Additive)

We call such an approach additive and the corresponding schemes are denoted
IMEX-E, to emphasize that the hyperbolic part is treated explicitly.

Such schemes should be easier to apply, because the fluxes retain their original
interpretation. However, the approach seems hopeless, because of the diverging
speeds.

Similarly as for the IMEX-I approach, we proposed for this approach, in order to
overcome the parabolic restriction ∆t ≈ ∆x2 the same penalization technique based
on adding two opposite terms to the first equation, and treating one explicitly and
one implicitly.

In this paper, the authors concentrated on developing IMEX R-K schemes of type
A, since they are easier to analyze with respect to the other types. They started
the analysis by introducing a property which is important in order to guarantee
the asymptotic preserving property, i.e. the scheme possesses the correct zero-
relaxation limit, in the sense that the numerical scheme applied to system (5) should
be a consistent and stable scheme for the limit system (6) as the parameter ε
approaches zero independently of the discretization parameters. IMEX R-K schemes
that satisfy this property are globally stiffly accurate schemes. Several results and a
rigorous analysis about that can be found in [7]. Most numerical tests are reported
in [7] for IMEX-E approach and the results are compared with those obtained by
other methods available in the literature.

4. Applications. This section is devoted to the presentation of some applications
of the previous two approaches for the treatment of hyperbolic systems with diffusive
relaxation.
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Figure 3. Numerical solution with N = 96 cells. Solid line: refer-
ence limit solution with N = 384 cells at time T = 1. IMEX-
E approach, ε = 10−4 and ∆t = C∆x2. u(x, 0) = cos(x),
v(x, 0) = sin(x). Left C = 1. Right C = 0.025.

4.1. Kawashima-LeFloch’s nonlinear relaxation model. Fully nonlinear re-
laxation terms arise, for instance in presence of nonlinear friction and, in this section
we want numerically study the following non-linear relaxation model, first intro-
duced by Kawashima and LeFloch [15], i.e.

ut + vx = 0,
ε2 vt + b(u)x = −|v|m−1 v + q(u).

(8)

Provided b′(u) > 0, system (8) is strictly hyperbolic system of balance laws. In the
stiff relaxation ε, (ε→ 0) we have

ut = (| − q(u) + b(u)x|α(−q(u) + b(u)x))x,

|v|m−1 v = q(u)− b(u)x,

which is a fully nonlinear parabolic equation in u with α = −1+1/m. We distinguish
between

sub− linear : 0 < m < 1,

linear : m = 1,

super− linear : m > 1.

In its simplest form we assume b(u) = u, q(u) = 0 and we get:

ut + vx = 0,

ε2 vt + ux = −|v|m−1 v.

As ε→ 0 this relaxes to

ut = (|ux|αux)x , |v|m−1 v = −ux. (9)

Very interesting cases are both m < 1 (α > 0) and m ≥ 1 (α ≤ 0), The profile of the
solution computed with N = 96 points is reported in Fig. 3. But by integrating for
a longer time, the nonlinear parabolic equation (8) has regular solutions if m > 1,
i.e. α ≤ 0, while it develops singularities in the derivatives if 0 < m < 1, i.e.
α > 0. In fact, for m = 2 (α = −1/2) integrating for a longer time T = 1.77, some
instabilities appear (see Figure 4). The reason of such instabilities is that equation
(9):

ut = ((α+ 1)|ux|α)uxx,
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Figure 4. Instabilities for m = 2 (α = −1/2), ∆t = C∆x2, ε =
10−4 N = 96.

where the non-linear diffusion coefficient ν is

ν = (1 + α)|ux|α

which suggests the following condition in the nonlinear case

(1 + α)|ux|α
∆t

∆x2
≤ 1 (10)

but the equation (9) diverges near local extrema when α < 0 (m > 1). This
condition (10) is used to determine the optimal time step for m ≤ 1, no time step
can guarantee stability near local extrema if m > 1. In [4], the same penalization
technique proposed in [5, 7] in order to remove the parabolic stability restriction
has been used. Then we write the system in the form

ut = −(v + µ(ε)|ux|αux)x + µ(ε)(|ux|αux)x

ε2vt = −ux − |v|m−1v.

Now in order to treat this system by the IMEX-I or IMEX-E approach this requires
that the term (|ux|αux)x is treated implicitly. But some difficulty arises, in fact,
when ε → 0, the limit equation is non-linear parabolic and fully implicit would be
very expensive.

In [4] a new approach has been used in order to solve the term (|ux|αux)x where
a very efficient method for the numerical solution of such an equation has been
introduced. Indeed the idea is to write the equation as a system as

y′ = F (y∗, y) (11)

with F function non-stiff in the first variable and stiff in the second one. To be

more specific, in our case F (y∗, y) is given by y =

(
u
v

)
, y∗ =

(
u∗

v∗

)
, and

F (y∗, y) =

(
−(v∗x + µ(ε)(|u∗x|αu∗x)x) + µ(ε)(|u∗x|αux)x
−ux + |v|m−1v

)
.

Additive RK for this class of problems can be constructed, in particular we showed
that in order to compute the numerical solution we need to require that bi = b̃i
for i (see [4]), then a good choice is to consider IMEX-I approach, whereas IMEX-
E approach requires that the Runge-Kutta IMEX is globally stiffly accurate, i.e.
b̃i 6= bi for all i [7]. Using this new approach one can solve the relaxation system
without parabolic CFL, i.e. ∆t = 0.25∆x and T = 1.77, Fig. 5.
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Figure 5. Numerical solution with N = 96 cells at time T = 1.77
for m = 2, ε = 10−4 and ∆t = C∆x, with C = 0.25.

• Time step is about 150 times larger than in the explicit method.
• The case m = 2, i.e. α = −1/2, we set a TOL for computing (|u|x + TOL)α,

in order to avoid that the derivatives goes to infinity.

4.2. R13: a regularized Grad’s 13 moment method. Grad’s moment method
is a technique used to close the infinite hierarchy of moments arising from the Boltz-
mann equation or rarefied gases. It is an example of hyperbolic relaxation: the
Boltzmann equation relaxes to the hyperbolic system of Grad’s equations. Some-
times parabolic systems provide more accurate physical description (e.g. Navier-
Stokes equations are very successful in practice, although they are not hyperbolic).
Some researchers, mainly Manuel Torrilhon and Henning Struchtrup [24] developed
a parabolic extension of Grad’s approach, called R13. When derived from the
Boltzmann equation, this can be viewed as a parabolic relaxation.

In this section we present some results for the asymptotic accuracy for boundary
value problems, which emerges from a 1D simplification of the R13 system that
describes a Poiseuille-flow [17]. The system takes the form

Uτ + F (U)ξ = −1

ε
P (U) +G (12)

Here, the variables are U = (u, v, w)T with velocity u, shear stress v and parallel
heat w. Furthermore, we have

F (U) = AU, A =

 0 1 0
1/2 0 1/2
0 1 0

 , P (U) =

 0
v
w

 , G =

 g
0
0

 (13)

where here the parameters g and ε are the external force and the relaxation time.
Explicitly, we write system (12) as

uτ + vξ = g,

vτ +
1

2
(u+ w)ξ = −v

ε
, (14)

wτ + vξ = −w
ε
.
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We consider a bounded domain ξ ∈ [−1, 1] where we have to prescribe boundary
conditions. In [17], the authors used the following boundary conditions for v:

v|ξ=±1 = ±(αu+ βw)ξ=±1, (15)

with α > β > 0 some parameters. In the numerical experiments we chose the
following values, g = 1, α = 0.7, β = 0.3. A steady state solution for system (12) is
given by

us(ξ) = g

(
1 + εβ

α
+

1

ε
(1− ξ2)

)
, vs(ξ) = gξ, ws(ξ) = −εg. (16)

We consider numerical tests whose solution converges to such steady state. We
note that as we use high order reconstruction for the fuxes, then we need two
layers of ghost cells that can be obtained using the boundary values. This part of
the discretization is most important, because the efficiency of the whole method
heavily depends on the choice of the correct boundary values and extrapolation
methods.

Now we will focus our attention to the following system

ũt + vx = g,

vt +
1

2
(
ũ

ε2
+ w̃)x = − v

ε2
, (17)

wt +
vx
ε2

= − w̃
ε2
.

obtained by (14) under the diffusive scaling t = ετ , x = ξ, ũ = εu and w̃ = w/ε.
Concerning the space discretization we consider a finite volume discretization

as done in [17]. In our diffusive approach the matrix A in (13) has the following
expression

A =

 0 1 0
1/2ε2 0 1/2

0 1/ε2 0

 (18)

In the small relaxation (or diffusion) limit, i.e. when ε→ 0, the behaviour of the
solution to (17) is governed by

w̃ = −vx, v =
−ũx

2
, (19)

and

ũt =
ũxx
2

+ g. (20)

Now consider boundary conditions for (17) which are consistent to the limit system
(19,20).

4.2.1. Boundary Treatment. In this section we derive boundary conditions which
are in agreement with the stationary solution.

From the steady state condition of Eq. (17) we get

vx = g,

ũx/ε
2 + w̃x
2

= − v

ε2
.

vx = −w̃



74 SEBASTIANO BOSCARINO AND GIOVANNI RUSSO

We observe that compatibility with stationary solutions implies:

w̃|±1 = −g, (21)

vx|±1 = g, (22)(
ũx + ε2w̃x

)
|±1 = −2v|±1. (23)

Such conditions are compatible with condition

ũ|±1 = ±εv ∓ βw̃ε
2

α
. (24)

for the stationary solution (16). Therefore one can solve the system with bound-
ary conditions (21), (22), (23) or (21), (22) and (24). In both cases one obtains
convergence to the stationary solution.

System (12) is discretized by second order finite volume for the internal points.
Ghost points are used out of the boundary to impose boundary conditions. Such
ghost points are computed by extrapolation. For instance for the calculation of the
boundary values considering (21), (22) and (24), we can write

w̃W1/2 = −g, (25)

w̃0 = (8wW1/2 − 6w̃1 + w̃2)/3, (26)

v0 = v1 − g∆x, (27)

vW1/2 =
3

8
v0 +

3

4
v1 −

1

8
v2, (28)

ũW1/2 = −ε(vW1/2 + εβw̃W1/2)/α, (29)

u0 = (8ũW1/2 − 6ũ1 + ũ2)/3, (30)

U−1 = 3U0 − 3U1 + U2, (31)

where U = (ũ, v, w̃). We do the same for the other part of the wall xN+1/2.
We remark that we can improve the order of the extrapolation to the ghost cells

by the following considerations. We consider the Lagrange polynomial

Ln(x;U) =
n∑
i=0

Ui`i(x)

where U = (ũ, v, w̃) and

1. w̃0`0(x1/2) = −g −
∑n
i=1 w̃i`i(x1/2),

2. v0`
′

0(x1/2) = g −
∑n
i=1 vi`

′

i(x1/2),

3. ũ0`0(x1/2) = − ε
α (v(x1/2) + βw̃(x1/2)ε)−

∑n
i=1 ũi`i(x1/2).

and we can compute

Uk =
n∑
i=0

Ui`(xk), k = −1,−2, ...

Similarly for the other side of the wall.
We remark that we tested this approach performing also a numerical simulation

setting different initial conditions, i.e. introducing a little perturbations to the initial
data, and we observed that after a short time the numerical solution converge to
the stationary solution.
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4.2.2. Removing parabolic stiffness. We rewrite system (17) in the following form

ũt = −vx − µ(ε)
ũxx
2

+ µ(ε)
ũxx
2︸ ︷︷ ︸+g,

vt = − w̃x
2
− 1

2

ũx
ε2
− v

ε2
, (32)

w̃t = −vx
ε2
− w̃

ε2
.

where we added and subtracted the term µ(ε)ũxx/2 in order to overcome the stabil-
ity restriction that usually we have for hyperbolic system with diffusive relaxation.
Here µ(ε) is such that µ : R+ → [0, 1] and µ(0) = 1. When ε is not small there
is no reason to add and subtract the term µ(ε)uxx, therefore µ(ε) will be small in
such a regime, i.e. µ(ε) ≈ 0. For a detailed analysis on this topic we report to
[5]. Furthermore this reformulation allows us to design a class of IMEX Runge-
Kutta schemes that work with high order accuracy in time in the zero-diffusion
limit, i.e. when ε is very small, and in a wide range of the parameter ε such that
the scheme maintains the accuracy uniformly for each value of ε. Now we want to
apply an IMEX Runge-Kutta scheme with these features to this system consider-
ing IMEX-I approach, [5]. In our numerical test we consider the stiffly accurate
IMEX-SSP2(3,3,2) which satisfies all the conditions described above.

Then, by (32), we treat the quantities

(−vx − µ(ε)
uxx
2
,− w̃x

2
, 0)T (33)

explicitly and

(µ(ε)
uxx
2

+ g,−1

2

ũ

ε2
− v

ε2
,− ṽx

ε2
− w̃

ε2
)T (34)

implicitly, respectively.

4.2.3. Convergence Results. In order to ensure the second order convergence for
the IMEX-SSP(3,3,2) scheme with the previous boundary conditions proposed, we
simulate the same periodic test case proposed in [17]. We chose g = 0 and the
initial conditions are u = sin(πx) + 0.5 sin(5πx), v = 0, w = 0. We simulate until
tend = ετend with τend = 4, ε = 0.01.

Numerical convergence rate is calculated by the formula

p = log3(E∆t1/E∆t2), (35)

where E∆t1 and E∆t2 are the global errors associated to time steps ∆t1 and ∆t2,
respectively. E∆t1 is obtained by comparing a solution with N = 50 with a solution
obtained using N = 150 points, while for E∆t2 we use two solutions obtained,
respectively, with N = 150 and N = 450 points. The number of points is tripled
each time, because in this way it is easier to compare solutions in the same location
using finite volume discretization. In Table 1 we show that a second order is reached
for IMEX-SSP(3,3,2) scheme for all three components.

We note that we have obtained these convergence results considering the system
(17) without adding and subtracting any term. It is clear from the previous con-
siderations that a time step ∆t = O(∆x2) must be chosen. It is possible to obtain
similar results considering the reformulated system (32) and choosing a time step
∆t = O(∆x), although a special care has to be taken when imposing boundary
conditions in the implicit step.
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N Erroru Errorv Errorw

50 – – –

150 8.062e− 04 2.530e− 03 1.089e− 02
450 7.838e− 05 2.879e− 04 1.162e− 03

Order 2.121 1.978 2.036

Table 1.
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Figure 6. Convergence rate for the u, v, and w component versus ε2

We now investigate numerically the convergence rate for a wide range of ε consid-
ering system (32) and choosing a time step ∆t = O(∆x). To this aim we consider the
previous test problem with the second order IMEX-SSP(3,3,2) scheme introduced
before. Numerical convergence rate is calculated by (35) and time step ∆t = 0.3∆x.
We simulate until tend = 1.

Figure 6 shows the convergence rates as a function of ε2 using different values
of ε ranging from 10−6 to 1. The second order scheme tested has the prescribed
order of accuracy uniformly in ε2 until ε is small. Instead, for values of ε large,
say 10−1, a degradation of accuracy is observed. This phenomenon requires further
investigation as mentioned in [5].

4.2.4. Convergence to the steady state solutions. In this numerical test we show how
starting form arbitrary initial conditions and considering the stiffly accurate IMEX-
SSP2(3,3,2), the IMEX-I approach proposed in section (4.2.2), (see for details [5]),
provides a numerical solution that converges to the steady state solution (16) in a
number of time steps much smaller than the one needed by classical IMEX methods.

We consider g = 1, α = 0.7, β = 0.3 and we choose ε = 10−4 (diffusive regime).
The final time is τ = 10, the domain is I = {x : x ∈ [−1, 1]} and ∆tH = 2.5∆x
with N = 50 grid points. This CFL number has been empirically adjusted to
approximate the largest one that maintains stability. As initial data we consider

u0 =
ε

α
((C + βε)x− g) v0 = gx+ C w0 = −x2. (36)
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This initial conditions are compatible with the boundary conditions (21), (22), (24).
We plot the numerical solution at different final times 0.5, 1, 1.5, 3 and 10. At
the final time the numerical solution is in perfect agreement with the steady state
solution (16) after 100 time steps. We remark that the steady state solution is in
practice reached a smaller time, say t = 5. We chose a long time in order to show
that the numerical solution reaches the steady state with no oscillations. IMEX-
I approach with the penalization technique described in Sec. 4.2.2 allows a time
step ∆t with a hyperbolic stability restriction rather than the parabolic one typical
of explicit schemes for diffusion problems. Indeed, if we compute the numerical
solutions u, v and w of system (17) without adopting the penalization technique,
when ε is very small a stability parabolic restriction like ∆tP = CFL∆x2 is required
because the IMEX R-K method becomes an explicit one in the limit case ε → 0.
In this case we consider CFL = 2.5 and we note that thanks to the better stability
properties of the new approach, the time step ∆tH is about 25 times bigger then
∆tP .

5. Conclusions. We gave a brief review of modern IMEX Runge-Kutta schemes
for hyperbolic systems in presence of stiff relaxation. Both hyperbolic and para-
bolic relaxations are considered, in the framework of conservative finite difference
space discretization, which is the simplest approach to construct high order shock
capturing schemes for such problems.

In the hyperbolic relaxation case, most IMEX schemes in the literature are able
to capture the correct relaxed limit, converging to explicit schemes for the relaxed
system. If high accuracy is required for a wide range of values of the relaxation
parameter, then suitable conditions have to be imposed on the coefficients of the
scheme in order to guarantee uniform accuracy, based on the analysis developed in
[2].

The parabolic case is more subtle, since the characteristic speeds of the hyperbolic
part diverge as the stiffness parameter vanishes. Numerical schemes commonly
found in the literature for this family of problems converge to an explicit scheme for
the limit parabolic equation, thus requiring a parabolic type CFL restriction on the
time step. Recently developed schemes overcome such problem, using a penalization
technique, and providing IMEX schemes that relax to an implicit scheme for the
limit diffusion equation, of to an IMEX scheme for the limit convection-diffusion
equation (according to the form of the relaxation term) [5, 7]. Suitable modification
of such schemes can be adapted to problems that relax to genuinely non-linear
diffusion equations [4]. IMEX schemes with the penalization techniques are applied
here to a model problem coming from Extended Thermodynamics, providing a much
more efficient tool to solve the problem with a number of time steps considerably
smaller than the one required by other schemes present in the literature.

Several open problems remain. In particular we mention two problems that may
attract the attention of researchers in this area. The first one is the extension of
the uniform accuracy analysis performed in the case of hyperbolic relaxation to the
more difficult problem of the parabolic relaxation. The second problem consists in
exploiting the stabilization effect of the penalization technique adopted to improve
the stability properties of the IMEX schemes for the parabolic relaxation to more
a more general framework, extending the work already performed in [23] and [12]
in specific cases.
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Figure 7. Convergence to the steady state for the R13 model
problem. From top to bottom: u, v, and w profiles at different
times. Number of grid points N = 50. Time step ∆tH = 2.5∆x.
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Abstract. We discuss the theory and application of new methods to track

moving interfaces in multiphase settings. These problems are characterized by
multiple regions connected together, and moving under complex physics. We

review work on a new mathematical and algorithmic methodology, known as

the “Voronoi Implicit Interface Method”, to track such problems.

1. Introduction. Propagating interfaces appear in wide variety of contexts, in-
cluding fluid mixing, combustion dynamics, image segmentation, robotic naviga-
tion and path planning, and medical image analysis. One class of techniques to
model and approximate such problems come from initial value partial differential
equations, and results from embedding the evolving interface as the zero level set of
a higher-dimensional function defined in an Eulerian setting, and whose resulting
equations of motion are approximated using techniques borrowed from hyperbolic
conservation laws. These techniques include level set methods [5], and their effi-
cient adaptive implementation known as Narrow Band Level Set Methods [1]. They
depend in part on the theory of curve and surface evolution, see [8, 9, 10].

These techniques are built for propagating interface problems in which there are
two phases, which precludes the existence of complex structures such as triple points
where three regions meet. These problems occur in a host of more complex interface
problems, including grain metal boundaries, biological cell evolution and industrial
foams. Considerable work has been aimed at moving these techniques to these more
complex settings. These approaches typically involve multiple level set functions,
essentially scaling the computational work with the number of phases, and relying on
reconstruction techniques to ameliorate difficulties inherent in treating each region
as less than fully coupled to its neighbors.

Recently, a new mathematical and computational methodology has been intro-
duced, known as the “Voronoi Implicit Interface Method” [6, 7]. This method has
a variety of features, including:

• Accuracy, consistency, efficiency: The method works in any number of di-
mensions, using a fixed Eulerian mesh, and a single function plus an indicator
function to track the entire multiphase system. Geometric quantities and
constraints are accurately computed, and phases are coupled together in a
consistent fashion, with no gaps, overlaps, or ambiguities.

2000 Mathematics Subject Classification. Primary: 65M06.
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• Multiple junctions and topological change: Multiple junctions, such as triple
points, are all handled naturally and automatically, as well as breakage, merg-
er, creation, and disappearance of phases. No special attention is paid to
discontinuous topological change.
• Coupling with time-dependent physics: The method uses a physical time step,

which then allows coupling complex physics into the interface evolution. Feed-
back from the physics affects the interface, and changes to the interface affects
the physics.

In this review, we briefly discuss the development and application of these meth-
ods.

2. Level Set Methods for Two-Phase Physics. Level Set Methods, introduced
by Osher and Sethian (“Fronts Propagating with Curvature-Dependent Speeds”
[5]), were devised to accurately track interfaces evolving under a variety of complex
speed laws in two and three dimensions. They rely in part on the theory of curve
and surface evolution given in [9] and on the link between front propagation and
hyperbolic conservation laws discussed in [10]. They recast interface motion as
a time-dependent Eulerian initial value partial differential equation, and rely on
viscosity solutions to the appropriate differential equations to update the position of
the front, using an interface velocity that is derived from the relevant physics both on
and off the interface. These viscosity solutions are obtained by exploiting schemes
from the numerical solution of hyperbolic conservation laws. Level set methods
are specifically designed for problems involving topological change, dependence on
curvature, formation of singularities, and host of other issues that often appear in
interface propagation techniques.

Briefly, let Γ(t) be a moving interface, and let F be the speed normal to the
interface, derived from solving the equations describing the appropriate physics.
Typically, this involves a PDE on either side of the interface, augmented by jump
conditions provided by the interface location and geometry, as well as solution values
on the interface itself. One first constructs the initial value for the level set function
φ(x, t = 0), obtained by evaluating the signed distance function at each point in the
computational domain to the initial front position given by Γ(t = 0). This extends
the initial front Γ and constructs a function φ(x, t = 0) defined everywhere, such
that the zero level set of this function corresponds to the initial position of the front.

By a suitable construction (see [2]), one may also extend the speed function F
to the entire computational domain to obtain the extension velocity Fext with the
property that Fext is constant along lines orthogonal to the level sets of φ, that is,

∇φ · ∇Fext = 0.

All that remains is to derive an evolution equation for the level set function
φ under the extension velocity Fext such that the evolving zero level set always
matches the evolving interface Γ(t). An application of the chain rule results in the
initial value PDE

φt + Fext|∇φ| = 0.

The entire level set interface evolution approach stems from approximating the
solution of the above two PDEs.

2.1. Sample Application of Two-Phase Physics. As an application, we show
the results from a numerical simulation of the ejection process associated with ink jet
printing and two-phase microjetting in manufacturing and industrial devices. On a
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large scale, we built a fully three-dimensional computational model simulating both
Newtonian and Oldroyd-B viscoelastic fluids in two-phase immiscible incompress-
ible flows with surface tension, together with viscosity and density jumps across
interfaces separating viscoelastic fluid from air[12, 13, 14]. This model includes a
contact model for air/wall/fluid interactions, and incorporates complex geometries.

The coupled algorithm uses a projection method to enforce fluid incompress-
ibility, a level set method to implicitly capture the moving interface, high order
Godunov schemes for convection terms in the momentum and level set equations,
a first-order upwind algorithm for convective viscoelastic stress and higher order
central schemes for viscosity, surface tension, and upper-convected derivatives, and
a slipping line contact model at air/wall/fluid triple points. The algorithm and
software works on an arbitrary logically rectangular 3D mesh, and adaptive mesh
refinement is employed to resolve fine scale features.

Figure 1. Axisymmetric inkjet ejection (see [12, 13, 14])

For smaller scales, we built a detailed combination level set/boundary element
method to study micro-breakup in fluid drops[4]. To go past droplet breakup re-
quired a new mathematical model; briefly, one starts with a potential formulation
on the evolving interface, and embed this potential function as an evolving PDE
on a background fixed Eulerian mesh. Together with the embedded interface and
extension velocity, this allows calculation of fluid breakup beyond singularity for-
mation. Results show a remarkably close comparison with experiments, as well as
quantitative match of scaling exponents for velocity and pinch-off times.

2.2. Multiple Phases. The above level set methodology works well for two phases.
However, the situation becomes considerably more challenging when considering
three phases or more. As illustration, imagine an interface separating three phases,
as in the figure below.

Suppose we consider the seemingly straightforward problem of flow under cur-
vature. It seems clear, at least from a mathematical point of view, that the phase
with label “C” should pull more, since the angle formed by region C at the triple
point is much smaller, and hence the curvature, as seen from C, is higher. Thus,
as C retracts, its sides should open up, until an equilibrium is reached between all
three phases, resulting in a stationary configuration with 120 degrees for each angle.
However, this is a difficult flow to analyze mathematically, since the curvature is
zero everywhere except at the triple junction itself, where it is not defined. While
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Figure 2. Microscale droplet breakup (see [4])
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Figure 3. Evolution of a triple junction

it is possible in this case to pose a reasonable mathematical theory by, for example,
choosing a viable mathematical solution based on minimizing area in the special
case of this curvature flow, such analysis cannot be easily extended to the time-
dependent complex physics where local geometric properties interact with physics
away from the interface.

From a computational point of view, the problem is equally challenging. The
lack of differentiability at the interface junction, the large range of possibilities for
multiphase contact points, and the complications that come from solving physics in
all of the domain, while needing accurate information on the interface itself, all pose
special challenges. These issues become even more challenging in three dimensions.

3. Beyond Two Phases: The Voronoi Implicit Interface Method. Imagine
a collection of phases which share common boundaries: examples are shown in the
figure below.

The basic idea of the Voronoi Implicit Interface Method, also known as the VIIM,
is to combine three ideas.

• We consider the original interface Γ, which represents any boundary between
two or more neighboring phases. Using this boundary, we then build the
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Figure 4. Examples of multiphase problems

unsigned distance function to each point in the domain. We additionally tag
each point with an integer indicator flag corresponding to the phase.
• We now note that the ε level sets, ε > 0, exist in one and only one phase.
• We also note that the Voronoi Interface, defined as the set of all points equidis-

tant from at least two ε-level sets, returns, to a close approximation, the orig-
inal interface Γ. As ε goes to zero, the limit of these Voronoi Interface is the
original interface Γ.

These three ideas allow us to build a mathematical framework and computational
methodology for following multiphase interfaces using a single evolving function on
an Eulerian mesh. With time step ∆t, mesh size h, and choice of ε > 0, the steps
are as follows:

1. Build the unsigned distance φ from the interface at each mesh point given on
a Cartesian mesh with mesh size h.

2. Solve the appropriate physics to obtain a speed function, and then extend the
solution to obtain the speed function Fext at each mesh point.

3. Compute one step of level set evolution, namely by solving for one time step
∆t the initial value PDE

φt + Fext|∇φ| = 0.

4. Reconstruct the interface by finding the Voronoi Interface from the ε level set
using the above solution.

5. Loop to the top.

This is the most straightforward implementation of the method. More efficient
and sophisticated techniques include the use of narrow banding [2] to limit compu-
tational labor to a small region near the interface, a fast Eikonal solver [11, 3] to
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Figure 5. Results of a fluid flow simulation in three dimensions
with gravity, in which the orange colored phase is more viscous
and more dense than the other phases. The bulk foam is rendered
mostly transparent except for the last frame, where it is rendered
opaque to make the structure more prominent.

find the new unsigned distance from the ε level sets without explicitly constructing
the front, and careful data structures which allow any non-negative value for ε,
including ε = 0+. For details, see [6, 7].

4. An Example. As application, Figure 5 illustrates the results for a three-dimen-
sional simulation of a variable density fluid flow, computed on a 1283 grid with slip
boundary conditions, using ε = 0+. The simulation starts with 15 heavy phases and
approximately 100 less dense phases. The incompressible Navier-Stokes equations
are solved, using a second order projection method, and coupled to the Voronoi Im-
plicit Interface Method. For all but the last snapshot in Figure 5, the heavier phase
is dark, while the other phases have been rendered mostly transparent, together
with the triple line junctions as a network of curves. In the last snapshot, at time
t = 1.8, we have rendered the bulk foam opaque, to make the structure of the foam
more obvious.
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Abstract. This paper summarizes the research we have carried out recently

on the problem of the optimal location of sensors and actuators for wave equa-
tions, which has been the object of the talk of the third author at the Hyp2012

Conference held in Padova (Italy). We also address the same issues for the

Schrödinger equations and present some possible perspectives of future re-
search.

We consider the multi-dimensional wave or Schrödinger equations in a

bounded domain Ω, with usual boundary conditions (Dirichlet, Neumann or
Robin). We investigate the problem of optimal sensor location, in other words,

the problem of designing what is the best possible subdomain of a prescribed

measure on which one can observe the solutions. We present two mathematical
problems modeling this question. The first one, in which the initial data under

consideration are fixed, leads to optimal sets whose complexity depends on the
regularity of the initial data. In the second one, the optimal set is searched so

as to be uniform with respect to all initial data, and leads to a criterium of spec-

tral nature, the answer being intimately related to the concentration properties
of the eigenfunctions of the Laplacian. Under quantum ergodicity assumptions
on the domain Ω we compute the optimal value of this problem, and show

that this optimal value can be interpreted as the best possible observability
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constant of a corresponding time-asymptotic or randomized observability in-
equality. Although optimal sets do exist in some specific situations, we show

that the existence of an optimal set cannot be expected in general. Finally, we

study a spectral approximation of that problem and construct a maximizing
sequence of sets.

1. Introduction.

1.1. Preliminaries: the problem of optimal observation. Let T > 0, n ∈ IN∗,
and Ω ⊂ IRn be a bounded open connected subset. In this article we consider both
the homogeneous wave equation

∂tty = 4y, (1)

and the Schrödinger equation
i∂ty = 4y, (2)

for almost all (t, x) ∈ (0, T )×Ω, with Dirichlet boundary conditions for the sake of
simplicity (other conditions are considered at the end of the article).

For any measurable subset ω of Ω of positive Lebesgue measure, we consider in
both cases the observable variable

z(t, x) = χω(x)y(t, x), (3)

where χω denotes the characteristic function of ω.
In this article we investigate the question of knowing whether there exists a best

possible subset ω in order to observe the equation (1) or (2). To make the problem
more precise, throughout the article we fix a real number L ∈ (0, 1), and from now
on we restrict our search to all measurable subsets ω ⊂ Ω which are of Lebesgue
measure |ω| = L|Ω|. This determines the volume fraction of sensors that one would
like to place in the domain Ω, in the best possible way.

Let us next model and define what the wording “best possible way” can mean.

1.2. Mathematical modeling of two optimal design problems. In this con-
text there are several possible ways of defining a concept of domain optimization.
Certainly, the first problem that can be raised is the following.

First problem: best observation domain for fixed initial data.
• Wave equation (1): given fixed initial data (y0, y1) ∈ L2(Ω,C)×
H−1(Ω,C), we investigate the problem of maximizing the functional

GT (χω) =

∫ T

0

∫
ω

|y(t, x)|2 dx dt, (4)

over all possible measurable subsets ω of Ω of Lebesgue measure
|ω| = L|Ω|, where y ∈ C0(0, T ;L2(Ω,C)) ∩ C1(0, T ;H−1(Ω,C)) is
the unique solution of (1) such that y(0, ·) = y0(·) and ∂ty(0, ·) =
y1(·).
• Schrödinger equation (2): given y0 ∈ L2(Ω,C), we investigate

the problem of maximizing the functional GT defined by (4) over all
possible measurable subsets ω of Ω of Lebesgue measure |ω| = L|Ω|,
where y ∈ C0(0, T ;L2(Ω,C)) is the unique solution of (2) such that
y(0, ·) = y0(·).

This problem appears as a mathematical benchmark, and is the first problem that
one can raise in order to give a sense to the notion of best observation. However,
this problem is not well suited in view of practical applications since it depends
on the initial conditions. In applications, obviously, the location of sensors should
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be independent on the initial data. This problem is however interesting from an
analytical point of view. As we will see, solving this problem is easy and optimal sets
are level sets of a given function, that depends on the solution under consideration
in a very sensitive way.

Let us now come to the definition of a uniform optimal design problem, indepen-
dent on the initial data. In view of defining such a problem, relevant for practical
issues, let us first recall the notion of observability inequality.

The system (1)-(3) is said to be observable on ω in time T if and only if there

exists C
(W )
T (χω) > 0 such that

C
(W )
T (χω)‖(y0, y1)‖2L2(Ω,C)×H−1(Ω,C) ≤

∫ T

0

∫
ω

|y(t, x)|2 dxdt, (5)

for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C). This is the so-called observability inequality.
It is well known that within the class of C∞ domains Ω, this observability property
holds if the pair (ω, T ) satisfies the Geometric Control Condition in Ω (see [3]),
according to which every ray of Geometric Optics that propagates in Ω and is
reflected on its boundary ∂Ω intersects ω within time T .

Similarly, system (2)-(3) is said to be observable on ω in time T if and only if

there exists C
(S)
T (χω) > 0 such that

C
(S)
T (χω)‖y0‖2L2(Ω,C) ≤

∫ T

0

∫
ω

|y(t, x)|2 dxdt, (6)

for every y0 ∈ L2(Ω,C). If there exists T ∗ such that the pair (ω, T ∗) satisfies the
Geometric Control Condition then the observability inequality (35) holds for every
T > 0 (see [18]). In some sense the Schrödinger equation can be viewed as a wave
equation with an infinite speed of propagation.

In the sequel, the quantities C
(W )
T (χω) and C

(S)
T (χω) denote the largest possible

nonnegative constants for which the inequalities (34) and (35) hold, that is,

C
(W )
T (χω) = inf

‖(y0,y1)‖L2×H−1=1

∫ T

0

∫
ω

|y(t, x)|2 dx dt, (7)

and

C
(S)
T (χω) = inf

‖y0‖L2=1

∫ T

0

∫
ω

|y(t, x)|2 dx dt. (8)

They are called the observability constants.
These remarks being done, in view of defining a uniform optimal design problem

for the observability of wave or Schrödinger equations, it is natural to raise the
problem of maximizing the above observability constants over all possible subsets
ω of Ω of Lebesgue measure |ω| = L|Ω|. However, this problem appears to be:

1. Very difficult to handle: indeed when considering spectral expansions of the
solutions, difficulties arise due to crossed terms, as in the interesting open
problem of determining the best constants in Ingham’s inequalities (see [13,
14], see also [23] for such considerations in the one-dimensional case);

2. Finally, not so relevant. Indeed the above inequalities are deterministic, and
hence, in some sense, the observability constants are pessimistic, since they
give an account for the worst possible observability scenario. In practice one
is led to handle a large number of solutions but not all of them, and the
deterministic observability constant will rarely be reached. We are then going
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to define a randomized version of the observability constant, which appears
to be more relevant.

These two points appeal further comments.
Let us first present the Fourier expansion of solutions of the spectral basis of the

Laplacian. Let (φj)j∈IN∗ be a Hilbertian basis of L2(Ω) consisting of eigenfunctions1

of the Dirichlet Laplacian operator on Ω, associated with the negative eigenvalues
(−λ2

j )j∈IN∗ . Then, for given initial data (y0, y1) ∈ L2(Ω,C) ×H−1(Ω,C), the cor-
responding solution of (1) is

y(t, x) =
+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (9)

where the sequences (aj)j∈IN∗ and (bj)j∈IN∗ belong to `2(C) and are defined by

aj =
1

2

(∫
Ω

y0(x)φj(x) dx− i

λj

∫
Ω

y1(x)φj(x) dx

)
,

bj =
1

2

(∫
Ω

y0(x)φj(x) dx+
i

λj

∫
Ω

y1(x)φj(x) dx

)
.

(10)

for every j ∈ IN∗. Moreover,

‖(y0, y1)‖2L2×H−1 = 2
+∞∑
j=1

(|aj |2 + |bj |2). (11)

With such a spectral expansion, note that

GT (χω) =
+∞∑
j,k=1

αjk

∫
ω

φi(x)φj(x) dx, (12)

where the coefficients αjk, (j, k) ∈ (IN∗)2 (which can be easily computed) depend
only on the initial data (y0, y1) and the observation time T . It can be noted that,
since ω is a proper subset of Ω, there holds in general

∫
ω
φi(x)φj(x) dx 6= 0. Because

of these crossed terms, the observability constant C
(W )
T (χω) defined by (7) can be

interpreted as the infimum of eigenvalues of an infinite dimensional nonnegative
symmetric matrix (called Gramian), which is far from diagonal due to nonzero
nondiagonal terms.

The observability constant C
(W )
T (χω) could be easily expressed if the Gramian

were to be a diagonal matrix. This is actually one of the nice consequences of
the randomization procedure mentioned in the second point. Let us explain briefly
this procedure (full details are provided in [26]). Following [6], we randomize some
initial data determined by their Fourier coefficients (10), by defining aνj = βν1,jaj
and bνj = βν2,jbj , where (βν1,j)j∈IN∗ and (βν2,j)j∈IN∗ are two sequences of independent
Bernoulli random variables on a probability space (X ,A,P), satisfying

P(βν1,j = ±1) = P(βν2,j = ±1) =
1

2
and E(βν1,jβ

ν
2,k) = 0

for all j and k in IN∗ and every ν ∈ X. Here, the notation E stands for the
expectation over the space X with respect to the probability measure P. Let yν

1Note that this Hilbertian basis is not necessarily unique in case of multiple eigenvalues. What
follows depends a priori on the specific choice of the basis of eigenfunctions which is done at this

step of our analysis.
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denote the corresponding solution,

yν(t, x) =
+∞∑
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(x).

Then, instead of considering the deterministic observability inequality (34), we con-
sider the randomized one

C
(W )
T,rand(χω)‖(y0, y1)‖2L2×H−1 ≤ E

(∫ T

0

∫
ω

|yν(t, x)2| dx dt

)
, (13)

for all y0(·) ∈ L2(Ω,C) and y1(·) ∈ H−1(Ω,C). Here, the constant C
(W )
T,rand(χω),

called the randomized observability constant for the wave equation, is a new constant

which is a priori different from its deterministic counterpart C
(W )
T (χω). A similar

consideration is done for the Schrödinger equation, with a randomized observability

constant C
(S)
T,rand(χω).

It is proved in [26] that, for every measurable subset ω of Ω, there holds

2C
(W )
T,rand(χω) = C

(S)
T,rand(χω) = T inf

j∈IN∗

∫
ω

φj(x)2 dx = TJ(χω). (14)

In other words, the randomization procedure sketched permits to kill the crossed
terms and hence, up to considering random initial data and an averaged version of
the observability inequality, to provide a concept of randomized Gramian, which is
a diagonal infinite dimensional matrix.

As mentioned above, the randomized observability inequality (13) appears to be
more relevant than its classical deterministic version (34) in view of applications.
The first problem in which the initial data are given and fixed is not very relevant.
But in practice one does not need to consider all possible solutions either. The
above randomization procedure, provides a reasonable mathematical modeling of
this practical optimal design problem.

It follows from all above considerations that a way to define a relevant uniform
optimal design problem is the following.

Second problem: uniform optimal design problem. We investi-
gate the problem of maximizing the functional

J(χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx, (15)

over all possible subsets ω of Ω of Lebesgue measure |ω| = L|Ω|.
This problem consists of maximizing an eigenfunction energy concentration cri-

terion. As we will see, solving this problem leads to highly interesting mathematical
considerations related to quantum ergodicity properties of the domain Ω.

Remark 1. It is proved in [26] that, if the domain Ω is such that every eigenvalue
of A is simple, then, similarly to (14), there holds

2C(W )
∞ (χω) = C(S)

∞ (χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx = J(χω), (16)

for every measurable subset ω of Ω, where C
(W )
∞ (χω) and C

(S)
∞ (χω) are time asymp-

totic observability constants, defined respectively as the largest possible nonnegative



94 YANNICK PRIVAT, EMMANUEL TRÉLAT AND ENRIQUE ZUAZUA

constant for which the time asymptotic observability inequality

C(W )
∞ (χω)‖(y0, y1)‖2L2×H−1 ≤ lim

T→+∞

1

T

∫ T

0

∫
ω

|y(t, x)2| dx dt, (17)

holds for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C), for the wave equation, and

C(S)
∞ (χω)‖y0‖2L2 ≤ lim

T→+∞

1

T

∫ T

0

∫
ω

|y(t, x)2| dx dt, (18)

holds for every y0(·) ∈ L2(Ω,C), for the Schrödinger equation.

1.3. Some bibliographical comments. The problem of optimal measurement
locations for state estimation in linear partial differential equations has been widely
considered in engineering problems (see e.g. [9, 15, 16, 21, 28, 29] and the many
references therein), the aim being to optimize the number, the place and the type
of sensors or actuators in order to improve the estimation or more generally some
performance index. Fields of applications are very numerous and concern for exam-
ple active structural acoustics, piezzoelectric issues, vibration control in mechanical
structures, damage detection processes, chemical reactions, just to name a few of
them. A usual approach popular in the engineering community consists of recasting
the optimal sensor location problem for distributed systems as an optimal control
problem with an infinite dimensional Riccati equation, having a statistical model in-
terpretation, and then of computing approximations with optimization techniques.
However, on the one part, their techniques rely on an exhaustive search over a pre-
defined set of possible candidates and are faced with combinatorial difficulties due
to the selection problem and thus with the usual flaws of combinatorial optimiza-
tion methods. On the other part, in all these references approximations are used to
determine the optimal sensor or actuator location. The optimal performance and
the corresponding sensor or actuator location of the approximating sequence are
then expected to converge to the exact optimal performance and location. Among
the possible approximation processes, the closest one to our present study consists
of considering Fourier expansion representations and using modal approximation
schemes.

However, in these references there is no systematic mathematical study of the
optimal design problem. The search of optimal domains relies on finite-dimensional
approximations and no convergence analysis is led. However, in the present article
we show that modal approximation procedures may fail and Γ-convergence proper-
ties may not hold when passing to the limit from a finite number of eigenfunction
components to all of them.

Although the optimal design problems under consideration in this article have
been widely studied in the engineering community, in particular because of their
great importance in practical problems, there exist only few mathematical results.
An important difficulty arising when focusing on an optimal shape problem is the
generic non-existence of classical solutions, as explained and surveyed in [2], thus
leading to consider relaxation procedures. In [4] the authors investigate the prob-
lem modeled in [27] of finding the best possible distributions of two materials (with
different elastic Young modulus and different density) in a rod in order to min-
imize the vibration energy in the structure. For this optimal design problem in
wave propagation, the authors of [4] prove existence results and provide relaxation
and optimality conditions. The authors of [1] also propose a relaxation formulation
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of eigenfrequency optimization problems applied to optimal design. In [7] the au-
thors discuss several possible criteria for optimizing the damping of abstract wave
equations in Hilbert spaces, and derive optimality conditions for a certain criterion
related to a Lyapunov equation. In [11, 12], the authors consider the problem of de-
termining the best possible shape and position of the damping subdomain of given
measure for a 1D wave equation. In [20, 22] the authors investigate numerically the
optimal location of the support of the control for the 1-D wave equation. Their nu-
merical methods are then mostly based on gradient techniques or level set methods
combined with shape and topological derivatives (we refer the reader e.g. to [5] for
a survey on variational methods in shape optimization problems). In [23] we inves-
tigated the second problem presented previously in the one-dimensional case, and
in [24] we studied the related dual problem of finding the optimal location of the
support of the control for the one-dimensional wave equation. In [25] we solved in a
complete way the first problem (optimal observation domain for the problem with
fixed initial data), and in [26] we solved the second problem (uniform with respect
to initial data), emphasizing close connections with the quantum chaos theory, as
explained further.

2. Statement of the main results.

2.1. First problem: best observation domain for fixed initial data. Con-
sider fixed initial data (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C) (resp., y0 ∈ L2(Ω,C)) for
the wave equation (1) (resp., for the Schrödinger equation (2)), and let y be their
corresponding solution. We define the integrable function

ϕ(x) =

∫ T

0

|y(t, x)|2dt, (19)

for every x ∈ Ω. Note that GT (χω) =
∫
ω
ϕ(x) dx for every measurable subset ω ⊂ Ω.

Theorem 2.1. [25] There exists at least one measurable subset ω of Ω, solution
of the first problem, characterized as follows. There exists a real number λ such
that every optimal set ω is contained in the level set {ϕ ≥ λ}, where the function ϕ
defined by (19) is integrable on Ω.

Moreover, if there exists R > 0 such that

+∞∑
j=0

Rj

j!

(
‖Ajy0‖2L2 + ‖Aj−1y1‖2L2

)1/2
< +∞, (20)

in the case of the wave equation, and

+∞∑
j=0

Rj

j!
‖Ajy0‖L2 < +∞, (21)

in the case of the Schrödinger equation, where A =
√
−4 (square root of the

Dirichlet-Laplacian), then the first problem has a unique2 solution χω, where ω is
a measurable subset of Ω of measure L|Ω|, satisfying moreover the following prop-
erties:

• there exists η > 0 such that d(ω, ∂Ω) > η, where d denotes the Euclidean
distance on IRn;

2Similarly to the definition of elements of Lp-spaces, the subset ω is unique within the class of
all measurable subsets of Ω quotiented by the set of all measurable subsets of Ω of zero measure.
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• ω is semi-analytic3, and has a finite number of connected components;
• if Ω is symmetric with respect to an hyperplane and y0◦σ = y0 and y1◦σ = y1,

where σ denotes the symmetry operator with respect to this hyperplane, then
ω enjoys the same symmetry property.

Remark 2. The optimal set is not necessarily unique, whenever the function ϕ is
constant on some subset of Ω of positive measure. We refer to [23, 25] for explicit
examples.

Theorem 2.1 states that, if the initial data belong to some analyticity spaces, then
the (unique) optimal set ω is the union of a finite number of connected components.
Using a careful harmonic analysis construction, it is proved in [25] that there exist
C∞ initial data for which the optimal set ω may have a fractal structure and, more
precisely, may be of Cantor type. More precisely, one has the following result.

Theorem 2.2. [25] Let Ω = (0, 2π) and let T > 0 be an integer multiple of 4π.
There exist C∞ initial data (y0, y1) defined on Ω for which the first problem has a
unique solution ω; moreover ω has a fractal structure and in particular it has an
infinite number of connected components.

2.2. Uniform optimal design. In this section, we focus on the second problem,
defined as

sup
χω∈UL

J(χω), (22)

with

J(χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx,

and
UL = {χω | ω is a measurable subset of Ω of measure |ω| = L|Ω|}. (23)

2.2.1. Convexification. To ensure compactness properties, we consider the convex
closure of UL for the weak star topology of L∞,

UL =

{
a ∈ L∞(Ω, [0, 1])

∣∣ ∫
Ω

a(x) dx = L|Ω|
}
. (24)

The convexified version of the second problem (22) is

sup
a∈UL

J(a), (25)

where

J(a) = inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx. (26)

By upper semi-continuity of J for the weak star topology of L∞, it is clear that
the problem (25) has at least one solution. For instance in dimension one there is
an infinite number of solutions, characterized through their Fourier coefficients (see

3A subset ω of a real analytic finite dimensional manifold M is said to be semi-analytic if it
can be written in terms of equalities and inequalities of analytic functions, that is, for every x ∈ ω,

there exists a neighborhood U of x in M and 2pq analytic functions gij , hij (with 1 ≤ i ≤ p and

1 ≤ j ≤ q) such that

ω ∩ U =

p⋃
i=1

{y ∈ U | gij(y) = 0 and hij(y) > 0, j = 1, . . . , q}.

We recall that such semi-analytic (and more generally, subanalytic) subsets enjoy nice properties,
for instance they are stratifiable in the sense of Whitney.
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[23]). Note that taking a(·) = L yields supa∈UL
J(a) ≥ L, and note that a priori,

supχω∈UL J(χω) ≤ supa∈UL
J(a). The question of knowing if this inequality is an

equality or not (gap or no-gap) is not obvious, and cannot be treated using standard
Γ-convergence arguments due to the lack of lower semi-continuity of J .

2.2.2. Main results. We make the following assumptions on the Hilbertian basis
(φ2
j )j∈IN∗ of eigenfunctions under consideration.

Weak Quantum Ergodicity on the base (WQE) property. There
exists a subsequence of the sequence of probability measures µj = φ2

j dx

converging vaguely to the uniform measure 1
|Ω| dx.

Uniform L∞-boundedness property. There exists A > 0 such that

‖φj‖L∞(Ω) ≤ A, (27)

for every j ∈ IN∗.

These assumptions above imply what we call the L∞-Weak Quantum Ergodicity
on the base (L∞-WQE) property, that is, there exists a subsequence of (φ2

j )j∈IN∗

converging to 1
|Ω| for the weak star topology of L∞(Ω). This property obviously

implies that

sup
a∈UL

J(a) = sup
a∈UL

inf
j∈IN∗

∫
Ω

a(x)φj(x)2 dx = L, (28)

and moreover the supremum is reached with the constant function a = L on Ω.

Theorem 2.3. [26] If the WQE and uniform L∞-boundedness properties hold, then

sup
χω∈UL

inf
j∈IN∗

∫
ω

φj(x)2 dx = L, (29)

for every L ∈ (0, 1). In other words, under these assumptions there is no gap
between the original problem (22) and the convexified one.

As a consequence, the maximal value of the randomized observability constants

2C
(W )
T,rand(χω) = C

(S)
T,rand(χω) over the set UL is equal to TL. Moreover if the spec-

trum of A is simple then the maximal value of the time asymptotic observability

constants 2C
(W )
∞ (χω) = C

(S)
∞ (χω) over the set UL is equal to L.

We now define the set UbL = {χω ∈ UL | |∂ω| = 0}, and we make the following
assumptions.

Quantum Unique Ergodicity on the base (QUE) property. The
whole sequence of probability measures µj = φ2

j dx converges vaguely to

the uniform measure 1
|Ω| dx.

Uniform Lp-boundedness property. There exist p ∈ (1,+∞] and
A > 0 such that

‖φj‖L2p(Ω) ≤ A, (30)

for every j ∈ IN∗.

Theorem 2.4. [26] If ∂Ω is Lipschitz and if the QUE and uniform Lp-boundedness
properties hold, then

sup
χω∈Ub

L

inf
j∈IN∗

∫
ω

φj(x)2 dx = L, (31)

for every L ∈ (0, 1).
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Actually the statement of Theorem 2.4 holds true as well whenever the set UbL is
replaced by the set of all measurable subsets ω of Ω, of measure |ω| = L|Ω|, that
are moreover open either with Lipschitz boundary or bounded perimeter.

The ergodicity assumptions made above are sufficient but are not sharp. For in-
stance it is proved in [26] that, if Ω is the unit disk of the Euclidean two-dimensional
space, then, for every p ∈ (1,+∞] and for any basis of eigenfunctions, the uniform
Lp-boundedness property is not satisfied, and QUE does not hold as well; however
(29) and (31) hold true. And this, in spite of the phenomenon of whispering gal-
leries, which gives an account for the existence of certain semi-classical measures
(weak limits of the probability measures φ2

j dx) such as the Dirac measure along the
boundary.

Remark 3. The assumptions made in the above theorems obviously hold in di-
mension one (Dirichlet-Laplacian on a bounded interval). In higher dimensions
they are related to deep questions arising in mathematical physics (indeed, in quan-
tum mechanics µj = φ2

j dx is the probability of being in the state φj), related to
Shnirelman’s Theorem. This celebrated result asserts that, if the domain Ω is a
convex ergodic billiard with piecewise smooth boundary, then there exists a subse-
quence of the sequence of probability measures µj = φ2

j dx of density one converging

vaguely to the uniform measure 1
|Ω|dx (see [10, 31]). This property is referred to

as Quantum Ergodicity on the base (in short, QE on the base). Actually the result
is stronger and holds in the full phase space, for pseudo-differential operators (see
[30] for a recent survey). Of course, QUE implies QE which in turn implies WQE.

Note that Shnirelman Theorem lets open the possibility of having an exceptional
subsequence of µj converging vaguely to some measure different from the uniform
one, for instance, to a measure carried by closed geodesics (concentration phenom-
enon known as scar, see e.g. [8]). The QUE assumption made above postulates
that this scarring phenomenon does not occur. Up to now there is no example of
a domain in dimension more than one in which QUE has been proved to hold, and
this is a deep open question in this thematics. We refer the reader to [26] for a
more detailed discussion on such quantum ergodicity issues in relation with shape
optimization problems.

Remark 4. In general we do not expect the supremum in (29) or (31) to be
reached. This is an open question. But it is reached in several very particular
situations. This is the case for instance in dimension one for a very specific value
of L: when Ω = [0, π], then the supremum of J over UL (which is equal to L) is
reached if and only if L = 1/2; in that case, it is reached for all measurable subsets
ω ⊂ [0, π] of measure π/2 such that ω and its symmetric image ω′ = π − ω are
disjoint and complementary in [0, π] (see [26]).

3. Spectral approximation of the uniform optimal design problem. Given
the functional J defined by (15), in view of designing a spectral approximation it is
natural to consider the truncated functional defined by

JN (χω) = min
1≤j≤N

∫
ω

φj(x)2 dx, (32)

for every N ∈ IN∗ and every measurable subset ω of Ω. The spectral approximation
of the second problem (uniform optimal design problem) is then

sup
χω∈UL

JN (χω). (33)
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Accordingly, JN is extended to UL by JN (a) = min1≤j≤N
∫

Ω
a(x)φj(x)2 dx for every

a ∈ UL.

Theorem 3.1. [26]

1. For every measurable subset ω of Ω, the sequence (JN (χω))N∈IN∗ is non-
increasing and converges to J(χω).

2. There holds

lim
N→+∞

max
a∈UL

JN (a) = max
a∈UL

J(a).

Moreover, if (aN )n∈IN∗ is a sequence of maximizers of JN in UL, then up to a
subsequence, it converges to a maximizer of J in UL for the weak star topology
of L∞.

3. For every N ∈ IN∗, the problem (33) has a unique solution χωN , where ωN ∈
UL. Moreover, ωN is semi-analytic (see Footnote 3) and thus has a finite
number of connected components.

Remark 5. It is proved in [12, 23] that, in the one-dimensional case, the optimal
set ωN maximizing JN is the union of N intervals concentrating around equidistant
points and that ωN is actually the worst possible subset for the problem of maximiz-
ing JN+1. This is the so-called spillover phenomenon which is a serious drawback
from the practical point of view since it makes it impossible the implementation of
a spectral approximation procedure.

The next numerical simulations, based on the above spectral approximation,
confirm this pathological behavior. Consider Ω = [0, π]2. The normalized eigen-
functions of the Dirichlet-Laplacian are φj,k(x1, x2) = 2

π sin(jx1) sin(kx2), for every

(x1, x2) ∈ [0, π]2. Let N ∈ IN∗. We use an interior point line search filter method
to solve the optimization problem supχω∈UL JN (χω), with

JN (χω) = min
1≤j,k≤N

∫ π

0

∫ π

0

χω(x1, x2)φj,k(x1, x2)2 dx1 dx2.

Some results are provided on Figure 1 in the Dirichlet case. They show very clearly
that the number of connected components of the optimal set increases as N grows.
We have thus constructed a maximizing sequence of sets for the second problem
(uniform optimal design problem) which is evidently far from converging in any
reasonable sense.

4. Further comments and perspectives.

4.1. Generalization to other boundary conditions. Up to now we have re-
stricted ourselves to Dirichlet boundary conditions. Actually, as shown in [26],
our analysis can be developed in the more general framework where Ω is an open
bounded connected subset of M , and (M, g) is a smooth n-dimensional Riemannian
manifold, with n ≥ 1. In that case, the Dirichlet-Laplacian is replaced with the
Laplace-Beltrami operator 4g on M for the metric g. The boundary of Ω can be
empty: in this case, Ω is a compact connected n-dimensional Riemannian manifold.
If ∂Ω 6= ∅ then we consider boundary conditions By = 0 on (0, T ) × ∂Ω, where B
can be either:

• the usual Dirichlet trace operator, By = y|∂Ω,

• or Neumann, By = ∂y
∂n |∂Ω

, where ∂
∂n is the outward normal derivative on ∂Ω,
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=2 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=5 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.2
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Problem 2: Optimal domain for N=10 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=10 and L=0.6
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.2
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.4
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Problem 2 (Dirichlet case): Optimal domain for N=20 and L=0.6
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Figure 1. On this figure, Ω = [0, π]2. Line 1, from left to
right: optimal domain (in green) in the Dirichlet case for N = 2
(4 eigenmodes) and L ∈ {0.2, 0.4, 0.6}. Line 2, from left to
right: optimal domain (in green) for N = 5 (25 eigenmodes) and
L ∈ {0.2, 0.4, 0.6}. Line 3, from left to right: optimal domain (in
green) for N = 10 (100 eigenmodes) and L ∈ {0.2, 0.4, 0.6}. Line
4, from left to right: optimal domain (in green) for N = 20 (400
eigenmodes) and L ∈ {0.2, 0.4, 0.6}.

• or mixed Dirichlet-Neumann, By = χΓ0y|∂Ω +χΓ1

∂y
∂n |∂Ω

, where ∂Ω = Γ0 ∪Γ1

with Γ0 ∩ Γ1 = ∅, and χΓi
is the characteristic function of Γi, i = 0, 1,

• or Robin, By = ∂y
∂n |∂Ω

+βy|∂Ω, where β is a nonnegative bounded measurable

function defined on ∂Ω, such that
∫
∂Ω
β > 0.

The Lebesgue measure dx must be replaced with the canonical measure dVg induced
by the canonical Riemannian volume Vg on M .
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Also, to encompass all possible boundary conditions settled above, we replace
the observability inequalities (34) and (35) with

C
(W )
T (χω)‖(y0, y1)‖2D(A1/2)×X ≤

∫ T

0

∫
ω

|∂ty(t, x)|2 dVg dt, (34)

for all (y0, y1) ∈ D(A1/2)×X, and

C
(S)
T (χω)‖y0‖2D(A) ≤

∫ T

0

∫
ω

|∂ty(t, x)|2 dVg dt, (35)

for every y0 ∈ D(A). Here, the following notations are used: A = −4g is the
Laplace operator defined on D(A) = {y ∈ X | Ay ∈ X and By = 0} with one of
the above boundary conditions whenever ∂Ω 6= ∅, and X is the space L2(Ω,C) in
the case of Dirichlet, mixed or Robin boundary conditions, and otherwise

X = L2
0(Ω,C) = {y ∈ L2(Ω,C) |

∫
Ω

y(x) dVg = 0}.

Defined in this space, the operator A is then selfadjoint and positive definite. In
the case of Dirichlet boundary conditions, one has D(A) = H2(Ω,C) ∩ H1

0 (Ω,C)
and D(A1/2) = H1

0 (Ω,C). For Neumann boundary conditions, one has

D(A) = {y ∈ H2(Ω,C) | ∂y
∂n |∂Ω

= 0 and

∫
Ω

y(x) dVg = 0}

and

D(A1/2) = {y ∈ H1(Ω,C) |
∫

Ω

y(x) dVg = 0}.

In the mixed Dirichlet-Neumann case (with Γ0 6= ∅), one has

D(A) = {y ∈ H2(Ω,C) | y|Γ0
=
∂y

∂n |Γ1

= 0},

and

D(A1/2) = H1
Γ0

(Ω,C) = {y ∈ H1(Ω,C) | y|Γ0
= 0}

(see e.g. [17]).

4.2. An intrinsic variant of the uniform optimal design problem. As said
before, the second problem (15) depends a priori on the orthonormal Hilbertian
basis (φj)j∈IN∗ of L2(Ω) which has been fixed at the beginning of the analysis, at
least whenever the spectrum of A is not simple. If the eigenvalues (λ2

j )j∈IN∗ of A
are multiple, then the choice of the basis (φj)j∈IN∗ is an issue. One possible way to
get rid of this dependence is to consider the infimum of the criteria J defined by
(15) over all possible choices of orthonormal bases of eigenfunctions. This leads to
the following intrinsic variant of the second problem. We adopt the framework and
the notations of the previous section.

Intrinsic uniform optimal design problem. We investigate the
problem of maximizing the functional

Jint(χω) = inf
φ∈E

∫
ω

φ(x)2 dVg, (36)

over all possible subsets ω of Ω of measure Vg(ω) = LVg(Ω), where E
denotes the set of all normalized eigenfunctions of A.
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Note that C
(W )
T (χω) ≤ T

2 Jint(χω) ≤ C
(W )
T,rand(χω) and C

(S)
T (χω) ≤ TJint(χω) ≤

C
(S)
T,rand(χω). As before, the functional Jint is extended to UL by setting Jint(a) =

infφ∈E
∫

Ω
a(x)φ(x)2 dVg for every a ∈ UL. The following results are the intrinsic

counterpart of Theorems 2.3 and 2.4.

Theorem 4.1. [26] Assume that the uniform measure 1
Vg(Ω) dVg is a closure point

of the family of probability measures µφ = φ2 dVg, φ ∈ E, for the vague topology,
and that the whole family of eigenfunctions in E is uniformly bounded in L∞(Ω).
Then

sup
χω∈UL

inf
φ∈E

∫
ω

φ(x)2 dVg = sup
a∈UL

inf
φ∈E

∫
Ω

a(x)φ(x)2 dVg = L, (37)

for every L ∈ (0, 1). In other words, there is no gap between the intrinsic uniform
optimal design problem and its convexified version.

Theorem 4.2. [26] Assume that the uniform measure 1
Vg(Ω) dVg is the unique clo-

sure point of the family of probability measures µφ = φ2 dVg, φ ∈ E, for the vague
topology, and that the whole family of eigenfunctions in E is uniformly bounded in
L2p(Ω), for some p ∈ (1,+∞]. Then

sup
χω∈Ub

L

inf
φ∈E

∫
ω

φ(x)2 dVg = L, (38)

for every L ∈ (0, 1).

Remark 6. We are able to provide examples where there is a gap between the
intrinsic second problem (36) and its convexified version. This occurs in any of the
two following examples (see [26]):

• Ω = S2, the unit sphere in IR3, endowed with the usual flat metric;
• Ω is the unit half-sphere in IR3, endowed with the usual flat metric, and

Dirichlet conditions are imposed on the great circle (boundary of Ω).

In both cases, if L is close enough to 1 then supχω∈UL J(χω) < L, and hence there
is a gap between the problem (36) and its convexified version.

4.3. Optimal location of internal controllers. By duality, our previous results
provide an answer to the question of determining the shape and location of the
control domain for wave or Schrödinger equations that minimizes the L2 norm of
the controllers realizing null controllability. For simplicity we restrict ourselves to
the internally controlled wave equation on Ω with Dirichlet boundary conditions,

∂tty(t, x)−4gy(t, x) = hω(t, x), (t, x) ∈ (0, T )× Ω,
y(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω,
y(0, x) = y0(x), ∂ty(0, x) = y1(x), x ∈ Ω,

(39)

where hω is a control supported in [0, T ] × ω and ω is a measurable subset of Ω.
Note that the Cauchy problem (39) is well posed for all initial data (y0, y1) ∈
H1

0 (Ω,C)×L2(Ω,C) and every hω ∈ L2((0, T )×Ω,C), and its solution y belongs to
C0(0, T ;H1

0 (Ω,C))∩C1(0, T ;L2(Ω,C))∩C2(0, T ;H−1(Ω,C)). The exact null con-
trollability problem settled in these spaces consists of finding a control hω steering
the control system (39) to

y(T, ·) = ∂ty(T, ·) = 0. (40)
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It is well known that, for every subset ω of Ω of positive measure, the exact null
controllability problem is by duality equivalent to the fact that the observability
inequality

C‖(φ0, φ1)‖2L2(Ω,C)×H−1(Ω,C) ≤
∫ T

0

∫
ω

|φ(t, x)|2 dVg dt, (41)

holds, for all (φ0, φ1) ∈ L2(Ω,C) × H−1(Ω,C), for a positive constant C (only
depending on T and ω), where φ is the (unique) solution of the adjoint system

∂ttφ(t, x)−4gφ(t, x) = 0, (t, x) ∈ (0, T )× Ω,
φ(t, x) = 0, (t, x) ∈ [0, T ]× ∂Ω,
φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), x ∈ Ω.

(42)

The Hilbert Uniqueness Method (HUM, see [19]) provides a way to design the
unique control solving the control problem (39)-(40) and having moreover a minimal
L2((0, T ) × Ω,C) norm. This control is referred to as the HUM control and is
characterized as follows. Define the HUM functional Jω by

Jω(φ0, φ1) =
1

2

∫ T

0

∫
ω

φ(t, x)2 dVg dt− 〈φ1, y0〉H−1,H1
0

+ 〈φ0, y1〉L2 . (43)

The notation 〈·, ·〉H−1,H1
0

stands for the duality bracket between H−1(Ω,C) and

H1
0 (Ω,C), and the notation 〈·, ·〉L2 stands for the usual scalar product of L2(Ω,C).

If (41) holds then the functional Jω has a unique minimizer (still denoted (φ0, φ1))
in the space L2(Ω,C) × H−1(Ω,C), for all (y0, y1) ∈ H1

0 (Ω,C) × L2(Ω,C). The
HUM control hω steering (y0, y1) to (0, 0) in time T is then given by

hω(t, x) = χω(x)φ(t, x), (44)

for almost all (t, x) ∈ (0, T ) × Ω, where φ is the solution of (42) with initial data
(φ0, φ1) minimizing Jω.

The HUM operator Γω is defined by

Γω : H1
0 (Ω,C)× L2(Ω,C) −→ L2((0, T )× Ω,C)

(y0, y1) 7−→ hω

Optimal design control problem. We investigate the problem of
minimizing the norm of the operator Γω,

‖Γω‖ = sup
‖(y0,y1)‖

H1
0)×L2=1

‖hω‖L2((0,T )×Ω,C) (45)

over the set UL.

Here, we formulate the optimal design control problem in terms of minimizing
the operator norm of Γω in order to discard the dependence with respect to the
initial data (y0, y1) and improve the robustness of the cost function.

By a duality argument, it is proved in [26] that, for every measurable subset ω

of Ω, if C
(W )
T (χω) > 0 then

‖Γω‖ =
1

C
(W )
T (χω)

,

and if C
(W )
T (χω) = 0, then ‖Γω‖ = +∞. It follows that, for the optimal design

control problem,

inf
χω∈UL

‖Γω‖ =

(
sup

χω∈UL
C

(W )
T (χω)

)−1

,
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and therefore the problem is equivalent to the problem of maximizing the observabil-
ity constant. Then, all considerations before can be applied as well to the optimal
design control problem.

4.4. Conclusions and perspectives. We have provided a mathematical rigor-
ous modeling of the problem of optimizing the shape and placement of sensors
over a domain in which one considers the wave or the Schrödinger equation, with
Dirichlet, Neumann, mixed or Robin boundary conditions whenever the boundary
is nonempty.

First, when a specific choice of the initial data is given and therefore we deal
with a particular solution, we have shown that the problem always admits at least
one solution that can be regular or of fractal type depending on the regularity of
the initial data.

In view of practical applications, we have defined a uniform optimal design prob-
lem, which does not depend on the initial data. Through spectral decompositions,
we have motivated a second problem which consists of maximizing a spectral func-
tional that can be viewed as a measure of eigenfunction concentration. Roughly
speaking, the subset ω has to be chosen so to maximize the minimal trace of the
squares of all eigenfunctions. This spectral criterion can be obtained and interpreted
in two ways: on the one hand, it corresponds to a time asymptotic observability
constant as the observation time interval tends to infinity, and on the other hand,
to a randomized version of the deterministic observability inequality. We have also
considered the convexified formulation of the problem. Under appropriate quantum
ergodicity assumptions on Ω, we have a no-gap result between the initial problem
and its convexified version, and we have computed the optimal value.

We have then provided spectral approximations, permitting to construct a maxi-
mizing sequence, and presented some numerical simulations that show the increasing
complexity of the optimal sets.

Overall, our results highlight precise connections between optimal observability
issues and quantum ergodic properties of the domain under consideration.

Our results open new directions for future research. We mention hereafter some
of them.

1. As mentioned before, we expect that the second problem (uniform optimal
design problem) not to have any optimal solution in general, except in very
particular (degenerate) situations. In other words, in general, an optimal set
probably does not exist. Besides, when implementing spectral approximations
of the second problem the spillover phenomenon has been underlined and the
increasing complexity has been put in evidence on numerical simulations. This
indicates the lack of suitability of this spectral approximation procedure of
common use in engineering applications. Further investigation is needed to
formulate variants of these problems not presenting these instabilities. We
mention here two possibilities:
(a) In [26] we propose a slight modification of the observability inequality

under consideration, which consists, e.g. in the Dirichlet case, of replacing
the H1

0 norm by the full H1 one. Surprisingly enough, we show that the
situation is then very different and that, if L is not too small then under
QUE type assumptions there exists an optimal set. Consequently, the
reinforcement of the observed norm by a compact term contributes to the
existence of optimal sets. This can be even achieved by every value of
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the volume fraction L by means of a suitable modification of the observed
norm (essentially by adding to the H1

0 -norm the L2 one multiplied by a
sufficiently large positive constant). Note however that, when reinforcing
the observed norm, the corresponding observability constant decreases.
It would then be natural to look for a compromise between ensuring the
existence of optimal sets but at the price of deteriorating the observability
constant.

(b) A second idea is to define a variant of the criterion (15), by using Cesaro
means. This idea is close to the filtering procedures used in [32] in the
context of the numerical approximation of controls. The use of Cesaro
means should also permit to weaken ergodicity assumptions (see [10]).

In any case, an interesting direction for research is to model and define other
kinds of spectral criteria permitting to avoid the spillover phenomenon to
recover the existence of an optimal set.

2. In this work we considered wave and Schrödinger equations. In an ongoing
work, we are studying the case of the heat equation. As it could be expected,
the conclusion is then very different since optimal sets then exist much more
easily, due to the intrinsic strong damping of the heat equation.

3. A crucial from the point of view of applications but fully open question is
that of the numerical approximation of the optimal sets or densities. Two
approaches are then to be considered, the continuous and the discrete one. In
this setting a natural question is as follows: do the numerical optimal designs
corresponding to discrete dynamics obtained by numerical approximation of
the wave equation converge to the continuous optimal design as the mesh size
tends to 0? According to the results of [32], one can expect the answer to be
negative because of the effect of high-frequency spurious numerical solutions.

If this were the case the numerical optimal design problem should be refor-
mulated by means of suitable high-frequency filtering techniques.

4. Similar issues can be formulated in the context of homogenization. For in-
stance, we could consider the optimal design problem above on a perforated
domain Ωε, a rapidly oscillating manifold Mε or for elliptic operators with
rapidly oscillating coefficients. The question would then be to know whether,
as ε tends to zero, the optimal designs do converge in some suitable sense
to the optimal design of the limit homogenization problem. Once again one
expects the result not to be true in general, due to the distortion that the
high-frequency solutions may introduce in the highly heterogeneous medium,
with respect to the limit homogeneous one. These issues have been the object
of intensive research in the context of controllability problems (see [33]), but,
as far as we know, have not been treated so far in the frame of the optimal
design problems discussed in this paper.
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Abstract. We present an informal review of some concepts and results from

the theory of ordinary differential equations in the non-smooth context, fol-

lowing the approach based on quantitative a priori estimates introduced in [9]
and [7].

1. Introduction. In this note we give an informal overview on some results from [9]
(collaboration with Camillo De Lellis) and [7] (collaboration with François Bouchut)
regarding an approach to non-smooth ordinary differential equations based on quan-
titative a priori estimates.

Given the velocity field

b : [0, T ]× Rd → Rd (1)

we consider the ordinary differential equation{
Ẋ(t, x) = b(t,X(t, x))

X(0, x) = x ,
(2)

where we denote with the “dot” the differentiation with respect to the time variable
t. The solution X : [0, T ] × Rd → Rd is called the flow of the velocity field b. We
are thus looking for characteristic (or integral) curves of the given velocity field b,
i.e., curves with the property that at each point the tangent vector coincides with
the value of the given vector field at such point.

The classical Cauchy-Lipschitz theory deals with the case in which the velocity
field b is regular enough (Lipschitz with respect to the space variable uniformly
with respect to time, see (3)). After a brief review of this smooth theory, in this
note we motivate the extension to non-smooth contexts, and we consider first of all
the case of W 1,p (with p > 1) velocity fields, then the case of W 1,1 velocity fields,
and and finally the case of velocity fields whose derivative can be represented as a
singular integral operator of an L1 function. This stratified presentation has the
advantage to present the main conceptual and technical differences between these
different cases.

The presentation will be very informal and only the key points of the proofs will
be indicated, with the aim to catch the interest of the reader for the general context
and to motivate him or her to further readings on this topic. Emphasis will be put
on the ideas, rather than on the details.

2000 Mathematics Subject Classification. Primary: 34A12; Secondary: 42B37.
Key words and phrases. Ordinary Differential Equations, Sobolev and Bounded Variation Func-

tions, Singular Integrals.
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For this reason, the only references given will be those strictly related to our line
of presentation. For a wider presentation of the subject and a detailed bibliography
the reader is referred for instance to [5] or [2]. Moreover, the “partial differential
equations side” of this problem (well posedness of the transport and the continuity
equations in the non-smooth context) will not be addressed here. The interested
reader is referred to the two most important papers in this area, namely [10] for the
Sobolev case and [1] for the bounded variation case, and again to the bibliographical
references in [5] or [2].

2. The Lipschitz case. As a warm up, let us start by considering the case of a
vector field which is Lipschitz with respect to the space variable uniformly with
respect to the time. This means that we assume the existence of a constant L such
that

|b(t, x)− b(t, y)| ≤ L|x− y| (3)

for every x, y ∈ Rd and every t ∈ [0, T ]. Under this assumption, it is known from
the classical Cauchy-Lipschitz theorem that a unique solution to (2) exists for every
initial point x ∈ Rd, and moreover the flow X(t, x) inherits the Lipschitz regularity
with respect to x.

Uniqueness can be easily proven with the following argument. Consider two
(possibly distinct) flows X1 and X2. Then for every given x ∈ Rd one may compute

d

dt
|X1(t, x)−X2(t, x)| ≤|b(t,X1(t, x))− b(t,X2(t, x))|

≤L|X1(t, x)−X2(t, x)| ,

where in the last inequality we have used (3). Using Gronwall Lemma (and recalling
that X1(0, x) = X2(0, x)) we deduce immediately that X1(t, x) = X2(t, x) for every
t ∈ [0, T ], i.e., the desired uniqueness.

The proof of the Lipschitz regularity of the flow X(t, x) with respect to x goes
along the same line. Fix two points x, y ∈ Rd and compute

d

dt
|X(t, x)−X(t, y)| ≤|b(t,X(t, x))− b(t,X(t, y))|

≤L|X(t, x)−X(t, y)| .

Applying again Gronwall Lemma and observing that |X(0, x) −X(0, y)| = |x − y|
we obtain

|X(t, x)−X(t, y)| ≤ eLt|x− y| , (4)

i.e., X(t, x) is Lipschitz with respect to x, and the Lipschitz constant depends
exponentially on the Lipschitz constant of the given velocity field b.

3. Towards non-Lipschitz velocity fields: The regular Lagrangian flow.
After some reflections on the very simple theory presented in the previous section,
a natural question arises: how much of such a theory survives when the velocity
field b is less regular than Lipschitz?

We immediately realize that, if we stick to “classical” statements (for instance,
if we look for uniqueness of the flow for every initial point), then the answer is
negative. A possible example is very well known: consider in R the (Hölder but not

Lipschitz) vector field b(x) =
√
|x|. Then it is readily checked that X1(t, 0) ≡ 0 and

X2(t, 0) = 1
4 t

2 are two distinct solutions of (2), with the same value (x = 0) at the
initial time. Indeed, it is easy to construct an infinite family of distinct solutions.
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One may be discouraged by having a “counterexample” in a still fairly simple
situation (an Hölder time-independent vector field in one dimension!). However,
non-regular transport phenomena do appear in an ubiquitous fashion in physical
models: fluid dynamics, conservation laws, kinetic equations. . . The reader is re-
ferred again to [5] and to [2] for a list of references.

The hope is to find some “milder” issues (some “weakened” version of the point-
wise uniqueness for (2), i.e., uniqueness of the flow for every point x ∈ Rd, or of
the regularity of the flow with respect to the initial position), together with some
“reasonable” context in which such new question may allow a positive answer. The
two elements of the new theory will be the following:

(1) The velocity field b may be non-Lipschitz, but it must have “a first-order

derivative” in some suitable weak sense. The “bad” velocity field b(x) =
√
|x|

is merely 1/2-Hölder, hence it possesses only “half a derivative” at the origin.
(2) We content ourselves with showing uniqueness of (almost) measure preserving

flow solutions of (2). That is, we drop the pointwise framework, and we just
consider as “admissible” solutions to (2) those flows X(t, x) for which, at every
time t ∈ [0, T ], the map X(t, ·) : Rd → Rd does not squeeze or expand sets

in a crazy fashion. The non-unique trajectories produced by b(x) =
√
|x|

do indeed “compress” long segments into one point, the origin of R. (The
non-uniqueness is dynamically due to the stopping of the trajectories at the
origin). The reader will notice that the origin is precisely the point at which
the regularity of b is degenerating.

We now specify what we mean with “measure preserving flow solution”:

Definition 3.1 (Regular Lagrangian flow). We say that a map X : [0, T ]×Rd → Rd
is a regular Lagrangian flow associated to the vector field b if

(i) For Ld-a.e. x ∈ Rd the map t 7→ X(t, x) is a distributional solution to the
ordinary differential equation γ̇(t) = b(t, γ(t)), with γ(0) = x;

(ii) There exists some constant M > 0 such that the compressibility condition

X(t, ·)#Ld ≤MLd for every t ∈ [0, T ] (5)

holds.

The condition in (5) involves the push-forward of the d-dimensional Lebesgue
measure Ld and can be equivalently reformulated as follows: there exists some
constant M > 0 such that for every t ∈ [0, T ] and every ϕ ∈ Cc(Rd) with ϕ ≥ 0
there holds ∫

Rd

ϕ(X(t, x)) dx ≤M
∫
Rd

ϕ(x) dx .

This means that we require a priori, i.e., as a sort of “selection condition” for
our notion of solution, a quantitative control on how much the flow compresses
d-dimensional sets. For simplicity, in the following presentation, we shall restrict
our attention to those regular Lagrangian flow which exactly preserve the Lebesgue
measure (in the smooth context, this corresponds to the condition of b having
zero divergence, thanks to Liouville’s Theorem). We can formulate it by saying
that “changes of variable along the flow are performed for free”, that is, for every
ϕ ∈ Cc(Rd) we can compute∫

Rd

ϕ(X(t, x)) dx =

∫
Rd

ϕ(x) dx . (6)
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4. A stable formal estimate, and a new integral quantity. In order to make
our computations typographically more clear, in the rest of this note we shall only
consider time-independent vector fields. The passage to the time-dependent case
does not give rise to any complication in the argument.

The natural attempt is to rephrase the strategy of §2 in a way that will be
robust when lowering the regularity of the velocity field from Lipschitz to “weakly
differentiable”. Denoting by ∇ the gradient with respect to the x variable, we can
formally compute as follows:

d

dt
log |∇X| ≤ 1

|∇X|

∣∣∣∣ ddt∇X
∣∣∣∣

=
1

|∇X|
∣∣∇(b(X)

)∣∣ = |∇b|(X) .

(7)

Notice that this computation is effective in the case of a smooth velocity field
b possessing a smooth flow X. Anyhow, in the Lipschitz context, it allows us
to recover the estimate for the regularity of the flow with respect to the initial
position already established in (4). Indeed, if b satisfies (3), then |∇b| ≤ L, and so
by integrating (7) we deduce

log |∇X| ≤ Lt+ log |∇Id| = Lt ,

from which (4).
We apply a similar strategy in order to show uniqueness. For this we fix a small

parameter δ > 0. If X1 and X2 are flows of b, then we compute

d

dt
log

(
1 +
|X1 −X2|

δ

)
≤ δ

δ + |X1 −X2|
|b(X1)− b(X2)|

δ
≤ L ,

where L is the Lipschitz constant of b. Hence

log

(
1 +
|X1 −X2|

δ

)
≤ Lt+ log

(
1 +
|X1(0, ·)−X2(0, ·)|

δ

)
= Lt ,

and finally
|X1 −X2|

δ
≤ eLt .

Since δ > 0 can be chosen arbitrarily small, we deduce that X1 = X2.
The remarkable advantage of this argument is that it allows an integral version,

which can be used for non-Lipschitz vector fields. In the rest of this note, we focus
on the uniqueness issue for the regular Lagrangian flow associated to a given velocity
field, as defined in Definition 3.1. Given a velocity field b, two (possibly distinct)
associated regular Lagrangian flows X1 and X2, and a small parameter δ > 0 we
consider

Φδ(t) =

∫
log

(
1 +
|X1(t, x)−X2(t, x)|

δ

)
dx . (8)

Notice that suitable truncations are necessary in order to make this integral con-
vergent, but for the sake of clarity in this exposition we will ignore this technical
issue.

This integral functional has been first considered in a joint paper with De Lellis
[9], where we were inspired by some similar computations due to Ambrosio, Lecum-
berry and Maniglia [3]. Although we are now focussing our presentation on the
uniqueness issue, we remark that similar integral quantities are useful to prove reg-
ularity, compactness and quantitative stability rates for regular Lagrangian flows.
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5. A condition for uniqueness. In the unlucky situation of non-uniqueness of
the regular Lagrangian flow, that is, when there are two distinct regular Lagrangian
flows X1 and X2, we easily discover that there is a set A ⊂ Rd of measure at least
α > 0 such that |X1(t, x)−X2(t, x)| ≥ γ > 0 for some t ∈ [0, T ] and for all x ∈ A.
Hence we can estimate the integral functional Φδ(t) from below as follows:

Φδ(t) ≥
∫
A

log
(

1 +
γ

δ

)
dx ≥ α log

(
1 +

γ

δ

)
.

We then discover that a condition guaranteeing uniqueness is:

Φδ

log
(
1
δ

) → 0 as δ ↓ 0 . (9)

This means that a good strategy to prove uniqueness is to derive upper bounds
for the integral functional Φδ(t). The natural computation starts with a time dif-
ferentiation, aimed at making the difference quotients of the velocity field b appear.
We calculate

Φ′
δ(t) ≤

∫
∂t|X1 −X2|
δ + |X1 −X2|

dx ≤
∫
|b(X1)− b(X2)|
δ + |X1 −X2|

dx

≤
∫

min

{
2‖b‖L∞

δ
;
|b(X1)− b(X2)|
|X1 −X2|

}
dx .

(10)

For a Lipschitz velocity field, it is sufficient to estimate

|b(X1)− b(X2)|
|X1 −X2|

≤ L

in (10) to obtain that Φ′
δ(t) (and thus Φδ(t)) is bounded by a constant. We recover

again uniqueness in the Lipschitz case.
But a milder condition to obtain boundedness of Φδ(t) would be the difference-

quotients estimate
|b(x)− b(y)|
|x− y|

≤ ψ(x) + ψ(y) (11)

for some function ψ ∈ L1
loc. Indeed, getting back to (10), we estimate

Φ′
δ(t) ≤

∫
(ψ(X1) + ψ(X2)) dx = 2

∫
ψ(x) dx ,

where in the last equality we change variables as in (6), and we conclude again
that Φδ(t) is bounded by a constant. Notice that the first term in the minimum in
(10) has been simply neglected. A smarter computation allowing for its use will be
explained in §7.

6. Maximal functions, strong and weak estimates, and uniqueness for
W 1,p velocity fields with p > 1. In the paper [9] with De Lellis we realized that
condition (11) is satisfied (and so uniqueness holds) in the case of velocity fields
with Sobolev W 1,p regularity, for any p > 1.

Indeed, in such case, the estimate for the difference quotients

|b(x)− b(y)|
|x− y|

≤ Cp,d
(
MDb(x) +MDb(y)

)
(12)

holds, where the maximal function of a locally summable function f is defined by

Mf(x) = sup
r>0

1

Ld(B(x, r))

∫
B(x,r)

|f(y)| dy . (13)
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It is classical (see for instance [11]) that the maximal function enjoys the strong
estimate

‖Mf‖Lp ≤ Cd,p‖f‖Lp (14)

for any 1 < p ≤ ∞, but unfortunately this fails for p = 1. In that case, only the
weak estimate

Ld
({
x : |Mf(x)| > λ

})
≤ Cd,1

‖f‖L1

λ
for any λ > 0 (15)

is available.
We see from (12) that (11) holds if we take

ψ = MDb , (16)

and using the strong estimate (14) we deduce from the assumption Db ∈ Lp that
ψ ∈ Lp, and uniqueness follows. The failure of the strong estimate (14) for p = 1
is precisely the reason why the uniqueness theorem in [9] was limited to the case
p > 1. The cases of W 1,1 or even of BV velocity fields were missing.

7. Uniqueness for W 1,1 velocity fields. Together with Bouchut, we discovered
in [7] how to extend this argument to the case of W 1,1 velocity fields. The proof
uses some more elaborate tools from harmonic analysis (as a general reference the
interested reader can consult [11]).

Introducing the quantity

|||f |||M1 = sup
{
λLd

({
|f | > λ

})
: λ > 0

}
, (17)

we see that (15) can be rewritten as

|||Mf |||M1 ≤ Cd,1‖f‖L1 . (18)

The space M1 consisting of all functions for which the quantity in (17) is finite is
called weak Lebesgue space (or alternatively Lorentz space or Marcinkiewicz space).
It is endowed with the natural pseudo-norm |||f |||M1 , which is however not a norm,
lacking the subadditivity property. Notice that M1 is strictly bigger than L1.

Going back to (16), and observing that we are now concerned with the case
when Db ∈ L1, we discover that condition (11) now is satisfied for some ψ ∈ M1.
In general ψ does not belong to L1

loc: we need some additional considerations in
order to conclude uniqueness.

Let us go back to (10). Using (11) and changing variable using (6) we obtain

Φ′
δ(t) ≤

∫
Rd

min

{
2‖b‖L∞

δ
; 2ψ

}
dx . (19)

None of the two terms inside the minimum suffices by itself to deduce (9). The
first term is L∞, but with a norm which blows up as δ ↓ 0, while the second term
is merely M1. However, an interpolation inequality between M1 and L∞ is at our
disposal (see [7] for a proof):

‖f‖L1 ≤ |||f |||M1

[
1 + log

(
C
‖f‖L∞

|||f |||M1

)]
.

We apply this interpolation inequality to

f = min

{
2‖b‖L∞

δ
; 2ψ

}
,
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and we observe that

‖f‖L∞ =
2‖b‖L∞

δ
≤ C

δ
and |||f |||M1 = 2|||ψ|||M1 = 2|||MDb|||M1 ≤ C‖Db‖L1 ,

by (18). We go back to (19) and employing these estimates we deduce

Φ′
δ(t) ≤ C‖Db‖L1

[
1 + log

(
C

δ‖Db‖L1

)]
. (20)

Remember our criterion for uniqueness (9): the bound (20) is exactly the critical
growth of the functional Φδ(t) which is relevant for the uniqueness! In fact, the
ratio that criterion (9) requires to be infinitesimal for δ ↓ 0, is now merely bounded.
Still, we cannot conclude uniqueness with this information only.

It is at this point that we exploit the information that Db is an L1 function, and
not just a Radon measure. (Notice that all arguments carried out until now would
work verbatim if we substitute ‖ · ‖L1 with the total variation norm ‖ · ‖M, i.e.,
for b being a BV velocity field). Up to a remainder in L2, we can assume that Db
not only belongs to L1, but also that it is small in L1. (The existence of such a
decomposition is due to the equi-integrability of L1 functions). This smallness allows
to fullfill the criterion (9), while the residual part of the functional originated by
the L2 remainder can be treated with the arguments of §6. This allows to conclude
uniqueness for W 1,1 velocity fields, but it is still far from giving any result for BV
velocity fields: a measure does not allow a decomposition in a small L1 part plus
an L2 remainder!

8. Vector fields whose derivative is a singular integral of an L1 function.
The strategy described in the previous section extends in a (technical but) natural
way to the case in which the derivatives of the velocity field b can be expressed as

∂jb
i =

∑
k

Sijkgijk ,

where gijk ∈ L1(Rd) and every Sijk is a singular integral operator. In more details,
we assume that any of these operators can be expressed as a convolution

Sijkgijk = Kijk ∗ gijk ,
where the singular kernel Kijk is smooth away of the origin of Rd, is homogeneous
of degree −d and satisfies the usual cancellation property.

Observe that this class of vector fields includes W 1,1. However, it does neither
include BV , nor it is included in BV . The relevance of this class of vector fields is
due to their appearance in some physical problems: for instance, in two dimensional
incompressible fluid dynamics, this is the regularity enjoyed by fluid velocities with
L1 vorticity.

It is well known (see again [11]) that singular integrals enjoy the same estimates
as maximal functions: namely, strong estimates for 1 < p <∞

‖Sf‖Lp ≤ Cd,p‖f‖Lp

(the case p =∞ has now to be excluded), and the weak estimates for the case p = 1

|||Sf |||M1 ≤ Cd,1‖f‖L1 .

Also in this case, no strong estimate for p = 1 is available.
One basic consequence of the cancellation property assumed for the singular

kernels under consideration is the weak estimate for the composition of two singular
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integral operators. Namely, if we consider a composition S = S2 ◦S1, the associated
singular kernel is given by the convolution K = K2 ∗K1, and it is again a singular
kernel. Thus we still have

|||Sf |||M1 = |||S2 ◦ S1f |||M1 ≤ C‖f‖L1 . (21)

Note carefully that estimate (21) cannot be obtained by composing the two analogue
estimates (from L1 to M1) which hold for the two singular integral operators S1

and S2 separately. At a formal level, (21) requires cancellations in the convolutions.

9. Back to the proof of the uniqueness. We describe now how to modify the
strategy described in §7 in order to prove uniqueness of the regular Lagrangian
flow associated to vector fields with the regularity described in §8. This result is
contained in [7].

Going back to (16), we realise that in the present context we have

ψ = MSg ,

for g ∈ L1. We thus need a bound of the type

|||ψ|||M1 ≤ C‖g‖L1 , (22)

in order to conclude the proof along the lines of §7. In general, however, estimate
(22) does not hold if the classical maximal function (13) is considered. Inspired by
the cancellation phenomenon which allows (21), we can prove that (22) holds if we
consider instead a smooth version of the maximal function, defined as

Mρf(x) = sup
r>0

∣∣∣∣∫
Rd

ρr(x− y)f(y) dy

∣∣∣∣ ,
where ρ is a given smooth convolution kernel. This smooth version of the maximal
function is well known in the context of Hardy spaces, under the name of grand
maximal function. It is possible to prove that

|||ψ|||M1 = |||MρSg|||M1 ≤ C‖g‖L1 ,

and this estimate is sufficient to conclude using the strategy in §7, yielding unique-
ness of the regular Lagrangian flow for the class of vector fields considered in §8.
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ENTROPY VISCOSITY FOR THE EULER EQUATIONS

AND QUESTIONS REGARDING PARABOLIC

REGULARIZATION
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Abstract. This note describes a general class of regularizations for the com-

pressible Euler equations. A unique regularization is identified that is com-

patible with all the generalized entropies à la [8] and satisfies the minimum
entropy principle. All the results announced herein will be reported in detail

in [5].

1. Introduction. A new numerical method for approximating nonlinear conserva-
tion laws using an artificial viscosity based on entropy production has been described
in [4, 6, 16]. This so-called entropy viscosity method uses finite elements, either con-
tinuous or discontinuous, and consists of augmenting the numerical discretization
at hand with a parabolic regularization where the nonlinear viscosity is based on
the local size of a discrete entropy production. The idea of using the entropy to
design numerical methods for nonlinear conservation equations is not new. For in-
stance it is shown in [11] that the entropy production can be used as an a posteriori
error indicator and therefore is useful for adaptive strategies. The main originality
of the entropy viscosity method is that one directly uses the entropy production
to construct an artificial viscosity. This strategy makes an automatic distinction
between shocks and contact discontinuities. This method is simple to program and
does not use any flux or slope limiters. The method can be reasonably justified
for scalar conservation equations. For instance it is now well established that the
solution of the parabolic regularization of a scalar conservation equation converges
to the entropy solution as the regularization parameter goes to zero. This funda-
mental fact is the key justification for constructing approximation techniques based
on artificial viscosity. Stability results have been established in [10] and [1] for fully
discrete versions of the entropy viscosity method for scalar conservation equations
using simple entropies. The extension of this strategy to hyperbolic systems is not
so clear, since the question of how parabolic regularizations should be constructed
for hyperbolic systems is still an open problem. In particular, our experience is
that the Navier-Stokes system is not a robust regularization of the Euler system,
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one key reason being that there is no mechanism therein to help the density to
stay positive, another one being that the Navier-Stokes regularization is known to
violate the minimum entropy principle if the thermal diffusivity is zero.

The objective of this note is to investigate a nonstandard family of regularization
of the Euler system that can serve as a reasonable starting point for an entropy
viscosity technique. We identify a single family that preserves positivity of the
density, satisfies a minimum entropy principle (see [14]), and is compatible with the
largest class of generalized entropies inequalities of [8].

2. Statement of the problem. Consider the compressible Euler equations in
conservative form in Rd,

∂tU +∇·F (U) = 0, U(x, 0) = (ρ0(x),m0(x), E(x))T , (1)

where U = (ρ,m, E)
T

, F (U) = (m,u⊗m + pI,u(E + p))
T

. The dependent vari-
ables are the density, ρ, the momentum, m and the total energy, E. We adopt
the usual convention that for any vectors a, b, with entries {ai}i=1,...,d, {bi}i=1,...,d,
the following holds: (a⊗ b)ij = aibj and ∇·a = ∂xjaj , (∇a)ij = ∂xiaj . Moreover,
for any order 2 tensors g, h, with entries {gij}i,j=1,...,d, {hij}i,j=1,...,d, we define
(∇·g)j = ∂xigij , a·∇ = ai∂xi , (g·a)i = gijaj , g:h = gijhij where repeated indices
are summed from 1 to d.

The equation of state is assumed to derive from a specific entropy, s(ρ, e), through
the thermodynamics identity: T ds := de+ pdτ , where τ := ρ−1, e := ρ−1E − 1

2u
2

is the specific internal energy, u := ρ−1m is the velocity of the fluid particles. For

instance it is usual to take s = log(e
1

γ−1 ρ−1) for a polytropic ideal gas. Using
the notation se := ∂s

∂e and sρ := ∂s
∂ρ , this definition implies that se := T−1, sρ :=

−pT−1ρ−2. The equation of state takes the form p := −ρ2sρs−1e . The key structural
assumption is that −s is strictly convex with respect to τ := ρ−1 and e. Upon
introducing σ(τ, e) := s(ρ, e), the convexity hypothesis is equivalent to assuming
that σττ ≤ 0, σee ≤ 0, and σττσee−σ2

τe ≤ 0. This in turn implies that ∂ρ(ρ
2sρ) < 0,

see < 0, 0 < ∂ρ(ρ
2sρ)see − ρ2s2ρe, or equivalently that the following matrix

Σ :=

(
ρ−1∂ρ(ρ

2sρ) ρsρe
ρsρe ρsee

)
, (2)

is negative definite. In the rest of the note we assume that the entropy is strictly
convex and the temperature is positive, i.e., 0 < se.

A physical way to regularize the Euler system (1) consists of considering this
system as the limit of the Navier-Stokes equations. We claim that the Navier-Stokes
regularization is not appropriate for numerical purposes. The first problem that we
identify is that the minimum entropy principle cannot be satisfied for general initial
data if the thermal dissipation is not zero. More precisely, assuming that the thermal
diffusivity is nonzero, for any r ∈ R, there exist initial data so that the set {s ≥ r}
is not positively invariant, where s is the specific entropy, see e.g., [12, Thm 8.2.3].
Another argument often invoked against the presence of thermal dissipation is that
it is incompatible with symmetrization of the Navier-Stokes system when using the
generalized entropies of [7] for polytropic ideal gases. The function ρf(s) is said to be
a generalized entropy if f ′(γ−1)γ−1−f ′′ > 0, f ′ > 0 and f ∈ C2(R; R). It is proved
in [9] that the only generalized entropy that symmetrizes the Navier-Stokes system
is the trivial one ρs when the thermal diffusivity is nonzero, see also [15, (2.11) and
Remark 2, page 460]. Although symmetrization of the viscous fluxes is not necessary
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to establish entropy dissipation (see e.g., [13, §1.1]), it is nevertheless true that the
Navier-Stokes system violates generalized entropy inequalities if f ′′(s) 6= 0.

The objective of this note is to introduce a regularization of (1) that is compatible
with thermodynamics and can be used for numerical approximations.

3. General regularization. We investigate in this section the properties of fol-
lowing general regularization for the Euler system:

∂tU +∇·F (U) = ∇·T , U(x, 0) = (ρ0(x),m0(x), E(x))T , (3)

where T = (f , g,h+ g·u)T and the fluxes f , g, and h are as general as possible. A
regularization theory for general nonlinear hyperbolic system has been developed
in [13] and [12, Chap 6]. Our objective in this note is more restrictive. We want to
construct the fluxes f , g, and h so that (3) gives a positive density, gives a minimum
principle on the specific entropy, and is compatible with a large class of entropies.
It is assumed in the rest of the note that (3) has a smooth solution.

3.1. Positivity of the density. Modulo mild regularity assumptions on the ve-
locity, the theory of second-order elliptic equations implies that f = a(ρ, e)∇ρ is
appropriate to guaranty the positivity of the density, where a(ρ, e) is a smooth
positive function. The following is established in [5]

Lemma 3.1 (Positive Density Principle). Let f = a(ρ, e)∇ρ in (3), with a ∈
L∞(R2; R) and inf(ξ,η)∈R2 a(ξ, η) > 0. Assume that u and ∇·u ∈ L∞(Rd×R+; R).
Assume also that there are constant states at infinity ρ∞, u∞, so that the supports
of ρ(·, ·) − ρ∞ and u(·, ·) − u∞ are compact in Rd×(0, t), for any t > 0. Assume
finally that ρ0 − ρ∞ ∈ L2(Rd; R). Then the solution of (3) is such that

ess inf
x∈Rd

ρ(x, t) ≥ 0, ∀t ≥ 0. (4)

3.2. Minimum entropy principle. Since physically admissible weak solutions of
the Euler equations satisfy the following inequality ∂ts+u·∇s ≥ 0, they also satisfy
a minimum entropy principle, i.e., the set {s ≥ s0}, where s0 is the infimum of the
specific entropy of the initial data, is positively invariant. The importance of the
minimum entropy principle has been established by [14].

Requesting that the triple f , h and G be such that the solution of (3) satisfies
a minimum entropy principle narrows down the choices that can be made for the
viscous fluxes. It is shown in [5] that the following structure is sufficient for this
purpose:

f = a(ρ, e)∇ρ a(ρ, e) ≥ 0, (5)

g = G(∇su) + f ⊗ u, G(∇su):∇u ≥ 0, (6)

h = l− 1
2u

2f , l = (a− d)(pρ−1 + e)∇ρ+ d∇(ρe) d(ρ, e) ≥ 0. (7)

Theorem 3.2 (Minimum Entropy Principle). Assume that ρ0 and e0 are constant
outside some compact set. Assume also that (5)-(6)-(7) hold. Assume that the
solution to (3) is smooth, then the minimum entropy principle holds,

ess inf
x∈Rd

s(x, t) ≥ ess inf
x∈Rd

s0(x), ∀t ≥ 0.
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3.3. Generalized entropies. We investigate in this section whether the regular-
ization of the Euler equations (3) is compatible with some or all generalized entropy
inequalities identified in [8]. A function ρf(s) is called a generalized entropy if f is
twice differentiable and

f ′(s) > 0, f ′(s)c−1p − f ′′(s) > 0, ∀(ρ, e) ∈ R2
+, (8)

where cp(ρ, e) = T∂T s(p, T ) is the specific heat at constant pressure. It is shown in
[8] that −ρf(s) is strictly convex with respect to ρ−1 and e if and only if (8) holds,
i.e., (8) characterizes the maximal set of admissible entropies for the compressible
Euler equations that are of the form ρf(s). The following result is proved in [5]:

Theorem 3.3 (Entropy Inequalities). Assume that (6)-(5)-(7) hold. Any weak
solution to the regularized system (3) satisfies the entropy inequality

∂t(ρf(s)) +∇·
(
uρf(s)− dρ∇f(s)− af(s)∇ρ

)
≥ 0, (9)

for all generalized entropies ρf(s) if and only if a = d.

Corollary 1. Any weak solution to the regularized system (3) satisfies the entropy

inequality (9) for the physical entropy ρs (i.e., f(s) = s) if 2Γ − 2∆
1
2 < 1 − a

d <

2Γ + 2∆
1
2 where Γ = det(Σ)ρ2s−2e p−2e and ∆ = Γ(1 + Γ).

In the case of a polytropic ideal gases, i.e., s = log(e
1

γ−1 ρ−1) with γ > 1, we have
cp = γ(γ−1)−1, det(Σ) = (γ−1)−1e−2, f = a∇ρ, and l = γde(ad−1+ 1

γ )∇ρ+dρ∇e.
The range for the ratio ad−1 for Corollary 1 to hold is

2

γ − 1
(1−√γ) < 1− a

d
<

2

γ − 1
(1 +

√
γ). (10)

In particular the choice 1− a
d = 1

γ is clearly in the admissible range. For this choice

l = dρ∇e and f = dγ−1γ ∇ρ, i.e., l does not involve any mass dissipation.

4. Conclusions. We show in this section that the regularization proposed above
reconciles the Navier-Stokes and the parabolic regularization points of view.

4.1. Parabolic regularization. One natural question that comes to mind is how
different is the general regularization (3) from the simple parabolic regularization:

∂tU +∇·F (U) = ε∆U , U(x, 0) = U0(x), (11)

where U = (ρ,m, E)
T

, F (U) = (m,u⊗m + pI,u(E + p))
T

. The answer is given
by the following, somewhat a priori frustrating result:

Proposition 1 (Parabolic regularization). The parabolic regularization (11) is
identical to (3) with (6)–(7) where a = d = ε, G = ερ∇u.

Even when a = d, one important interest of the class of regularization (3), when
compared to the monolithic parabolic regularization (11), is that it decouples the
regularization on the velocity from that on the density and internal energy. In
particular the regularization on the velocity can be made rotation invariant by
making the tensor G a function of the symmetric gradient ∇su. This decoupling
was not a priori evident when looking at (11).
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4.2. Connection with phenomenological models. Using the assumptions (6)–
(7) in the balance equation (3) we obtain the following system:

∂tρ+∇·m−∇·f = 0, (12)

∂tm +∇·(u⊗m) +∇p−∇·(G(∇su) + f ⊗ u) = 0, (13)

∂tE +∇·(u(E + p))−∇·(l + 1
2u

2f + G(∇su)·u) = 0, (14)

When looking at (12)–(14) it is not immediately clear how this system can be rec-
onciled either with the Navier-Stokes regularization or with any phenomenological
modeling of dissipation. It is remarkable that this exercise can actually been done
by introducing the quantity um = u − ρ−1f . The above conservation equations
then become

∂tρ+∇·(umρ) = 0, (15)

∂tm +∇·(um ⊗m) +∇p−∇·(G(∇su)) = 0, (16)

∂tE +∇·(umE)−∇·(l− ef) +∇·
(
(pI− G(∇su))·u

)
= 0. (17)

This system resembles the Navier-Stokes regularization with two velocities. If one
sets a = d, the term l − ef becomes dρ∇e, which upon assuming de = cv dT ,
reduces to d(ρ, e)ρcv∇T , i.e., one obtains Fourier’s law: l− ef = d(ρ, e)ρcv∇T .

The system (15)–(17) resembles, at least formally, a model of fluid dynamics of
[2] (see e.g., equations (1) to (5) in [2]). The author has derived the above system of
conservation equations (up to some non-essential disagreement on the term l− ef)
by invoking phenomenological considerations. The mathematical properties of this
system have been investigated by [3]. Brenner has been defending for years the
idea that it makes phenomenological sense to distinguish the so-called mass veloc-
ity, um, from the so-called volume velocity, u. This idea seems to be supported
by our mathematical derivation which did not invoke any had oc phenomenological
assumption. Recall that our primal motivation in this project is to find a regulariza-
tion of the compressible Euler equations that can serve as a good numerical device,
and by being good we mean that the model must give positive density, positive
internal energy, a minimum entropy principle and be compatible with a large class
of entropy inequalities.

4.3. Concluding remarks. Let us finally rephrase our findings. In its most gen-
eral form, the regularized system (15)–(17) can be re-written as follows:

∂tρ+∇·(umρ) = 0, (18)

∂tm +∇·(um ⊗m) +∇p−∇·(G(∇su)) = 0, (19)

∂tE +∇·(umE)−∇·q +∇·
(
(pI−G(∇su))·u

)
= 0 (20)

um = u− a(ρ, e)∇ log ρ (21)

q = (a− d)p∇ log ρ+ dρ∇e, a(ρ, e) ≥ 0, d(ρ, e) ≥ 0. (22)

It is established in Lemma 3.1 that the definition of f = a(ρ, e)∇ρ is compatible
with the positive density principle. The particular form of q in (22) results from
the definition of l, see (7), which is required for the minimum entropy principle to
hold, as established in Theorem 3.2. It is finally proved in Theorem 3.3 that the
most robust regularization, i.e., that which is compatible with all the generalized
entropy à la [8], corresponds to the choice a = d. A relaxation of the constraint
a = d is described in Corollary 1. As observed in §4.1, the parabolic regularization
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can be put into the form (18)–(22) with the particular choice G = a∇u, which is
not rotation invariant and uses the same viscosity coefficient for all fields.
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Abstract. We present the existence and dynamic instability of stationary
radial solutions to the attractive Vlasov–Poisson–Boltzmann system. We show
that all stationary radial solutions are local Maxwellians and for the instability
of the stationary radial solution, we explicitly construct a one-parameter family
of perturbed solutions via the Galilean boost method. Initially, these perturbed
solutions can be close to the given stationary radial solution as much as possible
in any Lp-norm, p ∈ (n

2
,∞], n > 2 where n is the spatial dimension. The

perturbed solutions have the same local mass density profile as a stationary
radial solution but a different bulk velocity profile. At the macroscopic level,
these perturbations correspond to traveling waves.

1. Introduction. The purpose of this paper is to construct a radial stationary solu-

tion f = f(x, v) to the attractive Vlasov–Poisson–Boltzmann system in the absence

of external force and background density and to study its dynamic instability in

terms of Lp-topology. Consider an ensemble of particles interacting through a self-

consistent Newtonian attractive force and undergoing collisions between particles.

In this situation, the kinetic description for the thermodynamic states of the ensem-

ble is effectively described by the one-particle distribution function f = f(x, v, t) at
a phase position (x, v) ∈ R

n×R
n at time t ∈ R+. The dynamics of the distribution
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function f is governed by the self-consistent Vlasov–Poisson–Boltzmann (V-P-B)

system:

∂tf + v · ∇xf −∇xϕ · ∇vf = Q(f, f), x, v ∈ R
n, t > 0,

∆ϕ = ρ, ρ =

∫

Rn

fdv,
(1)

where ϕ is the self-consistent force potential, and Q(f, f) is the collision operator

registering binary collisions between particles. Its explicit form reads as

Q(f, f)(x, v, t) ≡ 1

Kn

∫

Rn×S
n−1

+

B(|v − v∗|, θ)(f(v′)f(v′∗)− f(v)f(v∗))dv∗dω. (2)

Here v′ and v′∗ denote post-collided velocities resulting from the pre-collided veloc-

ities v, v∗:

v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω, ω ∈ S
n−2
+ . (3)

Moreover, we used the simplified notation:

f(v) ≡ f(x, v, t), f(v∗) ≡ f(x, v∗, t), f(v′) ≡ f(x, v′, t)

and f(v′∗) ≡ f(x, v′∗, t).

In the formal infinite Knudsen limit(Kn → ∞), system (1) becomes the collisionless

Vlasov–Poisson(V-P) system with attractive force:

∂tf + v · ∇xf −∇xϕ · ∇vf = 0, x, v ∈ R
n, t > 0,

∆ϕ = ρ, ρ =

∫

Rn

fdv.
(4)

The existence theory for (1) has been studied in two distinct regimes: near Maxwelli-

an and near vacuum. In [7, 14, 15, 22, 23], the global existence and time-asymptotic

behavior of solutions have been studied in the near-Maxwellian regime. In contrast,

there have been few near-vacuum results [16] available for the soft and Maxwellian

potentials in the framework of Bardos and Degond [2]. For other related works for

the V-P-B system, we refer to [4, 8, 21, 24, 25]

In this paper, we are interested in whether the solution to the V-P-B system

is Lp(R2n)-stable or not, in particular for three dimensions n = 3 and p > 3/2.
When the electric field E = −∇xϕ is turned off, the V-P-B system becomes the

Boltzmann equation. In this case, it is well-known [1, 17, 18] that the Boltzmann

equation near vacuum is uniformly L1-stable in the sense that

sup
t≥0

||f(t)− g(t)||L1(R6) ≤ G||f in − gin||L1(R6),

where f and g are continuous mild solutions to the Boltzmann equation correspond-

ing to small initial data f in and gin respectively, and G(≥ 1) is a generic positive

constant independent of t. In contrast, when the electric field is turned on, there is

no such Lp(R6)-stability result yet even for an interesting spatial dimension n = 3.

Recently the authors [6] showed that nonlinear Vlasov equations with attractive

forces such as the attractive V-P system are Lp(R6)-unstable by constructing non-

linear perturbations of a stationary solution. Of course, aforementioned instability

result does not exclude the possibility of uniform Lp(R6)-stability for small solu-

tions. In the absence of collisions, the V-P system is uniformly L1(R2n)-stable for

small and decaying solutions in high dimensions n ≥ 4 [3] (see the corresponding

result for the Vlasov-Yukawa system [5, 19]). Hence the stability issue of the V-P-B
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system might be very sensitive to the size of solutions and dimensions of the spatial

domain.

We next briefly delineate our strategy and results for the instability of system (1).

Our scenario is to show that the regular stationary radial solutions are Lp-unstable

for some p ∈ (n/2,∞]. To launch our scenario, we first need to have stationary

radial solutions. This is why we restrict our force to be attractive. It turns out

that stationary radial solutions are local Maxwellian type and the logarithm of the

corresponding local mass density satisfies a nonlinear second-order ordinary differ-

ential equation (ODE). We then derive an explicit asymptotic estimate by using

a phase-portrait method. The detailed asymptotic behavior of entire stationary

radial solution f0 = f0(|x|, |v|) implies that

f0 ∈ Lp(R2n), p ∈
(n

2
,∞

]

.

For the instability estimate of the stationary radial solutions, we use the method of

Galilean boost introduced in [6]. Due to the Galilean boost invariance of the V-P-B

system, the Galilean boost of the given stationary radial solution plays the role of

unstable perturbed solution. Hence we can conclude that the V-P-B system (1) is

Lp(R2n)-unstable, p > n/2 for general initial data. More precisely, we state our

main result in the following theorem.

Theorem 1.1. Let f0 = f0(x, v) be an entire stationary radial solution to (1).

Then, for any ε > 0, there exists a perturbation f in of f0 and T > 0 such that, for

any solution f = f(t) with initial datum f in, we have

||f in − f0||Lp < ε and ||f(t)− f0||Lp ≥ ||f0||Lp , t ≥ T = T (ε), p ∈
(n

2
,∞

)

.

Remark 1. 1. For the existence of stationary radial solution, the sign of the force

(attractive force) is crucial, because for the repulsive case, the stationary radial

solutions do not exist unless there are external confining forces. Therefore the

method of Galilean boost cannot be used in this case. It is still an interesting open

problem whether the V-P-B system with attractive forces is Lp-stable or not for

small solutions.

2. Similar instability result was also true for the V-P system with attractive force

(see [6]). In this case the instability result is valid for p ∈ [1,∞]. The dynamic

instabilities of the V-P-B and V-P systems are essentially due to the nonlinear

interactions between particles and field. For the Boltzmann equation with a linear

external force, the uniform Lp-stability is valid as the Boltzmann equation (see

[11, 12]).

The rest of the paper is divided into five sections. In Section 2, we study the

structure of stationary radial solutions to the V-P-B system and derive an elliptic

equation related to the stationary radial solution. In Section 3, we derive the

asymptotic rate of solution to the elliptic equation. Additionally, we obtain the

Lp(R2n)-regularity of the stationary radial solution to the V-P-B system by this

asymptotic rate. In Section 4, we construct a one-parameter family of stationary

radial solutions via the method of Galilean boost, and prove that the stationary

radial solution is dynamically Lp-unstable by the one-parameter family. Finally

Section 5 is devoted to the summary of main results. In Appendix A, we present

the long straightforward proof of Proposition 2.
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Notation. Throughout this paper, we will use simplified notation as follows:

||f ||Lp :=

(∫

R3

∫

Rn

|f(x, v)|pdvdx
)1/p

, 1 ≤ p < ∞,

E[f ](x, t) := −∇xϕ(x, t) = −∇x

(
1

|x|n−2
∗x ρ(x, t)

)

, n > 2,

where a measurable function f = f(x, v, t) with ρ(x, t) =
∫

Rn f(x, v)dv.

2. Preliminaries. In this section, we briefly review the previous results on the

existence and stability of the V-P-B system, and present the structural results on

stationary radial solutions to the V-P-B system (1).

2.1. Brief review of previous results. For the existence of stationary solutions

to the V-P-B system, several authors [9, 10] have been interested in the relationship

between the external force or background density ρ0 and the stationary solution

f(x, v). In particular, Duan, Yang, and Zhu [10] verified that there are stationary

solutions to the V-P-B system, when the background density ρ0 tends to a positive

constant as |x| → ∞, i.e.,

|ρ0 − 1| ≤ C(ln(e+ |x|))−α,

where C and α are some positive constants. Then, the V-P-B system has the

stationary solution

f(x, v) =
1

(2π)3/2
exp

(

φ(x) − |v|2
2

)

with

−∆φ+ exp(φ) = ρ0.

In [9], Duan and Yang also obtained stationary solutions to the V-P-B system,

when the background density is a small perturbation of a positive constant in the

following sense:

||ρ− 1||Wm,∞

k
= sup

x∈R3

(1 + |x|)k
∑

|α|≤m

|∂α
x (ρ− 1)|,

where k,m ≥ 0 are integers.

For the stability of the stationary solution to the V-P-B system, previous authors

[9, 23] have considered the convergence of a perturbed near-Maxwellian solution to

the global Maxwellian or stability in some functional sense. Yang, Yu, and Zhao [23]

proved that for a smooth near-Maxwellian perturbation, there is a unique global

classical solution to the V-P-B system with a background charge density, when either

the mean free path is small or the background charge density is large. Furthermore,

this solution converges to the global Maxwellian, as time goes to infinity in the

following sense:

lim
t→∞

sup
x∈R3

∑

|α|≤N−4

∫

R3

|∂α
x (f(t, x, ξ)−M(ξ))|2

M−(ξ)
dξ = 0,

where M and M− are suitably chosen Maxwellians. Duan and Yang [9] assume that

||ρ− 1||WN+1,∞
2

and [[u0]] are small enough, where

f0(x, ξ) = eφM +
√
Mu0(x, ξ) ≥ 0.
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Then, the nonlinear stability of solutions near the stationary state holds in the

following sense:

[[u(t)]]2 + λ0

∫ t

0

[[u(t)]]2νds ≤ C0[[u0]]
2m

where f(t, x, ξ) = eφM +
√
Mu(t, x, ξ) ≥ 0 is a solution to the V-P-B system and

[[u(t)]]2ν :=
∑

|α|+|β|≤N

||∂α
x ∂

β
ξ {I−P}u||2ν+

∑

|α|≤N−1

(||∂α
x∇x(a, b, x)||2+ ||∂α

x (a+3c)||2),

where L is a linearized collision operator, P denotes the projection operator from

L2(R3
ξ) to kerL, and a, b, and c are the coefficients of the macroscopic component

Pu.

2.2. Structure of stationary radial solutions. Let f0 be a stationary radial

solution, i.e.,

f0(x, v) = f̄0(r, p), r := |x|, p := |v|. (1)

For any v ∈ R
n, we set

v⊥ := {y ∈ R
n : y · v = 0}.

Lemma 2.1. Let G and H be two measurable functions defined on R
2 and R×R

n,

respectively and they satisfy relation:

x · v
|x| G(|x|, |v|) = H(|x|, v), a.e. x, v ∈ R

n. (2)

Then the function H is 0 a.e. (x, v) ∈ R
2n.

Proof. It suffices to consider the case where relation (2) holds for all x, v ∈ R
n. Let

(x, v) be any point in R
2n. Then we can choose x̄ ∈ v⊥ with |x| = |x̄|. For such x̄,

we have

H(|x|, v) = H(|x̄|, v) = x̄ · v
|x| G(|x|, |v|) = 0.

Hence H ≡ 0.

Lemma 2.2. Let f0 be the stationary radial solution to the V-P-B system (1).

Then it is also the stationary radial solution to the V-P system (4).

Proof. Since f0 is stationary, it satisfies

v · ∇xf0 −∇xϕ · ∇vf0 = Q(f0, f0). (3)

We now rewrite relation (3) in terms of f̄0 in (1) to derive relation (2).

• (L.H.S. of (3)): In this case, we use

∇xϕ =
x

r
∂rϕ = αn

x

rn

∫ r

0

rn−1
∗ ρ(r∗)dr∗ (4)

to obtain

v · ∇xf0 −∇xϕ · ∇vf0 =
x · v
r

∂r f̄0 −
∇xϕ · v

p
∂pf̄0

=
x · v
r

(

∂rf̄0 − αn
∂pf̄0
rn−1p

∫ r

0

rn−1
∗ ρ(r∗)dr∗

)

,

(5)

where constant αn is the volume of an n-dimensional unit sphere.
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• (R.H.S. of (3)): We use representation (2) for Q(f, f):

Q(f0, f0)(x, v)

=

∫∫

S2
+
×Rn

B(v − v∗, ω)(f0(x, v
′
∗)f0(x, v

′)− f0(x, v)f0(x, v∗))dv∗dω

=

∫∫

S2
+
×Rn

B(v − v∗, ω)(f̄0(|x|, |v′∗|)f̄0(|x|, |v′|)− f̄0(|x|, |v|)f̄0(|x|, |v∗|))dv∗dω

=B(f̄0)(|x|, v).

(6)

Hence we have

x · v
r

(

∂r f̄0 − αn
∂pf̄0
rn−1p

∫ r

0

rn−1
∗ ρ(r∗)dr∗

)

︸ ︷︷ ︸

function of |x| and |v|

= B(f̄0)(|x|, v).

We now apply Lemma 2.1 to get

B = 0, or equivalently Q(f0, f0) = 0 a.e. (x, v) ∈ R
2n,

i.e., f0 satisfies

v · ∇xf0 −∇xϕ · ∇vf0 = 0, a.e. (x, v) ∈ R
2n.

Proposition 1. Let f0 be a stationary radial solution to the V-P-B system (1).

Then f0 is separable in r and p; more precisely, we have

f0(x, v) = R(r)e−c0p
2

, a.e. (x, v) ∈ R
2n,

where c0 is a positive constant.

Proof. Let f0 be a stationary radial solution. Then it follows from Lemma 2.2 that

Q(f0, f0)(x, v) = 0 a.e. (x, v) ∈ R
2n.

Then it is well known [13] that f is a local maxwellian:

f0(x, v) = ea(r)+b(r)·v−c(r)|v|2,

where a, c : R −→ R, b : R → R
n. Since f is radial,

b ≡ 0.

Hence f becomes

f0(x, v) = ea(r)−c(r)|v|2 =: R(r)e−c(r)|v|2 , c(r) > 0.

We next claim that

c(r) = c0 : constant.

The proof of the claim: By elementary calculations,

0 = v · ∇xf0 −∇xϕ · ∇vf0
= v · ∇x(Re−c(r)|v|2)−∇xϕ · ∇v(Re−c(r)|v|2)

= v · (∇xR)e−c(r)|v|2 + v · Re−c(r)|v|2(−∇xc(r)|v|2)
−∇xϕ · Re−c(r)|v|2(−∇v(c(r)|v|2)).
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We divide the above relation by e−c(r)|v|2 and use ∇v|v|2 = 2v to find

0 = v · ∇xR−R|v|2v · ∇xc(r) + 2Rc(r)∇xϕ · v

= (v · x)
[R′(r)

r
− R(r)c′(r)

r
|v|2 + 2R(r)c(r)

rn

(∫ r

0

ρ(r∗)r
n−1
∗ dr∗

)]

,
(7)

where we used (4). For the case x 6∈ v⊥, it follows from (7) that

R(r)c′(r)

r
|v|2 =

R′(r)

r
− 2R(r)c(r)

rn

∫ r

0

ρ(r∗)r
n−1
∗ dr∗.

Since the R.H.S. of the above relation is a function of r, we have

R(r)c′(r)

r
|v|2 = 0, a.e., i.e. c′(r) = 0, a.e. x ∈ R

n.

This completes the proof of the claim.

Remark 2. Note that Proposition 1 says that all stationary radial solutions to the

V-P-B system (1) are local maxwellians.

2.3. Derivation of the equation for R. In this part, we derive the equation for

R. Let f0 be a stationary radial solution to the V-P-B system. Then it follows from

Proposition 1 that

f0(x, v) = R(r)e−c0|v|
2

, for suitable R(r). (8)

We next derive a defining equation for R. We substitute ansatz (8) to system (1)

to get

v · ∇x(R(r)e−c0|v|
2

) + E[f ] · ∇v(R(r)e−c0|v|
2

) = 0. (9)

If we divide Equation (9) by e−c0|v|
2

, we have

v ·
(

∇xR(r) − 2c0E[f ]R(r)
)

= 0. (10)

Since ∇xR(r) − 2c0E[f ]R(r) is independent of v in (10), we conclude that

∇xR(r) − 2c0E[f ]R(r) = 0. (11)

However, note that

ρ =

∫

Rn

R(r)e−c0|v|
2

dv = R(r)

∫

Rn

e−c0|v|
2

dv =
( π

c0

)n
2

R(r).

Since we are looking for a nontrivial solution, Equation (11) yields

∇xR(r)

R(r)
= 2c0E[f ] equivalently ∇x logR(r) = 2c0E[f ]. (12)

We take the divergence in Equation (12) to find

∆ logR(r) = 2c0∇ ·E[f ] = 2c0∇ · (−∇xϕ) = −2c0ρ = −2c0

( π

c0

)n
2

R(r).

We now set

u := logR, i.e. R = eu.

Then the function u satisfies

∆u+ κne
u = 0, (13)

where κn is a positive constant defined by

κn := 2c0

( π

c0

)n
2

.
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Once we solve the above elliptic equation, we can find a stationary radial solution.

In the following section, we study the existence and asymptotic behavior of global

radial solutions to the elliptic equation (13) at r = ∞.

3. Asymptotic behavior of regular solutions to ∆u + κne
u = 0. In this sec-

tion, we study the asymptotic behavior of entire radial solutions to the following

n-dimensional elliptic problem:

∆u+ κne
u = 0, x ∈ R

n,

(u,∇u)(x) = (u, 0), x = 0,
(1)

where u is a constant. i.e., radial solution u = u(r) satisfies

u′′ +
(n− 1)u′

r
+ κne

u = 0, r > 0,

(u(0), u′(0)) = (u, 0), r = 0.
(2)

The asymptotic behavior for (2) was studied in Joseph and Lundgren’s classi-

cal work (see Lemma 7, page 265 [20]). However their motivation to study (2) is

different from ours. Joseph and Lundgren focused on Equation (2) with two-point

boundary conditions at r = 0, 1 and replaced κn by λ. They analyzed the multiplic-

ity of radial solutions depending on the parameter λ. However, our main interest

in Equation (2) is the asymptotic behavior of the general solutions equipped with

initial data at r = 0. Of course, some brief and compact arguments in Section 3.2

can be found in [20]. For convenience, we derive an alternative, direct proof of the

asymptotic behavior to (2) in Section 3.2.

3.1. Existence of entire regular solutions. In this part, we briefly sketch the

local and global existence of regular solutions to Equation (1).

For a proof of local existence, we multiply each side of Equation (2) by rn−1 and

then integrate to find

tn−1u′(t) = tn−1
∗ u′(t∗)− κn

∫ t

t∗

τn−1eu(τ)dτ.

We divide this equation by rn−1 and integrate one more time, then we have

u(r) = u(r∗) +

∫ r

r∗

tn−1
∗

tn−1
u′(t∗)dt− κn

∫ r

r∗

1

tn−1

∫ t

t∗

τn−1eu(τ)dτdt. (3)

Since we have the boundary condition (u(0), u′(0)) = (u, 0), we can apply standard

contraction mapping and fixed-point arguments to Equation (3) with the following

function-valued operator F:

F(u)(r) := u− κn

∫ r

0

1

tn−1

∫ t

0

τn−1eu(τ)dτdt.

to derive a local existence of the C2 solution to (2). We omit the detailed straight-

forward arguments.

On the other hand, for a global existence, it suffices to show that u′ is uniformly

bounded by the continuation principle. For this, we multiply Equation (2) by u′ to

get

1

2
|u′(r)|2 + (n− 1)

∫ r

0

|u′(ζ)|2
ζ

dζ = −κn

∫ r

0

u′(ζ)eu(ζ)dζ = −
∫ u(r)

u

eζdζ

= eu(0) − eu(r) < eu(0).
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Therefore, a priori we can obtain a uniform bound of |u′(r)| and we also have

|u(r)| ≤ |u|+
∫ r

0

u′(t)dt ≤ |u|+ eur.

Hence the local solution can be continued to an arbitrary interval to yield a global

solution.

Remark 3. (i) By direct calculation, it is easy to see that Equation (2) has a scale

invariance, i.e., for any solution u = u(r) to (2) with initial data (u(0), u′(0)) = (u, 0)
and for any real number α ∈ R,

uα(r) = α+ u(e
α
2 r)

is also a solution to the ODE (2) with translated initial data (u(0), u′(0)) = (u +

α, 0). This property might suggest the existence of singular solutions with a scale

invariance, which are given by

us(r;n) := −2 log r − log κn + log 2(n− 2) = log
2(n− 2)

κnr2
, n > 2. (4)

Note that the us(r;n) is in fact a singular solution to the ODE (2) satisfying

u′′ +
(n− 1)u′

r
+ κne

u = 0, lim
r→0+

u(r) = ∞.

(iii) For low dimensions n = 1, 2, Equation (2) with u(0) = − logκn has explicit

solutions:

u(r) =







−2 log
(

cosh
r√
2

)

− log κn, n = 1,

−2 log
(

1 +
r2

8

)

− log κn, n = 2.

3.2. Asymptotic behavior of entire regular solutions. In this part, we present

the asymptotic behavior of an entire regular solution u = u(r) at r = ∞ for high

dimension n > 2.

Note that it follows from Proposition 1 that the stationary global radial solution

to the stationary V-P-B system is of the form f(x, v) = exp(u(r))µ(p), where µ(p)
is a Maxwellian. Therefore if we want to check whether the regular radial solution

f to the stationary V-P-B system belongs to Lp(R2n) for some p ≥ 1, we need to

investigate the asymptotic behaviors of the u(r) as r → ∞. We first state the main

theorem of this section and postpone its proof to the latter part of this section.

Theorem 3.1. (Asymptotic behavior at infinity) For n > 2, let u = u(r) be a global

regular solution to the ODE (2). Then for any initial value u, u = u(r) approaches
the singular solution (4) as r → ∞, i.e.,

lim
r→∞

|u(r)− us(r;n)| = 0.

Proof. We postpone the proof to the last part of this subsection.

Remark 4. Theorem 3.1 says that the entire regular solution to (2) behaves like

the explicit singular solution u(r;n) whose explicit form is given by the formula (4)

as r → ∞.

To avoid r-dependent coefficient in (2), we introduce a new independent variable

t:

t = log r, or et = r,
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and set

V (t) := u(r)− us(r;n) = u(et) + 2t+ log κn − log 2(n− 2).

We next derive an ODE for V . By direct calculation, we have

V ′(t) = etu′(et) + 2, V ′′(t) = etu′(et) + e2tu′′(et), (5)

and

V ′′ + (n− 2)V ′ = etu′(et) + e2tu′′(et) + (n− 2)etu′(et) + 2(n− 2)

= e2tu′′(et) + (n− 1)etu′(et) + 2(n− 2)

= e2t
[

u′′(et) +
(n− 1)

et
u′(et)

]

+ 2(n− 2)

= −κne
u(et)+2t + 2(n− 2)

= −2(n− 2)eu(e
t)+2t+log κn−log 2(n−2) + 2(n− 2)

= 2(n− 2)(1− eV ),

Hence we obtain the autonomous ODE for V (t):

V ′′ + (n− 2)V ′ = 2(n− 2)(1− eV ), t ∈ R,

lim
t→−∞

V (t) = −∞, lim
t→−∞

V ′(t) = 2.
(6)

Equation (6) was also obtained in Joseph and Lundgren’s work [20] (see equation

XI.1, page 262) by two successive changes of variables. We also rewrite Equation

(2) as a system of first-order ODEs:

V ′ = Q, t ∈ R,

Q′ = −(n− 2)Q+ 2(n− 2)(1− eV ).
(7)

Note that this two-dimensional system (7) has the unique equilibrium solution

(V,Q) = (0, 0).

Recall that our purpose is to verify

lim
t→∞

V (t) = 0.

3.2.1. Preparatory lemmas. Below, we present three preparatory lemmas for the

proof of Theorem 3.1.

Lemma 3.2. Let u = u(r) and us(r;n) be a general regular solution to (2) and the

singular solution defined by (4), respectively. Then Q = Q(t) satisfies

Q(t) < 2, t ∈ R.

Proof. Note that u = u(r) satisfies

(rn−1u′(r))′ + rn−1κne
u(r) = 0, r ∈ R+.

We integrate this equation with respect to r to get

u′(r) = − 1

rn−1

∫ r

0

τn−1κne
u(τ)dτ.

Therefore, we have

u′(r) < 0 r ∈ R+.

Relation (5) and the above relation imply

V ′(t) = etu′(et) + 2 < 2, t ∈ R.
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Lemma 3.3. Let V be the solution to the ODE (6). Then (V,Q = V ′) satisfies

Q(t∗)e(n−2)t∗ −Q(t∗)e
(n−2)t∗ = 2(n− 2)

∫ t∗

t∗

(1− eV )e(n−2)tdt, (8)

1

2

(

Q(t∗)2 −Q(t∗)
2
)

= 2(n− 2)

∫ V (t∗)

V (t∗)

(1− eV )dV − (n− 2)

∫ t∗

t∗

Q2(t)dt, (9)

where t∗ and t∗ are extended real numbers in R ∪ {±∞}.
Proof. Note that Equation (6) can be rewritten as

Q′ + (n− 2)Q = 2(n− 2)(1− eV ). (10)

(i) We multiply (10) by the integration factor e(n−2)t to find
(

e(n−2)tQ
)′

= 2(n− 2)(1− eV )e(n−2)t.

We now integrate the above relation from t = t∗ to t = t∗ to get the desired result.

(ii) We multiply Equation (10) by Q to find

(Q2

2

)′

+ (n− 2)Q2 = 2(n− 2)Q(1− eV ).

We integrate the above equation in t to obtain the desired result.

We set H by the half-space in (V,Q) space:

H := {(V,Q) ∈ R
2 : −∞ ≤ V ≤ ∞, Q < 2}

= H+ ∪H0 ∪H−,

H+ := {(V,Q) ∈ R
2 : −∞ ≤ V ≤ ∞, 0 < Q < 2},

H0 := {(V,Q) ∈ R
2 : −∞ ≤ V ≤ ∞, Q = 0},

H− := {(V,Q) ∈ R
2 : −∞ ≤ V ≤ ∞, Q < 0}.

(11)

Lemma 3.4. Let (V (t), Q(t)) be the solution to system (7), and assume that

lim
t→∞

V (t) = V ∞, lim
t→∞

Q(t) = Q∞.

Then we have

(V ∞, Q∞) ∈ H0.

Proof. It follows from Lemma 3.2 that (V ∞, Q∞) ∈ H. Hence it suffices to show

that

(V ∞, Q∞) 6∈ H+ ∪H−.

Suppose not, i.e.,

(V ∞, Q∞) ∈ H+ ∪H−.

This implies

|Q∞| > 0. (12)

We now take t∗ = 0 and t∗ = ∞ in Equation (9) of Lemma 3.3 to get

1

2

[

(Q∞)2 −Q(0)2
]

= 2(n− 2)

∫ V ∞

V (0)

(1 − eV )dV − (n− 2)

∫ ∞

0

Q2(t)dt. (13)
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Then it is easy to see that

∣
∣
∣
1

2

[

(Q∞)2 −Q(0)2
]∣
∣
∣ < ∞, 2(n− 2)

∣
∣
∣

∫ V ∞

V (0)

(1− eV )dV
∣
∣
∣ < ∞.

However, (12) yields
∣
∣
∣(n− 2)

∫ ∞

0

Q2(t)dt
∣
∣
∣ = ∞.

Hence we have a contradiction in (13). Therefore if the trajectory (V (t), Q(t))
converges, then the limit point should be on the horizontal line H0.

Recall that (V,Q) satisfies

V ′ = Q, t ∈ R,
Q′ = −(n− 2)Q+ 2(n− 2)(1− eV ).

Note that as long as, Q > 0, V is strictly increasing, and, in contrast, as long as

Q < 0, V is strictly decreasing. Let (V (t), Q(t)) be the phase trajectory of the

dynamics (7) satisfying

V (−∞) = −∞ and Q(−∞) = 2.

Then there are several possibilities for the asymptotic behavior of (V,Q) as t → ∞.

Proposition 2. Let (V,Q) be the global solution to system (7). Then there are two

different asymptotic patterns depending on the spatial dimension n.

1. For 2 < n < 10, the trajectory (V (t), Q(t)) swirls around the unique equilib-

rium point (0, 0) as t → ∞.

2. For n ≥ 10, the trajectory (V (t), Q(t)) goes to the equilibrium point (0, 0)
directly without touching the line V = 0 as t → ∞.

Proof. Since the proof is rather long and tedious to follow, we leave its proof in

Appendix A.

3.2.2. The proof of Theorem 3.1. Recall that it suffices to check that for any global

solution (V,Q) to the system (7)

lim
t→∞

(V (t), Q(t)) = (0, 0).

• Case A (2 < n < 10): It follows from Proposition 2 that the trajectory of (V,Q) is

a spiral. Therefore we can assume that (V,Q) is confined to the bounded set after

t ≥ T . Then it follows from the uniqueness of two-dimensional flows that the flow

(V,Q) converges to either a limit cycle or an equilibrium point. Once we can show

that the trajectory cannot approach some limit cycle, then we are done. Suppose

this trajectory converges to the limit cycle. Then we can choose four sequences

{Ti},{ti},{Si} and {si} satisfying

Q(Ti) = Q(ti) = 0, V (Ti) > 0, V (ti) < 0 and

−∞ < T1 < t1 < T2 < t2 · · · < Ti < ti < · · · < ∞,
V (Si) = V (si) = 0, Q(Si) > 0, Q(si) < 0 and

−∞ < S1 < s1 < S2 < s2 · · · < Ti < ti < · · · < ∞.
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Then by the identity (9) in Lemma 3.3, we have

0 = lim
i→∞

1

2
(Q2(Ti+1)−Q2(Ti))

= lim
i→∞

2(n− 2)

∫ V (Ti+1)

V (Ti)

(1 − eV )dV − lim
i→∞

(n− 2)

∫ Ti+1

Ti

Q2dt

= − lim
i→∞

(n− 2)

∫ Ti+1

Ti

Q2dt

= − lim
i→∞

(n− 2)

[∫ ti

Ti

+

∫ Ti+1

ti

]

Q2dt,

(14)

where we used the fact that since V (Ti) converges to the limit cycle,

lim
i→∞

V (Ti) = V∞ > 0. (15)

This implies that

0 = lim
i→∞

∫ ti

Ti

Q2dt = lim
i→∞

∫ V (ti)

V (Ti)

QdV,

0 = lim
i→∞

∫ Ti+1

ti

Q2dt = lim
i→∞

∫ V (Ti+1)

V (ti)

QdV.

Therefore, we have

lim
t→∞

Q(t) = 0 (16)

Again we use the identity (9) in Lemma 3.3 and (16) to find

0 = lim
i→∞

1

2

(

Q2(Ti)−Q2(Si)
)2

= lim
i→∞

2(n− 2)

∫ V (Ti)

V (Si)

(1 − eV )dV − lim
i→∞

(n− 2)

∫ Ti

Si

Q2dt

= lim
i→∞

2(n− 2)

∫ V (Ti)

V (Si)

(1 − eV )dV by (14)

= lim
i→∞

2(n− 2)

∫ V (Ti)

0

(1 − eV )dV

= 2(n− 2)

∫ V∞

0

(1− eV )dV

= 2(n− 2)
(

V∞ − (eV∞ − 1)
)

This yields

V∞ = 0,

which is a contradiction to (15). Similarly, we can derive

lim
i→∞

V (ti) = 0.

• Case B (n ≥ 10): We have already proven this case in Proposition 2. Therefore

(V,Q) converges to the unique equilibrium point (0, 0). This completes the proof.
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4. Nonlinear instability of stationary radial solutions to the V-P-B sys-

tem. In this section, we present the proof of Theorem 1.1. For this, we first recall

the definition of the Galilean boost of measurable functions.

Definition 4.1. Let f = f(x, v, t) be a measurable function. Then we define the

Galilean boost fβ of f by

fβ(x, v, t) := f(x+ tβ, v + β, t), β ∈ R
n.

In the following lemma, we show that the Galilean boost of solutions to the

V-P-B system is still a solution of it.

Lemma 4.2. Let f ∈ C1(R2n ×R) be a continuously differentiable function. Then

we have

(∂tfβ + v · ∇xfβ + E[fβ] · ∇vfβ −Q(fβ, fβ))(x, v, t)
= (∂tf + v · ∇xf + E[f ] · ∇vf −Q(f, f))(x + tβ, v + β, t).

Proof. We separate its estimate into two parts (Vlasov and collision parts).

We claim the following: For β ∈ R
n,

(i) (∂tfβ + v · ∇xfβ + E[fβ ] · ∇vfβ)(x, v, t)
= (∂tf + v · ∇xf + E[f ] · ∇vf)(x+ tβ, v + β, t).

(ii) Q(fβ, fβ)(x, v, t) = Q(f, f)(x+ βt, v + β, t).

The proof of the claim: (i) By direct calculation, the first partial derivatives of fβ
are given by

∂tfβ(x, v, t) = lim
h→0

fβ(x, v, t + h)− fβ(x, v, t)

h

= lim
h→0

f(x+ (t+ h)β, v + β, t+ h)− f(x+ tβ, v + β, t)

h

=
(

∂tf + β · ∇xf
)

(x + tβ, v + β, t),

∇xfβ(x, v, t) = ∇xf(x+ tβ, v + β, t),

∇vfβ(x, v, t) = ∇vf(x+ tβ, v + β, t).

Finally, we combine the above relations and Lemma 3.1 in our previous paper [6]

to get

(∂tfβ + v · ∇xfβ + E[fβ ] · ∇vfβ)(x, v, t)
= ∂tf(x+ tβ, v + β, t) + (v + β) · ∇xf(x+ tβ, v + β, t)
+ E[f ](x+ tβ, t) · ∇vf(x+ tβ, v + β, t)
= (∂tf + v · ∇xf + E[f ] · ∇vf)(x+ tβ, v + β, t).

(ii) We first recall the collision transformation:

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2.
This yields

(v′ + β) + (v′∗ + β) = (v + β) + (v∗ + β),

|v′∗ + β|2 + |v′∗ + β|2 = |v + β|2 + |v∗ + β|2.
(1)

Hence it follows from (1) that

(v + β)′ = v′ + β, (v∗ + β)′ = v′∗ + β. (2)
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We use (2) to get

Q(fβ, fβ)(x, v)

=

∫∫

Rn×S
n−1

+

B(v − v∗, ω)
(

fβ(v
′
∗)fβ(v

′)− fβ(v)fβ(v∗)
)

dv∗dω

=

∫∫

Rn×S
n−1

+

B(v − v∗, ω)
(

f(x+ βt, v′∗ + β)f(x + βt, v′ + β)

−f(x+ βt, v + β)fβ(x+ βt, v∗ + β)
)

dv∗dω

=

∫∫

Rn×S
n−1

+

B((v + β)− (v∗ + β), ω)
(

fβ(x+ βt, (v∗ + β)′)f(x+ βt, (v + β)′)

−f(x+ βt, v + β)f(x+ βt, v∗ + β)
)

dv∗dω

= Q(f, f)(x+ βt, v + β).

Remark 5. The result of Lemma 4.2 holds for weak stationary solutions; i.e., if f0
is a weak stationary solution, then fβ := f0β is also a weak solution.

We now return to the proof of Theorem 1.1.

Step A (Construction of perturbations): Let f0 be a stationary radial solution

whose existence and asymptotic behavior are guaranteed by Theorem 3.1, and let

p ∈ (n2 ,∞). To generate the desired perturbed solutions of the given stationary

radial solution f0, we take the following family of perturbed data: For β ∈ R
n,

f in

β (x, v) := f0(x, v + β).

Note that f in

β and f0 have the same local mass density but different velocity:

ρ[f in

β ] = ρ[F ], u[f in

β ] = u[f0]− β.

However, it follows from Lemma 4.2 that the solution to Equation (1) with initial

datum f in

β is given by

fβ(x, v, t) = f0(x+ tβ, v + β).

Thus corresponding macroscopic quantities are

ρ[fβ](x, t) = ρ[f0](x+ βt), u[fβ](x, t) = u[f0](x)− β.

Step B (Instability estimate): We claim the following:

(i) lim
|β|→0

||f in

β − f0||Lp = 0.

(ii) For given ε > 0, ∃ T = T (ε) > 0 such that for t > T (ε), ||f(t)− f0||p
≥ ||f0||p,

The proof of the claim: (i) By definition, we have

||f in

β − f0||pLp =

∫

R2n

|f in

β (x, v) − f0(x, v)|pdvdx

=

∫

R2n

|f0(x, v + β)− f0(x, v)|pdvdx.

Note that the integrand is bounded by an integrable function, i.e.,

|f0(x, v + β)− f0(x, v)|p ≤ 2p−1
(

|f0(x, v + β)|p + |f0(x, v)|p
)

: integrable,
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Thus by the Lebesgue dominated convergence theorem, we have

lim
|β|→0

||f in

β − f0||pLp =

∫

R2n

lim
|β|→0

|f0(x, v + β)− f0(x, v)|pdvdx = 0.

Therefore for a given ε > 0, there exists β0 such that, for |β| ≤ β0 = β0(ε),

||f in

β − f0||Lp < ε.

(ii) We set

zβ := (−βt,−β) ∈ R
2n,

and let BR(zβ) be the R ball with a center zβ. For a given small positive number

η > 0, we choose sufficiently large R such that

(∫

R2n\BR(z0)

f0(x, v)
pdxdv

)1/p

= ||f0 − f0χBR(z0)||Lp < η. (3)

By the triangle inequality, we have

||f(t)χBR(zβ) − f0χBR(z0)||Lp − ||f(t)− f0||Lp

≤ ||f(t)χBR(zβ) − f0χBR(z0) − (f(t)− f0)||Lp

= ||(f(t)χBR(zβ) − f(t))− (f0χBR(z0) − f0)||Lp

≤ ||(f(t)χBR(zβ) − f(t))||Lp + ||f0χBR(z0) − f0||Lp

≤ 2η.

Therefore, we can obtain the following inequality:

||f(t)χBR(zβ) − f0χBR(z0)||Lp − 2η ≤ ||f(t)− f0||Lp . (4)

For a small ε > 0, we choose T0 = T0(ε) to satisfy

|β|T0 > R.

Then it easy to see that

dist(BR(z0), BR(zβ)) ≥ |β|T0, t ≥ T := 4T0.

Hence for t ≥ T and n
2 < p < ∞, we have

||f(t)χBR(zβ) − f0χBR(z0)||
p
Lp

=

∫

R2n

|f(x, v, t)χBR(zβ) − f0(x, v)χBR(z0)|pdxdv

=

∫

BR(z0)∪BR(zβ)

|f(x, v, t)χBR(zβ) − f0(x, v)χBR(z0)|pdxdv

= 2p−1
(∫

BR(zβ)

|f(x, v, t)χBR(zβ)|pdxdv +

∫

BR(z0)

|f0(x, v)χBR(z0)|pdxdv
)

= 2p
∫

BR(z0)

|f0(x, v)χBR(z0)|pdxdv.

This again yields

||f(t)χBR(zβ) − f0χBR(z0)||Lp = 2||f0χBR(z0)||Lp . (5)

By the triangle inequality,

||f0||Lp = ||f0 − f0χBR(z0) + f0χBR(z0)||Lp

≤
(

||f0 − f0χBR(z0)||Lp + ||f0χBR(z0)||Lp

)

.

Thus we have

||f0||Lp − ||f0 − f0χBR(z0)||Lp ≤ ||f0χBR(z0)||Lp . (6)
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For t > T , we have

||f(t)− f0||Lp ≥ ||f(t)χBR(zβ) − f0χBR(z0)||Lp − 2η by (4)

= 2||f0χBR(z0)||Lp − 2η by (5)

≥ 2
(

||f0||Lp − ||f0 − f0χBR(z0)||Lp

)

− 2η by (6)

≥ 2||f0||Lp − 4η by (3)

If we take η > 0 sufficiently small so that

η ≤ 1

4
||f0||Lp .

then for such η we have

||f(t)− f0||Lp ≥ ||f0||Lp .

This completes the proof.

Remark 6. For the p = ∞ case, we can obtain a similar unstable result as for p < ∞
by using the radially monotonic property of the stationary solution f = f(x, v),
which is constructed in the previous section.

5. Conclusion. In this paper, we established the existence and instability of sta-

tionary radial solutions to the Vlasov–Poisson–Boltzmann system with attractive

self-consistent forces in the absence of external forcing and background density. The

stationary radial solutions are in fact the corresponding solutions to the Vlasov–

Poisson system, which are of the form of local Maxwellians:

f(x, v) = eu(|x|)e−c0|v|
2

,

where u = u(|x|) are C2 functions satisfying

∆xu+ κne
u = 0, κn = 2c0

(
π/c0

)n/2
.

By the phase-portrait analysis, we make a rigorous argument for the asymptotic

behavior of u, which was first obtained by Joseph and Lungren [20]:

lim
r→∞

(

u(r)− log
2(n− 2)

κnr2

)

= 0.

Therefore, our constructed radial solution f = f(x, v) belongs to Lp(R2n), p >
n
2 , n > 2. For the instability of the stationary radial solutions, we employed the

Galilean boost method. This Galilean boost generates a one-parameter family of

time-dependent perturbed solutions whose supports are almost separated from that

of the given stationary radial solution as t → ∞. By this simple observation, the

Vlasov–Poisson–Boltzmann system with an attractive force is dynamically unstable

for the Lp(R2n) norm with p > n
2 .

Appendix A. The proof of Proposition 2. In this appendix, we present the

detailed proof of Proposition 2.

It follows from Lemma 3.4 that the trajectory cannot stay within the region H+

and H− forever. Hence we have the following possibilities(see Figure 1):

S-A: (V (t), Q(t)) does touch the line {(V,Q) ∈ R
2 : V < 0, Q = 0} at a finite time

or infinite time.

S-B: (V (t), Q(t)) tends to (0, 0) without touching the line {(V,Q) ∈ R
2 : V <

0, Q = 0} and {(V,Q) ∈ R
2 : V = 0, Q > 0}.

S-C: (V (t), Q(t)) approaches asymptotically to a point on the line {(V,Q) ∈ R
2 :

V > 0, Q = 0} at T = ∞.
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S-D: (V (t), Q(t)) touches the line {(V,Q) ∈ R
2 : V > 0, Q = 0} at a finite time T ,

and it approaches the unique fixed point (0, 0) in a spiraling trajectory.

S-E: (V (t), Q(t)) does not touch the line {(V,Q) ∈ R
2 : Q = 0} but V (t) goes to

infinity.

Figure 1.

In the following, we will show that the S-D case only occurs for n < 10 and the

S-B case only occurs for n ≥ 10.

Case A-1: Suppose (V (t), Q(t)) touches the line {(V,Q) ∈ R
2 : V < 0, Q = 0}

at a finite time t = T < ∞. Then we set t∗ → −∞ and t∗ = T in (8) and use

Q(T ) = 0, Q(−∞) = 2 to get

0 = 2(n− 2)

∫ T

−∞

(1− eV )e(n−2)tdt > 0,

where we used the fact that V (t) < 0, t ∈ (−∞, T ]. This gives a contradiction.

Case A-2: Suppose (V (t), Q(t)) touches the line {(V,Q) ∈ R
2 : V < 0, Q = 0} at

t = ∞. In this case,

0 = lim
T→∞

Q(T ) = lim
T→∞

2(n− 2)
∫ T

−∞
(1− eV )e(n−2)tdt

e(n−2)T

= lim
T→∞

2(n− 2)(1− eV (T ))e(n−2)T

(n− 2)e(n−2)T

= lim
T→∞

2(1− eV (T )) > 0.

We combine Case A-1 and Case A-2 to conclude that Case A cannot occur for the

dynamics of (7) regardless of dimension n.
Now, we can prove the second statement of this proposition. Assume that for

n ≥ 10, Case C or D or E occurs. Then, by Lemma 3.4, there is a finite number T
such that

T = sup{τ : V (t) < 0 on (−∞, τ ]}.
Then we have V (T ) = 0 and Q(T ) > 0. For arbitrary µ > 0, there might be several

intersection points between the line Q = −µV and the trajectory (V (t), Q(t)).
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(a) 2 < n < 10 (b) n ≥ 10

Figure 2.

Among them, we set (Vµ, Qµ) to be the intersection point with the largest V values.

By direct calculation, we have

−µ ≤ dQ

dV

∣
∣
∣
∣
V=Vµ

= −(n− 2) + 2(n− 2)
1− eV

Q

∣
∣
∣
∣
V=Vµ

by (6)

= −(n− 2) + 2(n− 2)
1− eVµ

−µVµ

= −(n− 2) +
2(n− 2)

µ

eVµ − 1

Vµ

< −(n− 2) +
2(n− 2)

µ
by Vµ < 0.

(1)

By (1), we can obtain

µ2 − (n− 2)µ+ 2(n− 2) > 0, for all µ > 0.

This implies (n− 2)2 − 8(n− 2) < 0 but we already assume that n ≥ 10. This is a

contradiction. Therefore, for spatial dimension n ≥ 10, the trajectory (V (t), Q(t))
goes to the equilibrium point (0, 0) directly without touching the line V = 0 as

t → ∞.

Below, we consider the case where 2 < n < 10.

Case B-1: Suppose Scenario B occurs in a finite time t = T . Then by the same

argument with t∗ = −∞ and t∗ = T as in Case A-1, we obtain a contradiction.

Case B-2: Suppose (V,Q) converges to (0, 0) as t → ∞. In this case, by the

monotonicity of V , the trajectory satisfies

(V (t), Q(t)) → (0, 0) as t → ∞ and V (t) < 0, 0 < Q(t) < 2, t ≥ 0.



144 SOOHYUN BAE, SUN-HO CHOI AND SEUNG-YEAL HA

Consider a nontrivial test function q(t) that is a solution to the following ODE:

q′′ + (n− 2)q′ + bq = 0, (q, q′)(0) = (0, 1), (2)

where b > (n−2)2

4 is a positive constant to be determined later. By direct calculation,

we have an oscillatory solution:

q(t) =
2e−(n−2)t/2

√

−(n− 2)2 + 4b
sin

( t

2

√

−(n− 2)2 + 4b
)

.

Since lim
t→∞

V (t) = 0, there exists a T such that

eV − 1

V
≈ 1, t ≥ T.

Then for such T , we can choose b to satisfy

(n− 2)2

4
< b < 2(n− 2)

eV − 1

V
on [T,∞). (3)

However, V satisfies the ODE (6):

V ′′ + (n− 2)V ′ + 2(n− 2)
(eV − 1)

V
V = 0. (4)

We now consider

V × (2)− q × (4).

This yields

(V q′ − V ′q)′ + (n− 2)(V q′ − qV ′) +
(

b− 2(n− 2)
(eV − 1)

V

)

V q = 0. (5)

Since q(t) is a oscillatory solution, we can choose a T < t0 < t1 satisfying the

following:

q(t) ≥ 0 on [t0, t1], q(t0) = q(t1) = 0 and q′(t0) > 0 > q′(t1). (6)

We multiply (5) by the integrating factor e(n−2)t to find

(

e(n−2)s(V q′ − V ′q)
)′

= −
(

b− 2(n− 2)
(eV (s) − 1)

V (s)

)

V (s)q(s)e(n−2)s.

We integrate this relation from t0 to t1 to obtain

e(n−2)t1V (t1)q
′(t1)− e(n−2)t0V (t0)q

′(t0)

= −
∫ t1

t0

(

b− 2(n− 2)
(eV (s) − 1)

V (s)

)

V (s)q(s)e(n−2)sds,
(7)

where we used

q(t0) = q(t1) = 0.

Note that relation (6) implies that

L.H.S. of (7) > 0.

In contrast, the R.H.S. of (7) is negative because
(

b− 2(n− 2)
(eV (s) − 1)

V (s)

)

< 0, V (s)q(s)e(n−2)s < 0, t ∈ (t0, t1).

Hence Scenario B does not occur for the 2 < n < 10 case.
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Case C: Suppose Scenario C occurs. In this case, we must have

lim
t→∞

V ′(t) = 0, lim
t→∞

Q′(t) = 0.

However, it follows from (7) that this forces (V,Q) to approach (0, 0) as t → ∞,

which is contradictory to Scenario C.

Case E: Suppose Scenario E occurs. In this case, we can find t∗ that satisfies

V (t∗) = 0. For such t∗, we also choose t∗ = ∞ in (9) to find

1

2

(

Q(∞)2 −Q(t∗)
2
)

= −
[

2(n− 2)

∫ ∞

0

(eV − 1)dV + (n− 2)

∫ ∞

t∗

Q2(t)dt
]

.

Then it is easy to see that the R.H.S. of the above relation is −∞, whereas the

L.H.S. is bounded. Hence we have a contradiction.

Therefore for the 2 < n < 10 case, (V (t), Q(t)) touches the line {(V,Q) ∈ R
2 :

V > 0, Q = 0} at a finite time T , i.e.,

V (T ) = V∗, Q(T ) = 0.

Then it follows from (7) that

V ′(T ) = 0, Q′(T ) = 2(n− 2)(1− eV∗ ) < 0.

Hence for t ∈ (T, T + ε), for some ε > 0,

Q(t) < Q(T ) = 0, t ∈ (T, T + ε).

This also implies that V is strictly decreasing on (T, T + ε). We repeat the same

arguments in this proposition to show that the trajectory (V,Q) should touch the

line {(V,Q) ∈ R
2 : V < 0, Q = 0} in a finite time T∗ > T again. By repeating

this argument, we can see that the trajectory (V,Q) swirls around the unique fixed

point (0, 0) in the two-dimensional phase plane.
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[3] M. Chae and S.-Y. Ha New Lyapunov functionals of the Vlasov-Poisson system, SIAM J.

Math. Anal., 37 (2006), 1709–1731.
[4] M. Chae, S.-Y. Ha and H. Hwang Time-asymptotic behavior of the Vlasov–Poisson–

Boltzmann system near vacuum, J. Differential Equations, 230 (2006), 71–85.

[5] S.-H. Choi, S.-Y. Ha and H. Lee Dispersion estimates for the two-dimensional Vlasov.Yukawa

system with small data, J. Differential Equations, 250(1) (2011), 515–550.
[6] S.-H. Choi and S.-Y. Ha Dynamic instability of stationary solutions to the nonlinear Vlasov

equations, Int. J. Numer. Anal. Model. Ser. B, 2 (2011), 415–421.
[7] L. Desvillettes and J. Dolbeault On long time asymptotics of the Vlasov–Poisson–Boltzmann

equation, Commun. Partial Diffential Equations, 16 (1991), 451–489.
[8] R.-J. Duan and R.M. Strain Optimal time decay of the Vlasov–Poisson–Boltzmann system

in R
3, Arch. Rat. Mech. Anal., 199 (2011), 291–328.

[9] R.-J. Duan and T. Yang Stability of the one-species Vlasov–Poisson–Boltzmann system,
SIAM J. Math. Anal., 41(6) (2010), 2353–2387.

[10] R.-J. Duan, T. Yang and C. Zhu Existence of stationary solutions to the Vlasov–Poisson–

Boltzmann system, J. Math. Anal. Appl., 327 (2007), 425–434.
[11] R.-J. Duan, T. Yang and C. Zhu L1 and BV-type stability of the Boltzmann equatiion with

external forces, J. Differential Equations, 227 (2006), 1–28.

http://www.ams.org/mathscinet-getitem?mr=MR2570766&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0794002&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2213390&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2270547&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2737852&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2869590&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1104107&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2754344&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2579717&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2277423&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2233952&return=pdf


146 SOOHYUN BAE, SUN-HO CHOI AND SEUNG-YEAL HA

[12] R.-J. Duan, M. Zhang and C. Zhu L1-stability for the Vlasov-Poisson-Boltzmann system

around vacuum, Mathematical models and Methods in Applied Sciences, 16 (2006), 1505–
1526.

[13] R. Glassey The Cauchy Problem in Kinetic Theory Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA. 1996

[14] R. Glassey and W.A. Strauss Perturbation of essential spectra of evolution operators and the

Vlasov–Poisson–Boltzmann system, Discrete Contin. Dynam. Systems, 5 (1999), 457–472.
[15] Y. Guo The Vlasov–Poisson–Boltzmann system near Maxwellians, Commun. Pure Appl.

Math., 55 (2002), 1104–1135.
[16] Y. Guo The Vlasov–Poisson–Boltzmann system near vacuum, Commun. Math. Phys., 218

(2001), 293–313.
[17] S.-Y. Ha Nonlinear functionals of the Boltzmann equation and uniform stability estimates,

J. Differential Equations, 215 (2005), 178–205.
[18] S.-Y. Ha L1-stability of the Boltzmann equation for the hard-sphere Model, Arch. Rat. Mech.

Anal., 173(2) (2004), 279–296.
[19] S.-Y. Ha and H. Lee Global well posedness of the relativistic Vlasov–Yukawa system with

small data, J. Math. Phys., 48 (2007), 123508.
[20] D.D. Joseph and T.S. Lundgren Quasilinear Dirichlet problems driven by positive sources,

Arch. Rat. Mech. Anal., 49(4) (1973), 241–269.
[21] P. L. Lions and B. Perthame Propagation of moments and regularity for the 3-dimensional

Vlasov–Poisson system, Invent. Math., 105(1) (1991), 415–430.
[22] S. Mischler On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system,

Commun. Math. Phys., 210 (2000), 447–466.
[23] T. Yang, H.-J. Yu and H.-J. Zhao Cauchy problem for the Vlasov–Poisson–Boltzmann system,

Arch. Rat. Mech. Anal., 182(3) (2006), 415–470.
[24] T. Yang and H.-J. Yu Optimal convergence rates of classical solutions for Vlasov–Poisson–

Boltzmann system, Commun. Math. Phys., 301 (2011), 319–355.
[25] M. Zhang Stability of the Vlasov–Poisson–Boltzmann system in R3, J. Differential Equations,

247 (2009), 2027–2073.

E-mail address: shbae@hanbat.ac.kr

E-mail address: matcs@nus.edu.sg

E-mail address: syha@snu.ac.kr

URL: http://www.math.snu.ac.kr/~syha

http://www.ams.org/mathscinet-getitem?mr=MR2254295&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1379589&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1696322&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1908664&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1828983&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2146347&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2081032&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2377840&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0340701&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1115549&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1776840&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2276498&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2764990&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2560048&return=pdf


NODAL CONDITIONS FOR

HYPERBOLIC SYSTEMS OF BALANCE LAWS

Rinaldo M. Colombo
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Abstract. In recent years, research on nodal conditions for one dimensional
systems of hyperbolic balance laws has been developed by both the mathe-

matical and the engineering community. The result is a theory consisting of a

variety of specific (often unrelated) applications, comprising for instance vehic-
ular traffic dynamics, data flows in telecommunication networks, supply chains

as well as physical systems like water canals or gas networks. In many of these

cases, ad hoc well–posedness results were obtained, allowing to rigorously state
and consider problems of deep applicative interest, such as the optimal control

or the controllability of these equations. The present work aims to summarise

several recent contributions to this field from a unified point of view.

1. Introduction. Consider a system of balance laws in one space dimension of the
form

∂tu+ ∂xf(u) = g(t, x, u) , (1)

where t ∈ R+ is time, x ∈ R is the space variable, f is the flow and g the source
term. A wide variety of situations fit into (1) equipped with a further algebraic
condition imposed at a nodal point x∗, which can be fixed, leading to

Ψ (t, u(t, x∗+)) = 0. (2)

or a function x∗ = x∗(t) implement a coupling with ordinary differential equations,
such as

Ψ (t, x∗(t), ẋ∗(t), ẍ∗(t), u (t, x∗(t)+)) = 0 . (3)

This presentation reviews various examples of problems leading to (1)–(2) or (1)
and (3), showing the analogies and the differences among the many available recent
results. A key role is played by the nodal condition (2) or (3). Indeed, the function
Ψ may either stem from physical considerations of the specific real situation being
modeled, or play the role of an external control to be chosen according to suitable
optimality criteria. In the case of phase transitions, for instance, the nodal condition
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is often referred to as kinetic condition, since it relates the flow of changing phase
fluid to the states on the sides of the phase boundary.

Below, we mostly consider systems with a single nodal point, although the finite
propagation speed typical of (1) easily allows the extension to the case of multiple
nodal points and thereby to networks, see also [45].

The current literature offers several well posedness theorems for (1)–(2) or (1)–
(3). Mostly, these results are local both in time and in the u variable, in the sense
that they often require the initial datum to be a perturbation with sufficiently
small total variation of a stable constant state. A widely used analytical technique
to obtain these results is wave front tracking, originated in [33] and since then
extensively refined and exploited, see for instance [15, 23, 25, 28, 32, 34, 44, 50].

2. Fixed Nodal Points. In the case of a fixed nodal point, one usually considers n
half-lines with common origin at x∗ = 0. System (1) then consists of n independent
balance laws ∂tuj + ∂xfj(uj) = gj(t, x, uj), each defined for x > 0, coupled through
the nodal condition (2). The wave front tracking procedure can be used to construct
solutions to (1)–(2) as soon as a well posedness theory for the Riemann problem at
the nodal point, i.e., of ∂tu+ ∂xf(u) = 0

Ψ (u(t, 0+)) = 0
u(0, x) = ū ,

t ∈ R+

x ∈ R+ (4)

where

u =

 u1
. . .
un

 , f(u) =

 f1(u1)
. . .

fn(un)

 , g(t, x, u) =

 g1(t, x, u1)
. . .

gn(t, x, un)

 , (5)

with constant values ūj is obtained. Once a good well posedness theory for (1)–(2)
is available, the well posedness of the Cauchy problem might also be obtained.

To this aim, one first considers the homogeneous the case g = 0. As in the case of
the standard Cauchy problem for a system on hyperbolic conservation laws, using,
for instance, the wave front tracking algorithm [33], a sequence of approximate
solutions to the Cauchy problem at the nodal point, namely ∂tu+ ∂xf(u) = 0

Ψ (u(t, 0+)) = 0
u(0, x) = uo(x) ,

t ∈ R+

x ∈ R+ ,
(6)

is constructed. Bounds on the total variation allow, through Helly Compactness
Theorem, to prove the convergence of this sequence. More careful estimates, relying
on pseudopolygonals [16] when n = 2 and on the Liu–Yang functional [17, 64] for
n ≥ 3, ensure that the approximate solutions or their limit are L1–Lipschitz function
of the initial datum. Typically, results of this type are local in the u space, in the
sense that the initial datum uo in (6) is required to satisfy

uo ∈ u∗ + L1 and TV(uo − u∗) < δ (7)

for a sufficiently small δ and a given state u∗ required to satisfy typically Ψ(u∗) = 0.
For all this to hold, classical assumptions on f satisfied in the various cases dis-

cussed below, are that Jacobian Df(u∗) is strictly hyperbolic and that each char-
acteristic field is either genuinely nonlinear or linearly degenerate. More precisely
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f needs to be at least C4(RN ;RN ) where N the overall dimension of the system (1)
and Df(u∗) is required to admit N real distinct eigenvalues

λ1(u∗) < λ2(u∗) < . . . < λN (u∗)

such that, together with the corresponding eigenvectors r1, r2, . . . , rN , satisfy

for i = 1, . . . , N

{
either ∇λi(u) · ri(u) 6= 0 at u = u∗ ,

or ∇λi(u) · ri(u) ≡ 0 in a neighborhood of u∗ .

We refer, for instance, to [15, 34] for more details in the standard case of no junction.
For completeness, we remark that the latter conditions above were significantly
relaxed in [1], see also [34].

The presence of a nodal point, with the corresponding nodal condition (2), deeply
interferes with the necessary set of estimates. A standard requirement on the nodal
condition (2), besides that Ψ ∈ C1(RN ;RN ), is a transversality condition between
the gradient of Ψ and the eigenvectors of Df at u∗ of the type

det [Du1
Ψ(u∗) r2(u∗1) · · · Dun

Ψ(u∗) r2(u∗1)] 6= 0 .

This condition, through an application of the Implicit Function Theorem, allows
to obtain suitable estimates on interactions hitting the nodal point. The standard
well posedness result for (1)–(2) when g = 0 thus ensures the existence of an L1–
Lipschitz semigroup of solutions defined globally in time and locally in u, in the
sense of (7). Various characterizations of the solutions, as well as its stability with
respect to perturbations of f or Ψ are also available.

As in the case of no junctions, the essential role played by the Implicit Function
Theorem hinders the extension of well posedness results beyond condition (7).

Once well posedness is obtained for g = 0, the full case ∂tu+ ∂xf(u) = g(t, x, u)
Ψ (u(t, 0+)) = 0
u(0, x) = uo(x) ,

t ∈ R+

x ∈ R+ ,
(8)

usually follows through operator splitting, along the lines initiated in [35]. The
source term is then treated as an ordinary differential equation, where u depends
on time t and on the space variable as parameter. As a consequence, the usual
assumptions on g remind of those in the theory of ordinary differential equations:
namely local Lipschitz continuity and sublinearity in u. Due to the key role played
by total variation estimates, it is also necessary to ensure that the source term may
not cause blow–ups in the oscillations of the approximate solutions. To this end,
uniform bound on the total variation in space of g are often required.

Remark that the introduction of a source term typically makes it impossible to
obtain global in time existence results. In general, without any invariance condition,
the source term may cause a drift of the solution in the u space, exiting the neigh-
borhood of u∗ where the Implicit Function Theorem, and hence Riemann problems,
can be solved.

A natural further extensions consists in dealing with (1)–(2) on a network, which
is modeled as directed graph (G,A). The set of arcs j ∈ A connect various nodal
points, see for instance [44] for a rigorous definition of network that applies to
the present case. The analytical treatment of (1)–(2) on networks consists in a
superposition of results described above for (8), one at each nodal point of the
network. Clearly, the finite speed of propagation inherent to (1) easily allows to
obtain results on a finite time interval. Existence and stability globally in time is
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much harder to obtain and further assumptions become necessary, see for instance
the example [45]. Note that (8) can also be seen as a particular case of a system of
balance laws in a domain with boundary, see [28, Section 4.1].

The following paragraphs are devoted to different examples of (8) in specific
situations of interest in various mathematical and engineering applications.

2.1. Gas Dynamics in Pipelines. Historically, Euler equations of gas dynamics
have been the paradigm according to which the theory of conservation (or balance)
laws has been developed. Also in the case of nodal points, (high–pressure) gas
pipelines provide a wealth of stimulating real problems, see for instance [8, 9, 23,
28, 29, 32, 52, 60].

In a typical real pipe the ratio between pipe length and diameter is large enough
to justify the use of Euler equations in one space dimension, or approximations
thereof. Therefore, the natural setting for gas pipeline models consists of n pipes
connected at a fixed point, say x∗ = 0, and the gas is described through the isen-
tropic Euler equations, so that (1) consists of n copies of the p-system, i.e., in (5)
we set

uj =

[
ρj
qj

]
fj(u) =

[
qj

qj
2

ρj
+ p(ρj)

]
gj(t, x, u) =

[
0

−ν qj |qj |
ρJ
− ρj ḡ sinαj(x)

]
(9)

where the pressure law p can be, for instance, the usual γ–law p(ρ) = κ ργ . Above,
gj is a typical source term with a zero component in the mass equation, while
the second component describes the effect ḡ sinαj(x) of gravity (αj(x) being the
slope of the j-th pipe at x) and the effect −ν q |q|/ρ of friction (ν being a constant
parameter) on the balance of momentum. Remark that in the case n = 2 the present
setting may also describe the dynamics of gas flowing in a pipe with a kink [60].

The 1D framework allows a rather simple modeling structure and, mostly, very
fast numerical integrations. A model in one space dimension well describes the
dynamics within a pipe, but hardly covers geometry effects at a junction, which
is clearly an intimately 3D phenomenon. As a consequence, the literature offers
several different choices for the nodal condition (2), depending on the specific needs
of each particular situation. In the engineering literature, the nodal conditions are
typically supplied with parameters whose values are empirically justified.

In the subsonic setting, condition (2) has to provide n conditions to single out a
unique solution to the Riemann problem (4). One component, say the first, of Ψ

Ψ1(u) =
n∑
j=1

aj qj (10)

ensures the conservation of mass. Here, aj is the surface section of the j-th pipe.
The other components of Ψ may impose, for instance, equal pressure at the node

Ψj(u) = p(ρj)− p(ρ1) j = 2, . . . , n (11)

or the continuity of the dynamic pressure at the node

Ψj(u) = aj

(
qj

2

ρj
+ p(ρj)

)
− a1

(
q1

2

ρ1
+ p(ρ1)

)
j = 2, . . . , n . (12)

We refer to [8, 9, 23, 29] and to the references therein for more details on the related
modeling and computational results.
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Figure 1. Schematic of a gas compressor station with two con-
nected pipes and slope αi.

On the other hand, the nodal point may well be a model for a compressor station
between n = 2 pipes having the same section a1 = a2, see Figure 1. In this case,
the nodal condition consists of (10), while (11) is replaced, for instance, by

Ψ2(t, u) = q2

((
p(ρ2)

p(ρ1)
− 1

)(γ−1)/γ
)
−Π(t) (13)

see [28, Section 3.1], [65, Section 4.4, Formula (4.9)] or [67]. Here, Π is proportional
to the power exerted by the compressor. This framework naturally leads to various
control problems, where the open–loop control Π = Π(t) has to be chosen to satisfy
suitable optimality criteria, see [10, 28, 43, 51, 52]. Closed–loop control problems,
where Π depends on on the traces u1(t, x∗+) and u2(t, x∗+) of the state of the fluid,
were studied in the case of smooth solutions in [42, 52].

For completeness, we recall that the above has been partly extended to the case
of the full 3× 3 system of Euler equations in [30, 32].

A drift–flux model for a two–phase gas was considered in [7] in the isothermal
case under a no–slip assumption. Here, (1)–(2) can be used, with (5) and

uj =

 ρ1j
ρ2j

(ρ1j + ρ2j )vj

 , fj(uj) =


ρ1j v

ρ2j v

(ρ1j + ρ2j )
(

(vj)
2 + a2

2

)
 , g(t, x, u) = 0 .

Here, ρij is the density of the i-th component in the j-th pipe and vj is the fluid
speed, common to both phases in the j-th pipe. The sound speed a is assumed to be
the same for all phases, see [6] for a more general setting. At the junction, the nodal
condition (2) imposes the conservation of the total mass of each phase, similarly
to (10). Besides, it is usually required that all velocity flows at the junction are
equal, so that

Ψj(u) =
1

2

(
v2j − v21

)
+
a2

2
log

ρ1j + ρ2j
ρ11 + ρ21

j = 2, . . . , n . (14)

The existence of weak solutions to (1)–(2)–(10)–(14) for constant initial data with
separated wave speeds was obtained in [7, Proposition 3.1].

In order to capture effects of the 3D situation numerical integrations [53, 57] of
multi–dimensional formulation of gas dynamics close to a nodal point have been
performed. A 2D domain D models the nodal point (see Figure 2 for an example)
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and for (x, y) ∈ D and the usual γ−law for p the isentropic Euler equations

∂t

 ρ
ρ u
ρ v

+ ∂x

 ρ u
ρ u2 + p(ρ)

ρ u v

+ ∂y

 ρ v
ρ u v

ρ v2 + p(ρ)

 = 0. (15)

are solved numerically. For piecewise constant initial data comparisons of flow and
pressure computations by nodal conditions (10)–(11) and (10), (12)with numerical
averaging of solutions (ρ, ρu, ρv) of (15) have been studied [57]. For initial data
and small velocities vj,0 the results should qualitatively similar behavior. Further
studies exist for the Euler equations [53].

Figure 2. Domain D for numerical integration of gas dynamics
equations in 2D resembling a nodal point.

2.2. Traffic Flow on Road Networks. The use of conservation laws in the mod-
eling of traffic dynamics goes back to the pioneering works of Lighthill–Whitham [63]
and Richards [66], introducing the (LWR) model (1) where u ∈ [0, 1] is the averaged
traffic density, f(u) = u v(u) is the flow, g = 0 and the speed law v = v(u) is a
smooth decreasing function vanishing at the maximal density u = 1. The case of
junctions was then considered for instance in [21, 59, 61], see also [45].

It is customary to distinguish the n roads impinging on the node located at
x∗ = 0 between l roads where vehicles move towards the node and n− l roads where
the cars exit. One is thus lead to a system of the type (1), namely{

∂tuj + ∂x (uj vj(uj)) = 0 x ∈ R− j ∈ {1, . . . , l}
∂tuj + ∂x (uj vj(uj)) = 0 x ∈ R+ j ∈ {l + 1, . . . , n} .

(16)

The nodal condition (2) now prescribes the conservation of cars and the priority
rules at the junction. The former reads

Ψ1(u) =

l∑
j=1

uj vj(uj)−
n∑

j=l+1

uj vj(uj) ,

while the latter take different forms. In an autonomous settings, they are chosen
according to various maximality conditions. For example, it is commonly postulated
that drivers tend to optimize the flow through the junction, see [21, 45]. These
maximization principles remind of an entropy condition at the node, guaranteeing
a well–posed Riemann problem (4). The presence of traffic light leads to a non–
autonomous setting, where Ψ depends explicitly (typically periodically) on time,
see [27]. A vanishing viscosity approach to the nodal condition (2) in traffic flow is
developed in [20].
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In order to have a better description of traffic flows, in particular of the depen-
dence of the averaged velocity vj upon the traffic density, several extensions of the
LWR model were proposed. Among the so called ”second–order”, we recall the fam-
ily of Aw–Rascle–Zhang equations [5, 68], where uj = (ρj , ρjwj) and the average
vehicular velocity vj is coupled to the traffic density ρj and to a property wj by

wj = vj + p(ρj) .

The system (16) is thus replaced by the (2n)× (2n)–system of type (1)
∂t

[
ρj
ρjwj

]
+ ∂x

[
ρjvj
ρjvjwj

]
= 0 x ∈ R− j ∈ {1, . . . , l}

∂t

[
ρj
ρjwj

]
+ ∂x

[
ρjvj
ρjvjwj

]
= 0 x ∈ R+ j ∈ {l + 1, . . . , n} ,

(17)

As in the LWR case, the nodal condition (2) ensures the conservation of vehicles,
with

Ψ1(u) =
l∑

j=1

ρj vj −
n∑

j=l+1

ρj vj , (18)

and imposes further additional relations, for instance the maximization of the flow
through the junction, as in [44].

Different coupling conditions for the Aw–Rascle–Zhang have been presented
in [56]. Assume for now n = 3 and l = 2. Besides conservation of vehicles (18)
the value of w is preserved through the node since it is a Lagrangian variable mov-
ing at velocity v. In the case l = 2 the conservation of w is achieved by modifying
the pressure p(ρ) on the exiting road (j = 3). In the case of Riemann data uj,o
the new pressure p† is given by the p for x ≥ t v3,o. For x ≤ t v3,o the pre-
cise form of the function p† depends on an additional condition on the mixture of
cars. Assuming cars enter turn by turn from the two impinging roads (j ∈ {1, 2})
the following formulation is derived p†(ρ) = 1

2 (w2,o + w1,o) − v†. Herein, v† solves
1
ρ = 1

2

(
p−1( 1

w1,o−v ) + p−1
(

1
w2,o−v

))
for fixed values wi,o [56, Section 6]. It has

been shown that the coupling condition is given by (18) and

Ψ2(u) =
l∑

j=1

ρj vj wj −
n∑

j=l+1

ρj vj wj .

A further development in traffic descriptions leads to multiphase models. It is
now commonly accepted that any fundamental diagram ρ → ρ v(ρ) for the LWR
model is reliabale at high speeds (low densities), but real data show that it becomes
hardly acceptable at low speeds (high densities). From a macroscopic point of view,
this leads to the introduction of different phases, typically the free and the congested
one, see [12, 22, 24, 31]. Typically, these models display a dynamics of phases
that very much resembles, for instance, that of liquid–vapor transitions. Different
segments along the same roads can be in either phases, with vehicles entering and
exiting these regions, crossing the moving phase boundaries. Therefore, suitable
nodal conditions need to be prescribed along any phase boundary x = x∗(t). These
nodal conditions are rather implicit: in general, they are prescribed through the
selection of a specific definition of solutions to Riemann problems at the phase
boundary, rather than explicitly through a function Ψ like (3). Here, a Riemann
problem at the boundary is a system of the form (4) with n = 2 and data in
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Figure 3. Left, the fundamental diagram ρ → ρ v of the model
presented in [22] and, right, that of the models in [12, 31]. The
maximal car density is assumed to be R.

two different phases, i.e., in the two connected component that constitute the u
space, see for instance Figure 3. For a detailed treatment of the nodal conditions
in phase transitions traffic model we defer to the cited literature [12, 22, 24, 31].
These models posed various new question, originating rich research directions at
the strictly theoretical level, see [26], at the numerical level [2, 12, 18, 19, 58] and
towards junctions or networks, see [25, 46]. In the latter case, they are supplied
with further nodal conditions of the type (2) that first ensure the conservation of
vehicles and then, as in the single phase case, prescribe the priorities rules at the
junction.

Coupling conditions based on numerical integrations of fine–scale traffic flow
models have been proposed [54]. The fine–scale traffic flow model including ge-
ometry effects at the node is given by a multi–lane description of traffic flow at a
nodal point. Then, the closing or opening of a lane is used as approximation and
simulations for different scenarios are performed.

2.3. Product flow in supply chains. A continuum description of the product
density in high–volume production lines has been derived and analysed [3]. The
governing equations are of the type (1), where

u =

u1. . .
un

 , f(u) =

f1(u1)
. . .

fn(un)

 and fj(uj) = min{vjuj , µj} . (19)

Here, the index j refers to the supplier, uj is the product density; vj , respectively
µj , is the non–negative constant production velocity, respectively capacity, see [4,
47, 48]. Similarly to traffic flow networks, we distinguish between the l suppliers
delivering to the nodal point at x∗ = 0 and the n−l suppliers receiving parts from x∗.
But differently from what happens in traffic modeling, due to possible differences
in the total capacities of the different suppliers, the total mass is typically not
conserved at the node. Therefore, the dynamics of the suppliers 1, . . . , l is coupled
through a priori unknown new functions q1(t), . . . , ql(t) describing the amount of
parts waiting in suitable buffers when the lines they have to enter is congested. This
leads to a time–dependent coupling condition of the type (2), namely

Ψ(t, u) =

∫ t

to

 l∑
j=1

fj (uj(s, 0−))−
n∑

j=l+1

fj (uj(s, 0+))

 ds− qj(t) + qj(to) . (20)
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Clearly, (20) is not sufficient to obtain a well–posed Riemann problem at the node
and therefore is complemented by the j = l + 1, . . . , n coupling conditions

Ψj(t, u) = qj(t)− qj(to) +

∫ t

to

(
fj (uj(s, 0+))−

l∑
k=1

αjk(s)fk (uk(s, 0−))

)
ds (21)

that prescribe how the parts are distributed among the outgoing lines. Indeed, the
known parameter αjk(t) ∈ [0, 1] is the portion of parts flowing from the k-th line
that have to enter the j-th one at time t, for k = 1, . . . , l and j = l + 1, . . . , n.

The well–posedness of the Riemann problem (4)–(19)–(20)–(21), as well as that
of the corresponding Cauchy problem, is proved in [36, 55]. An extension of the
model (19) has been proposed in [37, 40] to treat the case of supply chains with spa-
tially and temporal depending capacities. Therein, µj = µj(t, x) and equation (19)
is replaced by uj = (ρj , µj) and fj(u) = ((19),−µ) , respectively. Coupling condi-
tions of the form (2) are proposed conserving total mass and the value of µ. Exis-
tence of solutions to the Cauchy problem for initial data with zero total variation
in µj,o has been established [37, Theorem 3].

2.4. Data flow on telecommunication networks. The transport of data pack-
ages on the internet has been modeled using conservation laws on networks [38, 39].
Each transmission line corresponds to a link in the network connected at a nodal
point at x∗ = 0. A model for the data package density ρj ≥ 0 and source destination
information πj for the packages is

uj =

[
ρj
πj

]
, fj(u) =

[
f̄j(ρ)
f̄j(ρ)/ρ

]
and f̄j(ρ) :=

{
v̄ ρ 0 ≤ ρ ≤ σj
v̄ σj

ρmax−ρ
ρmax−σj

σj ≤ ρ ≤ ρmax
,

where ρmax is the maximal package density on each link, v̄ > 0 a fixed transportation
velocity and σj > 0 a parameter corresponding to the probability of package losses
during transmission. A variety of coupling conditions have been discussed [39,
Section 4] ensuring in particular the conservation of mass at the node similar to (2.2).
This condition is not sufficient to guarantee well–posedness of the Riemann problem
and as in vehicular traffic flow additional conditions have to be imposed.

2.5. Networks of open canals. Water flow in open canals [11, 51, 62] can be
described by the St. Venant equations in on space dimension. When n canals enter
or exit the same origin, say x∗ = 0, we are lead to (1) with (5) and

uj =

[
aj
vj

]
, fj(u) =

[
aj

1
2 vj

2 + ḡ h(aj)

]
, gj(u) =

[
0

−ḡ h(aj)

]
, (22)

where vj is the water speed in the j-th canal, aj is the vertical cross section occupied
by the water, g is gravity, and H = h(a) is the water level. Condition (2) takes here
the form

Ψ1(u) =
n∑
j=1

aj vj , Ψj(u) =
1

2
vj

2 + ḡ h(aj)−
1

2
v1

2 − ḡ h(a1) j = 2, . . . , n

see [29, 62], ensuring that the conservation of water and the Bernoulli law are
satisfied at the junction.

Consider now n = 2 canals, the first entering into the second at, say, x∗ =
0, where an underflow gate regulates the water levels. A different choice of the
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Figure 4. An underflow gate with opening u = Π. The water
height in the two connected canals is indicated by Hi.

unknown variables leads to (1)–(5) with

uj =

[
Hj

qj

]
, fj(u) =

[
qj

qj
2

Hj
+ 1

2 ḡ Hj
2

]
,

gj(t, x, u) =

[
0

−ḡ hj sinαj(x)− ν(x)
qj |qj |
Hj

] (23)

for j = 1, 2, see Figure 4. Here, with reference to the j-th canal, qj is the flow of
water, Hj the water level, αj(x) the bed slope, ḡ gravity and ν a friction coefficient,
see [28, 41, 51]. In the nodal condition (2) we obtain

Ψ1(t, u) = a1 q1 − a2 q2, Ψ2(t, u) =
q1

2

H1 −H2
−Π(t).

In the second component, the time varying term Π = Π(t) is related to the height
of the underflow gate, meaning that for Π = 0 water can not flow through the
gate. The well posedness of the resulting system is proved in [28], together with
the L1–Lipshitz continuity of weak solutions with respect to variations in u. As
a consequence, when an L1–continuous cost integral is selected, the existence of
optimal control problems follows. For the same system, closed–loop controls are
considered in [11].

In [49] the shallow water equations (23) have been used to describe flow over a
weir and pooled stepped chutes, see Figure 5. Those are found typically next to
large dams in order to release overflowing water. A coupling condition based on the
conservation of the overspill and based on energy losses due to change of potential
energy during the spill is

Ψ1(u) = a1 q1 − a2 q2, Ψ2(u) = a1q1 − C ((h1 −H1)+ − (h2 −H2)+)
3
2 . (24)

Herein, (z)+ = max(z, 0), C = 0.6
√
ḡ, H1,2 are the heights of the weir in the

respective chutes and the other quantities are as before. Well-posedness results for
the Riemann problem for large data as well as well posedness of the Cauchy problem
has been established [49, Theorem 3.1].

3. Nodal Points in Mixed ODEs–PDEs Systems. When nodal conditions
are coupled with ordinary differential equations, the conditions allowing to prove
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Figure 5. Schematic of two connected pooled steps with a weir in
between, The weir has height H+ and the upper pooled step has
an elevation of H+ − H− compared with the lower pooled step.
The water heights are h1,2 = h±.

well posedness are more intricate. Moreover, key questions about the existence of
solutions globally in time remain mostly unanswered.

3.1. Fluid-Solid Interaction. An inviscid compressible fluid fills a vertical pipe
with uniform section. A disc of mass m is free to move in the pipe, subject to gravity
ḡ, to the interaction with the fluid and with the pipe walls. The disc prevents any
flow of mass through its location. It is then natural to describe the fluid on the two
sides of the disc by means of the p-system and the fluid–solid interaction through (2).
More precisely, we let n = 2 and use (1)–(5)–(9) with

Ψ(x∗, ẋ∗, ẍ∗, u1, u2) =

 ẋ∗ − q1/ρ1
ẋ∗ − q2/ρ2

ẍ∗ + ḡ + 1
m (p(ρ2)− p(ρ1))

 . (25)

The requirement Ψ1 (x∗(t), ẋ∗(t), ẍ∗(t), u1 (t, x∗(t)+) , u2 (t, x∗(t)−)) = 0, respec-
tively Ψ2 (x∗(t), ẋ∗(t), ẍ∗(t), u1 (t, x∗(t)+) , u2 (t, x∗(t)−)) = 0, ensures that the sp-
eed of the disc equals that of the fluid above, respectively below, to it. The effects
of gravity and of the difference in the fluid pressure between the two sides of the
disc are described by Ψ3 (x∗(t), ẋ∗(t), ẍ∗(t), u1 (t, x∗(t)+) , u2 (t, x∗(t)−)) = 0. The
resulting model (1)–(5)–(9)–(25) is able to describe the effects of a shock hitting
the disc, we refer to [14] for (local in time) well posedness results and numerical
integrations of this system.

3.2. A Manhole in a Sewerage System. Consider a vertical manhole that dis-
poses the water its collects through two horizontal pipes at its bottom, see Figure 6.
Call ai the wet cross sectional area, hi = hi(ai) is the corresponding height and qi
the water flow in the i-th tube. A given function pi = pi(ai) describes the water
pressure, possibly through the Preissman slot. The height of water in the manhole
is x∗ = x∗(t) and AM is th manhole sectional area. We describe the full system
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Figure 6. A vertical manhole with two horizontal tubes that exit
from it.

setting n = 2 and by means of (1)–(3)–(5) with, formally similarly to (22),

uj =

[
aj
qj

]
and fj(uj) =

[
qj

qj
2

aj
+ p(aj)

]
. (26)

The nodal condition (3) both ensures the conservation of water while passing from
the manhole to the pipes, the conservation of energy and provides a differential
equation for the water level in the manhole:

Ψ(t, x∗, ẋ∗, u1, u2) =


q1

2

a12 − q2
2

a22 + 2ḡ (h1(a1)− h2(a2))

q1
2

a12 + 2ḡ h1(a1)− (q1+q2)|q1+q2|
AM

2

ẋ∗ − 1
AM

(Q(t)− q1 − q2)


where Q is the water inflow in the manhole, see [13] for more details.
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Abstract. We review the relative entropy method in the context of hyper-

bolic and diffusive relaxation limits of entropy solutions for various hyperbolic
models. The main example consists of the convergence from multidimensional

compressible Euler equations with friction to the porous medium equation [7].
With small modifications, the arguments used in that case can be adapted to

the study of the diffusive limit from the Euler-Poisson system with friction to

the Keller-Segel system [8]. In addition, the p–system with friction and the
system of viscoelasticity with memory are then reviewed, again in the case of

diffusive limits [7]. Finally, the method of relative entropy is described for the

multidimensional stress relaxation model converging to elastodynamics [6, Sec-
tion 3.2], one of the first examples of application of the method to hyperbolic

relaxation limits.

1. Introduction. The relative entropy method was introduced in a context of
hyperbolic systems by Dafermos and DiPerna [3, 2, 5] and serves as a mathematical
tool for studying stability and limiting processes among thermomechanical theories.
The method consists of a direct calculation of the relative entropy between a weak,
entropy dissipative solution and a smooth, entropy conservative solution for the
underlying thermomechanical processes, and leads to a striking stability formula.
The same approach can be used to control hyperbolic relaxation limits [6, 9, 1] as
well as diffusive relaxation [7]. The novelty in the latter case lies in the fact that,
when dealing with a diffusive limit, the relative entropy method aims to compare
weak, entropy dissipative solutions of the approximating hyperbolic system with
smooth yet entropy dissipative solutions of the limit. Therefore, in order to prove
that the relative entropy can serve as a Lyapunov–type functional for the model,
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one has in that case to also control the dissipation of the limit diffusive equation in
terms of the dissipation of the approximating system.

In the present paper we review some examples of diffusive relaxation analyzed
in [7]: the case of 3–d isentropic gas dynamics with friction in Eulerian coordinates
(Section 2), 1–d p–system with friction (Section 4), and 1–d viscoelasticity of the
memory type converging to viscoelasticity of the rate type (Section 5.1). In addition
to these cases, in Section 3 we shall apply this technique to the Euler-Poisson system
with friction in a diffusive scaling, which has been treated in [4] by means of energy
methods and compensated compactness tools.

Finally, in Section 5.2, we shall review a result from [6, Sec 3.2] concerning the
convergence from viscoelasticity of the memory type to the equations of elastody-
namics. This is one of the first examples in the literature where the technique of
relative entropy has been utilized in the context of hyperbolic relaxation limits. The
general framework of such singular limits has been studied in [9], while the corre-
sponding analysis for general diffusive relaxation limits is still an open problem.

2. Isentropic gas dynamics in Eulerian coordinates with friction. As an
example to test the relative entropy method in the context of diffusive relaxation, let
us consider the (scaled w.r.t. a diffusive scaling) system of isentropic gas dynamics
with friction in three space dimensions:

ρt +
1

ε
divxm = 0

mt +
1

ε
divx

m⊗m
ρ

+
1

ε
∇xp(ρ) = − 1

ε2
m,

(1)

where t ∈ R, x ∈ R3, the density ρ ≥ 0 and the momentum m ∈ R3. At this level,
the pressure p(ρ) is a general function satisfying p′(ρ) > 0 so that (1) is hyperbolic.
The usual example of pressures verifying all needed conditions is given by the γ–
laws: p(ρ) = kργ with γ ≥ 1 and k > 0. The (formal) diffusive relaxation limit
ε→ 0 yields the porous media equation

ρ̄t −4xp(ρ̄) = 0 . (2)

In the sequel, we shall establish this limit via the relative entropy method.
An example of an entropy pair for (1) is given by the mechanical energy

η(ρ,m) =
1

2

|m|2

ρ
+ h(ρ)

and the associated flux of mechanical work

q(ρ,m) =
1

2
m
|m|2

ρ2
+mh′(ρ) ,

where h(ρ) = ρe(ρ) with e(ρ) the internal energy of the gas:

e′(ρ) =
p(ρ)

ρ2
; h′′(ρ) =

p′(ρ)

ρ
; ρh′(ρ) = p(ρ) + h(ρ).

For the particular case of γ–law gases, h takes the form

h(ρ) =


k

γ − 1
ργ =

1

γ − 1
p(ρ) for γ > 1 ,

kρ log ρ for γ = 1.
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Smooth solutions of (1) satisfy the energy identity

η(ρ,m)t +
1

ε
divx q(ρ,m) = − 1

ε2
∇mη(ρ,m) ·m = − 1

ε2
|m|2

ρ
≤ 0 ,

which reveals the dissipative nature of the mechanical energy η(ρ,m) along the
process (1).

Let us now consider a weak solution (ρ,m) of (1) that satisfies the weak form of
the entropy inequality,

η(ρ,m)t +
1

ε
divx q(ρ,m) +

1

ε2
|m|2

ρ
≤ 0 , (3)

and let ρ̄ ≥ 0 be a smooth solution of the porous media equation (2). Clearly, ρ̄
will also satisfy an energy dissipation identity of the form

h(ρ̄)t − divx
(
h′(ρ̄)∇xp(ρ̄)

)
= −|∇xp(ρ̄)|2

ρ̄
≤ 0 .

Thanks to the relative entropy method, we obtain an identity that monitors
the distance between ρ and ρ̄. Such identities have been obtained via the relative
entropy method for hyperbolic relaxation in [6, 9, 1], while the first results in a
diffusive relaxation framework are derived in [7].

We recall that the relative entropy is defined as the quadratic part of the Taylor
series expansion between two solutions (ρ,m) and (ρ̄, m̄):

η(ρ,m |ρ̄, m̄ ) := η(ρ,m)− η(ρ̄, m̄)− ηρ(ρ̄, m̄)(ρ− ρ̄)−∇mη(ρ̄, m̄) · (m− m̄)

=
1

2
ρ

∣∣∣∣mρ − m̄

ρ̄

∣∣∣∣2 + h(ρ |ρ̄ ) , (4)

while the corresponding relative entropy-flux reads

qi(ρ,m |ρ̄, m̄ ) := qi(ρ,m)− qi(ρ̄, m̄)− ηρ(ρ̄, m̄)(mi − m̄i)

−∇mη(ρ̄, m̄) · (fi(ρ,m)− fi(ρ̄, m̄))

=
1

2
mi

∣∣∣m
ρ
− m̄

ρ̄

∣∣∣2 + ρ(h′(ρ)− h′(ρ̄))
(mi

ρ
− m̄i

ρ̄

)
+
m̄i

ρ̄
h(ρ |ρ̄ ) , (5)

where i = 1, 2, 3, fi stands for the components of the (vector valued) flux in (1),

fi(ρ,m) = mi
m

ρ
+ p(ρ)Ii ,

and Ii is the i–th column of the 3× 3 identity matrix.
As noticed in [7], the novelty in the case of diffusive relaxation lies mainly in

the selection of the momentum m̄ in (4) and in (5). Indeed m̄ is chosen to adapt
itself in the relaxation, what allows to handle a diffusive relaxation process, where
both solutions that are compared are energy dissipative. More precisely, we choose
m̄ = −ε∇xp(ρ̄) and we rewrite (2) in the form of the system of Euler equations
with relaxation, plus additional higher–order error terms:

ρ̄t +
1

ε
∂xim̄i = 0

m̄t +
1

ε
∂xi

fi(ρ̄, m̄) = − 1

ε2
m̄+ e(ρ̄, m̄) ,

(6)
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where (we use the convention of summation over repeated indices and) ē is given
by

ē := e(ρ̄, m̄) =
1

ε
divx

(
m̄⊗ m̄
ρ̄

)
− ε∂t∇xp(ρ̄)

= εdivx

(
∇xp(ρ̄)⊗∇xp(ρ̄)

ρ̄

)
− ε∇x(p′(ρ̄)4xp(ρ̄))

= O(ε) . (7)

Thanks to the aforementioned rewriting of the limiting equation (2), it is possible
to analyze the relative entropy (4) and to prove the following result [7].

Proposition 2.1. Let (ρ,m) be a weak entropy solution of (1) satisfying (3) and
let (ρ̄, m̄) be a smooth solution of (6). Then,

∂tη(ρ,m |ρ̄, m̄ ) +
1

ε
divx q(ρ,m |ρ̄, m̄ ) ≤ − 1

ε2
R(ρ,m |ρ̄, m̄ )−Q− E , (8)

where

R(ρ,m |ρ̄, m̄ ) = ρ

∣∣∣∣mρ − m̄

ρ̄

∣∣∣∣2 ,
Q =

1

ε
∇2

(ρ,m)η(ρ̄, m̄)

(
ρ̄xi

m̄xi

)
·
(

0
fi(ρ,m|ρ̄, m̄)

)
, (9)

E = e(ρ̄, m̄) · ρ
ρ̄

(
m

ρ
− m̄

ρ̄

)
,

and e(ρ̄, m̄) is defined in (7).

Concerning the relative entropy estimate (8), we point out that the coefficient of
the quadratic term Q depends only on (ρ̄, m̄) and it is O(1) in ε:

1

ε

(
ηρmj

(ρ̄, m̄)ρ̄xi
+ ηmkmj

(ρ̄, m̄)∂xi
m̄k

)
=

1

ε
∂xi

(
m̄j

ρ̄

)
= −∂xixj

h′(ρ̄) ,

while the term E is an error term of order O(ε). The term R(ρ,m |ρ̄, m̄ ) captures
the dissipation of the relaxation system (1) relative to its diffusive scale limit (2).
It turns out to be the quadratic part of the dissipative relaxation term with respect
to (ρ̄, m̄), justifying the notation in (9). Clearly, the property R(ρ,m |ρ̄, m̄ ) ≥ 0 is
crucial in the stability analysis of the relaxation process.

An example of a framework in which to apply the relative entropy identity (8) is
that of multidimensional periodic solutions, referred to as (H1):

(i) (ρ , m) : (0, T )×T3 → R4 is a (periodic) dissipative weak solution of (1) with
ρ ≥ 0, satisfying the weak form of (1) and the integrated form of the entropy
inequality (3):∫∫

[0,+∞)×T3

[(
1

2

|m|2

ρ
+ h(ρ)

)
θ̇(t)− 1

ε2
|m|2

ρ
θ(t)

]
dxdt

+

∫
T3

(
1

2

|m|2

ρ
+ h(ρ)

) ∣∣∣
t=0

θ(0)dx ≥ 0 ,
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for any θ(t) nonnegative Lipschitz test function compactly supported in [0, T ).
The family (ρ,m) is assumed to satisfy the (uniform in ε) bounds

sup
t∈(0,T )

∫
T3

ρdx ≤ K1 <∞ ,

sup
t∈(0,T )

∫
T3

[
1

2

|m|2

ρ
+ h(ρ)

]
dx ≤ K2 <∞ ,

which are natural within the given framework, and follow from corresponding
uniform bounds on the initial data.

(ii) ρ̄ is a smooth (C3) periodic solution of the multidimensional porous media
equation (2) that avoids vacuum, ρ̄ ≥ ρ̄∗ > 0; m̄ is defined via m̄ = −ε∇p(ρ̄).

Using the stability property in Proposition 2.1, one controls the distance between
the relaxing sequence and the limiting solution by means of the distance function:

ϕ(t) =

∫
T3

η(ρ,m |ρ̄, m̄ )dx .

The results are valid for pressure laws satisfying quite general conditions (see the-
orem below), and apply to γ–law pressures p(ρ) = kργ , γ ≥ 1. For the proof we
refer once again to [7].

Theorem 2.2. Let T > 0 be fixed and assume p(ρ) satisfies

p′′(ρ) ≤ Ap
′(ρ)

ρ
∀ ρ > 0

and
p′(ρ) = kγργ−1 + o(ργ−1) , as ρ→ +∞ .

Under hypothesis (H1), the stability estimate

ϕ(t) ≤ C
(
ϕ(0) + ε4

)
, t ∈ [0, T ] ,

holds, where C is a positive constant depending only on T , K1, ρ̄ and its derivatives.
Moreover, if ϕ(0)→ 0 as ε→ 0, then

sup
t∈[0,T ]

ϕ(t)→ 0, as ε→ 0 .

Remark 2.3. The relative entropy method can also be applied to other frameworks,
such as 1–d dissipative weak solutions with different end states at ±∞ [7, Sec 2.3.2],
as well as for comparing entropic measure-valued solutions of the Euler equations
with friction to smooth solutions of the porous media equation [7, Sec 2.4].

3. The diffusive limit from the Euler-Poisson system with friction to the
Keller-Segel system. A variant of the above calculation may be used to establish
convergence from the Euler–Poisson system with attractive potentials and friction
to the Keller-Segel model. The Euler-Poisson system with friction is

ρt +
1

ε
divxm = 0

mt +
1

ε
divx

m⊗m
ρ

+
1

ε
∇xp(ρ) = − 1

ε2
m+

1

ε
ρ∇xc

−4xc+ βc = ρ,

(10)

where, as usual, t ∈ R, x ∈ R3, ρ ≥ 0, c ∈ R, m ∈ R3, the pressure p(ρ) satisfies
p′(ρ) > 0 and β is a positive, sufficiently large constant, as we shall see in the
sequel, which captures the effects of screening. In the limit ε → 0, we obtain
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m = ρ∇xc−∇xp(ρ), and therefore the formal limit of (10) is given by the Keller-
Segel type model: {

ρt + divx
(
ρ∇xc−∇xp(ρ)

)
= 0

−4xc+ βc = ρ.
(11)

We refer to [4] (and references therein) for convergence results using the compen-
sated compactness method, and discussions of alternative scalings. Here, we focus
to the convergence from (10) to (11) as a case study of the relative entropy method.

We again consider the entropy–entropy flux pair

η(ρ,m) =
1

2

|m|2

ρ
+ h(ρ), q(ρ,m) =

1

2
m
|m|2

ρ2
+mh′(ρ), h′′(ρ) =

p′(ρ)

ρ
,

and note that an entropy weak solution of (10) satisfies the entropy inequality

η(ρ,m)t +
1

ε
divx q(ρ,m) ≤ − 1

ε2
|m|2

ρ
+

1

ε
m · ∇xc . (12)

On the other hand, smooth solutions of (11) satisfy the entropy identity

h(ρ)t + divx
(
h′(ρ)(ρ∇xc−∇xp(ρ))

)
= −|∇xp(ρ)|2

ρ
+∇xp(ρ) · ∇xc . (13)

Note that (13) is indeed the equilibrium version (ε = 0) of the energy dissipation
(12), as can be easily shown via the standard Hilbert expansion analysis.

As it is manifest, neither (12) nor (13) are indeed dissipative, due to the extra
terms coming from the coupling with the equation for the concentration c. To take
into account these extra terms, we consider the following modified entropy–entropy
flux pair, again based on the mechanical energy of the system under consideration:

H(ρ,m, c) = η(ρ,m)− ρc ,
Q(ρ,m, c) = q(ρ,m)−mc .

Then the entropy inequality becomes

H(ρ,m, c)t +
1

ε
divxQ(ρ,m, c) ≤ − 1

ε2
|m|2

ρ
− ρct . (14)

Moreover, multiplying (10)3 by ct we get

ρct =
1

2

(
βc2 + |∇xc|2

)
t
− divx

(
ct∇xc

)
,

which once added to (14) gives(
H(ρ,m, c) +

1

2

(
βc2 + |∇xc|2

))
t

+
1

ε
divx

(
Q(ρ,m, c)−εct∇xc

)
≤ − 1

ε2
|m|2

ρ
. (15)

The estimate (15) is the starting point to obtain the stability estimate in terms of
the relative entropy and the corresponding analysis of the relaxation limit.

We rewrite the equilibrium system (11) in the variables ρ̄, c̄ and

m̄ = −ε
(
∇xp(ρ̄)− ρ̄∇xc̄

)
= −ερ̄∇x

(
h′(ρ̄)− c̄

)
in the form:

ρ̄t +
1

ε
divx m̄ = 0

m̄t +
1

ε
divx

m̄⊗ m̄
ρ̄

+
1

ε
∇xp(ρ̄) = − 1

ε2
m̄+

1

ε
ρ̄∇xc̄+ e(ρ̄, m̄)

−4xc̄+ βc̄ = ρ̄,

(16)
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where the error term e(ρ̄, m̄) is

ē := e(ρ̄, m̄) =
1

ε
divx

(
m̄⊗ m̄
ρ̄

)
− ε∂t

(
∇xp(ρ̄)− ρ̄∇xc̄

)
(17)

= εdivx

(
ρ̄∇x

(
h′(ρ̄)− c̄

)
⊗∇x

(
h′(ρ̄)− c̄

))
− ε∂t

(
ρ̄∇x

(
h′(ρ̄)− c̄

))
= O(ε) .

In turn, (13) is rewritten as

η(ρ̄, m̄)t +
1

ε
divx q(ρ̄, m̄) = − 1

ε2
|m̄|2

ρ̄
+

1

ε
m̄ · ∇xc̄+∇mη(ρ̄, m̄) · ē ,

or, equivalently,(
H(ρ̄, m̄, c̄) +

1

2

(
βc̄2 + |∇xc̄|2

))
t

+
1

ε
divx

(
Q(ρ̄, m̄, c̄)− εc̄t∇xc̄

)
= − 1

ε2
|m̄|2

ρ̄
+∇mη(ρ̄, m̄) · ē .

We now define the relative entropy

H(ρ,m, c |ρ̄, m̄, c̄ ) = η(ρ,m |ρ̄, m̄ )− (ρ− ρ̄)(c− c̄) ,

with corresponding relative entropy flux

Q(ρ,m, c |ρ̄, m̄, c̄ ) = q(ρ,m |ρ̄, m̄ )− (m− m̄)(c− c̄) ,

and show that:

Proposition 3.1. For any weak, entropy solution (ρ,m, c) of (10) and any smooth
solution (ρ̄, m̄, c̄) of (16) it holds

∂t

(
H(ρ,m, c |ρ̄, m̄, c̄ ) +

1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

))
+

1

ε
divx

(
Q(ρ,m, c |ρ̄, m̄, c̄ )− ε(c− c̄)t∇x(c− c̄)

)
≤ − 1

ε2
R(ρ,m |ρ̄, m̄ )−Q− P − E , (18)

where R, Q and E are defined in Proposition 2.1, but with ē defined in (17), and

P =
1

ε

m̄

ρ̄
(ρ− ρ̄) · ∇x(c− c̄) .

Proof. We sketch the proof of (18) starting from Proposition 2.1 and analyzing
the extra terms coming from the coupling with the elliptic equation involving the
variable c. The estimate for η(ρ,m |ρ̄, m̄ ) becomes in this case

η(ρ,m |ρ̄, m̄ )t +
1

ε
divx q(ρ,m |ρ̄, m̄ )

≤ − 1

ε2
R(ρ,m |ρ̄, m̄ )−Q− E +

1

ε
ρ

(
m

ρ
− m̄

ρ̄

)
· ∇x(c− c̄) .

Then, we multiply

−4x(c− c̄) + β(c− c̄) = ρ− ρ̄
by (c− c̄)t to conclude

(ρ− ρ̄)(c− c̄)t =
1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

)
t
− divx

(
(c− c̄)t∇x(c− c̄)

)
.
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Putting all relations together, we end up with

∂t

(
H(ρ,m, c |ρ̄, m̄, c̄ ) +

1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

))
+

1

ε
divx

(
Q(ρ,m, c |ρ̄, m̄, c̄ )− ε(c− c̄)t∇x(c− c̄)

)
≤ − 1

ε2
R(ρ,m |ρ̄, m̄ )−Q− E

+
1

ε
ρ

(
m

ρ
− m̄

ρ̄

)
· ∇x(c− c̄)− 1

ε
(m− m̄) · ∇x(c− c̄)

= − 1

ε2
R(ρ,m |ρ̄, m̄ )−Q− E − 1

ε

m̄

ρ̄
(ρ− ρ̄) · ∇x(c− c̄) ,

which is exactly (18).

We conclude our analysis by using the inequality (18) in the particular case
p(ρ) = h(ρ) = kρ2 for which the limit system becomes{

ρt + divx
(
ρ∇x(c− 2ρ)

)
= 0

−4xc+ βc = ρ.
(19)

Indeed, in that case, if β > 1
2k , the relative entropy gives directly the L2 control of

the relaxation process, and in particular of the difference ρ− ρ̄, and this is exactly
what is needed in the estimate of the extra term P obtained above. Clearly, other
frameworks of applications can be considered, for instance γ–laws for γ ≥ 2 and ρ,
ρ̄ ≥ ρ∗ > 0, for which we have in particular h(ρ |ρ̄ ) ≥ C(ρ− ρ̄)2.

Therefore, we denote

ψ(t)

=

∫
T3

(
1

2
ρ

∣∣∣∣mρ − m̄

ρ̄

∣∣∣∣2 +
1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

)
+ k(ρ− ρ̄)2 − (ρ− ρ̄)(c− c̄)

)
dx

and we observe

ψ(t) ≥ C

(∫
T3

1

2
ρ

∣∣∣∣mρ − m̄

ρ̄

∣∣∣∣2 dx+ ‖c− c̄‖2L2 + ‖∇x(c− c̄)‖2L2 + ‖ρ− ρ̄‖2L2

)
for β as above.

We again consider dissipative weak solutions of (10), for which in particular an
integrated version of the relative entropy estimate (18) can be rigorously derived;
more specific results in this direction are under investigation in [8]. We place the
following hypotheses, referred to as (H2):

(i) (ρ , m , c) : (0, T ) × T3 → R5 is a (periodic) dissipative weak solution of (10)
with p(ρ) = kρ2, β > 1

2k , with ρ ≥ 0, satisfying the weak form of (10) and
the integrated form of the relative entropy inequality (18):∫∫
[0,+∞)×T3

[(
H(ρ,m, c |ρ̄, m̄, c̄ ) +

1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

))
θ̇(t)

−
(

1

ε2
R(ρ,m |ρ̄, m̄ )−Q− P − E

)
θ(t)

]
dxdt

+

∫
T3

(
H(ρ,m, c |ρ̄, m̄, c̄ ) +

1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

))∣∣∣∣
t=0

θ(0)dx ≥ 0 ,
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for any θ(t) nonnegative Lipschitz test function compactly supported in [0, T ).
The family (ρ,m, c) is assumed to satisfy the (uniform in ε) bounds

sup
t∈(0,T )

∫
T3

ρdx ≤ K1 <∞ ,∫
T3

(
H(ρ,m, c |ρ̄, m̄, c̄ ) +

1

2

(
β(c− c̄)2 + |∇x(c− c̄)|2

))∣∣∣∣
t=0

dx ≤ K2 <∞ ,

which are natural within the given framework.
(ii) (ρ̄, c̄) is a smooth (C3) periodic solution of (19) such that ρ̄ ≥ ρ̄∗ > 0; m̄ is

given by m̄ = −ερ̄∇x(2ρ− c
)
.

Then the following theorem holds.

Theorem 3.2. Let T > 0 be fixed and assume that hypothesis (H2) holds. Then,
the following stability estimate holds:

ψ(t) ≤ C(ψ(0) + ε4) ,

for any t ∈ [0, T ], with C a positive constant depending only on T , K1, ρ̄, c̄ and
their derivatives. Moreover, if ψ(0)→ 0 as ε→ 0, then

sup
t∈[0,T ]

ψ(t)→ 0, as ε→ 0 .

Proof. As usual in this context, in (H2) we choose the test function

θ(τ) :=


1, for 0 ≤ τ < t,
t−τ
κ + 1, for t ≤ τ < t+ κ,

0, for τ ≥ t+ κ,

to get, as κ→ 0,

ψ(t) +
1

ε2

∫ t

0

∫
T3

R(ρ,m |ρ̄, m̄ )dxdτ ≤ ψ(0) +

∫ t

0

∫
T3

(|Q|+ |E|+ |P |)dxdτ .

Now, the hypotheses of Theorem 2.2 are satisfied for the particular case p(ρ) = kρ2.
Therefore, we can carry out here the same estimates for the terms |Q| and |E| as
follows: ∫ t

0

∫
T3

|Q|dxdτ ≤ C1

∫ t

0

ψ(τ)dτ ,

where C1 depends on ‖∂xixj
ρ̄‖L∞ . The error term E in (9) is estimated by∫ t

0

∫
T3

|E|dxdτ ≤ ε2

2

∫ t

0

∫
T3

∣∣∣∣ ēρ̄
∣∣∣∣2 ρdxdτ +

1

2ε2

∫ t

0

∫
T3

ρ

∣∣∣∣mρ − m̄

ρ̄

∣∣∣∣2 dxdτ
≤ C2ε

4 t+
1

2ε2

∫ t

0

∫
T3

R(ρ,m |ρ̄, m̄ )dxdτ ,

where C2 depends on K1, T and ρ̄ through the following norms of derivatives up to
third order:∥∥∥∥1

ρ̄
divx

(
ρ̄∇x

(
ρ̄− c̄

)
⊗∇x

(
ρ̄− c̄

))∥∥∥∥
L∞

+

∥∥∥∥1

ρ̄
∂t
(
ρ̄∇x

(
ρ̄− c̄

))∥∥∥∥
L∞

.

Finally, Young’s inequality implies∫ t

0

∫
T3

|P |dxdτ ≤ C‖∇x(2ρ̄− c̄)‖∞
∫ t

0

ψ(τ)dτ

and the proof follows from the Gronwall Lemma.
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4. The p–system with friction. Another, actually easier case in which one can
apply the above technique is given by the p–system with friction in one space di-
mension:

ut −
1

ε
vx = 0

vt −
1

ε
τ(u)x = − 1

ε2
v ,

(20)

where τ satisfies τ ′(u) > 0 to guarantee strict hyperbolicity. The system (20) is a
model either for elasticity with friction or for isentropic gas dynamics in Lagrangian
coordinates. Then u stands for the strain (or the specific volume for gases), v for
the velocity and τ for the stress.

In the limit ε→ 0, solutions of (20) converge towards solutions of the parabolic
equation

ut − τ(u)xx = 0 . (21)

This limit may be obtained via the relative entropy estimate as we describe below;
we refer to [7] for the details.

To this aim, let us consider the mechanical energy

E(u, v) =
1

2
v2 +W (u) ,

where

W (u) =

∫ u

0

τ(s)ds

stands for the stored energy, and its associated flux

F(u, v) = −vτ(u) .

The corresponding entropy inequality is

E(u, v)t +
1

ε
F(u, v)x ≤ −

1

ε2
v2 ≤ 0 , (22)

and captures the dissipation of the mechanical energy for weak solutions of (20).
Smooth solutions of (21) satisfy the energy dissipation identity

E(u, 0)t + F(u, τ(u)x)x = −
(
τ(u)x

)2 ≤ 0 .

The latter is the equilibrium (ε = 0) limit of (22).
The relative entropy is again defined as the quadratic part of the Taylor expansion

of E(u, v) relative to the “algebraic–differential equilibrium” (ū, v̄), where ū is a
smooth solution of (21) and v̄ = ετ(ū)x. Namely,

E(u, v |ū, v̄ ) = E(u, v)− E(ū, v̄)− Eu(ū, v̄)(u− ū)− Ev(ū, v̄)(v − v̄)

=
1

2
(v − v̄)2 +W (u |ū ) .

As corresponding flux we shall consider

F(u, v |ū, v̄ ) = F(u, v)−F(ū, v̄) + Eu(ū, v̄)(v − v̄) + Ev(ū, v̄)(τ(u)− τ(ū))

= −(v − v̄)(τ(u)− τ(ū)) .

As in the previous sections, we rewrite the equilibrium equation (21) as a damped
p–system 

ūt −
1

ε
v̄x = 0

v̄t −
1

ε
τ(ū)x = − 1

ε2
v̄ + v̄t ,

(23)
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where the term v̄t = ετ(ū)xt is an error of order ε. Then a direct computation gives
the following proposition.

Proposition 4.1. For any weak, entropy solution (u, v) of (20) and any smooth
solution (ū, v̄) of (23) it holds:

E(u, v |ū, v̄ )t+
1

ε
F(u, v |ū, v̄ )x ≤ −

1

ε2
(v− v̄)2+τ(ū)xxτ(u |ū )−ετ(ū)xt(v− v̄) . (24)

The terms in the right hand side of (24) are analogous to the terms in (8) of
Proposition 2.1 for the Eulerian case: the first term is dissipative and is due to the
friction in the relaxation system, the second is quadratic in the flux, while the last
term is a linear error term.

Finally, using this result, one can obtain stability and convergence of the relax-
ation limit in terms of the quantity∫

R
E(u, v |ū, v̄ )dx ,

provided τ(u) satisfies appropriate growth conditions at infinity; see [7] for details.

5. Viscoelasticity with memory. It is well known that the system of viscoelas-
ticity of memory type can yield in different scaling limits both the equations of
viscoelasticity of the rate type, as well as the equations of elasticity. We consider
such scaling limits from the perspective of the relative entropy method, hoping to
indicate the remarkably wide applicability of the methodology. We start by consid-
ering a quasilinear model (1–d for simplicity) with a diffusive scaling, thus entering
in the framework of diffusive relaxations [7], and then we shall review the multidi-
mensional model of stress relaxation approximating the equations of elastodynamics
considered in [6, Sec 3.2].

5.1. From viscoelasticity of the memory type to viscoelasticity of the
rate type. First, we consider a diffusive scaling limit leading to a hyperbolic –
parabolic system describing the dynamics of a 1–d viscoelastic material of the rate
type. To this end, consider the following 3× 3, one dimensional, quasilinear system
of viscoelasticity with memory effects:

ut − vx = 0

vt − σ(u)x −
1

ε
zx = 0

zt −
µ

ε
vx = − 1

ε2
z ,

(25)

where µ > 0 and the elastic stress function σ satisfies the usual condition σ′(u) > 0
for hyperbolicity. In (25), the stress S = σ(u)+ 1

εz is decomposed in a purely elastic
part and a viscoelastic part of the memory type (see (25)3 for z), scaled so that it
relaxes as ε→ 0 to the equations of viscoelasticity of the rate type:

ut − vx = 0

vt − σ(u)x = µvxx .
(26)

Indeed, in (26) the stress is given by σ(u) +µvx, that is again the same elastic part
plus a Newtonian viscous stress.
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The mechanical energy – energy flux couple for (25) is

E(u, v, z) =

∫ u

0

σ(s)ds+
1

2
v2 +

1

2µ
z2 = Σ(u) +

1

2
v2 +

1

2µ
z2,

Fε(u, v, z) = −(εσ(u)v + vz) .

Hence, the dissipation of mechanical energy for weak solutions of (25) reads

E(u, v, z)t +
1

ε
Fε(u, v, z)x ≤ −

1

µε2
z2

and the corresponding relation for smooth solutions of (26) is given by

E(u, v, 0)t + F1(u, v, σ(u)x)x = −µ(vx)2 ≤ 0 ,

for

E(u, v, 0) = Σ(u) +
1

2
v2, F1(u, v, σ(u)x) = −(σ(u)v + µvvx) .

We rewrite the equilibrium system (26) and the corresponding stress–strain re-
sponse for the variables (ū, v̄, z̄) with z̄ = εµv̄x as follows:

ūt − v̄x = 0

v̄t − σ(ū)x −
1

ε
z̄x = 0

z̄t −
µ

ε
v̄x = − 1

ε2
z̄ + z̄t ,

(27)

where we shall treat the term z̄t as an O(ε) error:

z̄t = εµv̄xt = εµ
(
σ(ū)x + µv̄xx

)
x
.

Finally, the relative entropy and relative entropy flux, respectively,

E(u, v, z |ū, v̄, z̄ ) = E(u, v, z)− E(ū, v̄, z̄)

− Eu(ū, v̄, z̄)(u− ū)− Ev(ū, v̄, z̄)(v − v̄)− Ez(ū, v̄, z̄)(z − z̄) ,
Fε(u, v, z |ū, v̄, z̄ ) = Fε(u, v, z)− Fε(ū, v̄, z̄)− Eu(ū, v̄, z̄)

(
− ε(v − v̄)

)
− Ev(ū, v̄, z̄)

(
− ε(σ(u)− σ(ū))− (z − z̄)

)
− Ez(ū, v̄, z̄)

(
v − v̄

)
,

verify the following identity:

Proposition 5.1. Let (u, v, z) be a weak entropy solution of (25) and let (ū, v̄, z̄)
be a smooth solution of (27). Then

∂tE(u, v, z |ū, v̄, z̄ ) +
1

ε
∂xFε(u, v, z |ū, v̄, z̄ )

≤ − 1

µε2
(z − z̄)2 + v̄xσ(u |ū )− εv̄xt(z − z̄) .

As in the previous cases, Proposition 5.1 suggests to measure the distance be-
tween systems (25) and (26) by means of∫

R
E(u, v, z |ū, v̄, z̄ )dx ,

and this can be done under appropriate structural condition on the stress function
σ(u) [7].



RELATIVE ENTROPY METHODS FOR HYPERBOLIC AND DIFFUSIVE LIMITS 175

5.2. A model of stress relaxation approximating the equations of elasto-
dynamics. As a final application of the relative entropy method, we shall review
the case of the hyperbolic–hyperbolic relaxation limit ε→ 0 for the model of stress
relaxation

∂tFiα = ∂αvi

∂tvi = ∂αSiα

∂t(Siα − fiα(F )) = −1

ε
(Siα − Tiα(F )) .

(28)

In (28), i, α = 1, 2, 3, F stands for the deformation gradient, v for the velocity
and the stress S is again decomposed in an elastic part and a viscoelastic part with
memory effects:

S = f(F ) +

∫ t

−∞

1

ε
e−

1
ε (t−τ)h(F (·, τ)) dτ .

In turn, the equilibrium stress is accordingly decomposed as T (F ) = f(F ) + h(F ).
Following [6], we shall derive a relative entropy relation for smooth solutions (v, F, S)
of (28) and smooth solutions (v̄, F̄ ) of its limit, that is the elasticity system

∂tF̄iα = ∂αv̄i

∂tv̄i = ∂αTiα(F̄ ) ,
(29)

even if with nowadays technologies the same relation can be rigorously justified for
dissipative weak solutions of (28). To this end, let us consider the framework

T (F ) = ∇FW (F ) = f(F ) + h(F ) ,

f(F ) = ∇FWI(F ), h(F ) = −∇FWv(F )
(a)

and Wv = WI −W is convex. Under these structural hypotheses, the dissipation of
the mechanical energy reads:

∂t

(
1

2
|v|2 + Ψ(F, S − f(F ))

)
− ∂α(viSiα)

+
1

ε
(Fiα − h−1iα (S − f(F )))(Siα − Tiα(F )) = 0 . (30)

In (30), the free energy function Ψ is of the form

Ψ(F,A) = WI(F ) +A · F +G(A) ,

where G is a convex function such that ∇AG = −h−1. Indeed, the condition that
the inverse of h is a gradient is equivalent to the existence of a free energy function
for (28) compatible with the Clausius-Duhem inequality. In (30) this is expressed
by the positivity of the last term, revealing the dissipation arising from of the
viscoelastic stresses [6].

At this point, we define the relative energy Er(v, F, S
∣∣v̄, F̄ , h(F̄ ) ) generated by

the mechanical energy relative to an equilibrium as follows:

Er :=
1

2
|v − v̄|2 + Ψ(F, S − f(F ))−Ψ(F̄ , h(F̄ ))

−∇FΨ(F̄ , h(F̄ )) · (F − F̄ )−∇AΨ(F̄ , h(F̄ )) · (S − f(F )− h(F̄ ))

=
1

2
|v − v̄|2 + Ψ(F, S − f(F ))−W (F̄ )−∇FW (F̄ ) · (F − F̄ ) ,
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by selecting an appropriate normalization so that Ψ(F, h(F )) = W (F ). The asso-
ciated relative fluxes are then given by

Fαr = (vi − v̄i)(Siα − Tiα(F̄ )) .

The relative entropy computation is performed as follows: observe that (v, F, S)
satisfies (30) and that the smooth solution (v̄, F̄ ) satisfies the energy identity

∂t
1

2

(
|v̄|2 +W (F̄ )

)
− ∂α

(
v̄iTiα(F̄ )

)
= 0 . (31)

From
∂t(Fiα − F̄iα) = ∂α(vi − v̄i)

∂t(vi − v̄i) = ∂α(Siα − Tiα(F̄ ))

and (29) we conclude

∂t

( ∂W
∂Fiα

(F̄ )(Fiα − F̄iα) + v̄i(vi − v̄i)
)

− ∂α
(
Tiα(F̄ )(vi − v̄i) + v̄i(Siα − Tiα(F̄ ))

)
= ∂t

( ∂W
∂Fiα

(F̄ )
)

(Fiα − F̄iα) + (∂tv̄i)(vi − v̄i)

− (∂αTiα(F̄ ))(vi − v̄i)− (∂αv̄i)(Siα − Tiα(F̄ ))

= −(∂αv̄i)
(
Siα − Tiα(F̄ )− ∂2W

∂Fiα∂Fjβ
(F̄ )(Fjβ − F̄jβ)

)
. (32)

Then, (30), (31) and (32) imply

∂tEr − ∂α
(

(vi − v̄i)(Siα − Tiα(F̄ ))
)

+
1

ε
(Fiα − h−1iα (S − f(F )))(Siα − Tiα(F ))

= (∂αv̄i)
(
Tiα(F )− Tiα(F̄ )− ∂2W

∂Fiα∂Fjβ
(F̄ )(Fjβ − F̄jβ)

)
+ (∂αv̄i)(Siα − Tiα(F )) .

(33)
This relative entropy identity can be used to obtain stability and convergence of
the relaxation system (28) as long as the solution of (29) remains smooth. Indeed,
under appropriate conditions for the potentials W and WI , namely that there exist
positive constants γI > γv > 0 and M > 0 such that

∇2
FWI(F ) ≥ γII > γvI ≥ ∇2

F (WI −W )(F ) > 0 , (b)

|∇2
FWI(F )| ≤M . |∇3W (F )| ≤M , ∀F , (c)

we get that Ψ(F,A) is uniformly convex and therefore

Er ≥ c
(
|v − v̄|2 + |F − F̄ |2 + |A− h(F̄ )|2

)
for a positive c > 0. Condition (b) is roughly equivalent to what is called sub-
characteristic condition in the theory of relaxation. In addition, uniform convexity
of G(A) leads to

∇2
AG(A) =

(
−∇Fh

)−1
=
(
∇2
F (WI −W )

)−1 ≥ 1

γv
I
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so that

(F − h−1(S − f(F ))) · (S − T (F )) = (∇AG(A)−∇AG(h(F ))) · (A− h(F ))

≥ 1

γv
|A− h(F )|2 =

1

γv
|S − T (F )|2 ,

giving the dissipation property of the relaxation term. Moreover, the first term
on the right hand side of (33) is quadratic in F − F̄ , while the last term can be
controlled by the dissipative relaxation term plus an O(ε) error term. Hence, the
following result holds (we refer to [6] for the technical details and the proof).

Theorem 5.2. Let (vε, F ε, Sε) be smooth solutions of (28) and (v̄, F̄ ) be a smooth
solution of (29) defined on R3× [0, T ] and emanating from smooth data (vε0, F

ε
0 , S

ε
0)

and (v̄0, F̄0). Then, under hypotheses (a), (b), (c), the relative energy Er satisfies
(33), and, for R > 0, there exist constants s and C > 0 independent of ε such that∫

|x|<R
Er(x, t)dx ≤ C

(∫
|x|<R+st

Er(x, 0)dx+ ε

)
.

In particular, if the data satisfy∫
|x|<R+sT

Er(x, 0)dx −→ 0 , as ε→ 0 ,

then

sup
t∈[0,T ]

∫
|x|<R

(
|vε − v̂|2 + |F ε − F̂ |2 + |Aε − h(F̂ )|2

)
dx −→ 0 .
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Abstract. In this note, we study the phase transitions arising in a modified

Smoluchowski equation on the sphere with dipolar potential. This equation
models the competition between alignment and diffusion, and the modification

consists in taking the strength of alignment and the intensity of the diffusion

as functions of the order parameter.
We characterize the stable and unstable equilibrium states. For stable equi-

libria, we provide the exponential rate of convergence. We detail special cases,

giving rise to second order and first order phase transitions, respectively. We
study the hysteresis diagram, and provide numerical illustrations of this phe-

nomena.

1. Introduction. In this short note, we study the following modified Smoluchowski
equation (also called Fokker–Planck equation), for an orientation distribution f(ω, t)
defined for a time t > 0 and a direction ω ∈ S (the unit sphere S of Rn) as follows:

∂tf = −ν(|Jf |)∇ω · (f ∇ω(ω · Ωf )) + τ(|Jf |)∆ωf =: Q(f), (1)

Ωf =
Jf
|Jf |

, Jf (t) =

∫
υ∈S

υ f(υ, t) dυ. (2)

where ∆ω, ∇ω·, and ∇ω are the Laplace–Beltrami, divergence, and gradient oper-
ators on the sphere. The vector Jf ∈ Rn is the first moment associated to f (the
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Key words and phrases. Spontaneous symmetry breaking, von Mises–Fisher distribution, crit-

ical density, critical exponent, rate of convergence, self-propelled particles, alignment interaction,
Vicsek model.
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measure on the sphere is the uniform measure such that
∫
S dυ = 1), and Ωf ∈ S

represents the mean direction of the distribution f .
The first term of the right-hand side of (1) is an alignment term towards Ωf ,

and the function ν represents the strength of this alignment. The function τ is the
intensity of the diffusion on the sphere.

When τ is a constant and ν(|Jf |) = |Jf |, we can recover the standard Smolu-
chowski equation on the sphere, with dipolar potential [11]. Indeed, the dipolar
potential is given by K(ω, ω̄) = −ω · ω̄, and the equation can be recast as:

∂tf = ∇ω ·
(
f ∇ω

( ∫
S
K(ω · ω̄)f(ω̄, t)dω̄

))
+ τ∆ωf. (3)

Other classical kernels [8, 14, 15] for the study of semi-dilute and concentrated
suspensions of polymers are the so-called Maier–Saupe potential K(ω, ω̄) = −(ω ·
ω̄)2, or the original Onsager potential K(ω, ω̄) = |ω × ω̄|. In these cases, there
are a lot of studies regarding the phase transition phenomenon for equilibrium
states [3, 4, 9, 10, 12, 13, 16–20], and in particular a hysteresis phenomenon occurs
for the Maier–Saupe potential in dimension 3. The case of the dipolar potential
has also been studied precisely [11], with an analysis of the rates of convergence
to the equilibrium as time goes to infinity. In this case, there exists a so-called
continuous phase transition for a critical threshold τc: when τ < τc the solution
converges exponentially fast to a non-isotropic equilibrium; when τ > τc it converges
exponentially fast to the uniform distribution. At the critical value τ = τc, the
solution converges to the uniform distribution at a rate t−1/2.

Here we study the modifications arising when ν and τ depend on |Jf |, which can
be motivated by some biological modeling (see [7] and references therein). In that
case, we cannot use τ as a bifurcation parameter anymore. Instead, we will use
the initial mass ρ (a conserved quantity) as the key parameter to study the phase
transition. We will assume that:

Hypothesis 1.1.

(i) The functions ν and τ are C1, with ν(0) = 0 and τ > 0.

(ii) The function |J | 7→ h(|J |) = ν(|J|)
τ(|J|) is an increasing function. We denote by σ

its inverse, i.e.

κ = h(|J |)⇔ |J | = σ(κ).

The first part of this hypothesis implies that we do not have any singularity
of Q in (1) as |Jf | → 0: if |Jf | = 0, we simply have Q(f) = τ(0)∆ωf . The second
part is made for the sake of simplicity. It leaves enough flexibility to to reveal key
behaviors in terms of phase transitions. It would be easy to remove it at the price of
an increased technicality. Additionally, it means that when f is more concentrated
in the direction of Ωf , the relative strength of the alignment force compared to
diffusion is increased as well. This can be biologically motivated by the existence
of some social reinforcement mechanism.

We will see that we can observe a wealth of phenomena, including hysteresis.
The purpose of this note is to summarize the analytical results, as well as some
numerical simulations which illustrate this phenomena. All the proofs are detailed
in [6], where (1) arises as the spatially homogeneous version of a space-dependent
kinetic equation, obtained as the mean-field limit of a self-propelled particle sys-
tem interacting through alignment. This spatially homogeneous study is crucial to
determine the macroscopic behavior of this space-dependent kinetic equation.
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2. General study.

2.1. Existence and uniqueness. We first state results about existence, unique-
ness, positivity and regularity of the solutions of (1). Under hypothesis 1.1, we have
the following

Theorem 1. Given an initial finite non-negative measure f0 in Hs(S), there exists
a unique weak solution f of (1) such that f(0) = f0. This solution is global in time.

Moreover, f ∈ C∞((0,+∞)× S), with f(t, ω) > 0 for all positive t, and we have
the following instantaneous regularity and uniform boundedness estimates (for m ∈
N, the constant C being independent of f), for all t > 0:

‖f(t)‖2Hs+m 6 C
(

1 +
1

tm

)
‖f0‖2Hs .

For later usage, we define Φ(|J |) as an anti-derivative of h: dΦ
d|J| = h(|J |). In

this case, the dynamics of (1) corresponds to the gradient flow of the following free
energy functional:

F(f) =

∫
S
f ln f dω − Φ(|Jf |).

Indeed, if we define the dissipation term D(f) by

D(f) = τ(|Jf |)
∫
S
f |∇ω(ln f − h(|Jf |)ω · Ωf )|2 dω,

we get the following conservation relation:

d

dt
F(f) = −D(f) 6 0. (4)

2.2. Equilibria. We now define the von Mises distribution which provides the gen-
eral shape of the non-isotropic equilibria of Q.

Definition 2.1. The von Mises distribution of orientation Ω ∈ S and concentration
parameter κ > 0 is given by:

MκΩ(ω) =
eκω·Ω∫

S e
κυ·Ω dυ

. (5)

The order parameter c(κ) is defined by the relation

JMκΩ
= c(κ)Ω,

and has expression:

c(κ) =

∫ π
0

cos θ eκ cos θ sinn−2 θ dθ∫ π
0
eκ cos θ sinn−2 θ dθ

. (6)

The concentration parameter c(κ) defines a one-to-one correspondence κ ∈ [0,∞) 7→
c(κ) ∈ [0, 1). The case κ = c(κ) = 0 corresponds to the uniform distribution, while
when κ is large (or c(κ) is close to 1), the von Mises distribution is closed to a Dirac
delta mass at the point Ω.

Some comments are necessary about the interval of definition of σ. First note
that, under hypothesis 1.1, h is defined from [0,+∞), with values in an inter-
val [0, κmax), where we may have κmax = +∞. So σ is an increasing function
from [0, κmax) onto R+. Moreover, for later usage, we can define

τ0 = τ(0) > 0, and ρc = lim
|J|→0

n|J |
h(|J |)

=
nτ0
ν′(0)

(7)
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where ρc > 0 may be equal to +∞, and where we recall that n denotes the dimen-
sion.

The equilibria are given by the following proposition:

Proposition 2.1. The following statements are equivalent:

(i) f ∈ C2(S) and Q(f) = 0.
(ii) f ∈ C1(S) and D(f) = 0.

(iii) There exists ρ > 0 and Ω ∈ S such that f = ρMκΩ, where κ > 0 satisfies the
compatibility equation:

σ(κ) = ρc(κ). (8)

Let us first remark that the uniform distribution, corresponding to κ = 0 is
always an equilibrium. Indeed, we have c(0) = σ(0) = 0 and (8) is satisfied.
However, Proposition 2.1 does not provide any information about the number of
the non-isotropic equilibria. Indeed, equation (8) can be recast into:

c(κ)

σ(κ)
=

1

ρ
, (9)

which is valid as long as σ 6= 0. We know that σ is an increasing unbounded function
from its interval of definition [0, κmax) onto [0,+∞), and thanks to hypothesis 1.1
and to (7), we know that σ(κ) ∼ ρc

n κ as κ → 0 (if ρc < +∞). So since c(κ) ∼ 1
nκ

as κ→ 0 (see for instance [11]), we have the two following results (also valid in the
case ρc = +∞):

c(κ)

σ(κ)
→ 1

ρc
as κ→ 0 and

c(κ)

σ(κ)
→ 0 as κ→ κmax. (10)

We deduce that this function reaches its maximum, and we define

ρ∗ = min
κ∈R+

σ(κ)

c(κ)
. (11)

For ρ < ρ∗, the only solution to the compatibility condition is κ = 0, and the
only equilibrium is the uniform distribution f = ρ. Except from these facts, we
have no further direct information of this function κ 7→ c(κ)/σ(κ), since c and σ
are both increasing. Figure 1 depicts some examples of the possible shapes of the
function κ 7→ c(κ)/σ(κ).

We see that depending on the value of ρ, the number of families of non-isotropic
equilibria, given by the number of positive solutions of the equation (9), can be
zero, one, two or even more. We now turn to the study of the stability of these
equilibria, through the study of the rates of convergence.

2.3. Rates of convergence to equilibrium. The main tool to prove convergence
of the solution to a steady state is LaSalle’s principle, that we recall here (the proof
follows exactly the lines of [11]). By the conservation relation (4), we know that the
free energy F is decreasing in time (and bounded from below since |J | is bounded).
LaSalle’s principle states that the limiting value of F corresponds to an ω-limit set
of equilibria:

Proposition 2.2. LaSalle’s invariance principle.
Let f0 be a positive measure on the sphere S. We denote by F∞ the limit

of F(f(t)) as t → ∞, where f is the solution to the modified Smoluchowski equa-
tion (1) with initial condition f0.

Then the set E∞ = {f ∈ C∞(S) s.t. D(f) = 0 and F(f) = F∞} is not empty.
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σ(κ)

Figure 1. The green, blue, red and purple curves correspond to

various possible profiles for the function κ 7→ c(κ)
σ(κ) .

Furthermore f(t) converges in any Hs norm to this set of equilibria (in the
following sense):

lim
t→∞

inf
g∈E∞

‖f(t)− g‖Hs = 0.

Since we know the types of equilibria, we can refine this principle to adapt it to
our problem:

Proposition 2.3. Let f0 be a positive measure on the sphere S, with initial mass ρ.
If no open interval is included in the set {κ, ρc(κ) = σ(κ)}, then there exists a

solution κ∞ to the compatibility solution (8) such that we have:

lim
t→∞

|Jf (t)| = ρc(κ∞)

∀s ∈ R, lim
t→∞

‖f(t)− ρMκ∞Ωf (t)‖Hs = 0.

This last proposition helps us to characterize the ω-limit set by studying the
single compatibility equation (8).

When κ = 0 is the unique solution, then this gives us that f converges to the
uniform distribution. Otherwise, two cases are possible, either κ∞ = 0, and f
converges to the uniform distribution, or κ∞ 6= 0, and the only unknown behavior
is the one of Ωf(t). If we are able to prove that it converges to Ω∞ ∈ S, then f
converges to a fixed non-isotropic steady-state ρMκ∞Ω∞ .

However, Proposition 2.3 does not give information about quantitative rates of
convergence of |Jf | to ρc(κ∞), and of ‖f(t)− ρMκ∞Ωf (t)‖Hs to 0, as t→∞. So we
now turn to the study of the behavior of the difference between the solution f and
a target equilibrium ρMκ∞Ωf (t).



184 PIERRE DEGOND, AMIC FROUVELLE AND JIAN-GUO LIU

This study consists in two types of expansion. If we expand the solution around
the uniform equilibrium, some simple energy estimates give us exponential con-
vergence when ρ < ρc. But when we expand the solution around a non-isotropic
equilibrium ρMκ∞Ωf (t), we see that the condition of stability is related to the mono-
tonicity of the function κ 7→ c(κ)/σ(κ). Hence we can see directly on the graph of
this function (see examples on Figure 1) both the number of family of equilibria
and their stability: if the function is decreasing, the family is stable. By con-
trast it is unstable when the function is increasing. When the difference between f
and ρMκ∞Ωf (t) converges exponentially fast to 0 (on the stable branch), we are able
to control the displacement of Ωf (t), which gives convergence to Ω∞ ∈ S. We then
have convergence of f to a given equilibriumρMκ∞Ω∞ .

All these results are summarized in the following two theorems. In what follows,
we say that a constant is a universal constant when it does not depend on the
initial condition f0 (that is to say, it depends only on ρ, n and the coefficients of
the equation ν and τ , and on the exponent s of the Sobolev space Hs in which the
result is stated).

Theorem 2. We have the following instability and exponential stability results
around the uniform equilibrium:

• Suppose that ρ < ρc. We define

λ = (n− 1)τ0(1− ρ

ρc
) > 0. (12)

There exists a universal constant C, such that if ‖f0 − ρ‖Hs < λ
C , then for

all t > 0, we have

‖f(t)− ρ‖Hs 6
‖f0 − ρ‖Hs

1− C
λ ‖f0 − ρ‖Hs

e−λt.

• If ρ > ρc, and if Jf0
6= 0, then we cannot have κ∞ = 0 in Proposition 2.3: the

solution cannot converge to the uniform equilibrium.

To study the stability around a non-isotropic equilibrium, we fix ρ, and we de-
note by κ a positive solution to the compatibility equation (we will not write the
dependence of c and σ on κ when there is no possible confusion). We denote by Fκ
the value of F(ρMκΩ) (independent of Ω ∈ S).

Theorem 3. We have the following instability and exponential stability results when
starting close to a non-isotropic equilibrium:

• Suppose (σc )′(κ) > 0. For all s > n−1
2 , there exist universal constants δ > 0

and C > 0, such that for any initial condition f0 satisfying ‖f0−ρMκΩ‖Hs < δ
for some Ω ∈ S, there exists Ω∞ ∈ S such that

‖f − ρMκΩ∞‖Hs 6 C‖f0 − ρMκΩf0
‖Hse−λt,

where the rate is given by

λ =
cτ(σ)

σ′
Λκ(

σ

c
)′. (13)

The constant Λκ is the best constant for the following weighted Poincaré in-
equality (see the appendix of [5] for more details on this constant, which does
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not depend on Ω):∫
S
|∇ωg|2MκΩ dω > Λκ

[ ∫
S
g2MκΩ dω −

( ∫
S
gMκΩ dω

)2]
. (14)

• Suppose (σc )′(κ) < 0. Then any equilibrium of the form ρMκΩ is unstable,
in the following sense: in any neighborhood of ρMκΩ, there exists an initial
condition f0 such that F(f0) < Fκ. Consequently, in that case, we cannot
have κ∞ = κ in Proposition 2.3.

3. Second order phase transition. Let us now focus on the case where we always
have (σc )′ > 0 for all κ > 0 (see for example the lowest two curves of Figure 1). In
this case, the compatibility equation (9) has a unique positive solution for ρ > ρc.
With the results of the previous subsection about stability and rates of convergence,
we obtain the behavior of the solution for any initial condition f0 with initial mass ρ.

• If ρ < ρc, then the solution converges exponentially fast towards the uniform
distribution f∞ = ρ.
• If ρ = ρc, the solution converges to the uniform distribution.
• If ρ > ρc and Jf0 6= 0, then there exists Ω∞ such that f converges exponen-

tially fast to the von Mises distribution f∞ = ρMκΩ∞ , where κ > 0 is the
unique positive solution to the equation ρc(κ) = σ(κ).

The special case where Jf0 = 0 leads to the heat equation ∂tf = τ0∆ωf . Its
solution converges exponentially fast to the uniform distribution, but this solution
is not stable under small perturbation of the initial condition. Let us remark that
for some particular choice of the coefficients, as in [11], it is also possible to get an
algebraic rate of convergence in the second case ρ = ρc. For example when σ(κ) = κ,

we have ‖f − ρ‖ 6 Ct− 1
2 for t sufficiently large.

So we can describe the phase transition phenomena by studying the order param-

eter of the asymptotic equilibrium c =
|Jf∞ |
ρ , as a function of the initial density ρ.

We have c(ρ) = 0 if ρ 6 ρc, and c is a positive continuous increasing function

for ρ > ρc. In the common situation where c
σ = 1

ρc
− aκ

1
β + o(κ

1
β ) when κ→ 0, it

is easy to see, since c(κ) ∼ 1
nκ when κ→ 0, that we have

c(ρ) ∼ ã(ρ− ρc)β , as ρ
>→ ρc. (15)

Since c
σ is Lipschitz, we always have β 6 1. So the first derivative of c is discon-

tinuous at ρ = ρc. This is the case of a second order phase transition (also called
continuous phase transition). The critical exponent β can take arbitrary values

in (0, 1], as can be seen by taking h(|J |) such that σ(κ) = c(κ)(1 + κ
1
β ).

In general, we have the following practical criterion, which ensures a second order
phase transition.

Lemma 1. If h(|J|)
|J| is a non-increasing function of |J |, then we have (σc )′ > 0 for

all κ > 0. In this case, the critical exponent β in (15), if it exists, can only take
values in [ 1

2 , 1].
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4. Hysteresis.

4.1. Typical example. We now turn to a specific example, where all the features
presented in the stability study can be seen. We focus on the case where ν(|J |) = |J |,
as in [11], but we now take τ(|J |) = 1/(1 + |J |). From the modeling point of view,
this occurs in the Vicsek model with vectorial noise (also called extrinsic noise) [1,2].

In this case, we have h(|J |) = |J |+ |J |2, so the assumptions of Lemma 1 are not
fulfilled, and the function σ is given by σ(κ) = 1

2 (
√

1 + 4κ− 1).
Expanding c

σ when κ is large or κ is close to 0, we get

c

σ
=

{
1
n + 1

nκ+O(κ2) as κ→ 0,
1√
κ

+O(κ−1) as κ→∞.

Consequently, there exist more than one family of non-isotropic equilibria when ρ
is close to ρc = n (and ρ > ρc).

The function κ 7→ c(κ)
σ(κ) can be computed numerically. The results are displayed

in Figure 2 in dimensions n = 2 and n = 3.

n=2

n=3

4

0.6

0.8

1

0

0.2

0.4

0 8

1
ρ∗

κ∗κ∗
κ

1
ρ∗c(κ)

σ(κ)

Figure 2. The function κ 7→ c(κ)
σ(κ) , in dimensions 2 and 3.

We observe the following features:

• There exists a unique critical point κ∗ for the function c
σ , corresponding to

its global maximum 1
ρ∗

(in dimension 2, we obtain numerically ρ∗ ≈ 1.3726

and κ∗ ≈ 1.2619, in dimension 3 we get ρ∗ ≈ 1.8602 and κ∗ ≈ 1.9014).
• The function c

σ is strictly increasing in [0, κ∗) and strictly decreasing on (κ∗,
∞).

From these properties, it follows that the solution associated to an initial condi-
tion f0 with mass ρ can exhibit different types of behavior, depending on the three
following regimes for ρ.
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• If ρ < ρ∗, the solution converges exponentially fast to the uniform equilib-
rium f∞ = ρ.
• If ρ∗ < ρ < n, there are two families of stable solutions: either the uniform

equilibrium f = ρ or the von Mises distributions of the form ρMκΩ, for Ω ∈ S
where κ is the unique solution with κ > κ∗ of the compatibility equation (8).
If f0 is sufficiently close to one of these equilibria, there is exponential con-
vergence to an equilibrium of the same family.

The von Mises distributions of the other family (corresponding to solution
of (8) such that 0 < κ < κ∗) are unstable in the sense given in Theorem 3.
• If ρ > n and Jf0

6= 0, then there exists Ω∞ ∈ S such that f converges
exponentially fast to the von Mises distribution ρMκΩ∞ , where κ is the unique
positive solution to the compatibility equation ρc(κ) = σ(κ).

At the critical point ρ = ρ∗, the uniform equilibrium is stable (and for any initial
condition sufficiently close to it, the solution converges exponentially fast to it), but
the stability of the family of von Mises distribution {ρ∗Mκ∗Ω,Ω ∈ S} is unknown..

At the critical point ρ = n, the family of von Mises distribution {nMκcΩ,Ω ∈ S}
is stable, where κc is the unique positive solution of (8). For any initial condition
sufficiently close to nMκcΩ for some Ω ∈ S, there exists Ω∞ such that the solution
converges exponentially fast to nMκcΩ∞ . However, in this case, the stability of the
uniform distribution f = n is unknown.

As previously, in the special case Jf0 = 0, the equation reduces to the heat
equation and the solution converges to the uniform equilibrium.

Since c(κ) is an increasing function of κ, we can invert this relation κ 7→ c(κ)

into c 7→ κ(c) and express the density ρ = σ(κ(c))
c as a function of c. The result is

depicted in Figure 3 for dimension 2 or 3. With this picture, we recover the phase
diagram in a conventional way: the possible order parameters c for the different
equilibria are given as functions of ρ. The dashed lines corresponds to branches of
equilibria which are unstable.

We can also obtain the corresponding diagrams for the free energy and the rates of
convergences. For this particular example, the free energies F(ρ) and Fκ (we recall
that they correspond respectively to the free energy of the uniform distribution
and of a von Mises distribution ρMκΩ for a positive solution κ of the compatibility
equation (8), including both stable and unstable branches) are given by

F(ρ) = ρ ln ρ,

Fκ = ρ ln ρ+ 〈ρ lnMκΩ〉M −
1

2
σ2 − 1

3
σ3

= ρ ln ρ− ρ ln

∫
eκ cos θdω − 1

6
(κ− σ) +

2

3
σκ.

The plots of these functions are depicted in dimensions 2 and 3 are depicted on
the left part of Figure 4. Since the functions are very close in the figure for some
range of interest, we depict the difference Fκ − F(ρ) in a more appropriate scale,
in the right part of Figure 4. The dashed lines correspond to unstable branches of
equilibria.

We observe that the free energy of the unstable non-isotropic equilibria (in dashed
line) is always above that of the uniform distribution. There exist ρ1 ∈ (ρ∗, ρc)
and a corresponding solution κ1 of the compatibility solution (8) (with κ1 > κ∗,
corresponding to a stable family of non-isotropic equilibria) such that Fκ1 = F(ρF ).
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Figure 3. Phase diagram of the model with hysteresis, in dimen-
sions 2 and 3.

If ρ < ρ1, the global minimizer of the free energy is the uniform distribution, while
if ρ > ρ1, then the global minimum is reached for the family of stable von Mises
equilibria. The physical relevance of this value is not clear though, as we will see in
the numerical illustration of the next subsection.

The rates of convergence to the stable equilibria, following Theorems 2 and 3,
are given by

λ0 = (n− 1)(1− ρ

n
), for ρ < ρc = n,

λκ =
1

1 + σ
Λκ(1− (

1

c
− c− n− 1

κ
)σ(1 + 2σ)), for ρ > ρ∗,

where λ0 is the rate of convergence to the uniform distribution ρ, and λκ is the rate
of convergence to the stable family of von Mises distributions ρMκΩ, where κ is the
unique solution of the compatibility condition (8) such that κ > κ∗. Details for
the numerical computation of the Poincaré constant Λκ are given in the appendix
of [5]. The computations in dimensions 2 and 3 are depicted in Figure 5.

4.2. Numerical illustrations of the hysteresis phenomenon. In order to
highlight the role of the density ρ as the key parameter for this phase transition,

we introduce the probability density function f̃ = f
ρ and we get

∂tf̃ = τ(ρ|Jf̃ |)∆ω f̃ − ν(ρ|Jf̃ |)∇ω · (f̃∇ω(Ωf̃ · ω)). (16)

When ρ is constant, this equation is equivalent to (1). We now consider ρ as
a parameter varying slowly with time (compared to the time scale of the conver-
gence to equilibrium, see Figure 5). If this parameter starts from a value ρ < ρ∗,
and increases slowly, the only stable distribution is initially the uniform distribu-

tion f̃ = 1, and it remains stable. So we expect that the solution stays close to it,
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Figure 4. Free energy levels of the different equilibria (left), and
difference of free energies Fκ − F(ρ) (right), as functions of the
density, in dimensions 2 and 3.

until ρ reaches the critical value ρc. For ρ > ρc, the only stable equilibria are the
von Mises distributions, and the solution converges to one of these equilibria. The

order parameter defined as c(f̃) = |Jf̃ |, then jumps from 0 to cc = c(κc). If then

the density ρ is further decreased slowly, the solution stays close to a von Mises
distribution, and the order parameter slowly decreases, until ρ reaches ρ∗ back.
For ρ < ρ∗, the only stable equilibrium is the uniform distribution, and the concen-
tration parameter jumps from c∗ = c(κ∗) to 0. This is a hysteresis phenomenon:
the concentration parameter describes an oriented loop called hysteresis loop.

Let us now present some numerical simulations of the system (16) in dimen-
sion n = 2. We start with a initial condition which is a small perturbation of the
uniform distribution, and we take ρ = 1.75− 0.75 cos( πT t), with T = 500. We use a
standard central finite different scheme (with 100 discretization points), implicit in
time (with a time step of 0.01). The only problem with this approach is that the
solution converges so strongly to the uniform distribution for ρ < ρc, so after pass-

ing ρc, the linear rate of explosion for Jf̃ is given by e( ρρc−1)t, and is very slow when ρ

is close to ρc. So since Jf̃ is initially very small when passing the threshold ρ = ρc
we would have to wait extremely long in order to see the convergence to the stable
von Mises distribution. To overcome this problem, we adding a threshold ε and
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as functions of the density ρ, in dimensions 2 and 3.

strengthen |Jf̃ | when ‖f̃ − 1‖∞ 6 ε, by

f̃  f̃ + max(0, ε− ‖f̃ − 1‖∞) Ωf̃ · ω.

We note that this transformation that we still have ‖f̃ − 1‖∞ 6 ε if it was the case
before applying the transformation.

Figure 6 depicts the result of a numerical simulation with a threshold ε = 0.02.
We clearly see this hysteresis cycle, which agrees very well with the theoretical
diagram. The jumps at ρ = ρ∗ and ρ = ρc are closer to the theoretical jumps when T
is very large. We were not able to see any numerical significance of the value ρ1 (for
which uniform and non-isotropic distributions have the same free energy) in all these
numerical simulations. In particular, ρ1 is close to ρ∗ (see Figure 4), so in most of
the cases where both uniform and non-isotropic distribution are stable, the uniform
distribution is not the global minimizer of the free energy, but in practical, meta-
stability is very strong, and the solution still converges to the uniform distribution.

5. Conclusion. In this note, we have given the summary of strong results on the
stability and instability of the equilibrium states of the modified Smoluchowski equa-
tion (1). This allows to have a precise description of the dynamics of the solution
when time goes to infinity: it converges exponentially fast to a fixed equilibrium,
with explicit formulas for the rates of convergence. We have also exhibited a specific
example in which we observe a first order phase transition with a hysteresis loop
(in contrast with the second order phase transition of the original Smoluchowski
equation with dipolar potential [11]). The details of the proofs will be found in a
longer paper [6] as well as numerical comparisons between the particle and kinetic
models to confirm that the hysteresis is really intrinsic to the system and not simply
an artifact of the kinetic modeling.
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numerical simulation of the kinetic equation (16), with time vary-
ing ρ, in dimension 2. The red curve is the theoretical curve, the
blue one corresponds to the simulation.
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Abstract. We construct a Lipschitz metric for conservative solutions of the

Cauchy problem on the line for the two-component Camassa–Holm system

ut − utxx + 3uux − 2uxuxx − uuxxx + ρρx = 0, and ρt + (uρ)x = 0 with given
initial data (u0, ρ0). The Lipschitz metric dDM has the property that for two

solutions z(t) = (u(t), ρ(t), µt) and z̃(t) = (ũ(t), ρ̃(t), µ̃t) of the system we have

dDM (z(t), z̃(t)) ≤ CM,T dDM (z0, z̃0) for t ∈ [0, T ]. Here the measure µt is such

that its absolutely continuous part equals the energy (u2 + u2x + ρ2)(t)dx, and
the solutions are restricted to a ball of radius M .

1. Introduction. The two-component Camassa–Holm (2CH) system, which was
first derived in [21, Eq. (43)], is given by

ut − utxx + 3uux − 2uxuxx − uuxxx + ρρx = 0, (1.1a)

ρt + (uρ)x = 0, (1.1b)

or equivalently

ut + uux + Px = 0, (1.2a)

ρt + (uρ)x = 0, (1.2b)

2000 Mathematics Subject Classification. Primary: 35Q53, 35B35; Secondary: 35Q20.
Key words and phrases. Two-component Camassa–Holm system, Lipschitz metric, conservative

solutions.
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where P is implicitly defined by

P − Pxx = u2 +
1

2
u2
x +

1

2
ρ2. (1.3)

The Camassa–Holm equation [6, 7] is obtained by considering the case when ρ van-
ishes identically. The aim of this article is to present the construction of a Lipschitz
metric for this system on the real line with vanishing asymptotics, that is, u ∈ H1

and ρ ∈ L2. The conservative solutions to (1.2) are constructed in [15] for non-
vanishing asymptotics. A Lipschitz metric for the system with periodic boundary
conditions is given in [17]. We here combine the two approaches by constructing a
Lipschitz metric for conservative, decaying solutions. The preservation of the en-
ergy is needed in the proofs so that the constuction of the metric only applies to
vanishing asymptotics. Here we rather describe and motivate the general ideas be-
hind the construction, which we hope can be of interest in the study of other related
equations. For more background on the two-component Camassa–Holm system, we
refer to [15] and the references therein. For related papers, see [4, 5, 19, 18].

2. Relaxation of the equations by the introduction of Lagrangian coor-
dinates. The change of coordinates from Eulerian to Lagrangian coordinates has
relaxation properties which are well-known for the Burgers equation, viz.

ut + uux = 0. (2.1)

Lagrangian coordinates are defined by characteristics

yt(t, ξ) = u(t, y(t, ξ)),

which give the position of a particle which moves in the velocity field u and its
velocity, known as the Lagrangian velocity, is given by

U(t, ξ) = u(t, x), x = y(t, ξ).

The method of characteristics consists of rewriting (2.1) in terms of the Lagrangian
variables and yields

yt = U,

Ut = 0.
(2.2)

Comparing (2.1) to (2.2), we observe that we start with a nonlinear and partial
(derivatives with respect to t and x) differential equation and end up with a linear
and ordinary (derivative only with respect to t) differential equation. We get rid of
the nonlinear convection term, and (2.2) is nothing but Newton’s law, which states
that the acceleration is constant in the absence of forces. A well-known drawback
of the change of coordinates from Eulerian to Lagrangian coordinates is that it
doubles the dimension of the problem: We start with a scalar equation and end up
with a system of dimension two. This is an important issue and we will deal with it
in Section 4. However, in return, we gain the possibility to represent a larger class
of objects or, more precisely in our case, to increase the regularity of the unknown
functions. Let us make this imprecise statement clearer by an example and, to do
so, we drop the dependence in t in the notation, as we look at singularities in the
space variable. The function u(x) can be represented by its graph (x, u(x)) but this
graph can itself be represented as a parametric curve, namely, (y(ξ), U(ξ)) and, as
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Figure 1. Anti symmetric peakon-antipeakon collision, before (on
the left) and after (on the right) collision.

we know, the set of graphs is smaller than the set of parametric curves. As far as
regularity is concerned, the Heaviside function

h(x) =

{
0 if x < 0,

1 if x ≥ 0,

is only of bounded variation but it can be represented in Lagrangian coordinates
by the following pair of more regular (in this case Lipschitz) functions

y(ξ) =


ξ if ξ < 0,

0 if ξ ∈ [0, 1),

ξ − 1 if ξ ≥ 1,

H(ξ) =


0 if ξ < 0,

ξ if ξ ∈ [0, 1),

1 if ξ ≥ 1

(2.3)

Indeed, (x, h(x)) and (y(ξ), H(ξ)) represent one and the same curve, except for the
vertical line joining the origin to the point (0, 1). We will return to this example
later. The solution of the Camassa–Holm equation (i.e., where ρ vanishes identi-
cally) experiences in general wave breaking (i.e., loss of of regularity in the sense
that the spatial derivative becomes unbounded while keeping the H1 norm finite) in
finite time ([9, 10, 11]) and the antisymmetric peakon-antipeakon solution, which is
described in [18] and depicted in Figure 1, helps us to understand how the solutions
can be prolonged in a way which preserves the energy.

At collision time tc, we have

lim
t→tc

u(t, x) = 0 in L∞, lim
t→tc

ux(t, 0) = −∞,

while the H1 norm is constant so that limt→tc ‖u(t, · )‖H1 = ‖u(0, · )‖H1 . To ob-
tain the conservative solution, we need to track the amount and the location of
the concentrated energy. The function u alone cannot provide this information as
u(tc, · ) is identically zero. Thus, we have to introduce an extra variable to describe
the solutions. In Lagrangian variables, it takes the form of the cumulative energy
H(t, ξ), which is given by

H(t, ξ) =

∫ y(t,ξ)

−∞
(u2 + u2

x + ρ2)(x)dx. (2.4)

We will introduce later its counter-part in Eulerian variables. Equation (1.1b)
transports the density ρ. Formally, after changing variables, we have ρ(x) dx =
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ρ(y) dy = ρ(y)yξ dξ, so that the Lagrangian variable corresponding to ρ is given by

r(t, ξ) = ρ(t, y(t, ξ))yξ(t, ξ). (2.5)

Next, we rewrite (1.2) in the Lagrangian variables (y, U,H, r). We obtain the
following system

ζt = U,

Ut = −Q,
Ht = U3 − 2PU,

rt = 0,

(2.6)

where ζ(t, ξ) = y(t, ξ)− ξ,

P (t, ξ) =
1

4

∫
R

exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη, (2.7)

and

Q(t, ξ) = −1

4

∫
R

sign(y(t, ξ)− y(t, η)) exp(−|y(t, ξ)− y(t, η)|)(U2yξ +Hξ)(t, η)dη.

(2.8)
See [15] for more details on this derivation. After differentiation, we obtain

yξt = Uξ, (2.9a)

Uξt =
1

2
Hξ + (

1

2
U2 − P )yξ, (2.9b)

Hξt = (3U2 − 2P )Uξ − 2QUyξ, (2.9c)

rt = 0. (2.9d)

This system is semilinear and we recognize some features observed earlier for the
Burgers equation: We start from a nonlinear partial differential equation and we
end up with a system of ordinary differential equations which is semilinear. We
consider the system as an ordinary differential equation because the order of the
spatial derivative is the same on both sides of the equation, so that the existence
and uniqueness of solutions can be established by a contraction argument. Finally,
it is important to recall in this section the geometric nature of the Camassa–Holm
equation. The equation is a geodesic in the group of diffeomorphism for the H1

norm, see, e.g., [12], as the Burgers equation for the L2 norm. Using the connection
between geometry and fluid mechanics, as presented in [1], the function t 7→ y(t, ξ)
can then be understood as a path in the group of diffeomorphisms. Thus besides
the relaxation properties we have just described, this interpretation adds a direct
geometrical relevance to use of Lagrangian coordinates, see also [13] for the system.

3. Semigroup in Lagrangian coordinates. In [15, Theorem 3.2], we prove by
a contraction argument that short-time solutions to (2.6) exist in a Banach space,
which we will here denote E and define as follows. Let V be the Banach space
defined by

V = {f ∈ L∞ | fξ ∈ L2}
and the norm of V is given by ‖f‖V = ‖f‖L∞ + ‖fξ‖L2 . We set E

E = V ×H1 × V × L2
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with the following norm ‖X‖ = ‖ζ‖V + ‖U‖H1 + ‖H‖V + ‖r‖L2 for any X =
(ζ, U,H, r) ∈ E. Given a constant M > 0, we denote by BM the ball

BM = {X ∈ E | ‖X‖ ≤M}. (3.1)

Short-time solutions of (2.9) cannot in general be extended to global solutions.
The challenge is to identify an appropriate set of initial data for which one can
construct global solutions that at the same time preserve the structure of the equa-
tions, allowing us to return to the Eulerian variables. There are intrinsic relations
between the variables in (2.9) that need to be conserved by the solution. This is
handled by the set G defined below. In particular, the set G is preserved by the
flow.

Definition 3.1. The set G is composed of all (ζ, U,H, r) ∈ E such that

(ζ, U,H, r) ∈
[
W 1,∞]3 × L∞, (3.2a)

yξ ≥ 0, Hξ ≥ 0, yξ +Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (3.2b)

yξHξ = y2
ξU

2 + U2
ξ + r2 almost everywhere, (3.2c)

where we denote y(ξ) = ζ(ξ) + ξ.

The condition yξ ≥ 0 implies that the mapping ξ 7→ y(ξ) is almost a diffeo-
morphism. The solution develop singularities exactly when this mapping ceases to
be a diffeomorphism, that is, when yξ = 0 in some regions. The condition (3.2c)
shows that the variables (y, U,H, r) are strongly coupled. In fact, when yξ 6= 0, we
can recover H from (3.2c). It reflects the fact that Hξ represents, in Lagrangian
coordinates, the energy density of u and ρ (that is, (u2 + u2

x + ρ2)dx in Eulerian
coordinates) and therefore, when the solution is smooth, it can be computed from
the variables y, U , and r. Note that the coupling between H and (y, U, r) disap-
pears when yξ = 0, which is precisely the moment when collisions occur and when
we need the information H provides on the energy to prolong the solution. The
identity makes also clear the smoothing property of the Camassa–Holm system.
If r0 ≥ c > 0 for some constant c, this property is preserved and then yξ never
vanishes. The solution keeps the same degree of regularity it has initially, see [15].

As in [15, Theorem 3.6], we obtain the Lipschitz continuity of the semigroup

Theorem 3.2. For any X̄ = (ȳ, Ū , H̄, r̄) ∈ G, the system (2.6) admits a unique
global solution X(t) = (y(t), U(t), H(t), r(t)) in C1(R+, E) with initial data X̄ =
(ȳ, Ū , H̄, r̄). We have X(t) ∈ G for all times. If we equip G with the topology induced
by the E-norm, then the mapping S : G × R+ → G defined by

St(X̄) = X(t)

is a Lipschitz continuous semigroup. More precisely, given M > 0 and T > 0,
there exists a constant CM which depends only on M and T such that, for any two
elements Xα, Xβ ∈ G ∩BM , we have

‖StXα − StXβ‖ ≤ CM ‖Xα −Xβ‖ (3.3)

for any t ∈ [0, T ].
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4. Relabeling symmetry. The equations are well-posed in Lagrangian coordi-
nates. We want to transport this result back to Eulerian coordinates. If the two
sets of coordinates were in bijection, then it would be straightforward but, as men-
tioned earlier, Lagrangian coordinates increase the number of unknowns from two
(u and ρ) to four (the components of X), which indicates that such a bijection does
not exist. There exists a redundancy in Lagrangian coordinates and the goal of
this section is precisely to identify this redundancy, in order to be able to define
the correct equivalence classes. This redundancy is also present in the case of the
Burgers equation when we define the Cauchy problem for both (2.1) and (2.2). To
the initial condition u(0, x) = u0(x) for (2.1), there corresponds infinitely many
parametrizations of the initial conditions for (2.2) given by

y(0, ξ) = f(ξ), U(0, ξ) = u0(f(ξ)),

for an arbitrary diffeomorphism f . As also mentioned earlier, the representation
of a graph is uniquely defined by a single function while there are infinitely many
different parametrizations of any given curve. We will use the term relabeling for
this lack of uniqueness in the characterization of one and the same curve.

We now define the relabeling functions as follows.

Definition 4.1. We denote by G the subgroup of the group of homeomorphisms
from R to R such that

f − Id and f−1 − Id both belong to W 1,∞, (4.1a)

fξ − 1 belongs to L2, (4.1b)

where Id denotes the identity function. Given κ > 0, we denote by Gκ the subset
Gκ of G defined by

Gκ = {f ∈ G | ‖f − Id‖W 1,∞ +
∥∥f−1 − Id

∥∥
W 1,∞ ≤ κ}.

We refine the definition of G in Definition 3.1 by introducing the subsets Fκ and
F as

Fκ = {X = (y, U,H, r) ∈ G | y +H ∈ Gκ},
and

F = {X = (y, U,H, r) ∈ G | y +H ∈ G}. (4.2)

The regularity requirement on the relabeling functions given in Definition 4.1 and
the definition of F are introduced in order to be able to define the action of G on
F , that is, for any X = (y, U,H, r) ∈ F and any function f ∈ G, the function
(y ◦ f, U ◦ f,H ◦ f, r ◦ ffξ) belongs to F and we will denote it by X ◦ f . This
corresponds to the relabeling action. Note that relabeling acts differently on primary
functions, as y, U and H (in this case, we have (U, f) 7→ U ◦ f) and on derivatives
or densities, as yξ, Uξ, Hξ and r (in that case we have (r, f) 7→ r ◦ ffξ). The space
F is preserved by the governing equation (2.6) and, as expected, the semigroup of
solutions in Lagrangian coordinates preserves relabeling, i.e., we have the following
result.

Lemma 4.2 ([15, Theorem 4.8]). The mapping St is equivariant, that is,

St(X ◦ f) = St(X) ◦ f

for any X ∈ F and f ∈ G.
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Now that we have identified the redundancy of Lagrangian coordinates as the
action of relabeling, we want to handle it by considering equivalence classes. How-
ever, equivalence classes are rather abstract objects which will be hard to work with
from an analytical point of view. We consider instead the section defined by F0,
which contains one and only one representative for each equivalence class, so that
the quotient F/G is in bijection with F0. Let us denote by Π the projection of F
into F0 defined as

Π(X) = X ◦ (y +H)−1

for any X = (y, U,H, r) ∈ F . By definition, we have that X and Π(X) belong to
the same equivalence class. We can check that the mapping Π is a projection, i.e.,
Π ◦ Π = Π, and that it is also invariant, i.e., Π(X ◦ f) = Π(X). It follows that the
mapping [X] 7→ Π(X) is a bijection from F/G to F0.

5. Eulerian coordinates. In the method of characteristics, once the equation is
solved in Lagrangian coordinates, we recover the solution in Eulerian coordinates
by setting u(t, x) = U(t, y−1(t, x)), where y−1(t, x) denotes—assuming it exists—
the inverse of ξ 7→ y(t, ξ). The Burgers equation and the Camassa–Holm equation
develop singularity because y does not remain invertible. In the case of the Burgers
equation, u becomes discontinuous but the Camassa–Holm equation enjoys more
regularity and u remains continuous. This is a consequence of the preservation of
the H1 norm, but it can also be seen from the Lagrangian point of view. Indeed,
even if y is not invertible, we can define u(t, x) as

u(t, x) = U(t, ξ) for any ξ such that x = y(t, ξ).

This is well-defined because if there exist ξ1 and ξ2 such that x = y(t, ξ1) = y(t, ξ2),
then yξ(t, ξ) = 0 for all ξ ∈ [ξ1, ξ2] because y is non-decreasing, see (3.2b). Then, by
(3.2c), we get Uξ(t, ξ) = 0 so that U(t, ξ1) = U(t, ξ2). Furthermore, as we explained
earlier in the case of a peakon-antipeakon collision, some information is needed
about the energy to prolong the solution after collision. If y is invertible, we recover
the energy density in Eulerian coordinates as

(u2 + u2
x + ρ2) dx =

Hξ

yξ
◦ y−1 dξ, (5.1)

which corresponds to the push-forward of the measure Hξ dξ with respect to y, i.e.,

(u2 + u2
x + ρ2) dx = y#(Hξ dξ). (5.2)

However, when y is not invertible (5.1) cannot be used and y#(Hξ dξ) may not be
absolutely continuous so that (5.2) will not hold either. It motivates the introduction
of the energy µ defined here as y#(Hξ dξ), which represents the energy of the system.
The set D of Eulerian coordinates is defined as follows.

Definition 5.1. The set D consists of all triples (u, ρ, µ) such that

1. u ∈ H1, ρ ∈ L2, and
2. µ is a positive Radon measure whose absolutely continuous part, µac, satisfies

µac = (u2 + u2
x + ρ2)dx. (5.3)

It can be shown (see [15, Section 4]) that the identity (3.2c) is somehow equivalent
to (5.3) but it is clear that, from an analytical point of view, it easier to deal with
an algebraic identity like (3.2c) than with a property like (5.3) which immediately
requires tools from measure theory. We can show that D and F0 are in bijection,
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and the mappings between the two are given in the following definition. The first
one has been already explained.

Definition 5.2. Given any element X in F0, then (u, ρ, µ) defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ),

ρ(x) = y#(rdξ), µ = y#(Hξdξ),

belongs to D. We denote by M : F0 → D the map which to any X in F0 associates
(u, ρ, µ).

The mapping, which we denoted by L, from D to F0 is defined as follows.

Definition 5.3. For any (u, ρ, µ) in D let
y(ξ) = sup{y | µ((−∞, y)) + y < ξ},
H(ξ) = ξ − y(ξ),

U(ξ) = u ◦ y(ξ),

r(ξ) = ρ ◦ y(ξ)yξ(ξ).

(5.4)

We can see that the lack of regularity of u, which will occur when µ is singular
or very large, is transformed into regions where the function y is constant or almost
constant. Using the relabeling degree of freedom, we manage to rewrite functions
in L2 and measures as bounded functions (in L∞). For example, for the peakon-
antipeakon collision depicted in Figure 1, the initial data given by u0(x) = ρ0(x) = 0
and µ = δ(x) dx, which corresponds to the collision time, tc, when the total energy
is equal to one, yields r(ξ) = U(ξ) = 0 with y(ξ) and H(ξ) as defined in (2.3). We
can check that, in this case δ(x) dx = y#(Hξ dξ). Finally, we define the semigroup
Tt of conservative solutions in the original Eulerian variables D as

Tt := MΠStL.

6. Lipschitz metric for the semigroup. We apply the construction of the semi-
group Tt in Section 5, and we can check, as done in [15, Theorem 5.2], that, for given
initial data (u0, ρ0, µ0), if we denote (u(t), ρ(t), µt) = Tt(u0, ρ0, µ0), then (u, ρ) are
weak solutions to (1.2). Moreover,

µt(R) = µ0(R)

so that the solutions are conservative. Our goal is to define a metric on D which
makes the semigroup Lipschitz continuous. The Lipschitz continuity is a property of
a semigroup which can be used to establish its uniqueness, see [3] and [2, Theorem
2.9]. By our construction, a metric for the semigroup Tt is readily available. We
can simply transport the topology of the Banach space E from F0 to D and obtain,
for two elements (u, ρ, µ) and (ũ, ρ̃, µ̃),

dD
(
(u, ρ, µ), (ũ, ρ̃, µ̃)

)
= ‖L(u, ρ, µ)− L(ũ, ρ̃, µ̃)‖E . (6.1)

We have

dD
(
Tt(u, ρ, µ), Tt(ũ, ρ̃, µ̃)

)
= ‖ΠStL(u, ρ, µ)−ΠStL(ũ, ρ̃, µ̃)‖E .

It can be proven that the projection Π is continuous (see [15, Lemma 4.6]), but
it is not Lipschitz (at least, we have been unable to prove it). Thus, even if St is
Lipschitz continuous, the semigroup Tt is only continuous with respect to the metric
dD defined by (6.1). In the definition (6.1) of the metric, we let the section F0 play
a special role, but this section is arbitrarily chosen. The set F0 is by construction
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nonlinear (because of (3.2c)) and to use a linear norm to measure distances does
not respect that. In fact, we want to measure the distance between equivalence
classes. A natural starting point is to define, for Xα, Xβ ∈ F , J̄(Xα, Xβ) as

J̄(Xα, Xβ) = inf
f,g∈G

‖Xα ◦ f −Xβ ◦ g‖ . (6.2)

The function J̄ is relabeling invariant, that is, J̄(Xα ◦ f,Xβ ◦ g) = J̄(Xα, Xβ) and
measures precisely the distance between two equivalence classes. However, we have
to deal with the fact that the linear norm of E does not play well with relabeling:
It is not invariant with respect to relabeling, i.e., we do not have

‖X ◦ f‖ = ‖X‖ . (6.3)

However, such a norm exists. Let

B = {X ∈ L∞ | Xξ ∈ L1}.

Then,

‖X ◦ f‖B = ‖X ◦ f‖L∞ + ‖Xξ ◦ ffξ‖L1 = ‖X‖L∞ + ‖Xξ‖L1 = ‖X‖B .

To cope with the lack of relabeling invariance of J̄ , we introduce J defined as follows.

Definition 6.1. Let Xα, Xβ ∈ F , we define J(Xα, Xβ) as

J(Xα, Xβ) = inf
f1,f2∈G

(
‖Xα ◦ f1 −Xβ‖+ ‖Xα −Xβ ◦ f2‖

)
. (6.4)

The function J is not relabeling invariant, but we have J(Xα, Xβ) = 0 if Xα and
Xβ both belong to the same equivalence class. Moreover, the relabeling invariance
is not strictly needed for our purpose and the following weaker property is enough.
Given Xα, Xβ ∈ F and f ∈ Gκ, we have

J(Xα ◦ f,Xβ ◦ f) ≤ CJ(Xα, Xβ) (6.5)

for some constant C which depends only on κ, see [16]. Note that, if the norm
E were invariant, that is, (6.3) were fulfilled, then the function J and J̄ would be
equivalent, because we would have J̄ ≤ J ≤ 2J̄ .

Remark 6.2. We will make use of the following notation. The variable X is used
as a standard notation for (y, U,H, r). By the L∞ norm of X, we mean

‖X‖L∞ = ‖y − Id‖L∞ + ‖U‖L∞ + ‖H‖L∞ , (6.6)

and, by the L2 norm of the derivative Xξ, we mean

‖Xξ‖L2 = ‖yξ − 1‖L2 + ‖Uξ‖L2 + ‖Hξ‖L2 + ‖r‖L2 , (6.7)

and, similarly,

‖Xξ‖L∞ = ‖yξ − 1‖L∞ + ‖Uξ‖L∞ + ‖Hξ‖L∞ + ‖r‖L∞ . (6.8)

From J , we obtain a metric d by the following construction.

Definition 6.3. Let Xα, Xβ ∈ F0, we define d(Xα, Xβ) as

d(Xα, Xβ) = inf
N∑
i=1

J(Xn−1, Xn) (6.9)

where the infimum is taken over all finite sequences {Xn}Nn=0 ⊂ F0 which satisfy
X0 = Xα and XN = Xβ .
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Lemma 6.4. The mapping d : F0×F0 → R+ is a distance on F0, which is bounded
as follows

1

2
‖Xα −Xβ‖L∞ ≤ d(Xα, Xβ) ≤ 2 ‖Xα −Xβ‖ . (6.10)

Proof. The first part of the proof is identical to [16] and we reproduce it here for
convenience. For any Xα, Xβ ∈ F0, we have

‖Xα −Xβ‖L∞ ≤ 2J(Xα, Xβ). (6.11)

We have

‖Xα −Xβ‖L∞ ≤ ‖Xα −Xα ◦ f‖L∞ + ‖Xα ◦ f −Xβ‖L∞

≤ ‖Xα,ξ‖L∞ ‖f − Id‖L∞ + ‖Xα ◦ f −Xβ‖L∞ . (6.12)

It follows from the definition of F0 that 0 ≤ yξ ≤ 1, 0 ≤ Hξ ≤ 1 and |Uξ| ≤ 1 so
that ‖Xα,ξ‖L∞ ≤ 3. We also have

‖f − Id‖L∞ = ‖(yα +Hα) ◦ f − (yβ +Hβ)‖L∞ ≤ ‖Xα ◦ f −Xβ‖L∞ . (6.13)

Hence, from (6.12), we get

‖Xα −Xβ‖L∞ ≤ 4 ‖Xα ◦ f −Xβ‖L∞ . (6.14)

In the same way, we obtain ‖Xα −Xβ‖L∞ ≤ 4 ‖Xα −Xβ ◦ f‖L∞ for any f ∈ G.
After adding these two last inequalities and taking the infimum, we get (6.11). For
any ε > 0, we consider a finite sequence {Xn}Nn=0 ⊂ F0 such that X0 = Xα and

XN = Xβ and
∑N
i=1 J(Xn−1, Xn) ≤ d(Xα, Xβ) + ε. We have

‖Xα −Xβ‖L∞ ≤
N∑
n=1

‖Xn−1 −Xn‖L∞

≤ 2
N∑
n=1

J(Xn−1, Xn)

≤ 2(d(Xα, Xβ) + ε).

After letting ε tend to zero, we get

‖Xα −Xβ‖L∞ ≤ 2d(Xα, Xβ). (6.15)

The second inequality in (6.10) follows from the definitions of J and d. Indeed, we
have

d(Xα, Xβ) ≤ J(Xα, Xβ) ≤ 2 ‖Xα −Xβ‖ .
It is left to prove that d defines a metric. The symmetry is intrinsic in the definition
of J while the construction of d from J takes care of the triangle inequality. From
(6.10), we get that d(Xα, Xβ) = 0 implies (yα, Uα, Hα) = (yβ , Uβ , Hβ). By (3.2c),
we get that r2

α = r2
β , but we cannot yet conclude that rα = rβ . Let us define

Rα(ξ) =
∫ ξ
−∞ rα(η)e−|η| dη and Rβ(ξ) =

∫ ξ
−∞ rβ(η)e−|η| dη. Then, we have, for any

f ∈ G,

Rα(ξ)−Rβ(ξ) = −
∫ f(ξ)

ξ

rα(η)e−|η| dη +

∫ ξ

−∞
rα ◦ ffξ(e−|f(η)| − e−|η|) dη

+

∫ ξ

−∞
(rα ◦ ffξ − rβ)e−|η| dη, (6.16)



LIPSCHITZ METRIC FOR THE CAMASSA–HOLM SYSTEM 203

which implies

‖Rα −Rβ‖L∞ ≤ ‖f − Id‖L∞ +

∥∥∥∥∥
∫ ξ

−∞
rα ◦ ffξ(e−|f(η)| − e−|η|) dη

∥∥∥∥∥
L∞

+ ‖rα ◦ ffξ − rβ‖L2 .

We have that∫ ξ

−∞
rα ◦ ffξ(e−|f(η)| − e−|η|) dη =

∫ ξ

−∞
rα ◦ ffξe−|f(η)|(1− e|f(η)|−|η|) dη

implies∥∥∥∥∥
∫ ξ

−∞
rα ◦ ffξ(e−|f(η)| − e−|η|) dη

∥∥∥∥∥
L∞

≤
∥∥∥e|f(ξ)|−|ξ| − 1

∥∥∥
L∞
‖rα‖L2

∥∥∥e−|ξ|∥∥∥
L2

≤ C ‖rα‖L2 ‖f − Id‖L∞ ,

for C = e if we assume that ‖f − Id‖L∞ ≤ 1. Since Xα ∈ F0 so that yξ ≤ 1, we get

from (3.2c) that ‖rα‖L2 ≤ ‖Hα‖1/2L∞ . Collecting the results obtained so far, we find
that

‖Rα −Rβ‖L∞ ≤ (2 + C ‖Hα‖1/2L∞) ‖Xα ◦ f −Xβ‖ (6.17)

for any ‖f − Id‖L∞ ≤ 1. Let us now assume that d(Xα, Xβ) = 0. For any ε > 0,
we can find a sequence such that

N∑
n=1

‖Xn ◦ fn −Xn−1‖ ≤ ε.

Using (6.13) and (6.14), we get ‖fn − Id‖L∞ ≤ ε and prove by induction that

‖Hn‖L∞ ≤
n∑
i=1

‖Xi ◦ fi −Xi−1‖L∞ + ‖Hα‖L∞ , (6.18)

for all n ≤ N . Indeed, we have

‖Hn+1‖L∞ = ‖Hn+1 ◦ fn+1‖L∞

≤ ‖Hn+1 ◦ fn+1 −Hn‖L∞ + ‖Hn‖L∞

≤
n+1∑
i=1

‖Xi ◦ fi −Xi−1‖L∞ + ‖Hα‖L∞ ,

after using the induction hypothesis. From (6.18), we get

‖Hn‖L∞ ≤ ε+ ‖Hα‖ .
Hence, by choosing ε ≤ 1, and using repeatedly (6.17), we obtain

‖Rα −Rβ‖L∞ ≤
N∑
n=1

‖Rn −Rn−1‖L∞

≤ (2 + C(ε+ ‖Hα‖L∞)1/2)
N∑
n=1

‖Xα ◦ f −Xβ‖

≤ (2 + C(ε+ ‖Hα‖L∞)1/2)ε.

After letting ε tend to zero, this last inequality implies that Rα = Rβ so that
rα = rβ , which concludes the proof that d is a metric.
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The Lipschitz estimate for the semigroup St given in (3.3) is valid for initial data
in BM . Hence, as we want to use the same Lipschitz estimate for any of the Xn

in the sequence defining the metric in (6.9), we have to redefine this metric and
require that all Xn belong to F0∩BM . The problem is that BM is not preserved by
the semigroup St, and we will not be able to use the same distance at later times.
This is why we introduce the set

FM = {X = (y, U,H, r) ∈ F | ‖H‖L∞ ≤M},

which is preserved by both relabeling and the semigroup. Note that FM has a simple
physical interpretation as it corresponds to the set of all solutions which have total
energy bounded by M . Moreover, following closely the proof of [16, Lemma 3.4],
we obtain that for X ∈ F0, the sets BM and FM are in fact equivalent, i.e., there
exists M̄ depending only on M such that

F0 ∩ FM ⊂ BM̄ . (6.19)

We set FM0 = F0 ∩ FM and define the metric dM as follows.

Definition 6.5. Let dM be the distance on FM0 which is defined, for any Xα, Xβ ∈
FM0 , as

dM (Xα, Xβ) = inf
N∑
n=1

J(Xn−1, Xn) (6.20)

where the infimum is taken over all finite sequences {Xn}Nn=0 ⊂ FM0 such that
X0 = Xα and XN = Xβ .

Figure 2. Illustration for the construction of the metric. The
horizontal curves represent points which belong to the same equiv-
alence class.

We can now state our main stability theorem
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Theorem 6.6. Given T > 0 and M > 0, there exists a constant CM,T which
depends only on M and T such that, for any Xα, Xβ ∈ FM0 and t ∈ [0, T ], we have

dM (ΠStXα,ΠStXβ) ≤ CM,T d
M (Xα, Xβ). (6.21)

In fact due to the use of equivalent notations, the proof of the theorem is identical
to [16, Theorem 3.6]. Here, we propose to present a simplified proof where we
assume that the norm of E is invariant with respect to relabeling, that is, (6.3) holds.
By doing so, we hope that some general ideas behind the construction of the metric
becomes clearer. Much of the construction can be understood from the illustration
in Figure 2. In this figure, we denote Xt

α = ΠSt(Xα ◦ f0), Xt
β = ΠSt(Xβ ◦ g1) and

Xt
1 = ΠSt(X1 ◦ g0) = ΠSt(X1 ◦ f1). Let us imagine the (very improbable) case

where the infimum in (6.20) and the infimum in (6.4) both are reached, so that
dM (Xα, Xβ) = ‖Xα ◦ f0 −X1 ◦ g0‖+ ‖X1 ◦ f1 −Xβ ◦ g1‖. Then, we have

dM (Xt
α, X

t
β) ≤ J(Xt

α, X
t
1) + J(Xt

1, X
t
β)

= J(St(Xα ◦ f0), St(X1 ◦ g0)) + J(St(X1 ◦ f1), St(Xβ ◦ g1))

≤ ‖St(Xα ◦ f0)− St(X1 ◦ g0)‖+ ‖St(X1 ◦ f1)− St(Xβ ◦ g1)‖
≤ CM,T

(
‖Xα ◦ f0 −X1 ◦ g0‖+ ‖X1 ◦ f1 −Xβ ◦ g1‖

)
= CM,T d

M (Xα, Xβ),

which corresponds to the Lipschitz estimate of Theorem 6.6.

Simplified proof of Theorem 6.6. As we mentioned earlier, when the norm is invari-
ant, then J and J̄ are equivalent. Here, it is simpler to consider J̄ . For any ε > 0,
there exist a finite sequence {Xn}Nn=0 in FM0 and functions {fn}N−1

n=0 , {gn}N−1
n=0 in

G such that X0 = Xα, XN = Xβ and

N∑
i=1

‖Xn−1 ◦ fn−1 −Xn ◦ gn−1‖ ≤ dM (Xα, Xβ) + ε. (6.22)

Since BM̄ , where M̄ is defined so that (6.19) holds, is preserved by relabeling, we
have that Xn ◦ fn and Xn ◦ gn−1 belong to BM̄ . From the Lipschitz stability result
given in (3.3), we obtain that

‖St(Xn−1 ◦ fn−1)− St(Xn ◦ gn−1)‖ ≤ CM,T ‖Xn−1 ◦ fn−1 −Xn ◦ gn−1‖ , (6.23)

where the constant CM,T depends only on M and T . Introduce

X̄n = Xn ◦ fn, X̄t
n = St(X̄n), for n = 0, . . . , N − 1,

and

X̃n = Xn ◦ gn−1, X̃
t
n = St(X̃n), for n = 1, . . . , N.

Then (6.22) rewrites as

N∑
i=1

∥∥∥X̄n−1 − X̃n

∥∥∥ ≤ dM (Xα, Xβ) + ε (6.24)

while (6.23) rewrites as∥∥∥X̄t
n−1 − X̃t

n

∥∥∥ ≤ CM,T

∥∥∥X̄n−1 − X̃n

∥∥∥ . (6.25)

We have

Π(X̄t
0) = Π ◦ St(X0 ◦ f0) = Π ◦ (St(X0) ◦ f0) = Π ◦ St(X0) = S̄t(Xα)
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and similarly Π(X̃t
N ) = ΠSt(Xβ). We consider the sequence which consists of

{ΠX̄t
n}N−1
n=0 and S̄t(Xβ). Using the property that FM is preserved both by relabel-

ing and by the semigroup, we obtain that {ΠX̄t
n}N−1
n=0 and S̄t(Xβ) belong to FM

and therefore also to FM0 . The endpoints are ΠSt(Xα) and ΠSt(Xβ). From the
definition of the metric dM , we get

dM (S̄t(Xα), S̄t(Xβ)) ≤
N−1∑
n=1

J̄(ΠX̄t
n−1,ΠX̄

t
n) + J̄(ΠX̄t

N−1, S̄t(Xβ))

=
N−1∑
n=1

J̄(X̄t
n−1, X̄

t
n) + J̄(X̄t

N−1, X̃
t
N ), (6.26)

due to the invariance of J̄ with respect to relabeling. By using the equivariance of
St, we obtain that

X̃t
n = St(X̃n) = St((X̄n ◦ f−1

n ) ◦ gn−1)

= St(X̄n) ◦ (f−1
n ◦ gn−1) = X̄t

n ◦ (f−1
n ◦ gn−1).

(6.27)

Hence we get from (6.26) that

dM (S̄t(Xα), S̄t(Xβ)) ≤
N−1∑
n=1

J̄(X̄t
n−1, X̃

t
n) + J̄(X̄t

N−1, X̃
t
N )

≤
N∑
n=1

∥∥∥X̄t
n−1 − X̃t

n

∥∥∥ by (6.10)

≤ CM,T

N∑
n=1

∥∥∥X̄n−1 − X̃n

∥∥∥ by (6.25)

≤ CM,T (dM (Xα, Xβ) + ε).

After letting ε tend to zero, we obtain (6.21).

The Lipschitz stability of the semigroup Tt follows then naturally from Theo-
rem 6.6. It holds on sets of bounded energy. Let DM be the subsets of D defined
as

DM = {(u, ρ, µ) ∈ D | µ(R) ≤M}. (6.28)

On the set DM we define the metric dDM as

dDM ((u, ρ, µ), (ũ, ρ̃, µ̃)) = dM (L(u, ρ, µ), L(ũ, ρ̃, µ̃)), (6.29)

where the metric dM is defined as in Definition 6.5. This definition is well-posed
as, from the definition of L, we have that if (u, ρ, µ) ∈ DM , then L(u, ρ, µ) ∈ FM0 .

Theorem 6.7. The semigroup (Tt, dD) is a continuous semigroup on D with respect
to the metric dD. The semigroup is Lipschitz continuous on sets of bounded energy,
that is: Given M > 0 and a time interval [0, T ], there exists a constant CM,T , which
only depends on M and T such that for any (u, ρ, µ) and (ũ, ρ̃, µ̃) in DM , we have

dDM (Tt(u, ρ, µ), Tt(ũ, ρ̃, µ̃)) ≤ CM,T dDM ((u, ρ, µ), (ũ, ρ̃, µ̃)) (6.30)

for all t ∈ [0, T ]. Let (u, ρ, µ)(t) = Tt(u0, ρ0, µ0), then (u(t, x), ρ(t, x)) is weak
solution of the Camassa–Holm equation (1.2).
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We conclude the section about this metric by mentioning that, even if the con-
struction of the metric is abstract, it can be compared with standard norms, cf. [16,
Section 5], so that it can be used in practice, for example in the study of numerical
schemes [8, 20].
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POINTS OF SHOCK WAVE INTERACTION ARE ‘REGULARITY

SINGULARITIES’ IN SPACETIME

Moritz Reintjes

Instituto Nacional de Matemática Pura e Aplicada
Estrada Dona Castorina 110

Rio de Janeiro / Brasil 22460-320, Brasil

Abstract. In this proceedings article we present the results first announced
in [9]. The detailed proofs can be found in [7].

In [9, 7], we prove that the regularity of the gravitational metric tensor in

spherically symmetric spacetimes cannot be lifted from C0,1 to C1,1 within
the class of C1,1 coordinate transformations in a neighborhood of a point of

shock wave interaction in General Relativity, without forcing the determinant

of the metric tensor to vanish at the point of interaction. This is in contrast
to Israel’s Theorem [4] which states that such coordinate transformations al-

ways exist in a neighborhood of a point on a smooth single shock surface. The
results imply that points of shock wave interaction represent a new kind of

regularity singularity for perfect fluid matter sources in the Einstein equations,

singularities that lie in physical spacetime, that can form from the evolution
of smooth initial data, but at which the spacetime is not locally Minkowskian

under any coordinate transformation. In particular, at regularity singularities,

delta function sources in the second derivatives of the metric exist in all coor-
dinate systems of the C1,1-atlas, but due to cancelation, the curvature tensor

is supnorm bounded.

1. Introduction. In contrast to Newtonian gravity, Albert Einstein’s theory of
General Relativity (GR) generically predicts the existence of spacetime singularities.
Those are points where the gravitational metric, which lies at the heart of GR,
suffers a severe lack of regularity. For instance, the singularity at the center of the
Schwarzschild metric or at its Schwarzschild radius, where the metric tensor fails to
be bounded. The first one is an example of a non-removable singularity which persist
in every coordinate system, those singularities are usually characterized by a blow-
up in the scalar curvature and they lie outside of physical spacetime. The apparent
singularity at the Schwarzschild radius is an example of a removable singularity, i.e.,
there exist coordinates in which the metric is regular enough to be non-singular. A
metric is non-singular if its components, their first and second derivatives and its
curvature are bounded and if it is locally inertial, that is, around any point p exist
coordinates in which the gravitational metric at p is the Minkowski metric up to
second order corrections. (The physical interpretation of the metric being locally
inertial is that an observer in freefall experiences the physics of special relativity
up to second order acceleration effects due to gravity.) However, the metric tensor
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is governed by the Einstein equations, which are a system of PDE’s, so that the
Einstein equations determine the smoothness of the gravitational metric tensor by
the evolution they impose. Thus the condition on spacetime that it be non-singular
cannot be assumed in the beginning, but must be determined by regularity theorems
for the Einstein equations.

For perfect fluids as the sources of matter and energy, this issue becomes all
the more interesting and intriguing. Then the Einstein equations impose the GR
compressible Euler equations as the evolution equations for the matter fields, and
the compressible Euler equations create shock waves out of smooth initial data
whenever the flow is sufficiently compressive [1, 11]. At a shock wave, the fluid
density, pressure and velocity are discontinuous, so the Einstein equation imply
that the metric is only Lipschitz continuous in some coordinates, a regularity which
is too low for the metric to be non-singular in those coordinates. However, Israel’s
theorem asserts that a metric C0,1 regular across a smooth single shock surface,
is lifted to C1,1 by the C1,1 coordinate map to Gaussian normal coordinates, and
this is again smooth enough for spacetime to be non-singular. In [2], Groah and
Temple give the first general existence theory for spherically symmetric shock wave
solutions of the Einstein-Euler equations allowing for interacting shock waves. In
Standard Schwarzschild Coordinates (SSC), the gravitational metric is only C0,1

at shock waves, and it has remained an open problem as to whether the weak
solutions constructed by Groah and Temple could be smoothed to C1,1 by coordinate
transformation, like the single shock surfaces addressed by Israel.

The negative answer to the open problem of Groah and Temple was given in
[9, 7] by proving there do not exist C1,1 coordinate transformations that can lift
the metric regularity from C0,1 to C1,1 at a point of shock wave interaction in a
spherically symmetric spacetime. Consequently, in contrast to Israel’s theorem for
single shock surfaces, shock wave solutions cannot be continued as C1,1 strong so-
lutions of the Einstein equations beyond the first point of shock wave interaction.
The results imply that points of shock wave interaction represent a new kind of
non-removable singularity in General Relativity that can form from the evolution
of smooth initial data, that lies within physical spacetime, but at which second or-
der metric derivatives are distributional and spacetime is not locally inertial under
any C1,1 coordinate transformation. Due to cancelation, the Riemann curvature
tensor is sup-norm bounded and free of delta function sources [7]. This result con-
trasts the common assumption about the metric being C1,1 regular, for example,
this is assumed in the singularity theorems of Hawking and Penrose, [3]. In this
proceedings article we present the main result of [9, 7], sketch its proof and discuss
some consequences and open problems.

To state the main result precisely, let gµν denote a spherically symmetric space-
time metric in SSC, that is, the metric takes the form

ds2 = gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2, (1)

where either t or r can be taken to be timelike, and dΩ2 = dϑ2 + sin2(ϑ)dϕ2 is
the line element on the unit 2-sphere, c.f. [13]. In Section 3 we make precise the
definition of a point of regular shock wave interaction in SSC. Essentially, this is a
point where two shock waves enter or leave the point p at distinct speeds, such that
the metric is Lipschitz continuous across each shock, the Rankine Hugoniot (RH)
conditions hold across the shocks, and the SSC Einstein equations hold strongly
away from the shocks. The main result of [9, 7] is the following theorem, c.f. [9]:
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Theorem 1.1. Assume p is a point of regular shock wave interaction in SSC, in
the sense of Definition 3.1, for the SSC metric gµν . Then there does not exist a
C1,1 regular coordinate transformation, defined in a neighborhood of p, such that
the metric components are C1 functions of the new coordinates and such that the
metric has a nonzero determinant at p.

The proof of Theorem 1.1 is constructive in the sense that we characterize the
Jacobians of (t, r) coordinate transformations that could smooth the components
of the gravitational metric in a deleted neighborhood of a point p of regular shock
wave interaction, and then prove that any such Jacobian must have a vanishing de-
terminant at p itself. The proof for the full atlas of C1,1 coordinate transformations,
also allowing for changes of angular variables, can be found in [7].

Our assumptions in Theorem 1.1 apply to the upper half (t ≥ 0) and the lower
half (t ≤ 0) of a shock wave interaction (at t = 0) separately, general enough to
include the case of two timelike (or spacelike) interacting shock waves of opposite
families that cross at the point p, but also general enough to include the cases of two
outgoing shock waves created by the focusing of compressive rarefaction waves, or
two incoming shock waves of the same family that interact at p to create an outgoing
shock wave of the same family and an outgoing rarefaction wave of the opposite
family, c.f. [11]. In particular, our framework is general enough to incorporate the
shock wave interaction which was numerically simulated in [14].

Historically, the issue of the smoothness of the gravitational metric tensor across
interfaces began with the matching of the interior Schwarzschild solution to the
vacuum across an interface, followed by the celebrated work of Oppenheimer and
Snyder who gave the first dynamical model of gravitational collapse by matching a
pressureless fluid sphere to the Schwarzschild vacuum spacetime across a dynamical
interface [6]. In [12], Smoller and Temple extended the Oppenheimer-Snyder model
to nonzero pressure by matching the Friedmann metric to a static fluid sphere across
a shock wave interface that modeled a blast wave in GR. In his celebrated 1966 paper
[4], Israel gave the definitive conditions for regular matching of gravitational metrics
at smooth interfaces, by showing that if the second fundamental form is continuous
across a single smooth interface, then the RH conditions also hold, and Gaussian
normal coordinates provide a locally inertial coordinate system at each point on
the surface. In [2] Groah and Temple addressed these issues rigorously in the first
general existence theory for shock wave solutions of the Einstein-Euler equations in
spherically symmetric spacetimes.

Although points of shock wave interaction are straightforward to construct for
the relativistic compressible Euler equations in flat spacetime, we know of no rig-
orous construction of a point of regular shock wave interaction in GR. However, all
evidence indicates points of shock wave interaction to exist, have the structure we
assume in SSC, and cannot be avoided in solutions consisting of, say, an outgoing
spherical shock wave (the blast wave of an explosion) evolving inside an incoming
spherical shock wave (the leading edge of an implosion). Namely, the existence
theory of Temple and Groah [2] lends strong support to this claim, establishing
existence of weak solutions of the Einstein-Euler equations in spherically symmetric
spacetimes. The theory applies to arbitrary numbers of initial shock waves of arbi-
trary strength, existence is established beyond the point of shock wave interaction,
and the regularity assumptions of our theorem are within the regularity class to
which the Groah-Temple theory applies. Moreover, the recent work of Vogler and
Temple gives a numerical simulation in which two shock waves emerge from a point
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of interaction where two compression waves focus into a discontinuity in density and
velocity, and the numerics demonstrate that the structure of the emerging shock
waves meet the assumptions of our theorem.

It is instructive at this point to clarify the difference between the essential C0,1

singularities in the metric at points of shock wave interaction, and the essential C0,1

singularities at surface layers like the “thin shells” introduced in Israel’s illuminating
paper [4]. On surface layers, the delta function sources in the energy momentum
tensor, T , are the cause of the essential C0,1 singularity in the metric g, because
second derivatives of g must have distributional sources and consequently g cannot
be C1,1 in any regular coordinate system. For shock wave solutions of the Einstein
equations, G = κT , the issue is more delicate because T is sup-norm bounded, so
that the constraint of G having delta function sources is removed and, at first sight,
there is no clear obstacle to the existence of coordinate systems that smooth the
metric to C1,1. Israel’s theorem confirms there is no obstacle to C1,1 smoothness in
the special case of single shock surfaces, but the methods in [2] are only sufficient
to prove existence of solutions in C0,1, and the question as to whether there is an
obstacle for more complicated solutions with interactions has remained unresolved
until the argument in [9, 7] resolved this issue, proving that points of shock wave
interaction are non-removable C0,1 singularities, where spacetime fails to be locally
inertial.

We close the introduction by discussing possible physical implications of the pres-
ence of a regularity singularity. Since the gravitational metric is not locally inertial
at points of shock wave interaction, it raises the question as to whether regularity
singularities provide a physical regime where new general relativistic effects could
be observed. We currently work on the question if gravitational waves crossing a
regularity singularity pick up some (detectable) effect caused by the singularity [10].
So far, we believe that we isolated a mechanism which gives rise to such an effect.
This mechanism is based on the results in [8], which are proofed by an extension of
the methods outlined in this article.

2. Preliminaries. Let g denote a Lorentzian metric g of signature (−1, 1, 1, 1)
on a four dimensional spacetime manifold M . We call M a Ck-manifold if it is
endowed with a Ck-atlas, a collection of four dimensional local diffeomorphisms
from M to R4, such that any composition of two local diffeomorphisms x and y of
the form x◦y−1 is Ck regular. (x◦y−1 is refered to as a coordinate transformation.)
In this paper we consider C1,1-manifolds, in fact, lowering the regularity to C1,1 is
the crucial step allowing for a smoothing of the metric in the presence of a single
shock wave, (c.f. (19) and Theorem 5).

We use standard index notation for tensors whereby Greek vs Roman indices
distinguish coordinate systems, and repeated up-down indices are assumed summed
from 0 to 3. Under coordinate transformation, tensors transform by contraction
with the Jacobian Jµj = ∂xµ

∂xj , J
j
ν denotes the inverse Jacobian, and indices are

raised and lowered with the metric and its inverse gij , which transform as bilinear
forms, gµν = J iµJ

j
νgij , c.f. [15]. We use the fact that a matrix of functions Jµj is the

Jacobian of a regular local coordinate transformation if and only if

Jµi,j = Jµj,i and Det
(
Jµj
)
6= 0, (2)

where f,j = ∂f
∂xj denotes partial differentiation with respect to the coordinate xj

and Det
(
Jµj
)

denotes the determinant of the Jacobian.
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In this article we consider the Einstein-Euler equations

Gij = κT ij , (3)

which couples the metric tensor gij to the perfect fluid sources

T ij = (p+ ρ)uiuj + pgij , (4)

through the second order Einstein curvature tensor Gij ≡ Rij − 1
2Rg

ij , and

Div T = 0 (5)

follows from Div G = 0. Here κ is the coupling constant, ρ is the energy density, ui
the 4-velocity, and p the pressure, c.f. [15]. Equation (5) reduces to the relativis-
tic compressible Euler equations when gij is the Minkowski metric, and the Euler
equations close when an equation of state (e.g. p = p(ρ)) is imposed. Shock waves
form from smooth solutions of the relativistic compressible Euler equations when
the initial data is sufficiently compressive, [11].

Across a smooth shock surface Σ, the RH jump conditions hold,

[Tµν ]nν = 0, (6)

where [f ] = fL − fR denotes the jump in f from right to left across Σ, and nν is
the surface normal. The RH condition (6) is equivalent to the weak formulation of
(5) across Σ, c.f. [11].

In this paper we restrict to time dependent spherically symmetric metrics in
Standard Schwarzschild Coordinates (1). Recall, in SSC the metric takes the form,

ds2 = gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2.

A spherically symmetric metric can generically be transformed to SSC, c.f. [15].
The Einstein equations for a metric in SSC are given by

Br +B
B − 1

r
= κAB2rT 00 (7)

Bt = −κAB2rT 01 (8)

Ar −A
1 +B

r
= κAB2rT 11 (9)

Btt −Arr + Φ = −2κABr2T 22 , (10)

with

Φ = −BAtBt
2AB

− B2
t

2B
− Ar

r
+
ABr
rB

+
A2
r

2A
+
ArBr
2B

.

Note that the first three Einstein equations in SSC imply that the metric cannot

be any smoother than Lipschitz continuous if the source T is discontinuous, for
example, T ij ∈ L∞, and throughout this article we make the assumption that A
and B are Lipschitz continuous, i.e., C0,1 functions, of t and r.

3. A point of regular shock wave interaction in SSC. In this paper we re-
strict attention to radial shock waves, by which we mean hypersurfaces Σ locally
parameterized by

Σ(t, ϑ, ϕ) = (t, x(t), ϑ, ϕ), (11)

across which A and B are C0,1 and T satisfies (6). Then, for each t, Σ is a 2-sphere
with radius x(t) and center r = 0.) For radial hypersurfaces in SSC, the angular
variables play a passive role and it suffices to work with the so-called shock curve
γ, that is, the shock surface Σ restricted to the (t, r)-plane, γ(t) = (t, x(t)), with
normal 1-form nσ = (ẋ,−1).
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For radial shock surfaces (11) in SSC, the RH jump conditions (6) take the
simplified form [

T 00
]
ẋ =

[
T 01
]
, (12)[

T 10
]
ẋ =

[
T 11
]
. (13)

Now suppose two timelike shock surfaces Σi are parameterized in SSC by

Σi(t, θ, φ) = (t, xi(t), θ, φ), i = 1, 2. (14)

Let γi(t) = (t, xi(t)) denote their corresponding restrictions to the (t, r)-plane, with
normal 1-forms (ni)σ = (ẋi,−1),. Denoting with [·]i the jump across the i − th
shock curve the RH conditions read, in correspondence to (12)-(13),[

T 00
]
i
ẋi =

[
T 01
]
i
, (15)[

T 10
]
i
ẋi =

[
T 11
]
i
. (16)

For the proof of Theorem 1.1 it suffices to restrict attention to the lower (t < 0)
or upper (t > 0) part of a shock wave interaction that occurs at t = 0. That is, it
suffices to impose conditions on either the lower or upper half plane

R2
− = {(t, r) : t < 0} or R2

+ = {(t, r) : t > 0} ,

respectively, whichever half plane contains two shock waves that intersect at p with
distinct speeds. Thus, without loss of generality, let t < 0 and let γi(t) = (t, xi(t)),
(i = 1, 2), be two shock curves in the lower (t, r)-plane intersecting in a point (0, r0),
for r0 > 0, that is, x1(0) = r0 = x2(0).

We now define the notion of a point of regular shock wave interaction in SSC.
By this we mean a point p where two shock waves collide with distinct speeds, such
that the metric is smooth away from the shock curves and Lipschitz continuous
across each shock curve, allowing for a discontinuous Tµν and the RH condition to
hold. Recall, we assume without loss of generality a lower shock wave interaction
in R2

−.

Definition 3.1. Let r0 > 0, and let gµν be an SSC metric in C0,1, defined on

N ∩ R2
−, where N ⊂ R2 is a neighborhood of a point p = (0, r0) of intersection

of two timelike shock curves γi(t) = (t, xi(t)) ∈ R2
−, t ∈ (−ε, 0). Assume the

shock speeds ẋi(0) = lim
t→0

ẋi(t) exist and are distinct, ẋ1(0) 6= ẋ2(0), and let N̂
denote the neighborhood consisting of all points in N ∩R2

− not in the closure of the
two intersecting curves γi(t). Then we say that p is a point of regular shock wave
interaction in SSC if:

(i) The pair (g, T ) is a strong solution of the SSC Einstein equations (7)-(10) in

N̂ , with Tµν ∈ C0(N̂ ) and gµν ∈ C2(N̂ ).
(ii) The limits of Tµν and of metric derivatives gµν,σ exist on both sides of each

shock curve γi(t) for all ∈ (−ε, 0).
(iii) The jumps in the metric derivatives [gµν,σ]i(t) are C1 function with respect to

t for i = 1, 2 and for t ∈ (−ε, 0).
(iv) The limits

lim
t→0

[gµν,σ]i(t) = [gµν,σ]i(0)

exist for i = 1, 2.
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(v) The metric g is continuous across each shock curve γi(t) separately, but no
better than Lipschitz continuous in the sense that, for each i there exists µ, ν
such that

[gµν,σ]i(ni)
σ 6= 0

at each point on γi, t ∈ (−ε, 0) and

lim
t→0

[gµν,σ]i(ni)
σ 6= 0.

(vi) The stress tensor T is bounded on N ∩ R2
− and satisfies the RH conditions

[T νσ]i(ni)σ = 0

at each point on γi(t), i = 1, 2, t ∈ (−ε, 0), and the limits of these jumps exist
up to p as t→ 0.

4. A Necessary and Sufficient Condition for Smoothing. In this section we
derive a necessary and sufficient pointwise condition on the Jacobians of a coordinate
transformation that it lift the regularity of a C0,1 metric tensor to C1 across a single
shock surface Σ. This is the starting point for Sections 5 and 6.

We begin with the transformation law

gαβ = JµαJ
ν
βgµν , (17)

for the metric components at a point on a hypersurface Σ for a general C1,1 co-
ordinate transformation xµ 7→ xα, where, as customary, the indices indicate the
coordinate system. Let Jµα = ∂xµ

∂xα denote the Jacobian of the transformation.
Now, assume the metric components gµν are only Lipschitz continuous across Σ

with respect to coordinates xµ, that is, smooth away from Σ but with (possibly)
discontinuous derivatives across Σ. Then, differentiating (17) with respect to ∂

∂xγ

and taking the jump across Σ we obtain

[gαβ,γ ] = JµαJ
ν
β [gµν,γ ] + gµνJ

µ
α [Jνβ,γ ] + gµνJ

ν
β [Jµα,γ ] , (18)

where [·] denotes the jump across the shock surface Σ, c.f. (6). Now, gαβ is in C1

if and only if [gαβ,γ ] = 0 for every α, β, γ ∈ {0, ..., 3}. Thus, by (18), gαβ is C1

regular if and only if

[Jµα,γ ]Jνβgµν + [Jνβ,γ ]Jµαgµν + JµαJ
ν
β [gµν,γ ] = 0. (19)

We now exploit linearity in (19) to solve for the [Jµα,γ ] associated with a given

C1,1 coordinate transformation. To this end, suppose we are given a single radial
shock surface Σ in SSC, introduced in (11). Now the SSC angular variables play a
passive role, and thus we henceforth restrict to (t, r)-coordinate transformations.

Lemma 4.1. Let gµν = −A(t, r)dt2 +B(t, r)dr2 +r2dΩ2 be a given metric in SSC,
c.f. (1), let Σ denote a single radial shock surface (11) across which g is Lipschitz
continuous. Then the unique solution [Jµα,γ ] of (19) which satisfies the integrability
condition, (c.f. (2)),

[Jµα,β ] = [Jµβ,α] , (20)

is given by:

[J t0,t] = −1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
; [J t0,r] = −1

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
[J t1,t] = −1

2

(
[At]

A
J t1 +

[Ar]

A
Jr1

)
; [J t1,r] = −1

2

(
[Ar]

A
J t1 +

[Bt]

A
Jr1

)
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[Jr0,t] = −1

2

(
[Ar]

B
J t0 +

[Bt]

B
Jr0

)
; [Jr0,r] = −1

2

(
[Bt]

B
J t0 +

[Br]

B
Jr0

)
[Jr1,t] = −1

2

(
[Ar]

B
J t1 +

[Bt]

B
Jr1

)
; [Jr1,r] = −1

2

(
[Bt]

B
J t1 +

[Br]

B
Jr1

)
. (21)

(We use the notation µ, ν ∈ {t, r} and α, β ∈ {0, 1}, so that t and r are used to
denote indices whenever they appear on the Jacobian J .)

Condition (19) is a necessary and sufficient condition for [gαβ,γ ] = 0 at a point
on a smooth single shock surface. One can further prove (21) to be necessary and
sufficient for lifting the metric regularity to C1,1 in a neighborhood of a single shock
curve, provided Jµα is the Jacobian of an actual coordinate transformation, that is,
Jµα satisfies the integrability condition (2) everywhere on that neighborhood.

5. Metric Smoothing on Single Shock Surfaces. In this section we sketch an
alternative constructive proof of Israel’s Theorem for spherically symmetric space-
times. For this we address the issue of how to obtain Jacobians of actual coordinate
transformations defined on a whole neighborhood of a shock surface that satisfy
(21). That is, we need a set of functions Jµα that satisfies (21), and also satisfies the
integrability condition (2) in a whole neighborhood.

Theorem 5.1. (Israel’s Theorem) Suppose gµν is an SSC metric that is C0,1 across
a radial shock surface γ, such that it solves the Einstein equations (7) - (10) strongly
away from γ, and assume Tµν is everywhere bounded and in C0 away from γ.
Then around each point p on γ there exists a C1,1 coordinate transformation of
the (t, r)-plane, defined in a neighborhood N of p, such that the transformed metric
components gαβ are C1,1 functions of the new coordinates, if and only if the RH
jump conditions (12), (13) hold on γ in a neighborhood of p.

The main step is to construct Jacobians acting on the (t, r)-plane that satisfy the
smoothing condition (21) on the shock curve, the condition that guarantees [gαβ,γ ] =
0. The following lemma gives an explicit formula for functions Jµα satisfying (21).
The main point is that, in the case of single shock curves, both the RH jump
conditions and the Einstein equations are necessary and sufficient for such functions
Jµα to exist.

Lemma 5.1. Let p be a point on a single shock curve γ across which the SSC metric
gµν is Lipschitz continuous and away from which gµν solves the Einstein equations
(7) - (10) strongly in a neighborhood N of p. Then, defined on N , there exists a
set of functions Jµα C0,1 across γ , that satisfies the smoothing condition (21) on
γ ∩ N if and only if the RH condition (12)-(13) holds on γ ∩ N . Furthermore, all
Jµα that are in C0,1 across N and satisfy (21) on γ ∩N are given by

J t0(t, r) =
[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)
|x(t)− r|+ Φ(t, r)

J t1(t, r) =
[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)
|x(t)− r|+N(t, r)

Jr0 (t, r) =
[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
|x(t)− r|+ Ω(t, r)

Jr1 (t, r) =
[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
|x(t)− r|+ Z(t, r) , (22)
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for arbitrary functions Φ, Ω, Z, N ∈ C1(N ), where

φ = Φ ◦ γ, ω = Ω ◦ γ, ν = N ◦ γ, ζ = Z ◦ γ . (23)

To complete the proof of Israel’s Theorem, it remains to show the functions Jµα
defined in (22) to be integrable to coordinates, i.e., that they satisfy the integrability
condition (2) in a whole neighborhood. For this, substitute (22) into (2) and choose
for N and Z arbitrary smooth functions, then (2) reduces to a system of two linear
first order PDE’s for the unknown functions Φ and Ω. This system is well-posed
and the only obstacle to solutions Φ and Ω with the necessary C1 regularity, is the
presence of discontinous source terms f(t) H(x(t)− r) and h(t) H(x(t)− r), where
H(·) denotes the Heaviside step function and f and h are C1 functions depending
on the jumps in the metric derivatives and the functions in (23). Israel’s theorem
is now a consequence of the following lemma which states that the discontinuous
terms vanish precisely when the RH jump conditions hold on γ. (See [7] for details.)

Lemma 5.2. Assume the SSC metric gµν is C0,1 across γ and solves the first three
Einstein equations strongly away from γ. Then the coefficients f and g of H(X)
(introduced above) vanish on γ if and only if the RH conditions (12)-(13) hold on
γ.

6. Shock Wave Interactions as Regularity Singularities. The main step in
the proof of Theorem 1.1 is to first prove the result for the smaller atlas of coordinate
transformations of the (t, r)-plane. (See [7] for the complete proof of Theorem 1.1,
taking into account the full atlas.) We formulate the main step precisely for lower
shock wave interactions in R2

− in the following theorem, which is the topic of this
section. A corresponding result applies to upper shock wave interactions in R2

+, as
well as two wave interactions in a whole neighborhood of p.

Theorem 6.1. Suppose that p is a point of regular shock wave interaction in SSC,
in the sense of Definition 3.1, for the SSC metric gµν . Then there does not exist a
C1,1 coordinate transformation xα ◦ (xµ)−1 of the (t, r)-plane, defined on N ∩ R2

−
for a neighborhood N of p in R2, such that the metric components gαβ are C1

functions of the coordinates xα in N ∩ R2
− and such that the metric has a non-

vanishing determinant at p, (that is, such that lim
q→p

Det (gαβ(q)) 6= 0 ).

The proof of Theorem 6.1 mirrors the constructive proof of Israel’s Theorem
5.1 in that it uses the extension (24) of ansatz (22) to construct all C1,1 coordinate
transformations that can smooth the gravitational metric to C1,1 in a neighborhood
of a point p of regular shock wave interaction. The negative conclusion is then
reached by proving that any such coordinate transformation must have a vanishing
Jacobian determinant at p. To begin with, we generalize (22) to the case of two
shock curves:

Lemma 6.1. Let p be a point of regular shock wave interaction in SSC in the sense

of Definition 3.1, corresponding to the SSC metric gµν defined on N ∩ R2
−. Then

the following is equivalent:

(i) There exists a set of functions Jµα , defined on N ∩ R2
−, which is C0,1 across

γi ∩N and satisfies the smoothing condition (21) on γi ∩N , for i = 1, 2.
(ii) The RH condition (15)-(16) holds on each shock curve γi ∩N , for i = 1, 2.
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Moreover, if (i) or (ii) is valid, then the functions Jµα assume the canonical form

J t0(t, r) =
∑
i

αi(t) |xi(t)− r|+ Φ(t, r),

J t1(t, r) =
∑
i

βi(t) |xi(t)− r|+N(t, r),

Jr0 (t, r) =
∑
i

δi(t) |xi(t)− r|+ Ω(t, r),

Jr1 (t, r) =
∑
i

εi(t) |xi(t)− r|+ Z(t, r) , (24)

where Φ,Ω, Z,N ∈ C1(N ∩ R2
−) and

αi(t) =
[Ar]i φi(t) + [Bt]i ωi(t)

4A ◦ γi(t)
, βi(t) =

[Ar]i νi(t) + [Bt]i ζi(t)

4A ◦ γi(t)
,

δi(t) =
[Bt]i φi(t) + [Br]i ωi(t)

4B ◦ γi(t)
, εi(t) =

[Bt]i νi(t) + [Br]i ζi(t)

4B ◦ γi(t)
, (25)

with
φi = Φ ◦ γi, ωi = Ω ◦ γi, ζi = Z ◦ γi, νi = N ◦ γi . (26)

Equation (24) gives a canonical form for all functions Jµα that meet the necessary
and sufficient condition (21) for [gαβ,γ ] = 0. Assuming for contradiction that Jµα
is integrable to a coordinate system, the free functions Φ,Ω, Z,N must meet the
integrability condition (2) and be C1 regular. In contrast to the single shock case,
after substituting (24) into (2) additional mixed terms in the coefficients f and h of
the discontinuous terms appear, and unlike f and g in the single shock case, these
mixed terms do not vanish by the RH conditions alone. But, as a consequence of
the C1 regularity of Φ,Ω, Z and N , f and h must vanish on the shock curves, which
imposes an additional constraint. Taking the limit of this constraint to the point p
of shock wave interaction is the essential step for the proof of Theorem 6.1, recorded
in the next lemma:

Lemma 6.2. Let p ∈ N be a point of regular shock wave interaction in SSC in the
sense of Definition 3.1. Then if the integrability condition

Jµα,β = Jµβ,α (27)

holds in N ∩ R2
− for the functions Jµα defined in (24), then

1

4B

(
ẋ1ẋ2
A

+
1

B

)
[Br]1[Br]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0) = 0. (28)

To finish the proof of Theorem 6.1, observe that the first three terms in (28) are
nonzero by our assumption that shock curves are non-null, and have distinct speeds
at t = 0. Thus (28) implies

(φ0ζ0 − ν0ω0) = 0. (29)

But, using the canonical form (24) restricted to the shock curve and taking the
determinant of the resulting Jµα leads directly to

Det (Jµα ◦ γi(t)) =
(
J t0J

r
1 − J t1Jr0

)
|γi(t) = φi(t)ζi(t)− νi(t)ωi(t). (30)

Since Jµα is continuous, we obtain the same limit t→ 0 for i = 1, 2,

lim
t→0+

Det (Jµα ◦ γi(t)) = φi(0)ζi(0)− νi(0)ωi(0) = φ0ζ0 − ν0ω0. (31)

This together with (29) immediately implies det (gαβ)
∣∣
p

= 0. �
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We remark, at first sight the construction of the Jacobian capable of smoothing
the metric seems to go through as in the single shock case, c.f. Lemma 6.1. But
taking the limit to the point p of shock wave interaction, the C1 regularity of the
free functions, expressing that [gαβ,γ ] vanishes at shocks, has the effect of freezing
out all the freedom in Φ,Ω, Z,N , thereby forcing condition (29), implying that the
determinant of the Jacobian must vanish at p. The answer was not apparent until
the very last step, and thus we find the result quite remarkable and surprising.

7. The Loss of Locally Inertial Frames.

Definition 7.1. We call xj locally inertial at p if the metric gij in coordinates xj

satisfies:

(i) gij(p) = ηij , ηij = diag(−1, 1, 1, 1),
(ii) gij,l(p) = 0 for all i, j, l ∈ {0, ..., 3},

(iii) gij,kl are in L∞ in every compact neighborhood of p where the coordinates are
defined.

This condition ensures that the physical equations in curved spacetime differ
from their flat counterparts by only gravitational effects, which are second order
in the metric derivatives. By Theorem 1.1, there exist distributional second order
derivatives of the metric in every neighborhood of p. Therefore, locally inertial
frames cannot exist at a point of shock wave interaction [9, 7].

8. Conclusion. Our results show that points of shock wave interaction give rise
to a new kind of (mild) singularity which is different from the well known singu-
larities of General Relativity. The famous examples of singularities are either non-
removable singularities beyond physical spacetime, (for example the center of the
Schwarzschild and Kerr metrics, and the Big Bang singularity in cosmology where
the curvature cannot be bounded), or else they are removable in the sense that they
can be transformed to locally inertial points of a regular spacetime under coordinate
transformation, (for example, the apparent singularity at the Schwarzschild radius
and any apparent singularity at smooth shock surfaces that become regularized by
Israel’s Theorem, [4, 12, 13]). In contrast, points of shock wave interaction are non-
removable C0,1 singularities that propagate in physically meaningful spacetimes,
such that the curvature is uniformly bounded, but the spacetime is essentially not
locally inertial at the singularity and second order metric derivatives are distri-
butional in every coordinate system. We name these regularity singularities. We
believe that such singularities in perfect fluids are fundamental to the mathematical
theory of GR shock waves.

Since the gravitational metric tensor is not locally inertial at points of shock wave
interaction, it begs the question as to whether there are general relativistic gravita-
tional effects at points of shock wave interaction that cannot be predicted from the
compressible Euler equations in special relativity alone. At a regularity singularity,
the unbounded second derivatives in g cancel out in the Riemann curvature tensor
[7], but the curvature is not the only measurable effect of the gravitational field,
so one would expect there to exist measurable general relativistic effects at points
of shock wave interaction that are physical. Indeed, even if there are dissipativity
terms, like those of the Navier Stokes equations, which regularize the gravitational
metric at points of shock wave interaction, our results assert that the steep gradients
in the second derivatives of the metric tensor at small viscosity cannot be removed
uniformly while keeping the metric determinant uniformly bounded away from zero.
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We thus wonder whether shock wave interactions might provide a physical regime
where new general relativistic effects might be observed. In fact, we currently work
on the question if gravitational waves crossing a regularity singularity pick up some
(detectable) effect due to the singularity and, so far, our results look quite promising
that this is the case [10].
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TWO FLUID FLOW IN POROUS MEDIA

Michael Shearer
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Abstract. The Gray-Hassanizadeh model, for flow in a porous medium of two

immiscible fluids such as oil and water, is a scalar equation for the evolution of
the saturation of one of the fluids. The model is based on Darcy’s law, coupled

with a constitutive equation for the capillary pressure that incorporates a rate-

dependence to capture the relaxation of interfacial energy towards equilibrium.
The model has interesting properties, including the structure of traveling waves

explored in this paper. In particular, we find that for certain forms of relative

permeability, there are undercompressive shocks that are degenerate in that the
corresponding smooth traveling wave drops to zero saturation in finite time, due

to the singularity in the PDE at zero saturation. In the second half of the paper,
we report on a two-dimensional stability result for the shock wave, regarded

as a plane wave in two dimensions. We find a criterion for linearized stability

that predicts that some Lax shocks are stable, while others are unstable. This
analysis relates to the Saffman-Taylor instability [9] and is a version of a result

of Yortsos and Hickernell [15] for stability of smooth traveling waves of the full

system including capillary pressure. Whereas matched asymptotics are used in
[15], at the hyperbolic level of this paper the analysis of stability and instability

is much more transparent.

1. Introduction. The flow of two immiscible fluids in a homogeneous porous
medium is relevant for a variety of applications, including oil recovery, ground-
water flow with contaminants, and carbon sequestration. It is widely acknowledged
that simple models of such flow omit important features of the flow, such as the
strong heterogeneity of typical subsurface geology, including the presence of fissures,
and the stochastic nature of the pore distribution. Nonetheless, simple models can
capture gross macroscopic features of the propagation of a front separating the two
fluids. Two features are of primary interest, namely (i) the structure and speed of
the interface between the fluids, and (ii) the stability of the front.

In this paper, I summarize and refine recent results concerning plane wave so-
lutions of the model of Gray and Hassanizadeh [4, 5], and present a result that
characterizes when the plane waves are stable or unstable according to linear anal-
ysis. The stability result, slightly generalizing an earlier version [13], mimics the
classical calculation of Saffman and Taylor [9]. Of particular interest is the fact that
although plane shocks are determined from a scalar conservation law (the Buckley-
Leverett equation [2]), the multidimensional stability analysis involves a system of
equations.
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The main result is that there is a stability boundary that separates pairs of left
and right states that correspond to stable shocks from those that are subject to a
fingering instability analogous to the Saffman-Taylor instability.

In Section 2, I formulate the model system, based on Darcy’s law for conservation
of momentum. Darcy’s law expresses the proportionality of fluid velocity and pres-
sure gradient. The extension to two-phase flow is generally taken to be of the same
form in each of the two fluids, but with constants of proportionality that depend
on the local volume fraction (saturation) of the fluids as well as their viscosities.
The pressures in the two fluids are consequently different in general, and should
be related through the effect of surface tension at fluid interfaces. It is not settled
in the literature how to do this in a mixture theory of flow in porous media, so
the pressure difference, known as the capillary pressure is typically related to the
saturations in an ad hoc way, guided by experimental evidence.

In Section 3 results on planar traveling waves are presented. In [14] an interest-
ing traveling wave was identified numerically, dubbed a sharp shock by the authors.
Here, we explain how sharp shocks appear as orbits for a vector field, and demon-
strate their presence in a numerical simulation of an initial value problem that
generates a pair of plane wave solutions, one of which is a sharp shock. The main
stability results are derived in Section 4. The foundation of the linearized stabil-
ity argument has been improved from the treatment in [12], and we consider more
general relative permeability functions.

2. Darcy’s Law and Capillary Pressure. We consider horizontal flow of two
immiscible fluids in a homogenous isotropic porous medium. Each fluid has it’s
own saturation, the volume fraction of pore space occupied by that fluid. For
definiteness, consider the fluids to be water and oil. If we let u(x, y, t) denote the
saturation of water, then the saturation of oil is 1 − u. Similarly, each fluid has
it’s own pressure p and velocity v. To begin with, we distinguish between the two
fluids with superscripts w,o for water, oil respectively. Darcy’s law was originally
formulated as an empirical law relating the flow rate of a single fluid through a
porous medium to spatial changes in pressure. The generalization to two-fluid flow
is used widely to replace the law of conservation of momentum:

vw = −λw(u)∇pw; vo = −λo(u)∇po. (1)

This law states that the velocity of each fluid is proportional to it’s pressure gradient,
with a constant of proportionality, the mobility λ depending on the local saturation.
The mobilities are related to saturations through the relative permeabilities kw,o,
with positive constants K, the permeability of the medium, and µw,o, the viscosities:

λw(u) = K
kw(u)

µw
; λo(u) = K

ko(1− u)

µo
. (2)

The following notation is convenient to simplify the statement of the governing
equations:

vT = vw + vo; Λ = λw + λo.

We will also focus on the saturation and pressure of water as the unknowns. For
this reason, we write

λ = λw, p = pw, pc = po − p.
The pressure difference pc is the capillary pressure that results from capillary forces
at the interface between the two fluids at the microscopic pore level. The resulting
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pressure jump is proportional to mean curvature and surface tension. Then it is
natural for the capillary pressure, representing this pressure jump averaged locally
within the porous medium, to depend on the local saturation u.

Mass conservation of the water phase balances the rate of change of the saturation
against the volume flux:

ϕ
∂u

∂t
+∇ · vw = 0. (3)

The porosity ϕ of the medium, the ratio of pore volume to total volume, is taken to
be constant. Mass conservation of oil leads to a similar equation for the evolution
of the oil saturation 1− u. Consequently, the aggregate fluid is incompressible:

∇ · vT = 0, (4)

We use Darcy’s law (1) to reduce the system of equations to two equations for the
unknowns u, p, pc :

ϕ
∂u

∂t
−∇ · (λ(u)∇p) = 0, (a)

∇ · (Λ(u)∇p+ (Λ(u)− λ(u))∇pc) = 0. (b)

(5)

In equation (5)(b), the variable pc needs to be specified with a constitutive law.
The classic formulation lets pc be a decreasing function of saturation:

pc = pe(u),

where pe(u) is the equilibrium pressure at a particular saturation u. The Gray-
Hassanizadeh model introduces a rate-dependence in the capillary pressure, which
in it’s simplest form is

pc = pe(u)− τut. (6)

In this model, τ > 0 is a relaxation time for the capillary pressure to relax to
equilibrium (for which ut = 0).

The relative permeabilities kw(u) and ko(1− u) are typically specified as powers
of their respective saturations:

kw(u) = κwum; ko(1− u) = κo(1− u)n. (7)

Here, the exponents can be fractional, with m ≥ 1, n ≥ 1. For m,n > 1, f(u) has
a classical ‘S’ shape; a common choice is m = n = 2, but this value turns out to
separate different behavior in traveling wave solutions for the Gray-Hassanizadeh
model [14], as we discuss in the next section.

3. Traveling Waves. We consider one-dimensional traveling waves, in which the
flow is entirely in one direction, which we can take as parallel to the x-axis. Then
the fluid velocities are parallel to the axis, and from (4) we see that vT = (V, 0)
is a function of t, which we assume is constant in order to realize traveling waves.
Correspondingly, from (5)(b) we have

Λ(u)px + (Λ(u)− λ(u))pcx = V.

We eliminate px in favor of pcx :

px =
Λ(u)− λ(u)

Λ(u)
pcx +

1

Λ(u)
V

Then equation (5)(a) becomes

ut + f(u)x = − (H(u)pcx)x , (8)
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in which

f(u) =
λ(u)

Λ(u)

V

ϕ
, H(u) = (Λ(u)− λ(u))

λ(u)

ϕΛ(u)
. (9)

Traveling wave solutions of (8) with speed s > 0 correspond to saturations u(x, t) =
u(x− st). Let ξ = x− st, with dξ = d

dξ . Then u satisfies the ODE

−sdξu+ dξf(u) = −dξ(H(u)dξp
c).

We can integrate this equation once, and use far-field conditions at infinity: u(±∞)
= u± :

−s(u−u−)+f(u)−f(u−) = −H(u)dξp
c, and s = (f(u+)−f(u−))/(u+−u−), (10)

assuming dξp
c → 0 at infinity.

If we neglect capillary pressure by setting pc ≡ 0, then equation (8) is a scalar
conservation law

ut + f(u)x = 0, (11)

with a flux f(u) that is typically S-shaped (if m > 1, n > 1 in (7)), hence concave-
convex. Shock wave solutions

u(x, t) = u(ξ) =

{
u−, x < st

u+, x > st
(12)

with s = (f(u+)− f(u−))/(u+ − u−) are discontinuous traveling wave solutions of
(11).

We are interested in understanding when shock waves correspond to traveling
wave solutions of the enhanced equation (8). As indicated in the introduction, this
depends on the dependence of pc on u and it’s derivatives. In the simplest non-
trivial case, pc = pe(u) is a strictly decreasing function of u : g(u) = d

dup
e(u) < 0.

Then (10) is a first order ODE, and solutions must connect adjacent equilibria. In
this case, we recover the (generalized) Lax entropy condition as a necessary and
sufficient condition for a shock wave to have a corresponding traveling wave [7]:

f ′(u+) ≤ s ≤ f ′(u−). (13)

Note that the boundary cases in which s = f ′(u+) or s = f ′(u−) are included, so
that the shock is characteristic on one side. In fact a boundary case is included in
the original construction of Buckley and Leverett [2], in which a solution of (11)
includes a rarefaction wave connected to a shock wave to represent a water injection
displacing oil, i.e., from u = 1 upstream to u = 0 ahead of the shock.

For the Gray-Hassanizadeh model, the situation is more complicated. We have
pc = pe(u)− τut, so that the PDE reads

ut + f(u)x = − (H(u)g(u)ux)x + τ (H(u)uxt)x . (14)

Correspondingly, the ODE (10) becomes the second order equation

− s(u− u−) + f(u)− f(u−) = −H(u)g(u)u′ − sτH(u)u′′, where ′ = dξ. (15)

We rewrite this equation as a first order system, change variables from ξ to η =
ξ/
√
sτ , and drop the bar from u. Thus, u(η) = u(ξ) :

u′ = v

v′ = − 1√
sτ
g(u)v +

1

H(u)
[s(u− u−)− f(u) + f(u−)] .

(16)
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We say a shock wave (12) is an admissible solution of (11) if system (16) has a
solution (u, v) satisfying

(u, v)(±∞) = u±. (17)

To describe which shocks are admissible, we need to specify the relative perme-
abilities (7) and the equilibrium pressure pe(u). For simplicity, w take pe(u) = −u, so
that g(u) = −1. There are also various positive parameters in the model. However,
nondimensionalization greatly reduces the number of parameters. We introduce
length and time scales L, T related to the total velocity V and a scale P for the
pressure:

L

T
=
V

ϕ
, P = LV

ϕµw

Kκw
.

Since there are free scales here, we take ϕ = 1 in what follows. With mobilities
given by (2) and relative permeabilities given by (7),

f(u) =
um

um +M(1− u)n
, H(u) =

um(1− u)n

um +M(1− u)n
, (18)

where M = κoµw

κwµo < 1 is the mobility ratio. Typically, the κw,o ∼ 1, so this ratio

is essentially the ratio of viscosities. When a specific value of M is needed for
numerical simulations, we take M = 0.2.

From Rolle’s Theorem we deduce that for m,n > 1, f(u) has an inflection point
at some uI ∈ (0, 1). We shall assume that f ′′(u)(uI − u) > 0 for u 6= uI .

We need two other key values α, β of u, defined by

f ′(α) = (f(α)− 1)/(α− 1), f ′(β) = f(β)/β, 0 < α < β < 1.

3.1. Equilibria of (16). For specified values of the parameters u−, s, system (16)
has between one and three equilibria, in which v = 0 and u satisfies s(u − u−) −
f(u) + f(u−) = 0. Two equilibria coincide when s = f ′(u).

For 0 < u < 1 there is u∗(u) ∈ (α, β) such that f ′(u∗) = (f(u) − f(u∗))/(u −
u∗), and u∗(uI) = uI . From the convex-concave property of f, we calculate easily

that (u∗)′(u) < 0, and in (u∗)′(uI) = −1/
√

2. The inverse function u∗(u) is also
significant. In fact, for each pair (u−, u+) between the curves u+ = u∗(u−), u+ =
u∗(u−), there are three equilibria u−, u+, um, with um between u− and u+, and s =
(f(u+)− f(u−))/(u+ − u−). As indicated in Fig. 1, values of u−, u+ corresponding
to shocks satisfying the Lax entropy condition are bounded by the diagonal and the
curve u+ = u∗(u−). These properties are spelt out in more detail in [11].

For (u−, u+) corresponding to Lax shocks, (u,0) is an unstable node or spiral and
(u+, 0) is a saddle. However, there is no guarantee that there will be a trajectory
from u− to u+ as the stable manifold entering (u+, 0) may be kept away from (u−, 0)
by a third saddle point equilibrium whose unstable manifold surrounds (u−, 0).

If (u−, u+) is in either region labeled 3 in Fig. 1, then (u±, 0) are saddle points,
and there is the possibility of a trajectory satisfying the boundary conditions (17).
Such a saddle-saddle trajectory is not stable to perturbations (by changing u+

for example), but has codimension one, so these trajectories can be found using a
shooting method with a single parameter. We choose to fix τ > 0 and u−, and vary
u+.

When there is such a trajectory, we say the corresponding shock wave (12) is
undercompressive, because it fails to satisfy the Lax entropy condition for “com-
pressive” shocks. Nonetheless, undercompressive shocks are admissible, and in fact,
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Figure 1. (Left) Values of u± (in region ‘3’) for which there is
a middle equilibrium u = um, v = 0 for (16), and values corre-
sponding to Lax shocks. (Right) Σ curves recording saddle-saddle
connections for p = q = 2.

they render some compressive shocks inadmissible, as indicated above. Saddle-
saddle connections necessarily have v = u′ of a single sign, so that they can be
parameterized by u : v = v(u). Let γ = 1√

sτ
. Then the ODE system can be written

v
dv

du
= γv +

s(u− u−)− f(u) + f(u−)

H(u)
. (19)

Consequently, for a saddle-to-saddle trajectory, since v(u±) = 0,∫ u+

u−

G(y;u−, u+) dy = −γ
∫ u+

u−

v(y) dy, (20)

whereG(y;u−, u+) = {s(u−u−)−f(u)+f(u−)}/H(u), and s = (f(u+)−f(u−))/(u+

− u−).
Let (u, v+(u)) be the locus of the stable manifold entering (u+, 0), on the side of

(u−, 0), and let (u, v−(u)) denote points on the unstable manifold leaving (u−, 0)
towards (u+, 0). We can form a useful separation function by evaluating v± at the
middle equilibrium um. Since γ depends on the shock speed, and hence on u−, u+,
we remove this dependence by setting δ = 1√

τ
. Now define the separation function

R by

R(u−, u+, δ) = v+(um)− v−(um). (21)

It takes a bit of checking that v± are both defined at um, but this is a simple analysis
of the phase portraits. Then for (u−, u+) in region 3, there is a traveling wave from
u− to u+ precisely when

R(u−, u+, δ) = 0. (22)

Such a simple separation function has been used successfully for numerical calcula-
tions in many contexts [6], although a more useful version allows for greater analytic
simplicity [12, 10]. For each fixed δ, equation (22) defines a curve Σδ in each of the
two region 3’s of the (u−, u+) diagram.
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Let’s first consider the case τ =∞, i.e., δ = 0. Then the existence of a trajectory
joining saddle points at u± reduces to the equation∫ u+

u−

G(y;u−, u+) dy = 0. (23)

For m = n = 2 we showed in [12] that there is a curve in the u−, u+ diagram
through the inflection point I and ending in the corners (0, 1), (1, 0). In fact, the
behavior near the corners can be quantified in terms of the mobility ratio M . The
asymptotics are somewhat delicate as G(y;u−, u+) is singular at y = 0 and at y = 1.
However, the logarithmic singularities in the integrals cancel and the curve Σ0 of
values satisfying (23) is well defined as described. For δ > 0, the curves Σδ fill up
portions of each region 3 between Σ0 on the side of the boundaries u+ = 0, 1, as
shown in Fig 1 (right).

If either exponent m or n in the relative permeability functions is less than 2,
then the picture changes. In this case, the function G is integrable at u = 0, 1, with
the consequence that the Σ0 curve reaches the boundaries u+ = 1, u− = 1 away
from the corners of the u−, u+ square. This is shown in Fig. 2. As pointed out
by van Duijn et al [14], if τ is sufficiently large, there may be no traveling waves
corresponding to undercompressive shocks if (u−, u+) is close to one of the corners
(0, 1), (1, 0). Instead, there are sharp shocks, identified in [14, 3].

To explain this, we focus on a particular case, in which m = n = 3
2 . Then, setting

u− = 0, u+ = 1, we have s = 1, and

G(y, 0, 1) =
y − f(y)

H(y)
= (1− y)

3
2 y

3
2 {y 5

2 − y 3
2 +My(1− y)

3
2 }.

Thus, for M = 0,
∫ 1

0
G(y, 0, 1)dy = 2, and d

dM

∫ 1

0
G(y, 0, 1)dy = 2. Consequently,∫ 1

0
G(y, 0, 1)dy > 0 for all M > 0. By continuity, for any fixed M > 0, for u− near

u− = 0, and u+ near u+ = 1,
∫ u+

u−
G(y, u−, u+)dy > 0. However, if we keep u−

fixed near zero and decrease u+, it is easy to see that the positive contribution
to
∫ u+

u−
G(y, u−, u+)dy increases while the negative part decreases. Consequently∫ u+

u−
G(y, u−, u+)dy can never reach zero and there are no traveling waves from u−

near zero to u+ > u∗(u−), for δ = 0. Moreover, since the Σδ curves lie above the Σ0

curve in the u−, u+ diagram, for u− < uI , there are no traveling wave solutions for
any value of δ > 0 for this same range of u−. A corresponding argument for (u−, u+)
near (1, 0) helps to justify the intersection of Σδ curves with the line u− = 1 shown
in Fig. 2.

In [14, 3] traveling waves are found numerically in this forbidden range that have
a corner at u− = 1, at a finite value of ξ, and then run smoothly to a small value
of u+. The speed of these waves is s = (f(u+)− 1)/(u+ − 1), which corresponds to
a shock from u− = 1 to u+. However, although (u, v) = (1, 0) is an equilibrium for
this value of s, the stable manifold from (u+, 0) intersects the line u = 1 at a point
v = u′ < 0, as shown in Fig. 2 (Right). This is related to the separation function
not changing sign for u+ ∼ 0 and u− ∼ 1 as explained above. Consequently, there is
a traveling wave as predicted with a finite negative slope at u = 1. An unexplained
aspect of these observations is how the speed s is selected, since the same behavior
of the stable manifold is present in the phase portrait for any nearby value of s.

To verify the occurrence of sharp shocks in the PDE, we ran numerical PDE
simulations for the full Gray-Hassanizadeh PDE, in which initial data are chosen
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corresponding to a jump from u− < 1 but near 1, to u+ near zero, specifically a
smoothed jump from u = 0.9 to u = 0.025 :

u(x, 0) =
1

2
(0.925− 0.875 tanh(10x)) (24)

The resulting solutions are shown at a series of times in Fig. 3. After an initial
transient, the solution quickly finds the level u = 1, and evolves into a combination
of traveling waves. The slower wave corresponds to a Lax shock from u = 0.9 to
u = 1, with oscillations corresponding to the spiral equilibrium at u = 0.9. This is
preceded by a faster sharp shock, with monotonic traveling wave that has a corner at
u = 1, and approaches u = 0.025 exponentially, as suggested by the phase portrait
in Fig. 2(left).

4. Stability of Plane Waves. The shock waves (12) of the previous section
are plane wave solutions of system (5) in which pc = 0. This reduced system is
hyperbolic-elliptic:

∂u

∂t
−∇ · (λ(u)∇p) = 0,

∇ · (Λ(u)∇p) = 0.

(25)

In this section, I discuss linearized stability of planar shocks to two-dimensional
perturbations.

A shock wave solution of (25) is a weak solution (u(x, y, t), p(x, y, t)) of the system
in which u has a discontinuity along a curve x = x̂(y, t), p is continuous there, but
∇p is discontinuous. The normal to the discontinuity surface x = x̂(y, t) in t, x, y is
(−x̂t, 1,−x̂y). With the notation u±(y, t) = u(x̂(y, t)±, y, t), and similarly for px, py,
we have jump conditions:

−x̂t[u]− [λ(u)px] + x̂y[λ(u)py] = 0,

−[Λ(u)px] + x̂y[Λ(u)py] = 0,
(26)

where [· · · ] denotes the jump.
Consider a planar Lax shock related to the piecewise constant saturation function

(12), in which the shock is located for fixed t on the line x = st, with velocities
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Figure 3. PDE simulations of equation (14) showing a sharp
shock emerging from monotonic initial data.

v± = −λ±∂xp± constant on either side of the shock. The mobilities λ± = Kk(ū±)/µ
depend on the constant saturations u = u±. The pressure p is continuous; thus (up
to a constant):

p± = p̄± · (x− st) = − v±
λ±

z = − V

Λ±
z, z = x− st.

It is convenient to work in the frame moving with speed s, for which the shock
location is z = z̄ = x̄− st = 0.

We seek solutions of the linearized system. To this end, we perturb the variables
u, p and the shock location.

u = ū± + U±(x, y, t), p = p̄± · (x− st) + P±(x, y, t), x = st+ ẑ(y, t).

Equations (25) are linearized about the shock on each side, giving linearized equa-
tions (dropping the subscripts ±):

Ut − λ′(ū)p̄ Ux − λ(ū)∆P = 0,

Λ′(ū)p̄ Ux + Λ(ū)∆P = 0.
(27)

Thus, ∆P = −Λ′(ū)

Λ(ū)
p̄ Ux. Substituting back into the first equation, we eliminate

P :

Ut − p̄
(
λ′(ū)− λ(ū)

Λ′(ū)

Λ(ū)

)
Ux = 0.

This is a linear equation for U = U±, with constant coefficients. Moreover, although
dependence on y has been eliminated, we need to consider perturbations that are
dependent on y as they can affect P. Solutions have the form U(x, y, t) = w(x −
st)eiαyeσt. Here, α ∈ R is the wave number, σ ∈ C gives the time response: Reσ > 0
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corresponds to an unstable wave, and Reσ < 0 is needed for stability. The traveling
wave w is required to be bounded. With z = x− st, w′ = dw

dz , we obtain

σw − sw′ − p̄ λ(ū)

(
λ′(ū)

λ(ū)
− Λ′(ū)

Λ(ū)

)
w′ = 0.

But f(u) = V λ(u)/Λ(u), p̄ λ(ū) = −f(ū) so after some calculation we find

σw = (s− f ′(ū))w′.

This ODE has solutions w(z) = a±e
β±z, with

σ = β±(s− f ′(ū±)).

The Lax entropy condition reads f ′(ū+) < s < f ′(ū−). Consequently, for a Lax
shock, ±Re β± > 0, if Re σ > 0. Therefore, w(z) does not decay at z = ±∞ unless
w ≡ 0. If Re σ < 0, then the perturbation decays in time, at least to leading order.

We proceed to consider perturbations with U ≡ 0. We still have the equation
for the perturbation P = P± of the base pressure. We seek solutions of the form
u = ū±, p = p̄±z + P±, P±(z, y, t) = q±(z)eiαy+σt, with sharp interface at ẑ =
x̂ − st = aeiαy+σt, z = x − st. By scale invariance, we have σ = σ1α, α > 0,
and we wish to determine the sign of σ1 when there are non-trivial solutions of the
linearized equations.

Since U ≡ 0, equations (27) reduce to ∆P = 0, leading to

q′′± − α2q± = 0. (28)

Thus, q± = b±e
∓αz, ±z > 0, are the solutions that decay as |z| → ∞. It remains to

write three linear equations for the three constants a, b±. Then there are non-trivial
solutions if and only if the determinant of coefficients is singular, thus leading to an
expression for σ1, which appears in the coefficiant matrix. The analysis is an explicit
version of the derivation of the Lopatinski determinant condition for stability of
a shock wave solution of a system of hyperbolic conservation laws. (See [1], for
example.) Two of the three conditions come from linearizing the jump conditions
(26), and the third condition ensures that the pressure p(x, y, t) is continuous.

The linearized jump conditions, after setting U ≡ 0, become

ẑt[ū] + [λ(ū)Px] = 0 (29)

[Λ(ū)Px] = 0. (30)

Substituting in the forms for ẑ and P±, we get

σ1αa[ū] + [λ(ū)q′] = 0 (31)

[Λ(ū)q′] = 0 (32)

Equation (32) relates b± :

Λ(ū+)b+ = −Λ(ū−)b−, (33)

from which (31) implies

b−Λ(ū−)(f(ū+)− f(ū−)) = −σ1 a (ū+ − ū−)V.

But (f(ū+)− f(ū−))/(ū+− ū−) = s, the shock speed, so we get a second equation,

b−Λ(ū−)s = −a σ1 V. (34)
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The third equation comes from continuity of pressure at z = ẑ(y, t) = aeiαy+σt,
recalling that p = p̄±z + q±(z)eiαy+σt, q± = b±e

∓αz (±z > 0) :

p̄+a+ b+ = p̄−a+ b− (35)

Thus, (p̄+ − p̄−)a = −σ1
V
s a
(

1
Λ(ū+) + 1

Λ(ū−)

)
, from (33), (34). Since p̄± =

− V

Λ(ū±)
, we obtain, for a 6= 0 :

σ1 = s
Λ(ū−)− Λ(ū+)

Λ(ū−) + Λ(ū+)
.

Since s > 0, and Λ(u±) > 0, we conclude that the planar shock (12) is linearly
stable to transverse perturbations if Λ(ū−) < Λ(ū+), and is linearly unstable if
Λ(ū−) > Λ(ū+). Thus, the curve

Λ(ū−) = Λ(ū+) (36)

separates regions in the u−, u+ plane where the shock is stable from regions where
the shock is unstable. Moreover, although the analysis used the Lax entropy condi-
tion, which also defines regions within the u−, u+ plane, the condition for instability
is valid for shocks that fail to satisfy the Lax condition, since the eigenfunctions
with U ≡ 0 are still present.

With quadratic relative permeabilities, the stability boundary (36) simplifies to
a straight line u+ = −u− + 2M

M+1 , which necessarily cuts through the region of
Lax shocks. Thus, some Lax shocks are stable and others are unstable. Somewhat
surprisingly, there are arbitrarily weak Lax shocks that are stable and others that are
unstable, since the stability boundary crosses the diagonal u− = u+ transversally.
The stability boundary was tested numerically for a pair of cases in [13]. More
detailed simulations have been performed elsewhere [8], but based on the detailed
stability analysis of traveling waves of Yortsos and Hickernell [15] rather than the
comparatively simple analysis here.

A further consequence in the case of quadratic relative permeabilities is that
undercompressive shocks are necessarily unstable. It would be interesting to know
whether there are relative permeability functions for which at least some undercom-
pressive shocks are stable. This is more complicated than it might appear however,
since for undercompressive shocks there can be eigenfunctions with U non-zero on
the left of the shock (the side on which characteristics leave the shock). Then the
generalization of the Lopatinski determinant condition involves quantifying the ki-
netic relation, an additional condition that determines which shocks are admissible.
In the previous section, this was u+ = û+(u−), and was derived numerically from
computations of traveling waves.

Acknowledgments. The author thanks Kim Spayd and Zhengzheng Hu for their
contributions to this paper. Discussion with John Hunter clarified the stability
argument of the last section.
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Abstract. We address the issue of numerical simulation of a three-phase flow

model in a two-dimensional heterogeneous porous media with an isolated um-
bilic point inside the three-phase domain and taking into account gravity ef-

fects and explicit spatially varying flux functions in the both hyperbolic and

parabolic operators in the differential three-phase governing equations. Our
computational approach is based on an operator-splitting procedure for decou-

pling the nonlinear three-phase flow system with mixed discretization methods,

leading to purely hyperbolic, parabolic and elliptic subproblems. We were able
to numerically reproduce semi-analytical nonclassical results for three-phase

flow calculations for one-dimensional homogeneous media. Several numerical

experiments were performed in order to show evidence of stable nonclassical
waves for the three-phase flow system with gravity effects at hand based on

flux functions with explicit spatial variation.

1. Introduction. We discuss a computational approach for solving and simulation
of a immiscible and incompressible three-phase flow model which in turn includes
the gravity effects in inhomogeneous porous medium in two space dimensions taking
into account hyperbolic-parabolic flux functions with explicit spatial variation. We
consider a fluid composed of phases gas, oil and water, mixed at macroscopic level,
and indicated by the subscripts g, o, and w. Furthermore, there are no sources or
sinks and compressibility and thermal effects are considered to be negligible. We also
assume that the whole pore space is occupied by the fluid phases. As a consequence
[11, 4], any pair of saturations inside the saturation triangle (three-phase domain)
defined by 4 := {(Sw, Sg) | 0 ≤ Si ≤ 1; Sw + Sg + So = 1}, can be chosen to
describe the state of the fluid phases (So, Sw, Sg) in the porous medium. Therefore,
following [2, 1], we choose Sw, Sg and po as the three independent variables of the
differential problem. Thus, the system of conservation laws governing immiscible
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and incompressible three-phase flow in porous media reads,

∂

∂t
(φ(x)Sw) +∇ · (Fw(S,x)) = ∇ · (Dw(S,x)),

∂

∂t
(φ(x)Sg) +∇ · (Fg(S,x)) = ∇ · (Dg(S,x)),

∇ · v = 0, v = −K(x)λ(S)∇po + ε
P

(vwo + vgo) + ε
G
vG,

(1)

where S = (Sw, Sg) and the spatially varying hyperbolic terms are denoted by,

Fw(S,x) ≡ vfw(S,x) + ε
G
K(x)[λw(1− fw)ρwo − λwfgρgo] g∇Z,

Fg(S,x) ≡ vfg(S,x) + ε
G
K(x)[λg(1− fg)ρgo − λgfwρwo] g∇Z.

(2)

The diffusive terms of the three-phase model are represented by the right-hand
side of the system (1) incorporating capillary pressure effects (that in principle are
experimentally measured functions of all saturations), which in turn are given by,

[Dw,Dg]
> = ε

P
G(S,x) [∇Sw,∇Sg]> . (3)

Matrix G(S,x) can be rewritten conveniently into the product of the uniformly
positive scalar permeability field K(x) along with the following two 2 × 2 matrices,

Θ =

 λw(1− fw) −λwfg

−λgfw λg(1− fg)

 and Ψ =

 ∂pow/∂Sw ∂pow/∂Sg

∂pog/∂Sw ∂pog/∂Sg

 . (4)

Since experimental data are hardly available we use physical arguments of Aziz and
Settari (see, e.g., [11, 2, 1]) that the capillary pressure functions for three-phase flow
can be taken to have the form pwo = −Pow(Sw) and pgo = −Pog(Sg), where Pow and
Pog are certain monotone decreasing functions (as described below). Thus in this
approach, three-phase capillary pressures can be expressed in terms of well-known
two-phase capillary pressures [11, 2, 1]. So, assumptions on capillary pressures leads
to conditions on G(S,x). In short, for our choice of Pow and Pog we have an operator
∇·[Di(S,x)], i = w, g, associated with (1) that is strictly parabolic in the interior of
the saturation triangle4 and system (1)-(4) is well-posed in the three-phase domain
[11]. To take the qualitative behavior of the effect of heterogeneity (imposed by the
permeability K(x) and the porosity φ(x)) we use a Leverett J-function to scale the
capillary pressure curve for each grid block in the porous media (see [1] for details):

pio(Sw, Sg, So) = −Poi

σio cos ψio

√
K(x)
φ(x) , i = w, g, where σio is the interfacial tension

and ψio is the contact angle, the wetting preference of a solid surface in contact
with two fluids, along with the following models Pow = 5

(
S−2
w − (1− Sw)−2

)
and

Pog =
(
S−2
g − (1− Sg)−2

)
. For the three-phase flow system (1)-(4), K(x) > 0

and φ(x) > 0 are the absolute permeability and porosity of the porous medium;
Ki, ρi and µi are, respectively, the relative permeability, density and viscosity of
phase i; po is the oil pressure; the correction velocities vwo and vgo are defined by
vij = −K(x)λi(Sw, Sg)∇pij , i 6= j and vG(Sw, Sg) = K(x)λρ g∇Z is the velocity
correction due to gravity, where λρ(Sw, Sg) ≡ λwρw +λoρo +λgρg; ρi is the density
of phase i. The magnitude of the gravity is g and Z is the depth. In the above
definitions λi = Ki/µi denotes the mobility of phase i, the ratio between relative
permeability and viscosity; λ(Sw, Sg) =

∑
i λi is the total mobility and fi(Sw, Sg) =

λi/λ is the fractional flow function of phase i. We use the model by Corey [11] for
relative permeabilities: Kw = S2

w, Ko = S2
o andKg = S2

g . For other models of three-
phase flow used in petroleum engineering, such as certain models of Stone [11], the
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umbilic point in the Corey model is generally replaced by an elliptic region, which
in turn the characteristic speeds are not real. After nondimensionalizing the three-
phase equations (1)-(4) two dimensionless groups appears: ε

G
quantifies the ratio

between the gravity effects to convective effects and ε
P

quantifies the ratio between
convective to diffusive effects. In the numerical experiments, to be reported later
on, we will specify the corresponding values of the dimensionless groups.

2. The Numerical Method. We limit ourselves to a very short description of the
numerical method. The interested reader is referred to [1, 2] for further information.
Following [2], our computational method is an operator-splitting procedure [10, 8, 6]
for decoupling the nonlinear three-phase flow system (1)-(4). The splitting allows
time steps for the pressure-velocity (elliptic subproblem) calculation,

∇ · v = 0, v = −K(x)λ(S)∇po + ε
P

(vwo + vgo) + ε
G
vG, (5)

that are longer than those for the purely diffusive calculation,

∂

∂t
(φ(x)Sw) = ∇ · (Dw(S,x)),

∂

∂t
(φ(x)Sg) = ∇ · (Dg(S,x)), (6)

which in turn are longer than those for purely convection calculation,

∂

∂t
(φ(x)Sw) +∇ · (Fw(S,x)) = 0,

∂

∂t
(φ(x)Sg) +∇ · (Fg(S,x)) = 0. (7)

Of course, appropriate boundary and initial conditions [1, 2] must be specified
to solve system (1)-(4), or (5)-(7). A mixture of water and gas is injected at a
uniform and constant rate along the left boundary (x, y) ∈ {0}×[0, Y ] for temporally
constant boundary conditions with production of a three-phase fluid mixture at
(x, y) ∈ {X} × [0, Y ]. No flow is allowed across the boundaries with (x, y) ∈
[0, X]×{0, Y }. In order to capture viscous fingering effects keep a constant reference
pressure po at (x, y) ∈ {X} × [0, Y ]. Therefore, we have a solvable elliptic problem
[1, 2]. The oil pressure po and the Darcy velocity v in (5) are approximated at
times tm = m∆tp, m = 0, 1, 2, . . . . Locally conservative mixed finite elements [1, 2]
are used to discretize the pertinent elliptic equation (5) and the spatial operators
in the diffusion system (6). In the diffusion step, the saturations Sw and Sg are
approximated at times tn = n∆td, n = 1, 2, . . . ; the time discretization of the latter
is performed by means of the implicit backward Euler method [1, 2]. In practice, the
convective transport (7) might be computed at intermediate times tn,κ = tn+k∆tc
for tn < tn,κ ≤ tn+1, which in turn the time steps ∆tc are subject dynamically to
a CFL condition [1]. Indeed, our main goal in the current study is the accurate
numerical simulation of the three-phase system (1)-(4) in discontinuous porous.
Therefore, in order to avoid an overestimation of the shock layer, we take ∆tc=
∆td=∆tp since the time step ∆tc should not be considerably larger than O(εP ) (see
[8, 1] for details). This choice is an attempt to perform an accurate computation of
the nonlinear self-sharpening mechanism between convection and diffusion.

3. A central scheme formulation for variable porosity and flux functions
with spatial variation. We discuss very briefly a possible implementation of a
central differencing scheme for the numerical approximation of the hyperbolic sys-
tem (7) taking into account heterogeneous permeability K(x) and porosity φ(x)
fields. First, we notice that Karlsen and Towers [9] gave a convergence proof for the
Lax-Friedrichs finite difference scheme for non-convex genuinely nonlinear scalar
conservation laws of the form ut + f(u, k(x, t))x = 0, with u = u(x, t), where
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the coefficient k(x, t) is allowed to be discontinuous along curves in the (x, t) plane.
Karlsen and Towers also proved stability, and uniqueness, for an extended Kruzhkov
entropy solution, provided that the flux function satisfies a so-called crossing con-
dition, and that strong traces of the solution exist along the curves where k(x, t) is
discontinuous. In this way they were able to show that a convergent subsequence
of approximations produced by the Lax-Friedrichs scheme to the above equation
converges to such an entropy solution [9]. On the other hand, we recall that the cel-
ebrated central scheme, introduced by Nessyahu and Tadmor [13], is also based on
the Lax-Friedrichs scheme in a staggered grid. Nessyahu and Tadmor proved that
the resulting scalar scheme satisfies both the Total Variation Diminishing property
and a local cell entropy inequality in order to get convergence to the unique entropy
solution, at least in the genuinely non-linear scalar case.

Thus, the idea here is to build a locally conservative central approximation
scheme for system (7) respecting the local equilibria linked to the capillary pres-
sure discontinuities associated with the parabolic system (6). Following Nessyahu-
Tadmor [13] and Karlsen-Towers [9] we performed a consistent discretization of the
flux functions Fi(S,x), i = w, g for the hyperbolic system (7) in a staggered grid.
This is the same locally conservative approach as performed by Karlsen-Towers [9]
and Nessyahu-Tadmor [13]. For more details we refer the reader to [1, 2].

We remark that the spatial integration of the discontinuous flux functions is per-
formed over the entire Riemann fan [13]. This is the distinctive feature of the cen-
tral scheme approach. Indeed, this integration eliminates the need of any detailed
knowledge about the exact (or approximate) Riemann problem. Furthermore, it

facilitates more accurate computation of the numerical flux
∫ t+∆tc
t

Fi(S,K(x))dτ ,
whose values are extracted from the smooth interface of two noninteracting (lo-
cal) Riemann problems taking into account discontinuous quantities S, φ(x) and
K(x). In other words, such values share the benefit of the location of the “well-
defined” integration points due to the staggered solution strategy to take into ac-
count hyperbolic-parabolic flux functions with explicit spatial variation on K(x)
and φ(x) associated with the system (1)-(4). To avoid the error incurred in the
calculation of cell averages associated with ∂(φ(x)S)/∂t in system (7), we use a
projection by means of a locally conservative definition of the porosity φ(x) on the
same staggered grid. This numerical approach seems to be appropriate to resolve
the discontinuous coefficients K(x) and φ(x) without spurious oscillation in the
numerical numerical approximations to equation (5)-(7).

The nonlinear parabolic subsystem (6) associated to the system (1)-(4) is han-
dled by a mixed finite element approach [2, 1]. In particular, it has been shown
in [5] that discontinuous capillary pressure field yield undercompressive discontinu-
ities, in opposition to what was commonly accepted in the literature [3, 12]. This
effect seems to be of great importance on the behavior of the solution, even when
the capillary pressure seemed to be neglected. In our formulation the discontinuous
capillary pressure appears in the hyperbolic-parabolic fluxes (5)-(7). Furthermore,
our numerical procedure combines a domain decomposition technique with an im-
plicit time backward Euler method (see [2, 1]) in the construction of a local iterative
method for system (6), which in turn allows for variable porosity φ(x).

In the above algorithm, we first assume that the saturations {Sw, Sg} and their
fluxes {Dw,Dg} are known. Then, the phase velocity corrections vwo and vgo can
be calculated using {Dw,Dg} [2, 1]. Finally, the total velocity v can be recovered
from the elliptic subsystem (5).
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4. Numerical Experiments. Several 1D and 2D numerical experiments are per-
formed to exhibit the relevance of the simulation of three-phase flow in discontinuous
porous media. For the one-directional injection problem depicted here, the spatial
domain for (1)-(4) is an idealized semi-infinite core for x > 0. In this setting, we
are interested in solutions for initial conditions at t = 0, corresponding to the Rie-
mann data: left state equal to (Sw, Sg) = (0.15, 0.05) and for temporally constant
boundary conditions at x = 0, representing a steady injection rate with left state
(Sw, Sg) = (0.721, 0.279).

It is also worth mentioning that the presence of an umbilic point or an ellip-
tic region almost always prohibits the existence of Riemann invariants. This fact
is at the root of the complexity of solutions when strict hyperbolicity fails, as it
does for the model of immiscible three-phase flow (1)-(4). Only viscosity ratios are
relevant, but for the purpose to generate representative solutions related to non-
classical structure for three-phase flow model (5)-(7), we will choose the following
dimensionless viscosities µw = 0.5, µo = 1.0, and µg = 0.3. In conjunction with
the capillary pressures functions, we take interfacial tension values σgo = 23 and
σwo = 51 and contact angle with limit values of ψwo ≈ 90o and ψgo ≈ 90o. For the
experiments with gravity we consider: ρo = 0.7, ρw = 1.0, and ρg = 5.76× 10−2.

The one-dimensional numerical results reported in Figure 1 were computed with
a grid having 512 uniform cells. In these frames are shown saturation profiles for gas
(top) and oil (bottom) as a function of distance. We compare simulations with (solid
profiles) and without gravity (dashed profiles). For the numerical experiments we
take ε

P
= 10−3 and two values for the dimensionless group ε

G
are used: 5.5× 10−3

(top solid profiles) and 8.5× 10−2 (bottom solid profiles).
Notice in the frames of Figure 1 left column computed with gravity that the

oil saturation front (solid line from S∗ to 2CS, from 2CS to 1CS and from 1CS
to SR) are slightly slower than the solution computed without gravity (dashed
line). We point out that in the top picture of Figure 1 the wave front in the gas
saturation profile computed with gravity (solid line) also move very slightly ahead
when compared with the case without gravity. These results are in agreement with
the action of gravity on the flow, as it is in the opposite direction with respect to the
injection. In addition, we remark that a stable nonclassical structure is simulated
in the numerical results with gravity for a small value of ε

G
(see Figure 1).

We now turn to the discussion of the numerical experiments displayed on the
right column of Figure 1 with ε

G
= 8.5×10−2. The relative importance of gravity

in this simulation is stronger. We point out that the oil saturation fronts move
considerably slower (bottom-solid) and while the gas saturation profile moves faster
(top-solid). In addition, the separate identity of the stable nonclassical wave from
1CS to 2CS and the Buckley-Leverett front from SR to 1CS seems to be lost
(dashed curves in Figure 1). The findings in this numerical experiment address the
issue of the effect of gravity on three-phase flow with structurally stable wave group
solutions. Similar results were obtained for other capillary pressure functions [1].

4.1. Two dimensional numerical computations. The current study looks to
the question of simultaneous propagation of multiple stable waves in discontinuous
porous media using numerical simulation for system (5)-(7). We point out that
the propagation of nonclassical undercompressive waves have a strong dependency
upon the parabolic-diffusion mechanism being modeled [7, 11, 2]; such waves have
been observed only in one-dimensional for three-phase flow problems (see, e.g.,
[7, 14, 11, 4]). The understanding of the interplay between rock heterogeneity and
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Figure 1. From top to bottom are shown Gas and Oil satu-
ration profiles. On the left column, under influence of gravity
(ε

G
= 5.5× 10−3), we have a nonclassical structure: the slow wave

group comprises a strong slow rarefaction fan from SL to S∗ and
an adjoining slow front wave from S∗ to the constant state 2CS.
The fast wave group is a Buckley-Leverett front from the second
constant state 1CS to SR. Between the slow and fast wave groups
is a nonclassical front with left state 2CS and right state 1CS [11].

nonlinearities (viscous forces with or without gravity) is a open issue for three-phase
flow; see references [2, 1] for an attempt on this question in the same lines of the
current study.

As a model for multi-length scale rock heterogeneity we consider scalar, log-
normal permeability fields, so that ξ(x) = logK(x) is Gaussian and its distribution
is determined by its mean and covariance function. We use the same multiscale field
ξ(x) to construct a correlated variable porosity field φ(x). This model is based on a
random field model for anomalous diffusion in heterogeneous porous media (see, e.g.,
[2, 1] and references therein). The spatially variable permeability K(x) and porosity
φ(x) fields are defined on 512 × 128 grids with three values for the coefficient of
variation CV (standard deviation/mean): CV is used as a dimensionless measure
on the relative strength of heterogeneity of the porous medium. In this study,
a mixture of water and gas is injected at a uniform and constant rate of 0.2 pore
volume per year along the left boundary (x, y) ∈ {0}×[0, Y ], Y = 128 for temporally
constant boundary conditions for system (5)-(7), with production of the three-phase
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fluid mixture on the right boundary, in the same setting as in the one-dimensional
numerical experiments.
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Figure 2. Gas (resp. Oil) phase solutions are shown at the left
(resp. right) column as a function of distance for values CVk = 1.0
and CVφ = 0.25. The one dimensional solutions (bottom frames)
are x−direction longitudinal cross-sections for gas (left) and oil
(right). We notice the ocurrence of a nonclassical wave [1, 2].

4.1.1. Evidence of stable nonclassical wave in three-phase flow with gravity. In order
to better explain the numerical experiments, we consider “x-directional longitudi-
nal cross-sections” at positions y = 32m, y = 64m and y = 96m (see Figure 2) of
two-dimensional simulations for the three-phase system (5)-(7) in conjunction with
superimposed one-dimensional numerical solutions obtained on grids having 512
cells. In Figure 2 oil and gas saturation surface plots are shown as a function of dis-
tance and gravity is present in the all numerical experiments with ε

G
= 4.75× 10−2

and ε
P

= 10−3. For completeness we describe the nonclassical solution [11]: the
slow wave group comprises a strong slow rarefaction fan from SL to S∗ and an ad-
joining slow front wave from S∗ to the constant state 2CS. The fast wave group is
a Buckley-Leverett front wave from the second constant state 1CS to SR. Between
the slow and fast wave groups is a nonclassical front wave (located at 320m-384m
along the x−direction in the two-dimensional solutions) with left state 2CS and
right state 1CS. The numerical simulations with gravity effects reported in Figure
2 indicate that the nonclassical wave group is stable under the presence of hetero-
geneities imposed for long-range correlations and stronger heterogeneity induced
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by the variability of the permeability K(x) and the porosity φ(x) fields (for both
CVk = 0.5 and CVk = 1.0) with CVφ = 0.25. In addition, the nonclassical solution
with left state 2CS and right state 1CS persist and it is accurately captured by
our computational method, as shown by comparisons with reliable one-dimensional
simulations and calculations for discontinuous media (Figure 2). This behavior with
respect to the structurally stable wave group solutions is also observed in the one-
dimensional experiments (see Figure 1) for homogeneous media with and without
gravity, where there is not coupling between the transport equations (6)-(7) and
the velocity field v dictated by the pressure system (5). This nonlinear behavior
have not been reported on rigorous mathematical grounds in the literature (see,
e.g., [11, 14, 7, 2, 1]). Although not exhaustive, the numerical simulations of the
three-phase flow equations (5)-(7) show some evidence of stable nonclassical waves
for two-dimensional problems taking into account gravity and hyperbolic-parabolic
flux functions with explicit spatial variation. This important nonlinear mechanism
between heterogeneity and viscous forces with gravity for three-phase flows is not
yet understood. Therefore, a distinct study might be required to determine the
dynamic behavior of three-phase flow solutions in discontinuous porous media.
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Abstract. Scalar one-dimensional conservation laws with nonlocal diffusion

term are considered. The wellposedness result of the initial-value problem

with essentially bounded initial data for scalar one-dimensional conservation
laws with fractional Laplacian is extended to a family of Riesz-Feller operators.

The main interest of this work is the investigation of smooth traveling wave

solutions. In case of a genuinely nonlinear smooth flux function we prove the
existence of such traveling waves, which are monotone and satisfy the standard

entropy condition. Moreover, the dynamic nonlinear stability of the traveling
waves under small perturbations is proven, similarly to the case of the standard

diffusive regularization, by constructing a Lyapunov functional.

Apart from summarizing our results in the article Achleitner et al. (2011),
we provide the wellposedness of the initial-value problem for a larger class of

Riesz-Feller operators.

1. Introduction. We consider one-dimensional conservation laws with nonlocal
diffusion term

∂tu+ ∂xf(u) = ∂xDαu (1)

for a scalar quantity u : R+ ×R, (t, x) 7→ u(t, x), a smooth flux function f : R→ R
and a non-local operator

(Dαu)(x) =
1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy , (2)

with 0 < α < 1.

1.1. Motivation. Conservation laws with nonlocal diffusion term of the form (1)
appear in viscoelasticity - modeling the far-field behavior of uni-directional vis-
coelastic waves [11] - as well as in fluid mechanics - modeling the internal structure
of hydraulic jumps in near-critical single-layer flows [9]. Moreover the nonlocal
operator D1/3 appears in Fowler’s equation

∂tu+ ∂xu
2 = ∂2

xu− ∂xD1/3u , (3)
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which models the uni-directional evolution of sand dune profiles [7].
Equation (1) is closely related to

∂tu+ ∂xf(u) = Dα+1u (4)

with a fractional Laplacian Dα+1 = (−∂
2u
∂x2 )(α+1)/2, 0 < α < 1. This kind of

nonlinear conservation law with nonlocal regularization has been studied e.g. in [3,
5].

Remark 1. The nonlocal operators ∂xDα, 0 < α < 1, and the fractional Laplacian
Dα+1, 0 < α < 1, are Fourier multiplier operators, i.e.

F(∂xDαu)(ξ) = −(sin(απ/2)− i cos(απ/2) sgn(ξ))|ξ|α+1Fu(ξ)

and

F(Dα+1u)(ξ) = −|ξ|α+1Fu(ξ) ,

whereat the Fourier transform F is defined as Fϕ(ξ) = ϕ̂(ξ) = 1√
2π

∫
e−ixξϕ(x)dx.

1.2. Riesz-Feller operators. Riesz-Feller operators [6, 13, 8] are Fourier multi-
plier operators

(FDa,θf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ)

whose multiplier ψa,θ(ξ) = |ξ|ae(i sgn(ξ)θπ/2) is the logarithm of the characteristic
function of a general Lévy strictly stable probability density with index of stabil-
ity 0 < a ≤ 2 and asymmetry parameter |θ| ≤ min(a, 2−a). The nonlocal operators
∂xDα, 0 < α < 1, and the fractional Laplacian Dα+1, 0 < α < 1, are Riesz-Feller
operators, see also Remark 1 and Figure 1.

Theorem 1.1. For 1 < a ≤ 2 and |θ| ≤ min{a, 2 − a}, the Riesz-Feller opera-
tor Da,θ generates a strongly continuous, convolution semigroup

T (t) : Lp(R)→ Lp(R) , u0 7→ T (t)u0 = K(t, ·) ∗ u0 ,

with 1 ≤ p <∞ and a convolution kernel K(t, x) = F−1 exp(−tψ(−.))(x) satisfying
- for all x ∈ R, t > 0 and m ∈ N - the properties

• (non-negative) K(t, x) ≥ 0,
• (integrable) ‖K(t, .)‖L1(R) = 1,

• (scaling) K(t, x) = t−
1
aK(1, xt−

1
a ),

• (smooth) K(t, x) is C∞ smooth,
• (bounded) there exists Bm ∈ R+ such that∣∣∣∣∂mK∂xm

∣∣∣∣(t, x) ≤ t−
1+m
a

Bm

1 + t−
2
a |x|2

.

The initial-value problem

∂tu+ ∂xf(u) = Da,θu , u(0, x) = u0(x) , (5)

for Riesz-Feller operators Da,θ with index of stability 1 < a ≤ 2 and asymmetry
parameter a− 2 ≤ θ ≤ 2− a covers the special cases (1) and (4).
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Figure 1. The family of Fourier multipliers ψa,θ(ξ) =

|ξ|ae(i sgn(ξ)θπ/2) has two parameters a and θ. Some associated
Fourier multiplier operators (FTf)(ξ) = −ψa,θ(−ξ)(Ff)(ξ) are
displayed in the parameter space (a, θ). The Riesz-Feller opera-
tors Da,θ are those operators, that take their parameters in the
blue set, also known as Feller-Takayasu diamond. The family of
operators ∂xDα, 0 < α < 1, interpolates formally between the first
derivative ∂x and second derivative ∂2

x. Thus the limiting cases of
equation (1) are a hyperbolic conservation law (for α = 0) and a
viscous conservation law (for α = 1) [11].

Theorem 1.2. Suppose 1 < a ≤ 2 and a− 2 ≤ θ ≤ 2− a. If u0 ∈ L∞, then there
exists a unique solution u ∈ L∞((0,∞)×R) of (5) satisfying the mild formulation

u(t, x) = K(t, .) ∗ u0(x)−
∫ t

0

[
∂K

∂x
(t− τ, .) ∗ f(u(τ, .))

]
(x) dτ (6)

almost everywhere. In particular

‖u(t, .)‖∞ ≤ ‖u0‖∞, for t > 0 ,

and, in fact, u takes its values between the essential lower and upper bounds of u0.
Moreover, the solution has the following properties:

(i) u ∈ C∞((0,∞)× R) and u ∈ C∞b ((t0,∞)× R) for all t0 > 0.
(ii) u satisfies equation (5) in the classical sense.

(iii) u(t)→ u0, as t→ 0, in L∞(R) weak-∗ and in Lploc(R) for all p ∈ [1,∞).

Sketch of proof. The analysis of the initial-value problem for (4) by Droniou, Gal-
louët and Vovelle [5] depends on the properties in Theorem 1.1 of the semigroup
(and its convolution kernel K(t, x)) generated by the fractional Laplacian Dα+1 for
0 < α < 1. However all Riesz-Feller operators Da,θ with index of stability 1 < a ≤ 2
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and asymmetry parameter a− 2 ≤ θ ≤ 2− a share these properties. Thus the anal-
ysis in [5] carries over to the initial-value problem (5).

2. Traveling wave solutions.

Definition 2.1. Suppose (u−, u+, s) ∈ R3. A traveling wave solution of (1) is a
solution of the form u(t, x) = ū(ξ) with ξ := x − st and some function ū : R → R
that connects the distinct endstates limξ→±∞ ū(ξ) = u±.

Inserting a traveling wave ansatz in (1) and integrating with respect to ξ yields
the traveling wave equation

h(u) := f(u)− su−
(
f(u−)− su−

)
= Dαu =

1

Γ(1− α)

∫ x

−∞

u′(y)

(x− y)α
dy , (7)

which is translation invariant.
If a smooth profile ū approaches the endstates sufficiently fast, then the formal

limit ξ → ∞ in (7) leads to the Rankine-Hugoniot condition f(u+) − f(u−) =
s(u+ − u−).

If f is a convex flux function, then the vector field h is non-positive for values
between u− and u+. Thus and due to the right-hand side of (7), a monotone
traveling wave solution has to be monotone decreasing and the standard entropy
condition u− > u+ has to hold.

The profile ū of a traveling wave solution is governed by (7), whence its value
at ξ ∈ R depends (only) on its values on the interval (−∞, ξ). Therefore, first
the existence of a profile on an interval (−∞, ξε] is established, subsequently its
monotonicity and boundedness are verified and finally its global existence is deduced
from an continuation argument.

The integral operator

Dαu(ξ) =
1

Γ(1− α)

∫ ξ

−∞

u′(y)

(ξ − y)α
dy

is of Abel type and can be inverted by multiplying it with (z − ξ)−(1−α) and inte-
grating with respect to ξ from −∞ to z. Thus the traveling wave problem

h(u) = Dαu , lim
ξ→−∞

ū(ξ) = u− , lim
ξ→+∞

ū(ξ) = u+ , (8)

and

u(ξ)− u− = D−α(h(u))(ξ) :=
1

Γ(α)

∫ ξ

−∞

h(u(y))

(ξ − y)1−α dy (9)

are equivalent if u ∈ C1
b (R) and u′ ∈ L1(R−), and in particular if u ∈ C1

b (R) is
monotone. Equation (9) is a nonlinear Volterra integral equation with a locally
integrable kernel, where a well developed theory exists for problems on bounded
intervals.

The linearizations of (8) and (9) at ξ = −∞ (or, equivalently, at u = u−) are

h′(u−)v = Dαv and v = h′(u−)D−αv , (10)

respectively. Both linearizations have solutions of the form v(ξ) = beλξ with λ =
h′(u−)1/α and arbitrary b ∈ R, see also [4]. We will need that these are the only
non-trivial solutions of (10) in the space H2(−∞, ξ0] for some ξ0 ≤ 0. In particular,
we assume that

N
(
id− h′(u−)D−α

)
= span{exp(λξ)} with λ = h′(u−)1/α , (11)
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which is reasonable due to our analysis in [1, Appendix A].
In the existence result both formulations (8) and (9) will be used.

Theorem 2.2 ([1, Theorem 2]). Suppose f ∈ C∞(R) is a convex flux function, the
shock triple (u−, u+, s) satisfies the Rankine-Hugoniot condition f(u+) − f(u−) =
s(u+ − u−) as well as the entropy condition u− > u+, and condition (11) holds.
Then there exists a decreasing solution u ∈ C1

b (R) of the traveling wave problem (8).
It is unique (up to a shift) among all u ∈ u− +H2((−∞, 0)) ∩ C1

b (R).

Remark 2 (Extensions). In [1] we prove the result assuming only

h ∈ C∞([u+, u−]) , h(u+) = h(u−) = 0 , h < 0 in (u+, u−) ,

∃um ∈ (u+, u−) such that h′ < 0 in (u+, um) and h′ > 0 in (um, u−] . (12)

This is a little less than asking for convexity of f and the Lax entropy condition,
since it covers the case f ′(u+) ≤ s < f ′(u−).

The case of an concave flux function f can be analyzed in a similar way.

Idea of proof. The nonlinear problem has, up to translations, only two nontrivial
solutions udown and uup, which can be approximated for large negative ξ by u−−eλξ
and u− + eλξ, respectively. The choice 1 of the modulus of the coefficient of the
exponential is irrelevant due to the translation invariance of the traveling wave
equations (7) and (9).

The traveling wave equation (7) involves a causal integral operator, i.e. to eval-
uate Dαū(ξ) at a point ξ the profile ū on the interval (−∞, ξ] is needed. Thus, for
ε > 0 and ξε := log ε/λ, we investigate the existence of solution udown : Iε → R
of (7) on the interval Iε = (−∞, ξε]

lim
ξ→−∞

udown(ξ) = u− and udown(ξε) = u− − ε . (13)

Due to the analysis of the linearized equation (10) and assumption (11), the solution
is written as udown(ξ) = u− − exp(λξ) + v. Thus the perturbation v satisfies a
boundary value problem (BVP)(
Dα − h′(u−)

)
v = h(u− − exp(λξ) + v) + h′(u−)

(
exp(λξ)− v

)
, v(ξε) = 0 .

This can be formulated as a fixed point problem for a given right-hand side in
H2(Iε) and an application of Banach’s fixed point theorem yields the existence of
udown which is unique among all functions u satisfying (13) and ‖u−u−‖H2(Iε) ≤ δ
for some sufficiently small δ, which is independent of ε. Moreover

‖udown − u− + eλξ‖H2(Iε) ≤ Cε
2 (14)

for some ε-independent constant C. The boundedness and monotonicity of udown,

udown(ξ) < u− and u′down(ξ) < 0 ∀ξ ∈ Iε ,

follows from (14), a Sobolev embedding H2(R) ↪→ C1(R) and the properties of
u− − exp(λξ).

Next, the continuation of the solution udown : (−∞, ξε] → R is proven. The
boundedness and monotonicity of udown imply that udown is also a solution of (9).
Due to the causality of the integral operator, (9) can be written as a Volterra integral
equation on a bounded interval [ξε, ξε + δ) for some δ > 0

u(ξ) = f(ξ) +
1

Γ(α)

∫ ξ

ξε

h(u(y))

(ξ − y)1−α dy .
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with a well-defined inhomogeneity f(ξ) = u− + 1
Γ(α)

∫ ξε
−∞

h(u(y))
(ξ−y)1−α dy. The (local)

existence of a smooth solution for sufficiently small δ is a standard result in the
theory of Volterra integral equations on bounded intervals, see e.g. Linz [10].

Then, the boundedness and monotonicity of these continued solutions is proven,
such that the argument for local existence can be iterated to imply the existence of
a solution

udown ∈ C1
b (R) with lim

ξ→∞
udown(ξ) = u− .

Finally, the proof of Theorem 2.2 is completed by proving limξ→∞ u(ξ) = u+.
Assuming to the contrary limξ→∞ u(ξ) > u+, would imply limξ→∞ h(u(ξ)) < 0.
Then, however, −D−αh(u) = u− − u would increase above all bounds, which is
impossible by the boundedness of the solution.

Remark 3 (Discussion of previous results). Sugimoto and Kakutani [11, 12] studied
the existence of traveling wave solutions of (1). They prove that bounded continuous
traveling wave solution may exist, but give no analytical proof of existence, instead
they construct numerical solutions and study the asymptotic behavior analytically.

In case of Burgers’ equation with fractional Laplacian (4), Biler et al. [3] showed
that no continuous traveling wave solutions can exist for α ∈ (−1, 0], however they
provide no existence result for the case α ∈ (0, 1).

Alvarez-Samaniego and Azerad [2] proved the existence of traveling wave solu-
tions of (3) with perturbation methods.

Remark 4 (Comparison with previous results). The dynamical systems approach
to prove the existence of traveling wave solutions in [1, Theorem 2], parallels the one
in case of viscous conservation laws. This approach is possible due to the causality
of the operator Dα in (7) and the monotonicity of the profiles.

In contrast in case of a conservation law with fractional Laplacian (4) the trav-
eling wave equation for traveling wave solutions u(t, x) = ū(ξ) with ū ∈ C2

b (R) can
be written as

h(u) := f(u)− su−
(
f(u−)− su−

)
=

1

Γ(1− α)

∫ ∞
−∞

u′(y)

|x− y|α
dy .

Thus the value of a profile ū at ξ ∈ R depends on the entire profile ū, such that a
different approach is needed.

Whereas in case of Fowler’s equation (3) the profile of a traveling wave solution
is not necessarily monotone, such that the boundedness of a profile is difficult to
establish.

2.1. Asymptotic stability of traveling wave solutions. To study the asymp-
totic stability of traveling wave solutions φ of (1), equation (1) is cast in a moving
coordinate frame (t, x)→ (t, ξ = x− st),

∂tu+ ∂ξ(f(u)− su) = ∂ξDαu , (15)

such that a traveling wave solution becomes a stationary solution of (15). Analogous
to viscous conservation laws asymptotic stability of φ is only to be expected for
integrable zero-mass perturbations U0 := u0 − φ, i.e.∫

R
U0(ξ) dξ = 0 . (16)

The evolution of a perturbation U := u− φ is governed by

∂tU + ∂ξ(f(φ+ U)− f(φ)− sU) = ∂ξDαU . (17)
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However the L2-norms of the perturbation U and its derivative are not enough to
construct a Lyapunov functional. Therefore the primitive

W (t, ξ) =

∫ ξ

−∞
U(t, η) dη

of the perturbation U has to be considered.
The flux function will be assumed to be convex between the far-field values u±

of the traveling wave solution φ, i.e.

f ′′(φ(ξ)) ≥ 0 for all ξ ∈ R . (18)

Theorem 2.3 ([1, Theorem 4]). Suppose f ∈ C∞(R), the conditions (12) and (18)
hold and φ is a traveling wave solution of (1) as in Theorem 2.2. Let u0 be such

that W0(ξ) =
∫ ξ
−∞(u0(η) − φ(η)) dη satisfies W0 ∈ H2(R). If ‖W0‖H2 is small

enough, then the initial-value problem for equation (15) with initial datum u0 has a
unique global solution converging to the traveling wave solution φ in the sense that

lim
t→∞

∫ ∞
t

‖u(τ, .)− φ‖2H1 dτ = 0 . (19)

Proof. First, the local-in-time wellposedness of the initial-value problem

∂tW + (f(U + φ)− f(φ)− sU) = ∂ξDαW , W (0, x) = W0(x) , (20)

is established by an fixed point argument [1, Proposition 2].
Then a (Lyapunov) functional

J(t) =
1

2
(‖W‖2L2 + γ1‖U‖2L2 + γ2‖∂ξU‖2L2)

is defined with positive constants γ1, γ2 > 0. The functional J : H2(R) → R,
W (t) 7→ J(t), is equivalent to ‖W (t)‖2H2 , since γ∗‖W (t)‖2H2 ≤ 2J(t) ≤ γ∗‖W (t)‖2H2

with γ∗ = min{1, γ1, γ2} and γ∗ = max{1, γ1, γ2}. Combining the energy estimates
of the perturbation U , its primitiveW and its derivative ∂ξU , and using a Gagliardo-
Nirenberg inequality yields

d

dt
J + aα

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
− γ1C0‖U‖2L2 − γ2C1‖U‖2H1 − L(‖W‖H2)‖W‖H2‖U‖2H(5+α)/4 ≤ 0 ,

where aα = sin(απ/2) > 0 and Ḣs denotes the homogeneous Sobolev space of
order s. Finally, the constants γ1, γ2 > 0 are chosen such that

γ1C0‖U‖2L2 + γ2C1‖U‖2H1

≤ aα
2

(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2 + γ2‖W‖2Ḣ(5+α)/2

)
,

which implies the final estimate

d

dt
J +

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)(
‖W‖2

Ḣ(1+α)/2 + γ1‖W‖2Ḣ(3+α)/2

)
+ γ2

(
aα
2
− 1

γ∗
L(‖W‖H2)‖W‖H2

)
‖W‖2

Ḣ(5+α)/2 ≤ 0 .

For initial data such that J(0) is sufficiently small, the functional J(t) - being
equivalent to ‖W (t)‖2H2 - is non-increasing for all times. This implies the global-in-
time existence of W (t) as a solution of (20) and moreover (19).
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Remark 5. In case of Burgers’ flux f(u) = u2 and α > 1/2, asymptotic stability
of a traveling wave solution φ is established in case of W0 ∈ H1(R), see also [1,
Theorem 3].

Due to a Sobolev embedding H1(R) ↪→ Cb(R), the asymptotic stability result
limt→∞ ‖U(t)‖H1 = 0 implies also limt→∞ ‖U(t)‖L∞ = 0.
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Abstract. We are concerned with the compactness in L1
loc of the semigroup

(St)t≥0 of entropy weak solutions generated by hyperbolic conservation laws in
one space dimension. This note provides a survey of recent results establishing

upper and lower estimates for the Kolmogorov ε-entropy of the image through

the mapping St of bounded sets in L1 ∩ L∞, both in the case of scalar and
of systems of conservation laws. As suggested by Lax [16], these quantitative

compactness estimates could provide a measure of the order of “resolution” of
the numerical methods implemented for these equations.

1. Introduction. Consider a system of conservation laws in one space dimension

ut + f(u)x = 0, (1)

where u : [0,+∞) × R → RN is the state variable, f : Ω → RN is a twice con-
tinuously differentiable map, and Ω is an open set of RN . Assume that the above
system is strictly hyperbolic, i.e, that the Jacobian matrix Df(u) has N real, dis-
tinct eigenvalues λ1(u) < ... < λN (u) for all u ∈ Ω. The fundamental paper of
Bianchini and Bressan [5] shows that (1) generates a unique (up to the domain)
Lipschitz continuous semigroup {St : D0 → D0}t≥0, defined on a closed domain
D0 ⊂ L1(R,RN ), with the properties:

2000 Mathematics Subject Classification. Primary: 35L65, 47B06; Secondary: 94A17.
Key words and phrases. Hyperbolic equations, conservation laws, characteristics, compactness

estimates, Kolmogorov entropy.
The first and third authors are partially supported by he European Union Programme [FP7-

PEOPLE-2010-ITN] under grant agreement n.264735-SADCO, and by the ERC Starting Grant

2009 n.240385 ConLaws. The second author is partially supported by the Agence Nationale de la
Recherche, Project CISIFS, grant ANR-09-BLAN-0213-02.

249



250 FABIO ANCONA, OLIVIER GLASS AND KHAI T. NGUYEN

(i){
u ∈ L1(R,Ω)

∣∣Tot.Var.(u) ≤ δ0
}
⊂ D0 ⊂

{
u ∈ L1(R,Ω)

∣∣Tot.Var.(u) ≤ 2δ0

}
,

(2)
for some suitable constant δ0 > 0.

(ii) For every u ∈ D, the semigroup trajectory t 7→ Stu0
.
= u(t, ·) provides an

entropy admissible weak solution of the Cauchy problem for (1), with initial
data u(0, ·) = u, that satisfy the following admissibility criterion proposed by
T.P. Liu in [17], which generalizes the classical stability conditions introduced
by Lax [15].
Liu stability condition. A shock discontinuity of the k-th family (uL, uR),
traveling with speed σk[uL, uR], is Liu admissible if, for any state u lying on
the k-th Hugoniot curve between uL and uR, the shock speed σk[uL, u] of the
discontinuity (uL, u) satisfies

σk[uL, u] ≥ σk[uL, uR] . (3)

The uniform BV-bound on the elements of the domain D0 in (2) yield the compact-
ness of the semigroup map St, for every t > 0. Actually, in the scalar case, when
f : Ω→ R, Ω ⊂ R, the semigroup map {St}t≥0 generated by the equation (1) is de-
fined on the whole space L1(R) (cfr. [9], [13]). This is in general not true for general
hyperbolic systems. However, in the case of hyperbolic systems of conservation laws
of Temple class [19, 20] with all characteristic family genuiney nonlinear or linearly
degenerate, one can construct a continuous semigroup of solutions {St : D → D}t≥0,
defined on domains D of L∞-functions with possibly unbounded variation (see [7],
[4]). Relying on Olěınik-type inequalities on the decay of positive waves, one can
still recover the compactness of the semigroup map St on domains of functions with
unbounded variation in the case of scalar conservation laws with convex flux or of
Temple systems with genuinely nonlinear characteristic families. Aim of this note is
to discuss some recent results which have provided quantitative estimates of these
compactness properties that reflect the irreversibility feature of these equations.
Namely, following a suggestion of Lax [14], De Lellis and Golse have analized the
Kolmogorov ε-entropy in L1 of the image set St(L) for bounded subsets L of the
domain of St, and they have provided an upper bound on such a quantity in the case
of scalar, convex, conservation laws [10]. We have next supplemented this estimate
with a lower bound on the ε-entropy of St(L), both in the case of scalar conser-
vation laws [1] and in the case of systems [2], and we have established an upper
bound on this quantity for Temple systems with genuinely nonlinear characteristic
families [2]. We recall the following

Definition 1.1. Let (X, d) be a metric space and K a totally bounded subset of
X. For ε > 0, let Nε(K) be the minimal number of sets in a cover of K by subsets
of X having diameter no larger than 2ε. Then the ε-entropy of K is defined as

Hε(K | X)
.
= log2Nε(K).

We remark that entropy numbers play a central roles in various areas of informa-
tion theory and statistics as well as of learning theory. In the present setting, this
concept could provide a measure of the order of “resolution” of a numerical method
for (1), as suggested in [16].
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2. Scalar conservation laws. In this section we assume that N = 1, Ω = R, and
that f : R → R is a twice continuously differentiable, (uniformly) strictly convex
function:

f ′′(u) ≥ c > 0 ∀ u ∈ R. (4)

Without loss of generality, by possibly performing a space and flux transformation,
we may suppose that

f ′(0) = 0. (5)

The scalar equation (1) generates an L1-contractive semigroup St : L1(R)→ L1(R)
that associates to every initial data u ∈ L1(R)∩L∞(R), the unique entropy solution
u(t, ·) = Stu of (1), with initial data u(0, ·) = u. Now, given any L,m,M > 0,
consider the set of bounded, compactly supported, initial data

L[L,m,M ]
.
=
{
u ∈ L1(R) ∩ L∞(R) | Supp (u)⊂ [−L,L], ‖u‖L1≤ m, ‖u‖L∞≤M

}
.

(6)
Since an entropy solution u(t, x) of (1) satisfies the Olěınik estimate

u(t, y)− u(t, x)

y − x)
≤ 1

c t
∀ x < y, t > 0 , (7)

it follows that every map x 7→ Stu(x)− x
ct , u ∈ L[L,m,M ], is a nonincreasing function.

Relying on this observation, and providing an estimates on the ε-entropy for class of
bounded, nonincreasing functions with compact support, De Lellis and Golse have
established in [10] the following

Theorem 2.1 ([10]). Let f : R → R be a twice continuously differentiable map,
satisfying (4), (5). Then, given any L,m,M, T > 0, for ε > 0 sufficiently small,
one has

Hε

(
ST (L[L,m,M ]) | L1(R)

)
≤ Γ+

c T
· 1

ε
, (8)

where Γ+ .
= 24

(
L+ 2 sup|z|≤M |f ′′(z)|

√
2mT/c

)2
.

In fact, we have shown in [1] that the upper bound on the ε-entropy of ST (L[L,m,M ])
provided by (8) is actually optimal (w.r.t. the ε-dependence) as stated in the
following

Theorem 2.2 ([1]). Under the same assumptions of Theorem 2.1, given any L,m,
M,T > 0, for ε > 0 sufficiently small, one has

Hε

(
ST (L[L,m,M ]) | L1(R)

)
≥ Γ−

|f ′′(0)|T
· 1

ε
, (9)

where Γ−
.
= L2/(48 · ln(2)).

The main steps of the proof of the lower bound (9) are the following:

1. We introduce a two-parameter class Fn,h of piecewise affine functions and
show that any element of such a class can be obtained, at any given time t,
as the value u(t, ·) of an entropy admissible weak solution of (1), with initial
data in L[L,m,M ].

2. We provide an optimal estimate (w.r.t. the parameters n, h) of the maximum
number of functions of Fn,h contained in a subset of ST (L[L,m,M ]) having
diameter ≤ 2ε. This estimate is established with a similar combinatorial
argument as the one used in [3].
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Similar upper and lower bounds as the ones stated in Theorem 2.1 and Theorem 2.2
have been derived in [1] also for solutions of scalar balance laws

ut + f(u)x = g(t, x, u), (10)

with flux function f(u) satisfying the assumptions (4), (5).

3. General hyperbolic systems of conservation laws. In this section we as-
sume that f : Ω → RN is a twice continuously differentiable vector valued map,
defined on an open, connected domain Ω ⊂ RN containing the origin, and that the
system (1) is strictly hyperbolic. Then, given any L,m,M > 0, consider the set of
bounded, compactly supported, initial data

L[L,m,M ]
.
=
{
u ∈ D0 | Supp (u)⊂ [−L,L], ‖u‖L1≤ m, ‖u‖L∞≤M

}
, (11)

where D0 denotes a domain of the semigroup {St}t≥0 generated by (1), satisfy-
ing (2). For the image set St(L[L,m,M ]) of such a class we have established in [2] the
following extension to general hyperbolic systems of the upper and lower bounds
provided by Theorem 2.1 and Theorem 2.2 for scalar conservation laws.

Theorem 3.1 ([2]). Let f : Ω→ RN be a map satisfying the above assumptions, and
suppose that the system (1) is strictly hyperbolic. Then, given any L,m,M, T > 0,
for ε > 0 sufficiently small, the following estimates hold.

(i)

Hε

(
ST
(
L[L,m,M ]

)
| L1(R,Ω)

)
≥ N2L2

T
·

(
min

{
c1, c2

T
L

})2
max

{
c3, c4

N2L
T , c5

NL
δ0T

} · 1

ε
, (12)

where cl, l = 1, . . . , 5, are nonegative constants which depend only on the
eigenvalues λi(u) of the Jacobian matrix Df(u), on the corresponding right
and left eigenvectors ri(u), li(u), and on their derivatives, in a neighbourhood
of the origin.

(ii)

Hε

(
ST
(
L[L,m,M ]

)
| L1(R,Ω)

)
≤ 48Nδ0 · LT ·

1

ε
, (13)

where

LT
.
= L+

∆∨λ

2
· T, ∆∨λ

.
= sup

{
λN (u)− λ1(v) ; u, v ∈ Ω

}
. (14)

Sketch of the Proof.
The upper bound stated in (ii) can be easily obtained relying on the upper esti-
mates for the covering number of classes of functions with uniformly bounded total
variation established in [3]. Therefore, we shall provide here only an outline of the
proof of (i).
Step 1: (A class of classical solutions) We first consider a family of simple waves,
i.e. of piecewise C1 solutions of (1) that take values on the integral curves of the
eigenvectors of the Jacobian matrix Df . Next, we construct a family of classical
solutions of (1) with initial data given by the profiles of N simple waves (one for
each characteristic family) supported on N disjoint sets.

For every k-th characteristic family, let s 7→ Rk(s) denote the integral curve of
the eigenvector rk, passing through the origin at s = 0. Then, given any d, b > 0,
consider the class of functions

PC1
[d,b]

.
=
{
β : R→ [−d, d]

∣∣ β is piecewise C1 and |β̇(x)| ≤ b
}
, (15)
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and, for every β ∈ PC1
[d,b], define the map

φβk(x)
.
= Rk(β(x)) x ∈ R . (16)

Observe that, setting xk(t, y)
.
= y + λk(φβk(x)), and α1

.
= sup{|∇λk(u)| ; |u| ≤ d},

it follows that the map y 7→ xk(t, y) is one-to-one in R, for all t ≤ 1
2α1 b

. Then, if

b ≤ 1
2α1 T

, one can show that, setting zk(t, ·) .
= x−1

k (t, ·), the function

u(t, x)
.
= φβk(zk(t, x)) (17)

provides a classical solution of (1) on [0, T ]× R, with initial data u(0, x) = φβk(x).

Next, given T, L > 0, assume that T ≥ L/∆∧λ, ∆∧λ
.
= min

k

{
λk+1(0) − λk(0)

}
,

and consider an N -tuple β
.
= (β1, . . . , βN ) of maps βk ∈ PC1

[d,b] supported on the

disjoint intervals Ii
.
= [−L/2− λi(0)T, L/2− λi(0)T ], of the same length |Ik| = L.

Let φβ : R → Ω denote the map that coincides with φβkk on every Ik, and van-
ishes elsewhere. Then, relying on the above analysis and deriving standard a-priori
bounds on the solution of (1) and on its spatial derivatives (e.g. see [12, Section
4.2]), one can show that, if we take d, b sufficiently small, the Cauchy problem for (1)
with initial data u(0, x) = φβ(x) admits a classical solution u(t, x) on [0, T ] × R.
Moreover, the following uniform bounds hold

Supp(u(T, ·)) ⊆ [−α2L, α2L],

‖u(t, ·)‖L∞(R,Ω) ≤ α3N · d, ‖ux(t, ·)‖L∞(R,Ω) ≤ α4N · b, ∀ t ∈ [0, T ] ,

(18)
for some positive constants α2, α3, α4 (depending on λk, rk, lk, and on their deriva-

tives in a neighbourhood of the origin). We shall denote by PC1,N
[L,d,b,T ] the class of

N -tuples β
.
= (β1, . . . , βN ) of maps with the above properties.

Step 2: (A controllability result) Given any L,m,M, T > 0, we can show now that,
setting

A[L,d,b,T ]
.
=
{
ψ∈C(R,Ω)

∣∣ψ = φβ(−·) for some β=(β1, . . . , βN )∈PC1,N
[L,d,b,T ]

}
,

(19)
there holds

A[L̃,d,b,T ] ⊂ ST
(
L[L,m,M ]

)
, L̃

.
= L ·min

{
1/α2, ∆∧λ · (T/L)

}
, (20)

if we take d sufficiently small and

b ≤ 1

T
· 1

max{2α1, α5
N2L
T , α6

NL
δ0T

} , (21)

with α1 as above and α5, α6 positive constants depending on λk, rk, lk, and on
their derivatives in a neighbourhood of the origin. In fact, one can prove that for
every ψ ∈ A[L̃,h,b,T ] there exists a classical solution u(t, x) of (1) with initial data u ∈
L[L,m,M ] so that u(T, ·) = ψ. This is accomplished with the same strategy adopted
in [1] by reversing the direction of time and constructing a (classical) backward
solution to (1) that starts at time T from ψ. The existence of such a solution u(t, x)
on [0, T ]×R is guaranteed by the analysis at Step 1, while the uniform bounds (18)
imply that u(0, ·) ∈ L[L,m,M ].

Step 3: (A class of profiles of superposition of simple waves) Given any integer
n ≥ 2 and any constant h > 0, for every k-th characteristic family and for any
given n-tuple ι = (ι1, . . . , ιn) ∈ {0, 1}n, consider the function βιk : R → [−h, h],
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with support contained in [ξ−k , ξ
+
k ], ξ±k

.
= ±L/2 − λk(0)T , defined by setting (see

Figure 1)

βιk(x)
.
= (−1)ι`

2hn

L
·
(
L

2n
−
∣∣∣x−ξ−k −(2`+1)· L

2n

∣∣∣) ∀ x ∈
[
ξ−k+

` L

nN
, ξ−k+

(`+ 1)L

nN

]
,

(22)
for all ` ∈ {0, . . . , n− 1}.

\xi_k^+

h

−\xi_k^− −\lambda_k(0) T

Figure 1: The function βιk for n = 8 and ι = (1,−1− 1, 1, 1, 1,−1− 1).

Observe that, if we assume h ≤ min{d, Lb/(2n)}, one has βιk ∈ PC
1
[d,b] for every

n-tuple ι = (ι1, . . . , ιn) ∈ {0, 1}n. Therefore, for any given N -tuple of n-tuples
(ι1, . . . , ιN ) ∈ ({0, 1}n)N , letting βιkk , k = 1, . . . , N , be maps defined as in (22), we

have (βι11 , . . . , β
ιN
N ) ∈ PC1,N

[L,d,b,T ]. Hence, setting

Bn,h
.
=
{

(βι11 , . . . , β
ιN
N )

∣∣ βιkk : R→ [−h, h] defined as in (22) with

Supp(βιkk ) ⊂ [ξ−k , ξ
+
k ] ∀ k, (ι1, . . . , ιN ) ∈ ({0, 1}n)N

}
,

(23)
one finds

Bn,h ⊂ PC1,N
[L,d,b,T ]. (24)

Comparing the definitions (19), (23), it follows from (24) that, for all n ≥ 2 and
h ≤ min{d, Lb/(2n)}, there holds

Fn,h
.
=
{
φι1,...,ιN (−·)

∣∣ (ι1, . . . , ιN ) ∈ ({0, 1}n)N
}
⊂ A[L,d,b,T ], (25)

where we have used the notation φι1,...,ιN
.
= φ(β

ι1
1 ,...,β

ιN
N ) for a map defined as in

Step 2 in connection with the N -tuple (βι11 , . . . , β
ιN
N ) ∈ Bn,h.

Step 4: (A combinatorial result) Because of (25), in order to establish a lower
bound on the ε-entropy Hε

(
A[L,M,b,T ] | L1(R,Ω)

)
, it will be sufficient to provide

such an estimate for Hε

(
Fn,h | L1(R,Ω)

)
. Towards this goal, one can prove that,

adopting the L1-norm ‖(β1, . . . , βN )‖L1
.
=
∑
k ‖βk‖L1 on the set Bn,h and the usual

L1-norm on the set Fn,h, there holds∥∥(β ῑ11 , . . . , β
ῑN
N )− (βι11 , . . . , β

ιN
N )
∥∥
L1 ≤ 2

∥∥φῑ1,...,ῑN − φι1,...,ιN∥∥
L1 , (26)

for all (ῑ1, . . . , ῑN ), (ι1, . . . , ιN ) ∈ ({0, 1}n)N , if we assume h sufficiently small. Next,
define

CBn (ε)
.
= max
β∈Bn,h

#
{
β ∈ Bn,h

∣∣ ‖β − β‖L1 ≤ ε
}
, (27)

(with the L1-distance on Bn,h defined as above). Notice that, because of (26), any
element of an ε-cover of Fn,h contains at most CBn (4ε) functions of Fn,h. Thus, since
the cardinality of Fn,h is 2nN , it follows that the number of sets in an ε-cover of
Fn,h is at least

Nε(Fn,h | L1(R,Ω)) ≥ 2nN

CBn (4ε)
. (28)
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Observe now that∥∥(β ῑ11 , . . . , β
ῑN
N )− (βι11 , . . . , β

ιN
N )
∥∥
L1 =

Lh

n
· d
(
(ι1, . . . , ιN ), (ῑ1, . . . , ῑN )

)
, (29)

where

d
(
(ι1, . . . , ιN ), (ῑ1, . . . , ῑN )

) .
= #

{
(k, `) ∈ {1, . . . , N} × {1, . . . , n}

∣∣ (ιk)` 6= (ιk)`

}
.

Thus, if we fix an nN -tuple ῑ
.
= (ῑ1, . . . , ῑN ) ∈ ({0, 1}n)N , and define the number

CIn(ε)
.
= #

{
ι ∈ ({0, 1}n)N

∣∣ d(ι, ῑ) ≤ ε
}
, (30)

which is independent on the choice of ῑ ∈ ({0, 1}n)N , it follows from (29) that

CBn (4ε) = CIn
(

4nε

Lh

)
. (31)

We can now derive an upper bound on CIn(4nε/(Lh)) performing a standard com-
binatorial computation of the number of nN -tuples that differ for a given number
of entries, and then invoking Hoeffding’s inequality ([11, Theorem 2]). In this way
we find

CIn
(

4nε

Lh

)
≤ 2nN · exp

(
− nN

2

(
1− 8ε

LhN

)2)
, (32)

which, together with (28), (31), yields

Nε(Fn,h | L1(R,Ω)) ≥
(
nN

2

(
1− 8ε

LhN

)2)
, (33)

for all h sufficiently small and n ≥ 2. In order to derive the largest lower bound on

the right-hand side of (33) we maximize the map Ψ(h, n)
.
= nN

2

(
1− 8ε

LhN

)2
with

respect to those h for which (33) holds. Thus, we find that the maximum of Ψ(h, n)
is attained for n = NL2b/(48ε), h = 24ε/(NL). Hence, we deduce from (33) that

Nε(Fn,hn | L1(R,Ω)) ≥ exp
(
Ψ(hn, n)

)
= exp

(
L2N2b

216
· 1

ε

)
, (34)

which, in turn, because of (25), yields

Hε(A[L,d,b,T ] | L1(R,Ω)) ≥ L2N2b

216 ln(2)
· 1

ε
. (35)

Finally, recalling (20), (21), we recover from (35) the lower bound (12).

4. Temple systems of conservation laws. In this section we assume that (1)
is a strictly hyperbolic system of Temple class, which thus enjoys the following
additional properties:

- it is endowed with a coordinates system w = (w1, . . . , wn) of Riemann invari-
ants wk = Wk(u), u ∈ Ω, associated to each characteristic field rk;

- the level sets
{
u ∈ Ω; wi(u) = constant

}
of every Riemann invariant are

hyperplanes.

We shall assume that W (0) = 0, and that as w ranges within the product set
Π

.
= [a1, b1] × · · · × [aN , bN ], the corresponding state u = W−1(w) remains inside

the domain Ω of the flux function f . We also recall that a characteristic field
rk of a system (1) is said to be genuinely nonlinear (GNL) in the sense of Lax
if ∇λk(u) · rk(u) 6= 0 for all u ∈ Ω, while we say that rk is linearly degenerate
(LD) if ∇λk(u) · rk(u) ≡ 0 for all u ∈ Ω. As observed in the introduction, the
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results in [4], [7] show that a Temple system with GNL or LD characteristic families
admits a continuous semigroup of entropy weak solutions {St : D → D}t≥0, defined
on domains D of L∞-functions with possibly unbounded variation of the form

D .
=
{
u ∈ L1(R,Ω)

∣∣ Wk(u(x)) ∈ [ak, bk] for all x ∈ R, k = 1, . . . , N
}
. (36)

We shall adopt the notation Swt w
.
= W (u(t, ·)) for the Riemann coordinates expres-

sion of the entropy weak solution solution of (1), with initial data u
.
= W−1 ◦ w.

When all characteristic families are genuinely nonlinear such a semigroup is Lips-
chitz continuous and the map w(t, x)

.
= Swt w(x) satisfies the following Olěınik-type

inequalities on the decay of positive waves:

wk(t, y)− wk(t, x)

y − x
≤ 1

c t
∀ x < y, t > 0, k = 1, . . . , N, (37)

for some constant 0 < c ≤ inf
{
|∇λk(u) · rk(u)| ; u ∈ W−1(Π), k = 1, . . . , N

}
.

Relying on the analysis of the evolution of the Riemann coordinates along the
characteristics and on the Olěınik-type inequalities, we have established in [2] a
natural extension to this class of systems of the upper and lower bounds provided
by Theorem 2.1 and Theorem 2.2 for scalar conservation laws with strictly convex
(or concave) flux. Namely, adopting the norm ‖w‖L1

.
=
∑
i ‖wi‖L1 on the space

L1(R,Π), we have proved the following

Theorem 4.1 ([2]). In the same setting of Theorem 3.1, assume that the sys-
tem (1) is of Temple class, strictly hyperbolic, and that all characteristic families
are genuinely nonlinear or linearly degenerate. Then, given any L,m,M, T > 0,
and setting

L[L,m,M ]
.
=
{
w ∈ L1(R,Π)

∣∣ Supp(w) ⊂ [−L,L], ‖w‖L1 ≤ m, ‖w‖L∞ ≤M
}
, (38)

for ε > 0 sufficiently small, the following hold.

(i)

Hε

(
SwT
(
Lw[I,m,M ]

)
| L1(R,Π)

)
≥ N2L2

T
· 1

max
{
c6, c7

NL
T

} · 1

ε
. (39)

where c6, c7 are nonegative constants which depend only on the gradient of
the eigenvalues λi(u) of the Jacobian matrix Df(u) and on the corresponding
right eigenvectors ri(u), in a neighbourhood of the origin

(ii) If all characteristic families are genuinely nonlinear, one has

Hε

(
SwT
(
Lw[I,m,M ]

)
| L1(R,Π)

)
≤ 32N2L2

T

c T
· 1

ε
, (40)

where LT
.
= L+

√
2mT
c · sup

{
|∇λk(u) · rj(u)| ; |W (u)| ≤M, k, j = 1, . . . , N

}
,

and c is the constant appearing in (37).
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ONE-DIMENSIONAL CONSERVATION LAW

WITH BOUNDARY CONDITIONS: GENERAL RESULTS

AND SPATIALLY INHOMOGENEOUS CASE

Boris Andreianov

Laboratoire de Mathématiques CNRS UMR 6623

Université de Franche-Comté, Besançon, France

Abstract. The note presents the results of the recent work [5] of K. Sbihi and

the author on existence and uniqueness of entropy solutions for boundary-value

problem for conservation law ut + ϕ(u)x = 0 (here, we focus on the simplified
one-dimensional setting). Then, using nonlinear semigroup theory, we extend

these well-posedness results to the case of spatially dependent flux ϕ(x, u).

1. Introduction. Consider the general boundary-value problem for one-dimensio-
nal conservation law in Q := (0, T )× Ω where we choose Ω := (−∞, 0): ut + ϕ(x, u)x = 0 in QT := (0, T )×(−∞, 0)

u|t=0 = u0 in (−∞, 0)
ϕν(u) ∈ β(u) on Σ := (0, T )×{0}.

(Eϕ,β)

Here ϕ is a regular function of (x, u); ϕν(·) will denote ϕ(0, ·); and β is a maximal
monotone graph on R that encodes the boundary condition. The simplest and best
known case is β = {uD} × R, which encodes the Dirichlet condition u = uD on Σ.

The well-posedness theory of the Cauchy problem associated with the conserva-
tion law ut + ϕ(x, u)x = f was achieved in the founding work of Kruzhkov [13].
Taking into account the boundary condition is a delicate matter. Indeed, already
in the Dirichlet case, the classical work of Bardos, LeRoux and Nédélec [7] states
that, for u0 of bounded variation, there exists a unique entropy solution in Q to the
conservation law in (Eϕ,β) which satisfies a relaxed formulation of the boundary
condition; this relaxed formulation is justified, as in [13], by the vanishing viscos-
ity argument. We aim at explaining in which way the general boundary condition
ϕν(u) ∈ β(u) should be relaxed; this is of interest, e.g., for obstacle problems
(β = ∂I[m,M ] where ∂ is the subdifferential and I is the indicator function) and for
the zero-flux boundary condition (β = {0}×R); the latter condition is particularly
important in practice. Notice that our setting provides a nontrivial extension of
the result of Bürger, Frid and Karlsen [9] on the zero-flux problem: we do not as-
sume ϕ(0) = 0 = ϕ(1). Thus the first objective of this note is to point out, in a
simplified setting, the meaning that can be given to the formal boundary condition
“ϕν(u) ∈ β(u) on Σ”. We highlight the ideas and results of the recent work [5]
of K. Sbihi and the author, where the multi-dimensional problem with spatially
homogeneous flux (ϕ = ϕ(u)) but variable graphs

(
β(t,x)

)
(t,x)∈Σ

was explored.

2000 Mathematics Subject Classification. Primary: 35L65, 35L04; Secondary: 35A01, 35A02.
Key words and phrases. General boundary condition, Entropy solution, Integral solution.
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The second objective of the note is to generalize some of the results of [5]. In-
deed, the assumption of x-independence of the flux played an important role in the
formulation, because it allowed to consider strong traces for u on Σ (see [3, 5] for
details). In the present note, traces need not exist; the construction we use, pro-
posed in [1], is based upon the nonlinear semigroup techniques (see [6]). It strongly
relies on the assumption N = 1 and on the t-independence of both ϕ and β. The
semigroup approach allows to bypass as well the usual technical assumption

for a.e. x ∈ Ω, ϕ(x, ·) is non-affine on any interval [a, b] with a < b. (H1)

What we prove is that there exists an entropy solution in [0, T ]×Ω which verifies
well-chosen up-to-the boundary entropy inequalities (see Definition 2.2) involving
β. We interpret the information contained in these up-to-the-boundary inequalities

as the effective boundary condition “ϕν(u) ∈ B̃(u)”. Here, the maximal monotone

graph B̃ is the projection of β on the graph of the function ϕν , as shown on Fig. 1.

Figure 1. Construction of the projected graph B̃ and of β̃

The main conclusion is: the graph β in the formulation of (Eϕ,β) should be inter-

preted as its projection B̃. Indeed, the solution in the sense of Definition 2.2 can be
attained as the limit of well-established approximation procedures (approximation
of β by a kind of Yosida approximation or by “truncations” βm,n := β+I[−m,n]; the
vanishing viscosity approximation involving the graph β or its approximates; and
the Euler time-implicit discretization). Following Bardos, LeRoux and Nédélec [7],
we see these facts as a justification of the notion of solution proposed for (Eϕ,β).

2. Assumptions, definitions, results.

Definition 2.1. Extend β to a maximal monotone graph from R to R and define
the overshoot set D+ and the undershoot set D− by

D+ :=
{
z ∈ R | supβ(z) ≥ ϕν(z)

}
, D− :=

{
z ∈ R | inf β(z) ≤ ϕν(z)

}
.

Further, define the crossing set D0 := D+∩D−. Finally, define B̃ on R as the closest

to β maximal monotone graph that contains {(z, ϕν(z)) | z ∈ D0}; and define β̃ as

the subgraph that B̃ and the graph Gϕν of the function ϕν have in common.
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The “closest” to β graph B̃ does exist (see [5]). In fact, B̃ is single-valued and
continuous, constituted of upper (respectively, lower) increasing envelopes of Gϕν
over connected components of D+ (resp., D−), see Fig. 1. It contains portions of

Gϕν complemented by horizontal segments over intervals of R \Domβ̃. As to β̃, it

is a maximal monotone subgraph of Gϕν . In the Dirichlet case ([7]), the graph β̃
appeared in the work [12] as a way to express the Bardos-LeRoux-Nédélec condition.

Now, write q±(x, u, k) for sign (u−k)(ϕ(x, u)−ϕ(x, k)) (“semi-Kruzhkov” entropy
fluxes). Following [13] and adapting the boundary approach of Carrillo [10], we set

Definition 2.2. An L∞(Q) function u is called entropy solution of problem (Eϕ,β)
if u(0, ·) = u0

1 and u verifies the following inequalities2:

∀k ∈ R ∀ξ ∈ D((0, T )× Ω), ξ ≥ 0, such that ξ|Σ = 0 if k ∈ D∓∫ T

0

∫
Ω

(
−(u− k)±ξt − q±(x, u, k) · ∇ξ

)
+

∫ T

0

∫
Ω

sign±(u− k)ϕx(x, k) ξ ≤ 0
(1)

Let us clarify the relation between the formal boundary condition “ϕν(u) ∈ β(u)”
and the condition contained in Definition 2.2. We claim that, up to technical details

ϕν(u) ∈ B̃(u) on Σ (2)

is the boundary relation entailed by inequalities (1).

Proposition 2.3. (see [5, Prop. 3.3]) In the case where u admits a strong boundary
trace3 γu on Σ, u is an entropy solution in the sense of Definition 2.2 if and only
if it verifies the Kruzhkov inequalities with ξ ∈ D((0, T )× Ω), ξ ≥ 0, and

(γu)(t) ∈ Dom β̃ for a.e. t ∈ (0, T ). (3)

Furthermore, in this situation (3) is equivalent to the property

∀k ∈ D± q±(0, (γu)(t), k) ≥ 0 for a.e. t ∈ (0, T ). (4)

Since β̃ is a subgraph of the graph of ϕν , relation (3) means that ϕν(u) ∈ β̃(u)

(so that ϕν(u) ∈ B̃(u)); therefore we say that (3) (or (2)) is the effective boundary
condition for problem (Eϕ,β). Condition (3) was introduced by K. Sbihi in her

thesis [15] (see also [3, 4]). For details on the graph B̃, on the entropy formulation
(1) and its different reformulations, a detailed study of existence and convergence
of approximate procedures we refer to the recent paper [5] of Sbihi and the author.

The results of [5] for the x-independent flux ϕ ∈ C(R) in space dimension one
can be summarized as follows. Consider the assumption

∃A > 0 ∀z /∈ [−A,A] sign (z)φν(z) ≤ sign z β(z). (H2)

While (H2) is not required for well-posedness, we use it to get L∞ estimate needed
to prove that the vanishing viscosity method converges to the entropy solution in
the sense (1). When (H2) is dropped, in order to justify the advent of β̃ we need an
additional stage of approximation of β by rapidly growing at infinity graphs βm,n.

1We have u ∈ C(0, T ;L1
loc(Ω)) since by (1), u is a Kruzhkov solution inside Q (see, e.g., [5]).

2Note that admissible test functions ξ in (1) are different for the “+” sign and for the “−”
sign.

3In different contexts, such solutions were called trace-regular in [1, 2].
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Theorem 2.4. (compilation of results of [5], one-dimensional case, ϕ(x, u) ≡ ϕ(u))
(i) (uniqueness, comparison, contraction) If u, û are solutions of (Eϕ,β) in the sense
of Definition 2.2 with initial data u0, û0 respectively, then for a.e. t ∈ (0, T )

‖(u− û)+(·, t)‖L1 ≤ ‖(u0 − û0)+‖L1 . (5)

(ii) (existence, construction of solution) Assume (H1). Then for all L∞ datum u0

there exists a (unique) solution u of (Eϕ,β) in the sense of Definition 2.2.
If (H2) holds, then u = limε→0 u

ε; here uε is a weak solution to problem (Eϕ,β)
regularized by the vanishing viscosity term εuxx (with “ϕν(u) − εux ∈ β(u)” as
boundary condition). And, if (H2) does not hold, then u = limn,m→∞ um,n where
um,n is the vanishing viscosity limit for the boundary graph βm,n = β + I[−m,n].

A crucial point of the uniqueness proof is that strong boundary traces γu, γû on Σ
exist (see [3]). Generalization of the uniqueness result to the multi-dimensional case
and space-time dependent graphs β is straightforward, but the boundary condition
cannot always be formulated using (1) (e.g., (3) can be used instead). Existence re-
sults for this general case involve technical assumptions which main goal is to ensure
uniform L∞ estimates on the approximate solutions. The assumption on nonlinear-
ity of ϕ can be relaxed if ϕ is Lipschitz continuous (see [5, Th. 7.1]). Truncations
βm,n can be replaced by a two-parameter Yosida approximation (see [5, Ex. 6.14]).

Now, let us look at the case where ϕ = ϕ(x, u). Because we focus on understand-
ing the boundary condition, we consider a single boundary point x = 0 and we avoid
a few technical difficulties by taking the following (rather artificial) assumption:

ϕ(x, ·) ≡ 0 for x ≤ −1. (H3)

We also assume

both ϕ and ϕx are Lipschitz continuous on [−1, 0]× R, (H4)

Φ : z 7→ maxx∈[−1,1] ϕx(x, z) is Lipschitz continuous on [−1, 0]× R. (H5)

Assumptions (H4),(H5) can be relaxed; in particular, the role of (H5) is to ensure
an L∞ estimate on solutions in the situation where (H2) holds.

For x-dependent flux ϕ, existence of strong boundary traces for Kruzhkov entropy
solutions of ut + ϕ(x, u)x = 0 in Q is yet not proved. Despite this obstacle, we will
prove the following, which is the main new result of this note.

Theorem 2.5. Assume (H3),(H4),(H5) hold. Assume u0 ∈ L1(−∞, 0)∩L∞(−∞,
0). Then there exists a unique entropy solution of (Eϕ,β) in the sense of Defini-
tion 2.2.

As in Theorem 2.4, the existence proof justifies the notion of solution (see Re-
mark 1). The key ingredient for the proof of Theorem 2.5 is the stationary problem{

û+ ϕ(x, û)x = f in (−∞, 0)
ϕν(û(0)) ∈ β(û(0)).

(Sϕ,β)

Problem (Sϕ,β) is used as a building brick in construction of a solution of (Eϕ,β)
via the time-implicit discretization, and it is essential for the uniqueness proof. To
state a notion of solution, consider that û is an entropy solution of (Sϕ,β) if it is a
time-independent solution of (Eϕ,β) with additional source term f = g − û.



INHOMOGENEOUS CONSERVATION LAW WITH BOUNDARY 263

3. Uniqueness, L1 contraction and comparison proof: the ideas. Using the
Kruzhkov doubling of variables inside [0, T ]× Ω, one gets4 the Kato inequality∫

Ω

ξ(u− û)+(·, t) ≤
∫

Ω

ξ(u0 − û0)+ −
∫ t

0

∫
Ω

∇ξ · q+(x, u, û) (6)

with ξ ∈ D′(Ω), ξ ≥ 0, and for a.e. t. Here, we wish to let ξ → 1 on Ω. If
strong traces γu, γû on Σ exist, the last term passes to the limit and it yields
the integral of sign +(γu − γû)

(
ϕν(γu) − ϕν(γû)

)
over a part of Σ. Then, due to

the characterization (3) and the monotonicity of β̃, this term can be dropped and
inequality (5) follows.

Now, in the situation where γû exists but γu may not exist, we are still able to
make the above arguments work. We use the following hint. Provided the strong
trace γû exists, the weak trace γwq

±(·, u(·), û(·)) on Σ (see [11]) verifies(
γwq

±(·, u(·), û(·))
)
(t) =

(
γwq

±(·, u(·), k)
)
(t)|k=(γû)(t), for a.e. t ∈ (0, T ). (7)

Furthermore, for a.e. t, k = (γû)(t) ∈ Dom β̃ by Proposition 2.3. We also have

Lemma 3.1. Assume u is an entropy solution of (Eϕ,β) in the sense of Defini-
tion 2.2. Then for all k ∈ D±, we have (respectively)

(γwq
±(·, u(·), k))(t) ≥ 0 for a.e. t ∈ (0, T ), (8)

where γw denotes the weak boundary trace in the sense of Chen and Frid [11].

Furthermore, the two inequalities in (8) hold simultaneously for all k ∈ Dom β̃.

Proof. The first claim is straightforward. For the second one consider, e.g., k ∈
D+∩Dom β̃. Then it is enough to prove γwq

−(·, u)·), k) ≥ 0. To this end, take k0 ∈
[−∞, k] such that k0 is the closest to k point in D−. By definition of D±, we have
ϕν(κ) ≤ ϕν(k) for all κ ∈ [k0, k]; hence ϕ(x, κ) ≤ ϕν(k) + ox→0(1). Developing the
formula for q(x, u(x), k), writing sign−(u(x)−k) = 1l[u(x)≤k0] +1l[k0<u(x)<k], we find

q−(x, u(x), k) ≥ q−(x, u(x), k0) + ox→0(1). Hence we can apply (8) with k0 ∈ D−
and deduce that γwq

−(·, u(·), k) ≥ 0. Details can be found in [5, Prop. 7.4(i)].

Finally, combining (7) and Lemma 3.1, passing to the limit as ξ → 1 in Kato
inequality (6) we get the desired result (5) whenever û is trace-regular, i.e., γû exists.

In order to put ourselves in the situation where û is trace-regular, we will consider
û = û(x) entropy solution of (Sϕ,β). Actually, in the preceding argument we only
need that the trace of the function V ϕν(û) exist, where V ϕν : z 7→

∫ z
0
|ϕ′ν(s)| ds

is the variation function of ϕν (also known as the singular mapping). We refer to
[3, 5] for the use of V ϕν within the arguments involving the traces of q±(·, u(·), û(·)).
Existence of traces for solutions of (Sϕ,β) follows, roughly speaking, from the fact
that q(·, û(·), k) ∈ W 1,1(−∞, 0) for all k ∈ R. We refer to [1, Lemma 3.1] for the
proof in the case where ϕν has finitely many extrema; the general case is similar.

Fortunately, comparison results concerning two solutions u and û of (Eϕ,β) can
be deduced from those concerning one solution u ∈ L1(Q)∩L∞(Q) and all possible
stationary solutions v ∈ L1(Ω) ∩ L∞(Ω): to do this, one exploits the theory of
nonlinear semigroups governed by m-accretive operators (details of this approach

4If ϕ is x-dependent, this result is not entirely contained in [13]: see [1, Th. 5.1] for the full
argument that relies on the fact that a local entropy solution is a vanishing viscosity limit.



264 BORIS ANDREIANOV

can be found in [8, 1, 2]). Roughly speaking, the above arguments prove that an
entropy solution u of (Eϕ,β) is an integral solution of the abstract evolution problem

d

dt
u+Au 3 0, u(0) = u0 (9)

where A is the operator associated with the formal expression u(·) 7→ ϕ(·, u(·))x in
the entropy sense, as defined in (11) below. Then we apply the general result of
uniqueness of an integral solution (see [6, 8] and Theorem 4.2 below).

4. Study of the stationary problem and use of the semigroup theory.
In the space L1 = L1((−∞, 0)), consider the following definitions.

Definition 4.1 (elements of the nonlinear semigroup theory, see [6]).
• The bracket on L1 is given by

[
v , w

]
=
∫
w sign v +

∫
w 1l[x | v(x)=0].

• A multi-valued nonlinear operator A on L1 is accretive if for all (v, w), (v̂, ŵ) ∈ A
one has

[
v − v̂, w − ŵ

]
L1 ≥ 0. It is called m-accretive if, in addition, the domain

Dom(I + λA)−1 of the resolvent of A equals L1 for all sufficiently small λ > 0.
• A function u ∈ C([0, T ];L1) is an integral solution of problem (9) if

∀(v, w) ∈ A d

dt
‖u(t)− v‖L1 ≤

[
u(t)− v, 0− w

]
L1 in D′((0, T )). (10)

The main result associated with these notions is the following (see, e.g., [6]).

Theorem 4.2. Assume that A is accretive and its closure, m-accretive; assume
DomA = L1. Then for all u0 ∈ L1 there exists a unique integral solution to (9);
further, two solutions with different data verify (5). Moreover, the integral solution
is obtained by time-explicit discretization method (the Crandall-Liggett formula).

Now, we apply the result to the operator A defined by its graph:

A := {(û, g) ∈ L1 × L1 | û is an entropy solution of (Sϕ,β) with f = û+ g,

in particular, V ϕν(û(·)) is continuous at x = 0−}. (11)

Proposition 4.3 (properties of the stationary problem (Sϕ,β)).
(i) The operator A is accretive on L1, moreover, its closure is m-accretive on L1.
(ii) The domain DomA is dense in L1.

Proof. The accretivity in (i) follows by rewriting the arguments of the beginning of
this section for stationary solutions with strong traces (to be precise, with those of
V ϕν(u)). In the place of (5) we find the refined contraction property

‖u− û‖L1 ≤
∫

Ω

sign (u− û)(f − f̂) +

∫
Ω

1l[x |u(x)=û(x)]|f − f̂ | (12)

which, together with the definition of A, implies its accretivity in L1.

Further, the m-accretivity of the closure of A is an existence claim for (Sϕ,β)
(with flux λϕ and λ small enough) for some L1-dense set of specific data. E.g., it
is enough to prove that the set C1

c of compactly supported in (−∞, 0] functions of
class C1 is included in the domain Dom(I + λA)−1 of the resolvent of A, for all
λ > 0 small enough. This claim is proved using vanishing viscosity approximation.

First, we solve uε + λϕ(x, uε)x = εuεxx + f subject to the boundary condition
ϕν(uε)+εuεx ∈ β(uε) at x = 0. Existence of a weak (variational) solution uε follows
by adapting classical arguments (β can be regularized, then the problem is reduced
to a coercive nonlinear elliptic problem in H1(−∞, 0) for which a solution can be
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constructed by a Leray-Schauder argument). Following Carrillo [10], we can get the
comparison result analogous to (5), with ε > 0.

Then compactness of the sequence (uε)ε should be obtained, and for this we
need firstly a uniform L∞ estimate on the solution. This estimate follows from the
comparison of uε with constant functions. To see this, observe that k ∈ R+ is a
solution of k + λϕ(x, k)x = k + λϕx(x, k) ≥ 0 = εkxx for λ small enough (here,
assumption (H5) is used). Thus the constant k is a super-solution of the equation
inside (−∞, 0); the delicate point is to ensure that k is a super-solution of our
viscosity regularized boundary-value problem with graph β. This is true for k > A
provided assumption (H2) holds; thus we temporarily assume (H2). In a similar
way, we prove that k < −A is a sub-solution, and by the comparison argument we
find a uniform in ε bound in L∞ on uε in terms of A and the right-hand side f .

Following [7], let us get a uniform BV estimate on (uε)ε. For vε := uεx we have

(1 + λϕxu(x, uε))vε + (λϕu(x, uε)vε − εvεx)x = fx − λϕxx(x, uε). (13)

By (H3) and because f is compactly supported, uε − εuεxx = 0 for x < −1; since
‖uε‖∞ ≤ const, we get |uε(x)| ≤ const e−|x| for all x. Now, the flux of (13) is

F ε := λϕu(·, uε)vε− εvεx; it verifies F ε(0) = λϕx(0, uε(0))−
∫ 0

−∞(f − uε)(y) dy. By

(H4), |F ε(0)| ≤ const is bounded. Further, 1 + λϕxu(·, uε(·)) ≥ 1
2 for small enough

λ, due to (H4). Now we take a Lipschitz approximation of sign vε as a test function;

a uniform estimate of
∫ 0

−∞ |v
ε| = ‖uεx‖L1 follows. Due to the exponential decay of

uε at −∞, we see that (uε)ε admits an accumulation point u ∈ L1.
Now, it remains to write entropy inequalities for uε and pass to the limit. From

the weak formulation, using Lipschitz approximations of sign±(uε−k) as test func-
tions (see, e.g., [10] and [1, Appendix]), for all k ∈ R we get∫

Ω

(
(uε − k)±ξ − q±(x, uε, k) · ∇ξ

)
+

∫
Ω

sign±(uε − k)ϕx(x, k)ξ

≤
∫

Ω

ε|uε − k|xξx − sign±(uε(0)− k)(bε − ϕν(k))ξ(0)
(14)

where bε ∈ β(uε(0)) (the last term is a boundary term). Convergence of uε and
the classical uniform estimate of ‖ε(uεx)2‖L1 permit to pass to the limit in all terms
except for the last one, which we will bound from above. Consider, e.g., k ∈ D+.
In the “sign +” inequality (14), the monotonicity of β and the choice of k yield

− sign +(uε(0)− k)(bε − ϕν(k)) ≤ (b(k)− ϕν(k))− = 0. (15)

Further, we simply impose ξ(0) = 0 in the “sign−” inequality (14) and the boundary
term vanishes. Thus we arrive to the stationary analogue of inequalities (1) with
the adequate choice of ξ. This proves that u is an entropy solution of (Sϕ,β).

It remains to bypass (H2). This is done by working firstly with truncated graphs
βm,n that do satisfy (H2). Convergence of the associated solutions um,n to a limit
u is ensured by monotonicity (see [4, 5]). Then, as in [4], one observes that the

boundary conditions for graphs β̃m,n pass to the limit (e.g., if ϕν is monotone near

±∞, then B̃m,n coincide with B̃ for large enough n,m). To be specific, if k ∈ D±;n,m

(the overshoot or undershoot set defined for graph βm,n) then k ∈ D± for n,m large
enough. Thus entropy inequalities for um,n yield analogous inequalities for u.

As to the claim (ii), it can be proved by showing that as λ → 0, the solution of
u+ λA = f converges to f in L1; see [1] for details corresponding to our case.

With Theorem 4.2 and Prop. 4.3, we get the uniqueness claim of Theorem 2.5:
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Proposition 4.4. An entropy solution of (Eϕ,β) is an integral solution of (9) with
A defined by (11). In particular, there exists at most one entropy solution for given
datum, and we have (5) for entropy solutions u, û with data u0, û0.

5. Existence of solution, justification of the effective boundary condition.
In order to prove existence of an entropy solution, we can restrict our attention to
L1 ∩L∞ data due to assumptions (H3),(H4). Let us give two existence arguments.

Under the genuine nonlinearity assumption (H1) on ϕ(x, ·), one can follow closely
the existence proof of Proposition 4.3(i), substituting the stationary problem by the
evolution problem. Indeed, (H5) (along with (H2)) allows to construct super- and
sub-solutions of (Eϕ,β) under the form û(t, x) = k(t). The uniform L∞ bound along
with assumption (H1) ensures compactness of (uε)ε in L1

loc (see Panov [14]). In this
argument, we do not need Lipschitz regularity of ϕx in (H4).

In general we do not assume (H1); we exploit the existence result for (Sϕ,β)
and the Crandall-Liggett construction of Theorem 4.2. Indeed, in this case the
time compactness comes for gratis; one only has to show that the integral solution
(also known as the mild solution) coming from Crandall-Liggett formula is also an
entropy solution (cf. [6]). This itinerary was taken in the work of K. Sbihi ([15], see
also [3]). In the setting of the present note, the proof is much simpler than in [15, 3]
since the stability of the entropy formulation (1) by L1 convergence is evident.

Thus we achieve the following result and complete the proof of Theorem 2.5:

Proposition 5.1. For all u0 ∈ L1((−∞, 0))∩L∞((−∞, 0)) there exists the integral
solution to (9) which is also the unique entropy solution of (Eϕ,β). For general L∞

datum u0, there exists a unique entropy solution of (Eϕ,β) obtained as the L1
loc(Q)

limit of solutions un with L1 ∩ L∞ data u0,n(·) := u0(·)1l[−n,0](·).

Remark 1. To conclude the note, let us stress that the entropy formulation (1)

and the projected graph B̃ naturally appeared from the vanishing viscosity approxi-
mation of (Eϕ,β) or (Sϕ,β): the main arguments here were (14), (15), and Prop. 2.3.
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Abstract. We solve the Riemann problem for a nonlinear full wave Maxwell
system arising in nonlinear optics. This system is hyperbolic, some eigenvalues

have non-constant multiplicity and are neither genuinely nonlinear, nor linearly

degenerate. In a particular 2×2 reduced case, we are able to exhibit two distinct
selfsimilar entropy solutions. We compute the amounts of entropy dissipation

and compare them.

1. Introduction. In nonlinear optics, the propagation of electromagnetic waves in
a crystal can be modelized by the so-called Kerr model, which consists of Maxwell’s
equations {

∂tD − curlH = 0,
∂tB + curlE = 0,

with divD = divB = 0 and the constitutive relations{
B = µ0H
D = D(E) = ε0(1 + εr|E|2)E.

Here µ0, ε0 are the free space permeability and permittivity and εr is the relative
permittivity, see [12] for further details.

The model is a 6× 6 system of conservation laws in the unknown u = (D,H):{
∂tD − curlH = 0,
∂tH + µ−10 curl(P(D)) = 0

(1)

where P is the reciprocal function of D. Denoting

q(e) = ε0(e+ εre
3), e ∈ R, p = q−1,

we have

E = P(D) =
D

ε0(1 + εrp2(|D|))
.

As proposed in [6] we also introduce the one dimensional model satisfied by solutions
D(x, t) = (0, d(x, t), 0), H(x, t) = (0, 0, h(x, t)) and x = x1 ∈ R. In that framework
the solutions of Kerr model 1 satisfy the following p-system:{

∂td+ ∂xh = 0,
∂th+ µ−10 ∂xp(d) = 0.

(2)
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As p′ > 0 it is strictly hyperbolic but the properties of the function p differ from
the ones which appear in the general framework of gas dynamics or viscoelasticity.
Here:

p(0) = 0, p′ > 0,

and p is strictly convex on ]−∞, 0], strictly concave on [0,+∞[.
Known existence results for system 1 are related to strong solutions, see [10], [7]

and references therein. A first insight into weak solutions, which is also useful in
the aim of designing numerical schemes, is the study of the Riemann problem: a
direction ω ∈ R3, |ω| = 1, and u± ∈ R6 being fixed, one looks for the solution of
system 1 with initial data

u(x, 0) =

∣∣∣∣ u− if x · ω < 0,
u+ if x · ω > 0.

(3)

This work is devoted to the resolution of this problem and to the link between the
solutions for the full model 1 and the ones for the reduced system 2. We point out
the fact that we do not suppose that the initial data are divergence free (ie that
(D+ −D−) · ω = 0 and (H+ −H−) · ω = 0) because in numerical applications, this
condition is not exactly satisfied in general.

The electromagnetic energy is a mathematical entropy [6]. In the reduced 2× 2
case it reduces to the classical entropy of the p-system.

The characteristic fields of system 1 have been described in [3], the following
proposition summarizes the results:

Proposition 1. [3] The Kerr system 1 is hyperbolic diagonalizable: for all ω ∈ R3,
|ω| = 1, the eigenvalues are given by

λ1 ≤ λ2 = −λ < λ3 = λ4 = 0 < λ5 = λ ≤ λ6 = −λ1 (4)

where, denoting c = (ε0µ0)−
1
2 the light velocity:

λ21 =
c2

1 + εr|E|2
, λ2 = c2

1 + εr(|E|2 + 2(E · ω)2)

(1 + εr|E|2)(1 + 3εr|E|2)
. (5)

and the inequalities in 4 are strict if and only if ω ×D 6= 0.
The characteristic fields 1,3,4,6 are linearly degenerate.
The characteristic fields 2 and 5 are genuinely nonlinear in the open set

Ω(ω) = {(D,H) ∈ R6 ; ω ×D 6= 0}.

The system is not strictly hyperbolic and the second and fifth characteristic fields
are neither genuinely nonlinear, nor linearly degenerate. Hence, Lax’ wellknown
result [8] does not apply. Here for |u+ − u−| small enough, we construct a “Lax’
solution” and prove that such a construction is unique.

In the 2×2 case, the system 2 is strictly hyperbolic but similarly to the 6×6 case,
the characteristic fields are genuinely nonlinear only in the domain Ω1 = {(d, h) ∈
R2 ; d 6= 0}. Nevertheless in that case we can construct the solution by using
multiple waves, following Wendroff [13] and Liu [9].

System 2 being a particular case of 1, we find Lax’ solutions of 1 which are also
weak solutions of 2, but they are different from the “Liu’s solutions”. Moreover, we
shall prove that the electromagnetic energy is dissipated by both solutions, so that
there exists (at least) two selfsimilar entropy solutions of the Riemann problem for
system 2.
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A first study of the Riemann problem can be found in [4]: the problem is solved
for a reduced 4× 4 system and it is assumed that D · ω is identically zero. Related
numerical schemes are constructed in 1D and 2D transverse electric configurations.

In [3] we studied Kerr shocks and related shock profiles provided by the Kerr-
Debye model, which is a hyperbolic quasilinear relaxation approximation of Kerr
model. We studied Lax and Liu’s admissibility criteria and proved that only Lax
shocks give rise to Kerr-Debye shock profiles.

In [7], Godunov’s scheme, which requires the solution of the Riemann problem,
was implemented for a a two-dimensionnal transverse electric configuration. Actu-
ally this case reduces to the one of the p-system 2. Liu’s solution was implemented.
The results were found to coincide with the ones obtained by a Kerr-Debye relax-
ation scheme.

The plan of the paper is the following. In section 2 we determine the simple
waves and the wave functions. In section 3 we construct the solution of the Riemann
problem. Section 4 is devoted to the 2× 2 case.

2. Wave functions. If u− 6= u+ are connected by a k-Lax shock or a k-rarefaction
wave or a k-contact discontinuity, u− and u+ are said to be connected by a k-wave.
A plane discontinuity σ, u+, u− is a weak solution u of 1 such that u(x, t) = u− if
x · ω < σt, u(x, t) = u+ else. All the plane discontinuities have been studied in [3].
The centred rarefaction waves are computed in [1]. The results are the following.

Proposition 2. Contact discontinuities. Stationary contact discontinuities are
characterized by

ω × [H] = 0, ω × [E] = 0. (6)

The divergence free ones are constant.
A discontinuity σ, u+, u− is a contact discontinuity associated to λ1 or λ6 if and

only if {
|E+| = |E−|
σ2 = c2(1 + εr|E+|2)−1 = c2(1 + εr|E−|2)−1

and {
ω · [D] = 0
[H] = σω × [D].

Moreover the only discontinuities satisfying Rankine-Hugoniot conditions and such
that |E−| = |E+| are the above contact discontinuities.

The shocks and rarefactions are related to the second and sixth characteristic
fields. We recall that a discontinuity σ, u−, u+ is a Lax’ k-shock if

λk(u+) < σ < λk+1(u+), λk−1(u−) < σ < λk(u−).

Those inequalities are entropy conditions and also ensure that one can construct
the solution of the Riemann problem as a superposition of simple waves. In our
case, defining

f(d, d0) =
c2 d

1 + εrp2
(√

d20 + d2
) , (d, d0) ∈ R2,

we express the shocks by using the function S defined as

S(d1, d2, d0) = ((f(d2, d0)− f(d1, d0))(d2 − d1))
1
2 .
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The rarefaction waves are obtained via the integral curves of the eigenvectors of the
system. ζ being a unitary vector orthogonal to ω, we use the function Rζ defined
by

Rζ(d1, d2, d0) =

∫ d2

d1

λ(d0ω + sζ)ds, d1 ≤ d2 , d0 ∈ R.

Finally let φζ be the function defined for d1 ≥ 0, d2 ≥ 0 and d0 ∈ R by

φζ(d1, d2, d0) =

{
S(d2, d1, d0) if d1 ≥ d2 ,
−Rζ(d1, d2, d0) if d1 < d2 .

Proposition 3. φζ is a decreasing C1 function with respect to d2 and for all d ≥ 0,
d0 ∈ R:

φζ(d, 0, d0) =
cd√

1 + εrp2(
√
d20 + d2)

, lim
d2→+∞

φζ(d, d2, d0) = −∞.

The 2 and 5 waves are characterized as follows, see [1], [3] for the proof:

Proposition 4. If u− 6= u+ are connected by a 2 or a 5 wave, then D− 6= D+ and
D− · ω = D+ · ω. Moreover ω × (ω ×D−) and ω × (ω ×D+) are colinear.

Reciprocally, let us consider u− and u+ such that D− 6= D+ and D−·ω = D+·ω =
d0. If ω ×D+ 6= 0, we set D = D+. Else, ω ×D− 6= 0 and we set D = D−. We
define ζ by

ζ = − ω × (ω ×D)

|ω × (ω ×D)|
.

u− and u+ are connected by a 2-wave if there exist two distinct nonnegative real
numbers d−, d+ such that

D± = d0ω + d±ζ, H+ = H− + φζ(d−, d+, d0)ω × ζ .
u− and u+ are connected by a 5-wave if there exist two distinct nonnegative real
numbers d−, d+ such that

D± = d0ω + d±ζ, H+ = H− + φζ(d+, d−, d0)ω × ζ .

3. Solution of the full wave Riemann problem. Suppose that u± = (D±, H±)
and ω ∈ R3, |ω| = 1, are given. We look for intermediate states u1, u∗, u∗∗, u2 such
that:

• u− and u1 are connected by a 1-contact discontinuity,
• u1 and u∗ are connected by a 2-wave,
• u∗ and u∗∗ are connected by a stationary contact discontinuity,
• u∗∗ and u2 are connected by a 5-wave,
• u2 and u+ are connected by a 6-contact discontinuity.

In the following we shall denote d±0 = D± · ω.
Suppose that a solution exists. For the 1 and 6 contact discontinuities, the

following conditions have to be fulfilled:{
D1 · ω = D− · ω = d−0 , |D1| = |D−|,
D2 · ω = D+ · ω = d+0 , |D2| = |D+|,

(7){
H1 −H− = σ− ω × (D1 −D−),
H+ −H2 = σ+ ω × (D+ −D2).

(8)

where
σ± = ±c (1 + εr|E±|)−

1
2 .
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For the 2 and 5 waves we know that D1, D∗, ω are coplanar and D2, D∗∗, ω are
coplanar. Moreover [D] · ω = 0. There exist unitary vectors ζ1, ζ2, orthogonal to ω
such that

D1 = d−0 ω + d1ζ1, D∗ = d−0 ω + d∗ζ1

and
D2 = d+0 ω + d2ζ2, D∗∗ = d+0 ω + d∗∗ζ2

and d1, d∗, d∗∗, d2 are non negative.
The stationary contact discontinuity is defined by conditions 6. One has

E∗ = e∗0ω + e∗ζ1, E∗∗ = e∗∗0 ω + e∗∗ζ2 ,

where

e∗ =
d∗

ε0(1 + εrp2(|D∗|))
, e∗∗ =

d∗∗
ε0(1 + εrp2(|D∗∗|))

.

Therefore e∗ ω × ζ1 = e∗∗ ω × ζ2. Hence either e∗ = e∗∗ = 0 or those quantities are
both positive and ζ1 = ζ2. The first case occurs if and only if ω×D∗ = ω×D∗∗ = 0.
In the second case we have e∗ = e∗∗, which also reads as

f(d∗, d
−
0 ) = f(d∗∗, d

+
0 ). (9)

First case: ω ×D∗ = ω ×D∗∗ = 0. In that case, D∗ = d−0 ω, D∗∗ = d+0 ω. u1 and
u∗ are the left and right states of a 2-shock propagating with speed

σ2 = −

√
f(d1, d

−
0 )− f(0, d−0 )

d1
= σ− .

In the same way, u∗∗ and u2 are the left and right states of a 5-shock propagating
with speed σ+. Consequently the contact discontinuities merge with the shocks.
Let us denote

V = ω × (H+ −H− − ω × (σ+D+ − σ−D−)) . (10)

Conditions 6, 8 and Rankine-Hugoniot conditions on the shocks imply that V = 0
and

H∗ = H− − ω × σ−D− , H∗∗ = H+ − ω × σ−D+ . (11)

If D− × ω = 0 then u− = u∗. Else u− and u∗ are connected by a 2-Lax shock.
In the same way, if D+ × ω = 0 then u+ = u∗∗, else u+ and u∗∗ are connected

by a 5-Lax shock.

Second case: D∗ × ω 6= 0 and D∗∗ × ω 6= 0. In this case, ζ1 = ζ2 = ζ and

D1 = d−0 ω + d1ζ, D2 = d+0 ω + d2ζ, (12)

D∗ = d−0 ω + d∗ζ, D∗∗ = d+0 ω + d∗∗ζ, (13)

with d1 ≥ 0, d∗ > 0, d∗∗ > 0, d2 ≥ 0. Let us denote

d = D · ζ, h = H · (ω × ζ).

By 7-8:  d1 = |ω × (ω ×D−)|, d2 = |ω × (ω ×D+)|,

h1 = h− + σ−(d1 − d−) h2 = h+ + σ+(d2 − d+).
(14)

As u∗, u∗∗ ∈ Ω(ω), one can define the 2 and 5-wave curves:

H∗ −H1 = φζ(d1, d∗, d
−
0 )ω × ζ , H2 −H∗∗ = φζ(d2, d∗∗, d

+
0 )ω × ζ . (15)
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By 6, h∗ = h∗∗ and

h∗ = h1 + φζ(d1, d∗, d
−
0 ) = h2 − φζ(d2, d∗∗, d+0 ).

Therefore, using 9, we see that d∗ and d∗∗ are solution of the two by two system f(d∗, d
−
0 ) = f(d∗∗, d

+
0 ) ,

h1 + φζ(d1, d∗, d
−
0 ) = h2 − φζ(d2, d∗∗, d+0 ).

(16)

As φζ is decreasing and d∗, d∗∗ are positive:

φζ(d1, d∗, d0) + φζ(d2, d∗∗, d0) < φζ(d1, 0, d
−
0 ) + φζ(d2, 0, d

+
0 ) = σ+d2 − σ−d1.

This inequality is useful to determine ζ. As a matter of fact, using 8, we have also{
H∗ = H− + σ−ω × (D1 −D−) + φζ(d1, d∗, d

−
0 )ω × ζ,

H∗∗ = H+ − σ+ω × (D+ −D2)− φζ(d2, d∗∗, d+0 )ω × ζ .

Again by 6:

V =
(
σ+d2 − σ−d1 − φζ(d1, d∗, d−0 )− φζ(d2, d∗∗, d+0 )

)
ζ.

Therefore V 6= 0 and

ζ =
V

|V |
. (17)

Those results can be summarized as follows.

Proposition 5. Consider u−, u+ such that the Riemann problem for system 1 has
a solution which is a superposition of simple waves. Let V be the vector defined in
10. Only the following two cases occur:

1) V = 0, u− and u∗ are connected by a 2-Lax shock propagating with velocity
σ−, u+ and u∗∗ are connected by a 5-Lax shock propagating with velocity σ+, D∗ =
(D− · ω)ω, D∗∗ = (D+ · ω)ω, H∗ and H∗∗ are given by 11.

2) V 6= 0, ζ is defined by 17, u1 and u2 are determined by conditions 12, 14 and
u∗, u∗∗ are determined by 13, 15 and the solution of system 16.

Sufficient conditions are as follows.

Theorem 3.1. Let u−, u+ be a Riemann data for system 1 in the direction ω.
There exists η > 0 such that if |(D− −D+) · ω| < η then the Riemann problem has
a unique solution in the class of the functions which are superpositions of simple
waves. Let V be the vector defined in 10.

If V = 0, then the solution is the superposition of a 2-Lax’ shock, a stationary
contact discontinuity and a 5-Lax’ shock.

If V 6= 0, then the solution is the superposition of a 1-contact discontinuity, a 2-
wave (Lax’ shock or rarefaction), a stationary contact discontinuity, a 5-wave (Lax’
shock or rarefaction) and a 6-contact discontinuity.

Moreover we can construct the solution in every case.

To prove this theorem, we remark that if d+0 = d−0 , then system 16 can be solved.
For the general case we use the implicit function theorem. We refer to [1] for the
detailed proof.
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4. Non-uniqueness of selfsimilar entropy solutions. Here we consider the
Riemann problem 1-3 with ω = (1, 0, 0)T , D± = (0, D2,±, 0), H± = (0, 0, H3,±). As
(D+ −D−) · ω = (H+ −H−) · ω = 0, the stationary contact discontinuity is trivial.
We have V = (0, v, 0) and if v 6= 0 then ζ = (0, sgn(v), 0). Hence Lax’ solution is
of the form (0, D2, 0), (0, 0, H3) and (D2, H3) is a weak solution of the Riemann
problem for the p-system 2.

Reciprocally, weak solutions (d, h) of 2 give solutions (0, d, 0), (0, 0, h) of 1. Fol-
lowing [9] (see also [13]) one can compute a weak solution of the Riemann problem
for the p-system by using multiple waves. In that case the shocks satisfy Liu’s
(E) condition, which generalize Lax’ conditions when p has inflexion points. This
solution differs from the first one.

As an example, we computed both solutions in a particular case. The results
for a fixed time t are depicted in Figure 1. The Lax’ solution of 1-3 consists of a
1-contact discontinuity, a 2-shock, a 5-shock and a 6-contact discontinuity. Liu’s
solution consists of a shock propagating to the left and a shock propagating to the
right. Observe that in that case the sign of d can change through the shock, while
Lax’ shock condition applied to 1 imply that the sign of d = D2 is constant.

To be more precise, we denote −µ1 = µ2 =
√
µ−10 p′(d) the eigenvalues of 2. Let

(d−, h−) a fixed left state. The set of right states (d+, h+) connected to (d−, h−) by
a Liu’s one-shock is parametrized by d ∈ [d−, d∗(d−)] if d− < 0, by d ∈ [d∗(d−), d−]
if d− > 0, where d∗ is defined by

d∗(d) = q(−1

2
p(d)).

Symmetrically, the set of left states (d−, h−) connected to a given right state
(d+, h+) by a Liu’s two-shock is parametrized by d ∈ [d+, d∗(d+)] if d+ < 0, and by
d ∈ [d∗(d+), d+] if d+ > 0.
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Figure 1. Two solutions of the p-system for the same initial data.
Left: d, right: h.

At this point, we have two distinct solutions of the Riemann problem for 2, or
equivalently for 1. Moreover, we can prove that both dissipate the physical entropy,
namely the electromagnetic energy. For those solutions, this entropy is just the
wellknown entropy of the p-system:

η(d, h) = E(d) +
1

2
µ0h

2, E(d) =
1

2
ε0(e2 +

3εr
2
e4), e = p(d)



276 DENISE AREGBA-DRIOLLET

with entropy flux Q(d, h) = eh. Contact discontinuities and rarefactions conserve
the entropy. For the shocks a straightforward calculation leads to the following, see
[1] for details.

Proposition 6. Entropy dissipation for the 2× 2 system

• Lax’ and Liu’s shocks satisfy the entropy dissipation property:

[Q(d, h)]− σ[η(d, h)] = −ε0εr
4
σ[e]2 [e2] ≤ 0.

• Let (d−, h−) be a fixed left state for a Liu’s 1-shock. The entropy dissipation
rate is a decreasing function of |d+ − d−| over the interval [0, |d∗(d−)− d−|].

• Let (d+, h+) be a fixed right state for a Liu’s 2-shock. The entropy dissipation
rate is a decreasing function of |d+ − d−| over the interval [0, |d∗(d+)− d+|].

We have solved the Riemann problem for the full wave Kerr system and we have
proved the non-uniqueness of selfsimilar entropy solutions. Which is the physical
solution? Liu’s solution is more dissipative than the other one. 1D and 2D nu-
merical experiments with a physically relevant relaxation model, the Kerr-Debye
system, lead to Liu’s solutions see [2], [7], but this is possibly due to numerical
viscosity: it is wellknown that contact discontinuities are not easy to catch nu-
merically. On another hand the full wave model should be the more realistic one.
Further investigations are in progress.
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Abstract. The volume penalty method belongs to the immersed boundary

methods, which is used for the numerical simulation of boundaries in PDE

problems. This paper focuses on the mathematical aspect of penalization for
quasilinear hyperbolic problems with non characteristic boundary. A penalty

method which does not generate any boundary layer is proposed, with an

application to edge plasma transport for a tokamak.

1. Introduction. The solution of partial differential equation using approximate
numerical scheme is now a very common game for scientists, useful for a wide
range of areas such as fluid mechanics. One issue is the treatment of the boundary
conditions. The usual way to deal with the boundary conditions is to use a body-
fitted mesh. The volume penalization methods give another approach: the physical
domain, also called the original domain, is included in a larger domain with a simple
shape. The system of equations is then extended to the fictitious domain so that, at
the boundary of the original domain, the conditions are approximately recovered.

The main advantages of penalty methods is the possibility to use non body-fitted
meshes and efficient solvers such as pseudo spectral methods [8]. One problem is the
error added by the penalization and, in some case, the generation of a boundary layer
next to the interface [4, 5]. In previous works [1, 2], a numerical comparison between
two numerical methods has been provided. This paper proposes a more theoretical
study of the penalization for more general quasilinear hyperbolic problems.

This is the first theoretical result about the penalization of a general quasilin-
ear hyperbolic problem with non characteristic and maximally strictly dissipative
boundary conditions. The second section gives an example of application of this
penalization, whereas the third one contains the theoretical result. The last section
proposes an idea of extension in the case of an obstacle with two opposites sides in
contact with the original domain.

2. An example from plasma fusion. This section shows quickly how a penalty
method can be applied for the numerical simulation of the edge plasma transport in
a tokamak, for more details see [2]. A tokamak is an apparatus to study plasma and
the fusion reaction. The goal is to perform the nuclear fusion reaction by magnetic
confinement. For this civil application, the fusion by magnetic confinement is the
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Key words and phrases. Nonlinear, hyperbolic system, boundary value problem, penalization

method, plasma transport.
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Figure 1. Representation of the computational domain.

most advanced technology, compared to inertial fusion. The wall of the tokamak
can have a complicated shape, with obstacles such as the limiter.

The plasma next to the wall, is called edge plasma, can be modeled by the
fluid approximation. Due to the strong magnetic field, the plasma transport occurs
essentially along the magnetic field lines (here, the curvilinear coordinate x). The
area next to the wall of the tokamak where the magnetic field lines are interrupted by
the limiter is called the scrape-off layer: this is the main interest of this section. The
boundary condition are given by the Bohm criterion. The toy model considered is
composed of two equations: the mass conservation and the momentum conservation.
N stands for the plasma density, Γ the plasma momentum and M = Γ/N the Mach
number and all the quantities are dimensionless. The system writes (M0 = 1 − η,
with η << 1): 

∂tN + ∂xΓ = SN

∂tΓ + ∂x

(
Γ2

N
+N

)
= SΓ(

M0 −1
)( N(t, 0)

Γ(t, 0)

)
= 0

Notice that the system is very similar to shallow water equations. The penalization
appears naturally with the new unknowns expressed below, because the Dirichlet
boundary condition becomes homogeneous:

ũ(t,x) = ln (N(t,x))

ṽ(t,x) =
Γ(t,x)

N(t,x)
−M0

Hence, only ṽ is affected by the boundary condition.
Finally, the penalization obtained thanks to the results presented in the section

3 is: 
∂tN + ∂xΓ = SN

∂tΓ + ∂x

(
Γ2

N
+N

)
+ χ

ε

(
Γ

M0
−N

)
= SΓ

Where χ is the characteristic function of the limiter, i.e. χ = 1 in the limiter and
χ = 0 elsewhere. According to the Figure 2, the main advantage of this method is
the absence of spurious boundary layer: the error due to the penalization decreases
with an optimal rate when the penalization parameter ε tends to 0. The main
drawback is due to the fact that only the incoming fields of the hyperbolic system
are penalized. So, at the boundary of the computational domain, it is necessary to
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Figure 2. Errors for N and ∂xN in L1 and L2 norms with the
boundary layer free penalization. The dashed lines represent the
curves ε1/4, ε1/2 and ε. The computations were made using a VF
Roe scheme with non conservative variables with extensions up
to the second order (see [6]). The mesh step is δx = 10−5 and
the computational domain is described in the Figure 1. For more
details, see [1, 2].

provide transparent boundary condition, which is not easy. Besides, non compatible
initial boundary condition may generates artifact, see for instance, the L2 error of
the Figure 2 and the numerical results of [2]. The manufactured solution used for
this example was (with M0 = 0.9):

N(t, x) = exp

(
−x2

0.16(t+ 1)

)
Γ(t, x) = M0 sin

(πx
0.8

)
exp

(
−x2

0.16(t+ 1)

)
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Figure 3. The space domain for the problem of the section 3

3. The penalty method for a quasilinear non characteristic hyperbolic
problem. This section provides a penalty method for general quasilinear non char-
acteristic hyperbolic problem in a d-dimensional space. The issues of singularities
and of the compatibility of the initial condition are not the point of this paper: so,
the solution u of the problem considered is supposed to be null in the past and local
in time. Let us now write the hyperbolic boundary value problem that is studied
in this section:

∂tu(t,x) +
∑d
j=1 Āj(a(t,x),u(t,x))∂ju(t,x) = f̄(a(t,x),u(t,x))

(t,x) ∈]− T0, T [×Rd+
Θ(a(t,x′, 0),u(t,x′, 0)) = 0 (t,x′) ∈]− T0, T [×Rd−1

u|t<0 = 0

(1)

In this paper, x = (x1, . . . , xd) = (x′, xd) stands for the space variable. The space
domain is represented in the Figure 3.

To ensure the well posedness of the hyperbolic problem, the coefficients of (1)
satisfies the following hypotheses:

1. a :]− T0, T [×Rd → RN ′
is in H∞(]− T0, T [×Rd).

2. f̄ : RN ′ × RN → RN is indefinitely differentiable and, for all t < 0,x ∈
Rd, f̄(a(t,x),0) = 0.

3. Θ : RN ′ × RN → Rp is indefinitely differentiable and for all (y,U) ∈ RN ′ ×
RN ,∇uΘ (y,U) has a constant rank p.

4. For all j ∈ {1, . . . , d}, Āj : RN ′ ×RN →MN (R) is indefinitely differentiable.

5. There exists a symmetrizer S(y,U) such that, for all (y,U) ∈ RN ′ × RN :
• S(y,U) symmetric and positive definite, uniformly in (y,U) when U is

in a neighborhood U ⊂ RN of 0 and y in a neighborhood Z ⊂ RN ′
of

0. This means that there exists ē > 0 such that, for all (y,U) ∈ Z × U ,
and for all W ∈ RN , 〈S(y,U)W,W〉 ≥ ē‖W‖2, where 〈, 〉 and ‖.‖ are
respectively the euclidean scalar product and norm on RN .
• For all j ∈ {1, . . . , d}, S(y,U)Āj(y,U) is symmetric.

The problem is supposed to be non characteristic, i.e. for all (y,U) ∈ Z × U
such that Θ(y,U) = 0, the matrix Ād(y,U) is invertible. The boundary conditions
are maximally strictly dissipative: For all y ∈ Z, if there exists U ∈ RN such that
Θ(y,U) = 0, the quadratic form have the following properties:

• ∃µ̄ > 0,∀y ∈ RN ′
,∀W ∈ ker∇uΘ(y,0), 〈S(y,U)Ād(y,U)W,W〉 ≤

−µ̄‖W‖2.
• Besides dim ker∇uΘ(y,0) is maximal for the property above.

One can assert there exists a finite time θ > 0 such that the original problem (cf.
equation (1)) admits a solution u in H∞(]− T0, θ[×Rd). For a proof, see [7, 9].
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To provide the penalty method, it is simpler to reformulate the problem in order
to have an homogeneous Dirichlet boundary condition for the p first unknowns of
the problem, and avoid the issue of the nonlinear boundary condition Θ(a,u) = 0.
The following lemma shows that such a suitable change of unknown exists.

Lemma 3.1. There exists Q ⊂ U ,V, two neighborhoods of 0 ∈ RN and Y ⊂ Z a
neighborhood of 0 ∈ RN ′

satisfying: there exists H ∈ C∞ (Y × V,Q) such that, for
all y ∈ Y, H(,y, .) is a C∞-diffeomorphism from V to Q and such that

∀U ∈ Q,∀y ∈ Y,Θ(y,U) = 0⇐⇒ V1 = V2 = · · · = Vp = 0

Where V ∈ RN is such that U = H(y,V) and (V1, . . . , VN ) = V.

Henceforth, the function a is assumed to be valued in the neighborhood Y, i.e.,
∀(t,x) ∈]− T0, T [×Rd,a(t,x) ∈ Y.

In order to simplify the notations, the dependence of the functions and matrices
on (t,x) and a(t,x) is now implicit. So, for instance, ∂j

(
Āj(u)

)
represents

∇aĀj(a(t,x),u(t,x)) · ∂ja(t,x) +∇uĀj(a(t,x),u(t,x)) · ∂ju(t,x).

The matrix P is defined as the projection on the linear subspace Rp × {0}N−p.
With the unknown v, the boundary condition becomes Pv = 0. For the new
unknown v, the system writes (the parameter function a is understood):∇vH(v) ∂tv+

d∑
j=1

Āj (H(v))∇vH(v)∂jv= f̄ (H(v)) in ]− T0, T [×Rd+

Pv|xd=0 = 0 in ]− T0, T [×Rd−1

(2)

The system is then multiplied on the left by ∇vH(v)>S (H(v)): A0(v) ∂tv +
∑d
j=1 Aj(v)∂jv = f(v) in ]− T0, T [×Rd+

Pv|xd=0 = 0 in ]− T0, T [×Rd−1

v|t<0 = 0 in ]− T0, 0[×Rd+
(3)

In this new formulation, the functions Aj and f are:

A0(v) = ∇vH(v)>S (H(v))∇vH(v)

Aj(v) = ∇vH(v)>S (H(v)) Āj(v)∇vH(v)

f(v) = ∇vH(v)>S (H(v))

f̄ (H(v))−∇aH(v) · ∂ta−
d∑
j=1

Āj(v)∇aH(v) · ∂ja


According to the properties on S (H(v)) and ∇vH(v), we can assert that A0(y,

V), is uniformly positive definite regarding (y,V), where y ∈ Y and V such that
H(y,V) ∈ Q. Hence, there exists e > 0 (independent from V) such that, for all
y ∈ Y and for all W ∈ RN , 〈A0(y,V)W,W〉 ≥ e‖W‖2.

Let us remind that the assumption of the maximally strictly dissipative boundary
condition is invariant by the change of unknown. Besides, for the reformulated
problem (3), the property of maximally strictly dissipative boundary conditions
means: For all V ∈ RN such that PV = 0, the quadratic form have the following
properties:

• ∃µ > 0,∀W ∈ ker P,∀y ∈ Y, 〈Ad(y,V)W,W〉 ≤ −µ‖W‖2
• N − p is the number of strictly negative eigenvalues of Ad(y,V) with multi-

plicity. Thus, with multiplicity, there are p strictly positive eigenvalues.
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Let us now introduce the following penalized system, which is the main concern
of the paper{

A0(vε) ∂tvε +
∑d
j=1 Aj(vε)∂jvε +

χ

ε
Pvε = f(vε) in ]− T0, T [×Rd

vε |t<0 = 0 in ]− T0, 0[×Rd
(4)

where χ = 0 in ]− T0, T [×Rd+ and χ = 1 elsewhere.
Notice that the boundary condition of the reformulated problem (3) is Pv|xd=0 =

0 and the penalization term added in the penalized system (4) simply writes
χ

ε
Pvε.

So, when ε tends to 0, from the formal point of view, one recovers the boundary
condition Pvε|xd=0 ≈ 0. The main result of this paper is the theorem 3 (see below)
which ensures that the penalized system (4) is well-posed and provides an estimation
of the error due to the penalization.

Main Theorem. Under the assumptions on the coefficients explained above, one
can assert that there exists a finite time T ≤ θ and ε0 > 0 such that, for all ε ∈]0, ε0],
the penalized problem (4) has a unique solution vε ∈ H1(]−T0, T [×Rd)∩W 1,∞(]−
T0, T [×Rd).

Besides, vε is smooth on each side of the interface xd = 0, i.e., vε|xd>0 ∈ H∞(]−
T0, T [×Rd+) and vε|xd<0 ∈ H∞(]− T0, T [×Rd−).

Moreover, for all s ∈ N, the following estimate holds as ε goes to 0:

‖v − vε‖Hs(]−T0,T [×Rd+) = O(ε)

This theorem gives a simple and incomplete penalization for the reformulated
problem. One could give a formulation for the original problem (1) but this is not
very convenient to use: it is easier to change the unknown so that the penalization
matrix P appears naturally, and then return to the original independent variables.

The optimal convergence rate of the penalization error estimate
‖v − vε‖Hs(]−T0,T [×Rd+) is an evidence of the absence of the absence of boundary

layer. This the first theoretical result about a boundary-layer-free penalty method
for general quasilinear hyperbolic value problem.

3.1. Sketch of the proof of the main theorem. The complete proof of the
main theorem is written in [3]. In the proof, Ω+

T stands for the original domain
(]− T0, T [×Rd+) and ΩT represents ]− T0, T [×Rd.

First, one provides an asymptotic expansion of the solution of the penalized

problem (4) va|xd>0(t,x) =
∑M
n=0 ε

nVn,+(t,x) and va|xd<0 =
∑M
n=0 ε

nVn,−(t,x),
where M is a sufficiently large integer. The absence of fast variables of the form
xd/εα in the terms Vn,± is a first evidence of the absence of boundary layer. Notice
that V0,+ is the exact solution of the reformulated hyperbolic problem (3), i.e.
without penalization. Another important point for the asymptotic expansion is the
definition of the time T of the existence of the solution. Besides, T appears to be
less or equal to θ which is the time of the existence of solution of the non penalized
problem (3).

In order to obtain the exact solution, vε, of (4), the following form is considered:

vε = va + εw



PENALIZATION FOR EDGE PLASMA TRANSPORT 283

The goal is now to build w, which is the solution of:A0(va+εw)∂tw+
∑d
j=1 Aj(va+εw)∂jw−B(εw)w+ 1

εχPw=−εM−1Rε

(t,x) ∈ ΩT
w|t<0 = 0

(5)

Where Rε is a corrective term for the equation satisfied by va and B(εw)w satisfies:

(A0(va+εw)−A0(va))∂tva+
d∑
j=1

(Aj(va+εw)−Aj(va))∂jva=−εB(va,∇va, εw)w

To simplify the notations in the equations, B(εw) stands for B(va,∇va, εw).
To prove its existence, w is approximated by the sequence (wk)k∈N generated by

a Picard’s iterative scheme:

w0 = 0
A0(va + εwk)∂tw

k+1 +
∑d
j=1 Aj(va + εwk)∂jw

k+1 −B(εwk)wk+1

+
χ

ε
Pwk+1 = −εM−1Rε in ΩT

wk+1
|t<0 = 0

This sequence is expected to converge toward w in L2(ΩT ) and then in H∞(Ω+
T ),

in H∞(Ω−T ) and in H1(ΩT ).
For any λ sufficiently large, it is possible to prove this energy estimate:

‖wk+1exp(−λt)‖L2(ΩT)+
1√
ε
‖χPwk+1exp(−λt)‖L2(ΩT)≤

C(R)√
λ
εM‖Rεexp(−λt)‖L2(ΩT)

Where R > 0 is such that ‖wk‖∞ + ‖∇wk‖∞ ≤ R and C(R) is a constant which
does not depends on wk+1,wk, λ, ε.

The next step is the extension of this estimate to the tangential derivatives of
wk+1, which enables one to show that, for a sufficiently large fixed value of λ,
wk+1 and ∇wk+1 are bounded independently from wk. Then, the sequence (wk)
converges for the L2 norm, toward w, the solution of (5). Finally, the solution
vε = va + εw of the penalized hyperbolic problem (4) is obtained. The error

estimate comes from the equality: vε|xd>0 − v =
∑M
n=1 ε

nVn,+ + εw.

4. Idea for the extension to a two sides obstacle. In some cases, the obstacle
has two opposites sides in contact with the original domain. Applying carelessly
the penalization presented above can create interferences and singularities inside
the limiter: to avoid such an issue, one can multiply the flux term by a smooth
function xd 7→ α(xd) which is null in an area at the center of the obstacle and equal
to 1 in the original domain and in a neighborhood of the interface. The Figure 4
gives a possible obstacle and the shape of the function α.

As α is regular, the well posedness of the system is still guaranteed.

5. Conclusion. A general recipe for the penalization of a nonlinear hyperbolic
problem is proposed with numerical tests for a one dimensional problem. This
penalty method has two advantages:

• After the change of unknown, it is a natural penalization for the reformulated
problem (3).
• The error due to the penalization, ‖v − vε|xd>0‖Hs , has an optimal rate of

convergence, i.e. O(ε).
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Abstract. Polymeric fluids arise in many practical applications in biotechnol-

ogy, medicine, chemistry, industrial processes and atmospheric sciences. In this
article, we investigate the Doi model for the suspensions of rod-like molecules in

a compressible fluid. This model describes the interaction between the orienta-
tion of rod-like polymer molecules on the microscopic scale and the macroscopic

properties of the fluid in which these molecules are contained. Prescribing ar-

bitrarily initial data in suitable spaces we establish the global-in-time existence
of a weak solution to our model. The proof relies on the construction of an

approximate sequence of solutions and the establishment of compactness.

1. Introduction. The evolution of rod-like molecules in both compressible and
incompressible fluids is of great scientific interest with a variety of applications in
science and engineering. The present article deals with the Doi model for the sus-
pension of rod-like molecules in a dilute regime. This model describes the interac-
tion between the orientation of rod-like polymer molecules on the microscopic scale
and the macroscopic properties of the fluid in which these molecules are contained.
More precisely, the macroscopic flow leads to a change of the orientation and, in
the case of flexible particles, to a change in shape of the suspended microstructure;
this process in turn yields the production of a fluid stress.

We now derive the system of equations. A smooth motion of a body in continuum
mechanics is described by a family of one-to-one mappings X(t, ·) : Ω→ Ω, t ∈ I.
The curve X(t, x) represents the trajectory of a particle occupying a position x ∈ Ω
at time t and this curve is determined by a velocity field u : I × Ω→ R3 through

∂

∂t
X(t, x) = u (t,X(t, x)) , X(0, a) = a.

Then, the conservation of mass can be formulated as follows:

d

dt

∫
X(t,B)

ρ(t, x)dx = 0, B ⊂ Ω,
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where ρ is represents the fluid density. This equation is equivalent to

d

dt

∫
B

ρ(t, x)dx+

∫
∂B

ρ(t, x) [u(t, x) · n̂] dS = 0,

where n̂ is the unit outer normal vector on ∂Ω. If ρ is smooth, one can use Green’s
theorem to deduce the following continuity equation:

ρt +∇ · (uρ) = 0. (1)

We next obtain the equation of motion by applying Newton’s second law of motion:

d

dt

∫
X(t,B)

(ρu)(t, x)dx =

∫
X(t,B)

ρ(t, x)F (t, x)dx+

∫
∂X(t,B)

t (t, x, n̂) dS,

where F is an external force and a vector t is a traction. (From now, we take F = 0
for the simplicity of the argument.) This equation is equivalent to

d

dt

∫
B

(ρu)(t, x)dx+

∫
∂B

(ρu)(t, x) [u(t, x) · n̂] dS =

∫
∂B

t(t, x, n̂)dS. (2)

By the fundamental laws of Cauchy in the continuum mechanics, t can be expressed
by a a symmetric stress tensor T(t, x); t(t, x, n̂) = T(t, x)n̂. Therefore, (2) becomes

d

dt

∫
B

(ρu)(t, x)dx+

∫
∂B

(ρu)(t, x) [u(t, x) · n̂] dS =

∫
∂B

T(t, x)n̂dS. (3)

By applying Green’s lemma to (3), we have

(ρu)t +∇ · (ρu⊗ u) = ∇ · T, where (∇ · T)i =
3∑
j=1

∂Tij
∂xj

. (4)

The stress tensor T of a general fluid obeys Stokes’ law: T = S− pI3×3, where p is
the pressure and S is the stress tensor. Therefore,

(ρu)t +∇ · (ρu⊗ u) +∇p = ∇ · S. (5)

We now define S and p to our model. We assume that p only depends on ρ;

p = aργ , γ > 3/2. (6)

The stress tensor S consists of two parts: S = S1 +S2, where S1 is the viscous stress
tensor generated by the fluid

S1 = µ
(
∇u+ (∇u)t

)
+ λ(∇ · u)I3×3, (7)

and S2 is the macroscopic symmetric stress tensor derived from the orientation of
the rods at the molecular level. We assume that the stress tensor S2 is given by an
expansion

S2(x, t) = σ(x, t) + σ(1)(x, t) + σ(2)(x, t), where

σ(t, x) =

∫
S2

(3τ ⊗ τ − I3×3)f(t, x, τ)dτ,

σ(1)(t, x) = −
[∫

S2

γ
(1)
ij (τ)f(t, x, τ)dτ

]
I3×3,

σ(2)(t, x) = −
[∫

S2

∫
S2

γ
(2)
ij (τ1, τ2)f(t, x, τ1)f(t, x, τ2)dτ1dτ2

]
I3×3.

This, and more general expansions for S2 are encountered in the polymer literature
(cf. Doi and Edwards [9]). We also refer the reader to the articles by Constantin
et al [6], [7], where a general class of stress tensors is presented in the context of
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incompressible fluids. The structure coefficients in the expansion γ
(1)
ij , γ

(2)
ij are in

general smooth and (t, x, f) independent. Assuming for simplicity that γ
(1)
ij (τ) =

γ
(2)
ij (τ1, τ2) = 1 and denoting η(t, x) =

∫
S2

f(t, x, τ)dτ , S2 takes the form

S2(x, t) = σ(x, t)− ηI3×3 − η2I3×3. (8)

By substituting (6), (7) and (8) to (5), the equation of motion becomes

(ρu)t +∇ · (ρu⊗ u)− µ∆u− λ∇(∇ · u) + a∇ργ +∇η2 = ∇ · σ −∇η. (9)

We note that η and σ depend on the distribution f , which is described by a com-
pressible Fokker-Plank equation,

ft +∇ · (uf) +∇τ ·
(
Pτ⊥(∇uτ)f

)
−Dτ∆τf −D∆f = 0, (10)

where Pτ⊥(∇xuτ) = ∇xuτ − (τ · ∇xuτ)τ is the projection of ∇uτ on the tangent
space of S2 at τ ∈ S2. With ∇τ and ∆τ we denote the gradient and the Laplace
operator on the unit sphere, while∇ and ∆ represent the gradient and the Laplacian
operator in R3. The second term∇·(uf) in (10) describes the change of f due to the
displacement of the center of mass of the rods due to macroscopic advection, while
the term ∇τ ·

(
Pτ⊥(∇uτ)f

)
is a drift-term on the sphere representing the shear-

forces acting on the rods. The term Dτ∆τf and D∆f represent the rotational and
translation diffusion due to Brownian motion and these effect causes the rods to
change their orientation spontaneously. To obtain a closed system of equations, we
finally need the equation of η; by integrating (10) over S2, we have

ηt +∇ · (uη)−D∆η = 0. (11)

In sum, after normalizing all the constants by 1, we have the following system of
equations:

ρt +∇ · (ρu) = 0, (12a)

(ρu)t +∇ · (ρu⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σ −∇η, (12b)

ft +∇ · (uf) +∇τ · (Pτ⊥(∇xuτ)f)−∆τf −∆xf = 0, (12c)

ηt +∇ · (uη)−∆η = 0, (12d)

σ(t, x) =

∫
S2

(3τ ⊗ τ − I3×3)f(t, x, τ)dτ. (12e)

In this paper, we deal with the above system on a bounded domain Ω ⊂ R3
x. Since

viscous fluids are believed to adhere completely to a rigid boundary, we impose
Dirichlet boundary conditions to u, f , and η:

u = 0, f = 0, and η = 0 on ∂Ω.

Related results on the Doi model for the suspension of rod-like molecules in
incompressible fluids have been studied by many authors. We refer the reader
to Constantin [6, 7, 8], Lions and Masmoudi [15, 16], Masmoudi [17] and Otto
and Tzavaras [20] for results on related models on the whole space. In [1], the
authors treat the Doi model for an incompressible fluid within a bounded domain
and establish results on the global existence of solutions. For compressible models,
related results have been presented in a series of articles. We refer the reader to
Carrillo et al [3, 4, 5], Goudon et al [12, 13], and Mellet and Vasseur [18, 19], where
asymptotic, analytical and numerical results on related fluid-particle interaction
models are discussed. What distinguishes the model presented in this article, besides
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the general type of the stress tensor under consideration, is the fact that, unlike other
models, the Fokker-Planck-type equation considered here takes into consideration
the presence of the shear forces acting on the rods as well as the Brownian effects.
This new element yields a new equation for the entropy induced by the probability
density function f at the microscopic level.

Since the definition of a weak solution and the main result are rather complicated,
they are stated in Section 2, and we provide the outline of the proof in Section 3.

2. Definition of weak solution and main result. The notion of weak solution
follows from the energy identity; we multiply (12b) by u and integrate over Ω;

d

dt

∫
Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2

]
dx+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx

= −
∫

Ω

∇u : σdx+

∫
Ω

(∇ · u)ηdx.

(13)

To obtain the energy identity, we need to remove the right-hand side of (13). To
this end, we introduce an entropy ψ at the microscopic level; ψ(t, x) =∫
S2

(f ln f)(t, x, τ)dτ . Then, ψ satisfies

ψt +∇ · (uψ)−∆ψ + 4

∫
S2

|∇τ
√
f |2dτ + 4

∫
S2

|∇
√
f |2dτ

=∇u : σ − (∇ · u)η. (14)

Integrating (14) over Ω, we obtain

d

dt

∫
Ω

ψdx+ 4

∫
Ω

∫
S2

(
|∇τ

√
f |2 + |∇

√
f |2
)
dτdx =

∫
Ω

(∇u : σ − (∇ · u)η) dx. (15)

By adding (15) to (13), we have

d

dt

∫
Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
dx+ 4

∫
Ω

∫
S2

|∇τ
√
f |2dτdx

+ 4

∫
Ω

∫
S2

|∇
√
f |2dτdx+

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dx = 0.

(16)

We now define a weak solution of the system (12) based on (16). Let γ > 3
2 and

Ω be a C1 bounded domain. Assume that initial data {ρ0, u0, f0, η0} satisfy

ρ0 ∈ L1 ∩ Lγ(Ω), ρ0u0 = m0 ∈ L
2γ
γ+1 (Ω), f0 ∈ L1(Ω× S2), η0 ∈ L2(Ω),

m2
0

ρ0
∈ L1(Ω) for ρ0 6= 0,

m2
0

ρ0
= 0 for ρ0 = 0.

(17)

Definition 2.1. We say the set {ρ, u, f, η, σ} is a weak solution of (12) if

(i) ρ, u, f, η, σ satisfy

ρ ∈ L∞(0, T ;Lγ(Ω)), ∇u ∈ L2(0;T ;L2(Ω)),

ρ|u|2 ∈ L∞(0, T ;L1(Ω)), ρu ∈ Cw([0, T ];L
2γ
γ+1 (Ω)),

η ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω)), f ln f ∈ L∞(0, T ;L1(Ω× S2))

∇τ
√
f ∈ L2(Ω× S2 × (0, T )), ∇

√
f ∈ L2(Ω× S2 × (0, T )),
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(ii) (12a) holds in the sense of renormalized solutions, i.e.,

b(ρ)t +∇ · (b(ρ)u) +
(
b
′
(ρ)ρ− b(ρ)

)
∇ · u = 0 (18)

holds in the sense of distributions for any b ∈ C1, |b′(z)z|+ |b(z)| ≤ C ∀z ∈ R,
(iii) (12b), (12c), and (12d) hold in the sense of distributions,
(iv) and {ρ, u, f, η, σ} satisfy the following energy inequality:∫

Ω

[ρ|u|2
2

+
ργ

γ − 1
+ η2 + ψ

]
(t)dx+ 4

∫ t

0

∫
Ω

∫
S2

|∇τ
√
f |2dτdxdt

+ 4

∫ t

0

∫
Ω

∫
S2

|∇
√
f |2dτdxdt+

∫ t

0

∫
Ω

[
|∇u|2 + |∇ · u|2 + 2|∇η|2

]
dxdt

≤
∫

Ω

[ρ0|u0|2

2
+

ργ0
γ − 1

+ η2
0 + ψ0

]
dx.

(19)

Remark 1. (1) The central difficulty in showing the existence of a weak solution
in the theory of compressible fluids is typically the dependence of the pressure on
ργ . From the a priori estimate, we have ρ ∈ L∞(0, T ;Lγ(Ω)), which is not enough
to pass to the limit to ∇ργ in the sense of distributions. The issue is resolved
by showing that ρ satisfies a better integrability condition in the renormalized
form (18) ([10, 14]). Note that in the present context the suspension stress tensor
depends on the density of the particles in a nonlinear way as well: ∇η2. This term
can be easily handled from the regularity of η: η ∈ L2(0, T ;H1(Ω)).
(2) The additional difficulties in the present context involve the presence of two
nonlinear terms in the equation of f . For χ ∈ C∞c (Ω× S2)∫

Ω

∫
S2

∇ · (u(n)f (n))χdτdx = −
∫

Ω

u
(n)
i

[ ∫
S2

∂xiχf
(n)dτ

]
dx,∫

Ω

∫
S2

∇τ ·
(
Pτ⊥(∇xu(n)τ)f (n)

)
χdτdx = −

∫
Ω

∂u
(n)
i

∂xj

[ ∫
S2

τjf
(n) ∂χ

∂τi
dτ
]
dx.

(20)

To pass to the limit in (20), we need to show that

∫
S2

∂xiχf
(n)dτ and∫

S2

τjf
(n) ∂χ

∂τi
dτ converge strongly in L2(0, T ;L2(Ω)).

Theorem 2.2. Let γ > 3
2 and Ω be a C1 bounded domain. Assume that initial data

{ρ0, u0, f0, η0} satisfy (17). Then, there exists a weak solution {ρ, u, f, η, σ} of the
system (12) satisfying (17) at t = 0. Moreover, ρ ∈ Lp(Ω× (0, T )), p = 5

3γ − 1.

3. Outline of Proof. In order to prove the existence of a weak solution, we first es-
tablish compactness of an approximate sequence of solutions {ρn, un, fn, ηn, σn}n≥1,
which is stated in Proposition 1 below. Then, we apply Proposition 1 to an ap-
proximate sequence of solutions constructed in Section 3.2 to complete the proof of
the existence of a weak solution. We note that compared to approximating schemes
used for macroscopic fluid equations in [5], [11] and [14], the scheme presented here
is designed to deal with microscopic variables, too. For details of proofs, see [2].

3.1. Compactness. We begin with the compactness. Assume that the energy
inequality (19) holds for a sequence {ρn, un, fn, ηn, σn}n≥1. Then, we can obtain
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various estimates of {ρn, un, fn, ηn, σn}n≥1. The energy inequality implies directly
the following bounds

ρn|un|2 ∈ L∞(0, T ;L1(Ω)), ρn ∈ L∞(0, T ;Lγ(Ω)),

∇un ∈ L2(0, T ;L2(Ω)), ηn ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).
(21)

We can combine these bounds to obtain other bounds. First, by expressing ρnun

as ρnun =
√
ρn ·
√
ρnun, and using

√
ρn ∈ L∞(0, T ;L2γ(Ω)), we have

ρnun ∈ L∞(0, T ;L
2γ
γ+1 (Ω)). (22)

By the entropy dissipation from (16) and the embedding Ḣ1 ⊂ L6,√
fn ∈ L2

(
0, T ;L2(Ω)L6(S2) ∩ L6(Ω)L2(S2)

)
,

which implies that

fn ∈ L1
(
0, T ;L1(Ω)L3(S2) ∩ L3(Ω)L1(S2)

)
⊂ L1(0, T ;L2(Ω× S2)). (23)

We finally estimate σn. Since |σn(t, x)| ≤ 3

∫
S2

fn(t, x, τ)dτ = 3ηn(t, x),

σn ∈ L1(0, T ;L3(Ω)) ∩ L∞(0, T ;L2(Ω)), (24)

where the first space is derived from (23) and the second bound is from ηn ∈
L∞(0, T ;L2(Ω)). We next estimate the derivative of σ;

|∇σn(t, x)| ≤ 3

∫
S2

|∇fn(t, x, τ)|dτ ≤ C

√∫
S2

|∇
√
fn|2dτ

√∫
S2

(
√
fn)2dτ

=

√∫
S2

|∇
√
fn|2dτ

√
ηn ∈ L2(0, T ;L

4
3 (Ω)).

Proposition 1 (Compactness). Extracting a subsequence, using the same notation
{ρn, un, fn, ηn, σn}n≥1, the limit functions satisfy the following statements.

(1) ρn ⇀ ρ in Lγ(Ω× (0, T )), ρ ∈ L∞(0, T ;L1 ∩ Lγ(Ω)),
(2)
√
ρnun ⇀

√
ρu in L2(0, T ;L2(Ω)),

√
ρu ∈ L∞(0, T ;L2(Ω))

(3) un ⇀ u in L2(0, T ;H1(Ω)),
√
ρn ⇀

√
ρ in L2γ(Ω× (0, T ))

(4) ρnun ⇀ ρu in L
2γ
γ+1 (Ω× (0, T )), ρu ∈ L∞(0, T ;L

2γ
γ+1 (Ω))

(5) ρnuni u
n
j ⇀ ρuiuj in the sense of measures, ρuiuj is a bounded measure.

(6) ηn converges strongly to η in L2(Ω × (0, T )), and σn converges strongly to σ
in L2(Ω× (0, T )).
(7) ρn(ηn)2 converges to ρη2 in the sense of distributions.
(8) ρ and u solve (12a) in the sense of renormalized solutions.
(9) If in addition we assume that ρn0 converges to ρ0 in L1(Ω),

ρn → ρ in L1(Ω× (0, T )) ∩ C([0, T ];Lp(Ω)) for all 1 ≤ p < γ. (25)

(10) Finally, we have the following strong convergence:
(i) ρnu

n → ρu in Lp(0, T ;Lr(Ω)) for all 1 ≤ p <∞, 1 ≤ r < 2γ/(γ+ 1),
(ii) un → u in Lp(Ω× (0, T )) ∩ {ρ > 0} for all 1 ≤ p < 2,
(iii) un → u in L2(Ω× (0, T )) ∩ {ρ ≥ δ} for all δ > 0,
(iv) ρnuni u

n
j → ρuiuj in Lp(0, T ;L1(Ω)) for all 1 ≤ p <∞.
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3.2. Approximate sequence of a solution. We now construct an approximate
sequence of solutions to (12), which consists of three parts.

We first regularize ρ ddt + ρu · ∇. This step proves Theorem 2.2 by applying
Proposition 1 to the sequence of solutions of the following system in the limit ε→ 0;

ρt +∇ · (ρu) = 0,

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇ργ +∇η2 = ∇ · σε −∇ηε,
ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0,

ηt +∇ · (uερ)−∆ρ = 0.

(26)

The existence of a solution to (26) however requires additional damping.
The second step is to add nonlinear damping to the equation of ρ and η, which

provides the existence of solutions of (27) by taking the limit δ → 0 to the system

ρt +∇ · (ρu) + δρq = 0,

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇[ργ + η2] + δ[(ρq)ε + (ηm)ε]u

= ∇ · σε −∇ηε,
ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0,

ηt +∇ · (ηu)−∆η + δηm = 0,

(27)

where q > γ + 1 and m > 3, with m ≥ q. The role of damping is to increase
integrability of ρ, η and to show that ρ ≥ C > 0. These properties will be used to
show the existence of solutions to (27) by truncating ργ and η2.

The final step is truncation of ργ and η2, which shows the existence of solutions
to (27) by taking the limit N →∞ to the following system of equations

ρt +∇ · (ρu) + δρq = 0,

(ρεu)t +∇ · ((ρu)ε ⊗ u)−∆u−∇(∇ · u) +∇T (N) + δ[(ρq)ε + (ηm)ε]u

= ∇ · σε −∇ηε,
ft +∇ · (uεf) +∇τ · (Pτ⊥(∇xuετ)f)−∆τf −∆f = 0,

ηt +∇(ηu)−∆η + δηm = 0,

(28)

where T (N) = (ρ ∧ N)γ + (η ∧ N)2 and f ∧ N = min{f,N}. Since ρ is bounded
and strictly positive, we can obtain a parabolic equation of u by dividing (12b) by
ρ. By truncating ργ and η2 in the equation of u, we can show that ∇u ∈ L∞, which
implies the global existence of solutions to (28). By taking the limit N → ∞, we
show the existence of solutions to (27).

4. Concluding remarks. The present article is part of a research program whose
objective is the investigation of general models for polymeric fluids in both com-
pressible and incompressible fluids and in domains with complex geometries. Inves-
tigating their asymptotic behavior over bounded domains are also of the goals of
this program. We also remark that the investigation of singular limits of complex
fluids for compressible flows over bounded domains is of great scientific interest,
physically relevant and presents new challenges in the analysis. Unlike the cases
involving the whole domain or exterior domains where acoustic waves are damped
due to dispersive effects of the wave equation, the main obstacle in the treatment
of bounded domains is the persistency of the fast waves over these domains. There-
fore in general one can only expect weak convergence of the solutions. There are
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situations where strong convergence can be achieved due to the interaction of acous-
tic waves with the boundary of the domain. This phenomenon has been observed
for both asymptotic behavior of fluid equations and hydrodynamic limits of kinetic
equations. It is therefore natural to ask whether similar phenomena happen for
models of polymeric fluids.

Acknowledgments. H.B. gratefully acknowledges the support provided by the
Center for Scientific Computation and Mathematical Modeling (CSCAMM) at the
University of Maryland where this research was performed.
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Università degli Studi di Genova

P.le Kennedy-Pad D, 16129 Genova, Italy

Abstract. In previous works we developed continuous mathematical models

for wound healing and dorsal closure in Drosophila embryos. In this paper
we extend this study to the case of non convex wounds in Drosophila pupal

epithelium where the sign of the local curvature of the boundary plays an

important role in determining the type of acto-myosin contractile structure that
is formed. Moreover, we propose a multi-scale model where we combine the

previous continuous approach with a cellular-level model that also takes into

account interfacial tension between cells. We therefore minimize an extended
energy functional so that the junctions of the cells are moved through successive

configurations in order to obtain a new mechanical equilibrium. We apply this

model to study some simple situations of cell sorting and the movement of
genetic clones.

1. Introduction. Extension of an epithelial membrane to close a hole is a very
widespread process both in morphogenesis and in tissue repair. Contraction of actin
structures (in one, two or three dimensions) plays an important role in many cellular
and tissue movements, both at a multicellular tissue level and at a cellular (and
even intracellular) one: from muscle contraction to cell crawling and the contractile
ring in cytokinesis. In the [2], [3], [1] we proposed various mathematical models
for simulating the contraction of an actin cable structure attached to an external
epithelial tissue in different applications such as wound healing or dorsal closure in
Drosophila Melanogaster (fruit fly) embryos.

The present work is a natural sequel of these works, but here we are more con-
cerned with wound healing in the pupal stage of Drosophila. An interesting feature
of this stage is that the epidermis is under considerably less tension than in embryos.
This enables us to make holes which do not become convex while they open, dif-
ferently to embryo experiments where the the strong pull of the external epidermis
renders the hole convex during the opening phase.

Key words and phrases. Actin cable, Wound healing, Dorsal closure, Movement of epithelia,

Forces in embryogenesis.
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294 LUÍS ALMEIDA AND PATRIZIA BAGNERINI

In particular, in collaboration with A. Jacinto’s lab (CEDOC, Universidade Nova
de Lisboa), we generated C-shaped wounds, where part of the boundary is concave
and the rest convex (see figure 1). Observing the healing of this type of wound,
we realized that the parts of the boundary where the curvature is positive and
those where it is negative don’t behave in the same way (see also the discussion
in [5]). We propose here (in section 2) to extend the previous model to describe
and simulate this phenomenon. Then, in section 3, we couple the continuum model
with a cellular one, where the epidermal tissue is described by a two-dimensional
network of cells interacting through their common boundaries.

There are many different cell types in multicellular organisms that result from
differentiation from embryo stem cells (through specific gene expression) as part
of tissue specialization mechanisms: during morphogenesis cells are separated into
compartments that are essential for proper assembly of the body’s organs. Inside
these compartments, once differentiated, cells are usually committed to a particu-
lar lineage and cells belonging to each compartment stay together and do not mix
with those from other compartments. Cell sorting is therefore an interesting and
open problem. Two main hypothesis have been formulated: first, cell segregation
at compartment boundaries could be based on differential cell adhesion or affin-
ity (i.e. cell populations might develop distinct adhesive properties which prevent
intermingling), but molecules involved in these processes have still not been com-
pletely identified. The second hypothesis is the differential interfacial tension i.e.
cells in contact with neighboring cells of a different type, increase the tension at the
interfaces and contract the corresponding surfaces.

Motivated by these problems and by some experiences in collaboration with A.
Jacinto (work in progress), we consider the tissue formed by a group of cells of
two different types, for instance wild type ones and others that are mutant for a
certain gene. In section 4, in order to take into account the difference in the interfa-
cial tension between cells of different types, we introduce in the continuum-cellular
model an extended energy functional. The junctions of the cells are then moved
through successive configurations minimizing this functional in order to obtain a
new mechanical equilibrium at each step.

2. C-shaped wounds in Drosophila pupae. In the few minutes that follow a
laser (or a mechanical) circular wounding of the epidermis filamentous actin and
myosin II concentrate inside the adjacent cells and give rise to a local acto-myosin
cable anchored to the adherens junctions that bind the cell to its neighbors. The
result is a continuous, supracellular acto-myosin cable that encircles the wound and
reduces the wound’s perimeter by a purse-string mechanism. In the (not yet pub-
lished) experiences in collaboration with A. Jacinto’s lab, in the C-shaped wounds
on pupae, the acto-myosin cable seems to form mainly on the part of the boundary
where the curvature is positive. For this reason, in our model the contractile actin
cable term is given by max(κ, 0), where κ represents the curvature.

In [4], the authors considered the question of arbitrarily shaped wounds from
a theoretical point of view: denoting by E(t) (a subset of R2) the position of the
wound at time t, they study C1,1 solutions of the formal geometric equation

V (x) =

{
κ(x) if x ∈ Ω
max(κ(x), 0) if x ∈ ∂Ω

(1)

where κ denotes the curvature of a closed curves ∂E(t) ⊂ R2 (boundaries of the
sets E(t)) and V the normal inward velocity (i.e. pointing inside E(t)). They prove
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that the solution E(t) of the mean curvature flow with obstacle is contained at
each time t in the corresponding solution of the unconstrained mean curvature flow
starting from the same set E(0). In the context of our original biological problem
and the proposed models, this result indicates that the strategy of assembling an
acto-myosin cable only in the positive curvature part of the boundary of the wound
(or hole) allows us close it in a more efficient way than if we had assembled the
cable all around the boundary.

Figure 1. The initial wound is a C-shaped curve in the domain [0,
1.7]x[0, 1.7]. We show in the left part of the figure the vector field
ui solution of problem (2) at the initial step i = 1 with fcable = 0.05
and fpull = 0. In the right part we show the successive curve
positions.

Flowing only by the positive part of the curvature corresponds (see [4]) to the
special case of problem (1) where the obstacle is taken to be the initial position of
the boundary. Another nice feature of this type of flow having a natural biologi-
cal interpretation is the fact that, during the wound closure phase, the epidermis
advances without ever retreating, even locally or temporarily, from a region it has
occupied (which would not be always true for a full curvature flow corresponding
to having assembled a cable all around the wound closure).

In adult wounds, the main closure mechanism is lamellipodial crawling, i.e. the
cells in the first rows extend lamellipodia (which are essentially two dimensional
actin structures) that attach to extracellular matrix and pull the epithelium for-
ward into the wounded area. Beneath, at the dermal level, activated fibroblasts
proliferate and give rise to the granulation tissue which actively contracts. Both
these contributions will be taken into account in the model by introducing in the
equation (2) the term fpull n, i.e. an active pull (of the lamellipodia or the connec-
tive tissue) on the leading edge that moves it inwards to close the hole.

For epidermal wounds and the morphogenetic movements that we consider, the
time scale of the closure is very long (hours) while the space scale is very small
(cell characteristic length - of the order of a few µm). Therefore, it is reasonable
to, in a first approximation, neglect inertial forces, and assume that the dynamic
process of wound closure is a succession of static equilibria, i.e. to do a quasi-static
approximation.

Taking into account the previous discussion, we propose the following quasistatic
model: we consider as simulation domain a rectangle M , which contains the wound
at time step i, denoted by Wi. Let Di be the part of the domain occupied by the
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epidermis i.e. Di = M \Wi and ωi = ∂Wi the boundary of the wound (”the leading
edge”). The acto-myosin cable tension gives rise to a force that is proportional to the
curvature. This term will be described by a normal force which is proportional to
the local curvature of the leading edge at each point. It points towards the interior
of the wound Wi at the points of positive curvature and towards the exterior at
points of negative curvature. We assume that at each time step i, the corresponding
displacement field ui satisfies

−∆ui = 0 in Di,
ui = 0 on ∂M,
∂ui
∂n

= fcable max(κ, 0)n + fpull n on ωi .

(2)

where n is the external unit normal to ∂Di at each point, κ the curvature, fcable
the function associated with the intensity of the cable tension at each point along
the leading edge ωi and fpull is function describing the intensity of the inwards
pull (of the filopodia/lamellipodia or the connective tissue). We use bold face
letters for ui, n and 0 to make it clear that all these quantities are vectors. We
choose Dirichlet homogeneous boundary condition on the boundary of the rectangle
M , since, differently from embryos, in the pupae stage epidermis is not under a
significant tension and the tissue can be considered at equilibrium.

The algorithm is the following. First we compute the solution of problem (2)
in the domain Di = M\Wi by using finite element methods on a triangular mesh
(using Comsol Multiphysics software). We obtain in this way a displacement field
ui. Then, we extended it to the domain inside the inner boundary ωi by solving{

−∆uinti = 0 in Wi,
uinti = ui on ωi.

(3)

We obtain in this way an extension (the harmonic extension) of the original
vector field ui (which for simplicity we will still denote by ui) defined on rectangular
domainM . In order to perform the evolution of contour ωi, we use level set methods.
They consist in implicitly representing the front ωi as the zero level set of a function
Φ : R2 × R+ → R, solution of the Hamilton-Jacobi equation (HJ){

∂tΦ(x, t) + ui(x) · ∇Φ(x, t) = 0 in M × [0, T ],
Φ(x, 0) = Φi(x) in M,

(4)

where ui (solution of our original problem extended using (3)) gives the direction
of front propagation and ∇ denotes the spatial gradient. For the first step, the
function Φ1(x) is obtained by computing the signed distance to the initial contour
ω1 (positive at the interior of ω1), whereas for the following contours, Φi(x) is the
solution of (4) computed at the previous time step i− 1.

We use an Eulerian method instead of a particle (Lagrangian) method since
changes of topology are naturally handled and surfaces automatically merge and
separate. We solve the HJ problem (4) on a regular cartesian grid by using an
upwind second order Essentially Non-Oscillatory (ENO) scheme in space and a
second order total variation diminishing Runge-Kutta scheme in time. The value
of ui in the regular grid is computed by interpolating ui on a triangular mesh. The
level set methods are implemented by using the Matlab toolbox of I. M. Mitchell
([10]).

Since we are doing a quasistatic analysis, the time scale is free for us to fix and
thus the numeric values of coefficients fcable and fpull are not physically significant
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- just the relative values of the different coefficients make a difference in the sim-
ulations (up to rescaling time). To have an idea of size and dynamics of the real
situation, small wounds with a diameter of a few tens of µm close in a couple of
hours. We choose a time interval T in problem (2) (to pass from the time step i to
the time step i+ 1) equal to 0.1 and a spatial discretization step equal to 0.1 both
in x and y directions.

The numerical experiment shown in figure 1 corresponds to the successive po-
sitions of the boundary ωi with constant cable tension fcable(q, i) = 0.2,∀i =
1 . . . N, ∀q ∈ ωi and null lamellipodial force fpull = 0. We notice that, for simplic-
ity, we do not consider a time dependence (where time is the index i as described
before) of the values of the different terms, but the model allows such dependence.

Figure 2. Generation of the initial configuration: from the left to
the right we show resp. the quadrilateral mesh, the barycenter of
the element of the mesh after jiggle and the Voronoi diagram of
these points.

3. Multiscale continuum-cellular model. The model presented above is a mac-
roscopic model that does not take into account the positions of the individual cells
constituting each of the tissues considered. It provides a description at a tissue-
level space scale and, being a continuous model, has no ambition of describing the
changes in geometry of individual cells - for such a detailed description the geometry
of each cell and its neighbors should also play an important role.

Therefore, we decided to couple the continuum model with a cellular one. When
the number of cells in the tissue is big, people often concentrate on a small group of
cells, not being able to follow in detail all the cells in the system. In this situation,
the macroscopic models can be useful for providing reasonable boundary or asymp-
totic conditions for the cellular-level studies. Moreover, the displacement field ui
solution of problem (2) can be used to move the junctions of the cells of the tissue.
Like in [6, 9, 7], we represent the epidermal tissue as a two-dimensional network
of cells discretized as polygons and interacting through their common boundaries
(modeled as straight lines connecting vertices).

To perform simulations and test the model, we need to generate a certain number
of initial cell configurations. To achieve this, we first generate a quadrilateral mesh
in the domain and we compute the barycenters of each elements of the mesh. Next,
we jiggle the barycenters of a small random quantity and then we construct the
Voronoi triangulation of these points. We choose this procedure to take advantage
of the capabilities of mesh generators to obtain elements of the desired size, stretched
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in one direction, etc. Let P (i) be the vertices of the cells of the epidermal tissue

Figure 3. Coupling of continuum-cellular model: first row, left to
right: the initial configuration, the mesh used to compute the solu-
tion of (2) and the corresponding displacement field ui at time step
i.; second row, left to right: the cells at two successive equilibrium
time step and the difference of cells between two successive times.

included in Di at time step i. We displace the set of points P (i) (belonging to
ωi) by using the vector field ui in order to obtain a new set of points P (i + 1)
belonging to Di+1, i.e. the vertices of the cells at the following time. Let pj(i) =
(xj(i), yj(i)), j = 1, . . . N be the coordinates of the points of the set P (i) at time

step i. We compute the coordinates pi+1
j of the points in P (i + 1) at time step

i + 1 by solving (with a fourth order Runge-Kutta scheme) for each of them, the
following boundary value problem (we will be solving this problem N times, with
a different initial condition for each j){

p′(t) = ui in [0, T ]
p(0) = pj(i) = (xij , y

i
j).

(5)

4. Cell sorting and genetic clones. We already studied cell segregation in [8].
By studying the cellular tension in Drosophila Dorsal Closure (a stage of embryo
development), we realized that there were some cells at the segment boundaries
(which we called mixer or chameleon cells) with a very peculiar and previously not
described behavior: they change their genetic identity making a transdifferentia-
tion. Consequently, they do not respect compartment boundaries and give rise to
unexpected cell rearrangements at the leading edge.

Motivated by this work and by some experiences on wound healing on Drosophila
pupae in collaboration with A. Jacinto (currently in progress), we consider in the
tissue a group of cells of different type, i.e. for instance, mutant for a certain gene.
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Another possible application is the clones in the wing imaginal disc. Like in the
segmentation of Drosophila embryos epithelia, wing disc contains a compartment
boundary that separates anterior (A) from posterior (P) cells. This compartment
boundary is under the control of the secreted protein Hedgehog (Hh), even thought
the precise mechanism remains poorly understood. In [6] they generate cells that
lost the ability to transduce the Hh signal (becoming mutant for that gene). Clones
in the posterior (P) compartment have wiggly borders with their neighbors since
neither cells of the clone nor cells in its neighborhood transduce the Hh signal (cells
marked ”off” in figure 4). In contrast, clones (arrowhead) have smooth borders
when situated in the anterior (A) compartment, since cells surrounding the clone
respond to the Hh signal (cells marked ”on” in figure 4) and therefore clones try
to minimize their surface contact with the neighboring cells. The large clone in the
middle is of anterior origin and has taken up a position in the posterior segment.
Aiming at studying cell sorting at compartment boundaries, we introduce in the
continuum-cellular model the possibility to modify the interfacial tension between
cells of different types.

The algorithm is the following. At each time step i, we compute the solution of
the continuum model, i.e. the displacement field ui. Second, we move the junctions
of the cells by solving the system of ordinary differential equation (5). Then, we take
into account the difference in the interfacial tension between cells of different types,
leading the cells to go through successive configurations in order to obtain a new
mechanical equilibrium at each step. Stationary and stable network configurations
satisfy a mechanical force balance, i.e. at each junction, the sum of forces vanish.
We describe these force balances as local minima of an energy function. So, we
compute a new stable network configuration by minimizing the following functional
(P represents the cell configuration which is defined by the set of the vertices of all
the cells, and α is the cell index):

F (P ) =

NC∑
α=1

∑
<mn>

Λmnl<mn> +

NC∑
α=1

K

2
(Aα − Āα)2 +

NC∑
α=1

Γ

2
L2
α, (6)

The first term describes the contributions due to the line tension along each of the
edges < mn > (between vertices m and n) of each cell α, the second one to cell
area elasticity, and the third one the elasticity of the cell perimeter. The parameter
NC is the number of cells where we perform minimization (it can be a subset of
the total cells of the tissue), l<mn> is the edge length, Lα the perimeter of cell α,
Āα the preferred area (the actual area of the cell at time step i) and Λmn the line
tension on edge l<mn> depending on the gradient in the tension. We obtain in this
way a new cell configuration at time step i+ 1. The minimization of the functional
F of (6) is performed using the Matlab function fminsearch. In figure 4 we show the
result of the simulation. As expected, the clone becomes round, since it minimizes
its contact surface with its neighboring cells (which are genetically different).
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Figure 4. First row: the image is taken from [6]. Clones in the
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bors since neither cells of the clone nor cells in its neighborhood
transduce the Hh signal (cells marked ”off”). In contrast, clones
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the simulation of the movement of the clone at successive time
steps.
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Abstract. This article presents a general dimensionless scaling of the Navier-
Stokes-Smoluchowski system describing interactions between particles and a

compressible fluid. Two low Mach number limits are investigated. The first

limit is a low stratification limit for which the Froude number is scaled as the
square root of the Mach number; the second is a strong stratification limit

for which the Froude and Mach numbers are scaled the same. We see that
as the Mach number goes to zero in the low stratification case, the solutions

to the system converge in appropriate spaces to constant mass densities and

weakly to a velocity field satisfying the incompressibility condition. For the
strong stratification case, we see for an external force depending only on the

vertical coordinate that the solutions converge to densities depending only on

the vertical component and a velocity field satisfying the anelastic condition.
Finally, we investigate bounds and convergences for the strong stratification

case supporting the formal calculations.

1. Introduction. The state of fluid-particle-interaction flows is characterized by
the following macroscopic variables: the total mass density %(t, x), the velocity
field u(t, x), and the density of particles dispersed in the mixture η(t, x), which
depend on the Eulerian spatial coordinate x ∈ Ω ⊂ R3 and on time t ∈ (0,∞). The
governing equations express the conservation of mass, the balance of momentum,
and the balance of particle densities often referred to as the Smoluchowski equation:

∂t%+ divx (%u) = 0 (1.1)

∂t (%u) + divx (%u⊗ u) +∇x
(
pF (%) +

D

ζ
η

)
= µ4xu + λ∇xdivxu− (η + β%)∇xΦ (1.2)

∂tη + divx (η (u− ζ∇xΦ))−D4xη = 0 (1.3)

where pF (%) = a%γ for some a > 0, γ > 3
2 , and β 6= 0. We also assume a bounded

C2,ν spatial domain Ω. The fluid is also assumed to be Newtonian so that the stress
tensor is given by

S = µ(∇xu +∇xuT ) + λdivxuI.
Also, the viscosity coefficients µ and λ, the drag coefficient ζ, and the dispersion
coefficient D are assumed to be constant, and Φ is a given external potential that is

2000 Mathematics Subject Classification. Primary: 35Q30, 76N99; Secondary: 46E35.
Key words and phrases. Fluid-particle interaction, low Mach number, low stratification singular

limit, strong stratification singular limit, compressible and viscous fluid.
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taken to be nonnegative. The system (1.1)-(1.3) is supplemented by the following
boundary and initial conditions:

u = D∇xη · n + ζη∇xΦ · n = 0 on (0, T )× ∂Ω (1.4)

0 ≤ %(0, x) = %0 ∈ Lγ(Ω) (1.5)

(%u)(0, x) = m0 ∈ L6/5(Ω;R3) (1.6)

0 ≤ η(0, x) = η0 ∈ L2(Ω). (1.7)

We define the energy

E(t) :=

∫
Ω

1

2
%|u|2 +

a

γ − 1
%γ +

D

ζ
η ln η + (β%+ η)Φdx(t) (1.8)

and require that

dE

dt
+

∫
Ω

µ|∇xu|2 + λ|divxu|2 +

∣∣∣∣2D√ζ∇x√η +
√
η∇xΦ

∣∣∣∣2 dx ≤ 0.

In addition, we require that the spatial domain Ω and external potential Φ obey
the following hypotheses, called the confinement hypotheses:

Definition 1.1. Let Ω ⊂ R3 be a C2,ν domain with ν > 0 and Φ : Ω → R+
0 with

infx∈Ω Φ(x) = 0. (Ω,Φ) satisfies the Confinement Hypotheses (HC) if and only
if

• If Ω is bounded, Φ is bounded and Lipschitz continuous on Ω.
• If Ω is unbounded, Φ ∈W 1,∞

loc
(Ω), e−Φ/2 ∈ L1(Ω) and

|∆xΦ(x)| ≤ c1|∇xΦ(x)| ≤ c2Φ(x)

for |x| greater than some large R.

In [4] it is shown using an artificial pressure and time-discretization approxi-
mation that a renormalized weak solution exists. In [3], a weak-strong uniqueness
result is shown on the NSS system; that is, if there is a weak solution of a certain
regularity class, the the weak solution is unique.

The rest of the paper is dedicated to examining certain approximations to the
compressible NSS system in the form of singular limits for bounded spatial domains
Ω. In particular, we look at conditions for which the speed of the fluid flow is small
compared to the speed of sound in the fluid, also known as the low Mach number
case. Under a low stratification condition of the scaling of the system, the solutions
converge to a solution of the mathematically simpler incompressible fluid model as
the Mach number approaches zero. In the strong stratification case, the solutions
will converge to functions obeying the anelastic condition, if we assume that the
external force depends only on the vertical component of position, physically realized
for buoyancy and gravity near the surface of the earth or other similar body. Both
of these problems involve using bounds from the energy inequality for the systems
to provide estimates that allow us to show the convergence of the solutions. These
techniques are motivated by the work in [5, 6, 7, 8].

2. Dimensionless Scaling. For each parameter α (time, length, mass, density,
pressure, etc.), we define a reference value αref and then define the dimesionless
value

α′ :=
α

αref
.
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By using the chain rule and basic differentiation properties, the NSS system in
terms of the dimensionless parameters and values becomes (with the prime marks
omitted)

Sr∂t%+ divx(%u) = 0 (2.9)

Sr∂t(%u) + divx(%u⊗ u) +
1

Ma2∇x
(
a%γ + Pc

D

ζ
η

)
=

1

Re
(µ∆xu + λ∇xdivxu)− 1

Fr2 (β%+ Dcη)∇xΦ (2.10)

Sr∂tη + divx(ηu)− Zadivx(ζη∇xΦ)−DaD∆xη = 0 (2.11)

with the scaled energy inequality

Sr
d

dt

∫
Ω

Ma2

2
%|u|2 +

a

γ − 1
%γ + Pc

Dη

ζ
ln η +

Ma2

Fr2 (β%+ Dcη)Φdx

+

∫
Ω

PcDaD2 |∇xη|2

ζη
+ 2ZaD∇x(η) · ∇xΦ +

Za2

Da
ζη|∇xΦ|2dx

+

∫
Ω

Ma2

Re
S(∇xu) : ∇xudx ≤ 0

with the unitless coefficients defined in the following table.

Sr:=
Lref

uref tref
Ma:=

uref√
pFref /%ref

Re:=
%refurefLref

µref

Fr:=
uref√
Lreffref

Za:=
ζreffref

uref
Da:=

Dref

Lrefuref

Pc:=
pPref
pFref

Dc:=
ηref
%ref

.

Table 2.1: Definitions of the Dimensionless Parameters

3. Low Stratification Limit. The scaled low stratification system we consider
for each fixed ε > 0 is

∂t%ε + divx(%εuε) = 0 (3.12)

ε2[∂t(%εuε) + divx(%εuε ⊗ uε)] +∇x
(
a%γε +

D

ζ
ηε

)
= ε2(µ∆xuε + λ∇xdivxuε)− ε(β%ε + ηε)∇xΦ (3.13)

∂tηε + divx(ηεuε)− εdivx(ζηε∇xΦ)−D∆xηε = 0 (3.14)

d

dt

∫
Ω

ε2

2
%ε|uε|2 +

a

γ − 1
%γε +

Dηε
ζ

ln ηε + ε(β%ε + ηε)Φdx

+

∫
Ω

D2 |∇xηε|2

ζηε
+ 2εD∇xηε · ∇xΦ + ε2ζηε|∇xΦ|2dx

+

∫
Ω

ε2S(∇xuε) : ∇xuεdx ≤ 0. (3.15)

To rigorously derive the limit for the low stratification case, we begin by noting that
from the results of [4], for each ε > 0, we have solutions {%ε,uε, ηε} in the following
sense:
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Definition 3.1. We say that {%ε,uε, ηε} is a renormalized weak solution to the
scaled low stratification NSS system if and only if

• %ε ≥ 0 and uε form a renormalized solution of the scaled continuity equation,
i.e., ∫ T

0

∫
Ω

B(%ε)∂tϕ+B(%ε)uε · ∇xϕ− b(%ε)divxuεϕdxdt

= −
∫

Ω

B(%0)ϕ(0, ·)dx (3.16)

where b ∈ L∞ ∩ C[0,∞), B(%) := B(1) +
∫ %

1
b(z)
z2 dz.

• The scaled momentum balance holds in the sense of distribution.
• ηε ≥ 0 is a weak solution of the scaled Smoluchowski equation.
• The scaled energy inequality (3.15) is satisfied.

We next define the low stratification target system.

Definition 3.2. {%(1),u, η(1)} solve the low stratification target system if and only
if

divxu = 0 weakly on (0, T )× Ω,∫ T

0

∫
Ω

%u · ∂tv + %u⊗ u : ∇xvdxdt

=

∫ T

0

∫
Ω

(µ∇xu− (βr + s)∇xΦ) · vdxdt−
∫

Ω

%u · v(0, ·)dx,

for any divergence-free text function v and

r = − 1

aγ%γ−1

[
(β%+ η)Φ +

D

ζ
s

]
weakly where % and η are uniform fluid and particle densities, respectively, with the
same total masses as the initial data.

We are now in a position to state the main theorem of this section.

Theorem 3.3. Let (Ω,Φ) satisfy the confinement hypothesis and for each ε > 0,
assume {%ε,uε, ηε} is a solution of the low stratification system in the sense of
Definition 3.1. Assume the initial data can be expressed as follows:

%ε(0, ·) = %ε,0 = %+ ε%
(1)
ε,0, uε(0, ·) = uε,0, and ηε(0, ·) = ηε,0 = η + εη

(1)
ε,0 .

where %, η are the spatially uniform densities on Ω. Assume also that as ε→ 0,

%
(1)
ε,0 ⇀ %

(1)
0 ,uε,0 ⇀ u0, η

(1)
ε,0 ⇀ η

(1)
0

weakly-∗ in L∞(Ω) or L∞(Ω;R3) as the case may be. Then up to a subsequence
and letting q := min{γ, 2},

%ε → % in C([0, T ];L1(Ω)) ∩ L∞(0, T ;Lq(Ω))

ηε → η in L2(0, T ;L2(Ω))

uε → u weakly in L2(0, T ;W 1,2(Ω;R3))

and

%(1)
ε =

%ε − %
ε
→ %(1)weakly- ∗ in L∞(0, T ;Lq(Ω))

η(1)
ε =

ηε − η
ε
→ η(1) weakly in L2(0, T ;L2(Ω))

where {%(1),u, η(1)} solve the target system mentioned previously.
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Proof. For the proof, the reader may consult [2].

4. Strong Stratification Limit. The formal calculations for the strong stratifi-
cation limit as ε → 0 follow the same procedure as for the low stratification limit.
We use the following scaling: Ma is taken to be a small parameter ε > 0, Za and
Da are taken to be ε−1, Fr is taken to be ε, and other parameters are taken to be
of order 1. We also assume that Φ = gx3 where g is a constant (gravity/buoyancy).
Thus, the scaled NSS system becomes

∂t%ε + divx(%εuε) = 0 (4.17)

ε2[∂t(%εuε) + divx(%εuε ⊗ uε)] +∇x
(
a%γε +

D

ζ
ηε

)
= ε2(µ∆xuε + λ∇xdivxuε)− (β%ε + ηε)∇xΦ (4.18)

ε [∂tηε + divx(ηεuε)]− divx(ζηε∇xΦ)−D∆xηε = 0 (4.19)

ε
d

dt

∫
Ω

ε2

2
%ε|uε|2 +

a

γ − 1
%γε +

Dηε
ζ

ln ηε + (β%ε + ηε)Φdx

+ ε

∫
Ω

ε2S(∇xuε) : ∇xuεdx+

∫
Ω

∣∣∣∣D∇xηε√
ζηε

+
√
ζηε∇xΦ

∣∣∣∣2 dx ≤ 0. (4.20)

Now, assuming {%ε,uε, ηε} have the following expansions

%ε = %̃+

∞∑
i=1

εi%(i)
ε

ηε = η̃ +

∞∑
i=1

εiη(i)
ε

uε = ũ +

∞∑
i=1

εiu(i)
ε

we substitue into (4.17)-(4.20) and formally obtain the target system

gη̃ = −D
ζ

dη̃

dx3

d

dx3
[a%̃γ ] = −βg%̃

divx(%̃ũ) = 0

%̃∂tũ + divx(%̃ũ⊗ ũ) +∇xΠ = µ∆xũ + λ∇xdivxũ−
(
β%(2) + η(2)

)
∇xΦ.

For the strong stratification scaling, we have the following weak formulation:

Definition 4.1. We say that {%ε,uε, ηε} form a renormalized weak solution to the
scaled strong stratification NSS system if and only if

• %ε ≥ 0 and uε form a renormalized solution of the scaled continuity equation,
i.e., ∫ T

0

∫
Ω

B(%ε)∂tϕ+B(%ε)uε · ∇xϕ− b(%ε)divxuεϕdxdt

= −
∫

Ω

B(%0)ϕ(0, ·)dx (4.21)

where b ∈ L∞ ∩ C[0,∞), B(%) := B(1) +
∫ %

1
b(z)
z2 dz.
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• The scaled momentum balance holds in the sense of distributions.
• ηε ≥ 0 is a weak solution of the scaled Smoluchowski equation.
• The scaled energy inequality (4.20) is satisfied.

Note that for this scaling, we assume that Φ = gx3, where x3 is the vertical
coordinate, and g is a constant greater than zero. We also define the target system.

Definition 4.2. {%̃, ũ, η̃, %(2), η(2)} solve the strong stratification target system if
and only if:

• ∫ T

0

∫
Ω

%̃ũ · ∇xφdxdt = 0 (4.22)

for all φ ∈ C∞C ((0, T )× Ω),
•

gη̃ = −D
ζ

dη̃

dx3
(4.23)

d

dx3
[a%̃γ ] = −βg%̃ (4.24)

with the conditions ∫
Ω

%̃dx =

∫
Ω

%0dx∫
Ω

η̃dx =

∫
Ω

η0dx,

• ∫ T

0

∫
Ω

%̃ũ ·w + %̃ũ⊗ ũ : ∇xwdxdt

=

∫ T

0

∫
Ω

µ∇xũ∇xw−
(
β%(2) + η(2)

)
∇xΦ ·wdxdt (4.25)

for all w ∈ C∞C ((0, T )× Ω;R3) such that divxw = 0.

Much like for the low stratification limit, many of the bounds and convergences
used in the analysis arise from the free energies defined as

EF (%, %̃) :=
a

γ − 1
%γ − (%− %̃)

aγ

γ − 1
%̃γ−1 − a

γ − 1
%̃γ

EP (η, η̃) :=
D

ζ
η ln η − D

ζ
(η − η̃)(ln η̃ + 1)− D

ζ
η̃ ln η̃,

and the resulting inequality formed from these and the energy inequality:∫
Ω

1

2
%ε|uε|2 +

1

ε2
[EF (%ε, %̃) + EP (ηε, η̃)] dx(T )∫ T

0

∫
Ω

S(∇xuε) : ∇xuεdxdt+
1

ε3

∫ T

0

∫
Ω

∣∣∣∣D∇xηε√
ζηε

+
√
ζηε∇xΦ

∣∣∣∣2 dxdt

≤
∫

Ω

1

2
%0|u0|2 +

1

ε2
[EF (%0, %̃) + EP (η0, η̃)]dx. (4.26)
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Next, we define the essential and residual sets:

Oess := {(%, η) ∈ R2|%̃/2 ≤ % ≤ 2%̃, η̃/2 ≤ η ≤ 2η̃}
Mε

ess := {(x, t) ∈ (0, T )× Ω|(%ε(t, x), ηε(t, x)) ∈ Oess}
Mε

res := ((0, T )× Ω)−Mε
ess

Thus, by using (4.26), assuming appropriate bounds on the initial data, we obtain
that

{√%εuε}ε>0 ∈b L∞(0, T ;L2(Ω;R3))

‖[%ε − %̃]ess‖L∞(0,T ;L2(Ω)) ≤ ε2c

‖[ηε − η̃]ess‖L∞(0,T ;L2(Ω)) ≤ ε2c

{uε}ε>0 ∈b L2(0, T ;W 1,2
0 (Ω;R3))∥∥∥∥D∇xηε√

ζηε
+
√
ζηε∇xΦ

∥∥∥∥
L2(0,T ;L2(Ω;R3))

≤ ε3c{[
%ε − %̃
ε

]
ess

}
ε>0

∈b L∞(0, T ;L2(Ω)){[
ηε − η̃
ε

]
ess

}
ε>0

∈b L∞(0, T ;L2(Ω))

and since the measure of the residual set goes as ε2 for each fixed t, we have

‖[%ε]res‖L∞(0,T ;Lγ(Ω)) ≤ ε2c

{%εuε}ε>0 ∈b L∞(0, T ;L2q/q+1(Ω;R3)) ∩ L6q/q+6(Ω;R3))

where q := min{2, q}. Thus, we have the existence of %(1), η(1) ∈ L∞(0, T ;L2(Ω))

and ũ ∈ L2(0, T ;W 1,2
0 (Ω;R3)) such that up to subsequences

%ε → %̃ strongly in L∞(0, T ;Lq(Ω))

ηε → η̃ strongly in L∞(0, T ;L2(Ω))

uε ⇀ ũ weakly in L2(0, T ;W 1,2
0 (Ω;R3))

%ε − %̃
ε

⇀ %(1) weakly- ∗ in L∞(0, T ;Lq(Ω))

ηε − η̃
ε

⇀ %(1) weakly- ∗ in L∞(0, T ;L2(Ω)).

Now, we are in a position to state the main result of this section:

Theorem 4.3. Let (Ω,Φ) satisfy the confinement hypothesis and for each ε > 0,
assume {%ε,uε, ηε} solves the scaled strong stratification system in the sense of
Definition 4.1. Assume the initial data can be expressed as follows:

%ε(0, ·) = %ε,0 = %̃+ ε%
(1)
ε,0, uε(0, ·) = uε,0, and ηε(0, ·) = ηε,0 = η̃ + εη

(1)
ε,0 .

where %̃, η̃ are the densities defined by (4.24)-(4.23). Assume also that as ε→ 0,

%
(1)
ε,0 ⇀ %

(1)
0 ,uε,0 ⇀ ũ0, η

(1)
ε,0 ⇀ η

(1)
0

weakly-∗ in L∞(Ω) or L∞(Ω;R3) as the case may be. Then up to a subsequence
and letting q := min{γ, 2},

%ε → %̃ in C([0, T ];L1(Ω)) ∩ L∞(0, T ;Lq(Ω))
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ηε → η̃ in L2(0, T ;L2(Ω))

uε → ũ weakly in L2(0, T ;W 1,2(Ω;R3))

where {%̃, ũ, η̃} solve the target system (4.22)-(4.25).

Proof. The result follows from the bounds listed above and analysis similar to that
done in Section 3 and in [8]. For the details, see [1]
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Abstract. This paper presents techniques introduced in a joint work with G.
Vallet and P. Wittbold for solving the Cauchy problem for a multi-dimensional

nonlinear conservation law with stochastic perturbation [2]. We propose here

to present main difficulties met in the use of deterministic tools for studying
stochastic scalar conservation law and alternative methods.

1. Introduction. We are interested in the formal stochastic nonlinear conservation
law of type:

du− div(~f(u))dt = h(u)dw in Ω× Rd×]0, T [, (1)

with an initial condition u0 and d ≥ 1.
In the sequel we assume that T is a positive number, that Q =]0, T [×Rd and that

W = {wt,Ft; 0 ≤ t ≤ T} denotes a standard adapted one-dimensional continuous
Brownian motion, defined on the classical Wiener space (Ω,F , P ). Note that we
consider for convenience a real-valued noise and that the present work could be
generalized to a class of multi-dimensional noise. Let us assume that

H1: ~f = (f1, .., fd) : R→ Rd is a Lipschitz-continuous function with ~f(0) = ~0.
H2: h : R→ R is a Lipschitz-continuous function with h(0) = 0.
H3: u0 ∈ L2(Rd).

We propose to present tools for showing existence and uniqueness of the stochastic
entropy solution to the above-mentioned problem. Our aim is to adapt the known
methods for deterministic first-order nonlinear P.D.E. to noise perturbed ones.

Note that, even in the deterministic case, a weak solution to a nonlinear scalar
conservation law is not unique in general. One needs to introduce the notion of
entropy solution in order to select the “physical solution”.

Only a few papers are devoted to the study of multiplicative stochastic perturbation
of nonlinear first-order hyperbolic problems in the Rd case. Let us mention, without
any claim of being exhaustive, the work of J. Feng and D. Nualart [7] where they

2000 Mathematics Subject Classification. Primary: 60H15, 35R60, 35L60.
Key words and phrases. Stochastic PDE; first-order hyperbolic equation; Cauchy problem;

multiplicative stochastic perturbation; Young measures; Kruzhkov’s entropy.
The author is supported by grant of the C.G. 64 (France).
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introduced a notion of strong entropy solution in order to prove the uniqueness of
the entropy solution for the Cauchy problem:

du + div(~f(u))dt =

∫
z∈Z

σ(., u, z)dw(t, z).

Using vanishing viscosity and compensated compactness arguments, the authors
established existence of strong entropy solutions only in the 1D case.
In the recent paper [3], G.-Q. Chen, Q. Ding and K. H. Karlsen propose to revisit the
work of J. Feng and D. Nualart. They prove that the multidimensional stochastic
problem is well-posed by using uniform spatial BV-bound. They show the existence
of strong stochastic entropy solutions in Lp ∩ BV for any finite p and develop a
“continuous dependence” theory for stochastic entropy solutions in BV .
Finally, let us mention the paper by A. Debussche and J. Vovelle [5] concerning the
d-dimensional problem with multiplicative noise

du + div~f(u)dt = h(u)dw,

which is considered on a torus. The authors use the kinetic formulation of the prob-
lem and prove existence and uniqueness of a kinetic solution in Lp for any finite p.
The aim of C. Bauzet, G. Vallet and P. Wittbold in [2] is to complete the results of
[7] by showing existence and uniqueness of solution in L2(Rd) without using the no-
tion of strong entropy solution. The authors propose a method of artificial viscosity
to prove the existence of a solution. The compactness properties used are based on
the theory of Young measures and on measure-valued solutions. Then, an appropri-
ate adaptation of Kruzhkov’s doubling variables technique, and of the way J. Feng
and D. Nualart propose to treat the stochastic source term, is presented to prove
that any stochastic entropy solution is equal to a solution given by the artificial
viscosity method. Thus, the entropy inequalities seem to suffice for the uniqueness
via Kato-type inequality. This yields the uniqueness of the measure-valued entropy
solution, and, by standard arguments, this allows us to deduce the existence and
the uniqueness of the stochastic entropy solution.
We propose in this paper to present difficulties (brought by the stochastic perturba-
tion) met by the authors in the use of classical tools from the deterministic setting,
and techniques developed to treat the stochastic terms in [2].

First of all, let us introduce some notations and make precise the functional setting.

• Denote by E the integral over Ω with respect to the probability measure P.
• D+([0, T ]×Rd) denotes the subset of nonnegative elements of D([0, T ]×Rd).
• For a given separable Banach space X we denote by N2

w(0, T,X) the space
of the predictable X-valued processes (cf. [4]). This space is L2(]0, T [×Ω, X)
endowed with the product measure dt⊗dP and the predictable σ-field PT (i.e.
the σ-field generated by the sets {0}×F0 and the rectangles ]s, t]×A for any
A ∈ Fs).

• E = {η ∈ C2,1(R), η ≥ 0, convex, η(0) = 0, supp η′′ compact}, the set of
smooth entropies.
• ηδ ∈ E denotes a uniform approximation of the absolute value function :
η′δ(r) = 1 if r ≥ δ, η′δ(r) = sin

(
π
2δ r
)

if −δ < r < δ and η′δ(r) = −1 else.

• ∀η ∈ E , F η(a, b) =

∫ b

a

η′(σ − a)~f ′(σ)dσ.

• F (a, b) = Sgn0(a− b)[~f(a)−~f(b)] = lim
δ→0+

F ηδ(a, b) denotes the entropy flux.
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• For any u ∈ N 2
w(0, T, L2(Rd)), k ∈ R, η ∈ E and ϕ ∈ D(Rd+1) denote by

µu,η,k(ϕ) =

∫
Rd
η(u0 − k)ϕ(0)dx +

∫
Q

η(u− k)∂tϕ− F η(u, k)∇ϕdxdt

+

∫
Q

η′(u− k)h(u)ϕdxdw(t) +
1

2

∫
Q

h2(u)η′′(u− k)ϕdxdt.

Definition 1.1. A function u of N 2
w(0, T, L2(Rd)) is an entropy solution of the

stochastic conservation law (1) with the initial condition u0 ∈ L2(Rd) if u ∈
L∞(0, T, L2(Ω, L2(Rd))) and, for any ϕ ∈ D+([0, T ] × Rd), any real k and any
η ∈ E

0 ≤ µu,η,k(ϕ) P − a.s.

Remark 1. As u ∈ L∞(0, T, L2(Ω, L2(Rd)), we can follow [8] p.84 to show that

ess lim
t→0+

E

∫
K

|u(t, x) − u0|dx = 0 for any compact set K ⊂ Rd, here the random

variable doesn’t bring new difficulty.

2. The parabolic case. The following existence and uniqueness result is a classic
one. One can refer to [4] Section 7.3 and many others authors.

Proposition 1. For any positive ε, there exists a unique uε ∈ N 2
w(0, T ;H1(Rd)) ∩

L∞(0, T ;L2(Ω×Rd)), with ∂t[uε−
∫ .

0
h(uε)dw] and ∆uε in L

2(Ω×Q) and such that
uε is a weak solution of the stochastic nonlinear parabolic problem

duε − [ε∆uε + div(~f(uε))]dt = h(uε)dw in Ω× Rd×]0, T [, (2)

for the initial condition uε0 ∈ D(Rd). Moreover, there exists a positive constant C
such that,

∀ε > 0, ||uε||2L∞(0,T ;L2(Ω×Rd)) + ε||uε||2L2(]0,T [×Ω;H1
0 (Rd)) ≤ C.

Remark 2. We consider here (uε0)ε a sequence approximating our initial condition
u0 in L2(Rd). The regularity of ∂t[uε −

∫ .
0
h(uε)dw] and ∆uε in L2(Ω × Q) is not

obvious. It comes from the suitable choice of uε0 ∈ D(Rd). One refers to the work
of G. Vallet [10].

Consider ϕ in D+([0, T ] × Rd), k a real number and η ∈ E . Since η(uε − k)ϕ ∈
L2(0, T,H1(Rd)) a.s., it is possible to apply the Itô formula to the operator

Ψ(t, uε) :=

∫
Rd
η(uε − k)ϕdx and thus, P-a.s.:∫

Rd
η(uε(T )− k)ϕ(T )dx

=

∫
Rd
η(uε0 − k)ϕ(0)dx +

∫
Q

η(uε − k)∂tϕdxdt

−ε
∫
Q

η′(uε − k)∇uε∇ϕdxdt− ε
∫
Q

η′′(uε − k)ϕ∇uε∇uεdxdt

−
∫
Q

η′(uε − k)~f(uε)∇ϕdxdt−
∫
Q

η′′(uε − k)ϕ~f(uε)∇uεdxdt

+

∫ T

0

∫
Rd
η′(uε − k)h(uε)ϕdxdw(t) +

1

2

∫
Q

h2(uε)η
′′(uε − k)ϕdxdt.
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Remark 3. Let us mention that in the deterministic setting, the viscous entropy
formulation is obtained by testing the parabolic regularization with η(ũε − k)ϕ,
if ũε denotes the solution of this regularization. In the stochastic case, testing the
stochastic parabolic regularization with η(uε−k)ϕ corresponds to the application of
Itô’s derivation formula to Ψ(t, uε) :=

∫
Rd η(uε − k)ϕdx. Notice that the stochastic

perturbation brings two new terms in this derivation formula: one containing an
Itô integral, and another one containing the second-order derivative of η.

Since the support of η′′ is compact, for any i = 1, . . . , d, R 3 r 7→ η′′(r −
k)fi(r) is a bounded continuous function. Then, thanks to the chain-rule for Sobolev
functions, we obtain the following viscous entropy formulation for any P -measurable
set A

0 ≤ E

[
1A

∫ T

0

∫
Rd
η′(uε − k)h(uε)ϕdxdw(t)

]

−εE
[
1A

∫
Q

η′(uε − k)∇uε∇ϕdxdt

]
+ E

[
1A

∫
Rd
η(uε0 − k)ϕ(0)dx

]
+E

[
1A

∫
Q

η(uε − k)∂tϕ− F η(uε, k)∇ϕ+
1

2
h2(uε)η

′′(uε − k)ϕdxdt

]
(3)

:= E[1Aµ
ε
uε,η,k(ϕ)].

3. Entropy formulation. We would like to pass to the limit in (3) with respect
to ε. Because of the random variable, we are not able to use classical results of
compactness. But the one given by the concept of Young measures is appropriate
here, and the technique is based on the narrow convergence of Young measures (or
entropy processes), we refer to E.J. Balder [1] but also to R. Eymard et al. [6].
Since uε is a bounded sequence in N 2

w(0, T, L2(Rd)) and thanks to the compact
support of ϕ in Rd, uε converges (up to a subsequence still denoted uε) in the sense of
Young measures to an “entropy process” denoted by u in L∞(0, T, L2(Ω×Rd×]0, 1[))
with an additional variable α ∈ (0, 1) (cf. [6] §-2.2 or [2] §-5.3.). Precisely, given a
Carathéodory function Ψ : Q×Ω×R→ R such that Ψ(.,uε) is uniformly integrable,
one has:

E

∫
Q

ψ(.,uε)dxdt −−−→
ε→0

E

∫
Q

∫ 1

0

ψ(.,u(., α))dαdxdt.

By assumptions on η, all the integrands in the third line of (3) are uniformly inte-
grable and passing to the limit is possible in all the integrals. One is also able to
pass to the limit in the first term of (3) using the weak continuity of the stochastic
integral from L2(Ω × Q) to L2(Ω × Rd), see [4]. Finally, the a priori estimate on
∇uε yields that the second term of (3) tends to 0 with ε.
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Therefore at the limit one gets

0 ≤ E

[
1A

∫ T

0

∫
Rd

∫ 1

0

η′(u(., α)− k)h(u(., α))ϕdαdxdw(t)

]

+E

[
1A

∫
Rd
η(u0 − k)ϕ(0)dx

]
+E

[
1A

∫
Q

∫ 1

0

[η(u(., α)− k)∂tϕ− F η(u(., α), k)∇ϕ] dαdxdt

]
+

1

2
E

[
1A

∫
Q

∫ 1

0

h2(u(., α))η′′(u(., α)− k)ϕdαdxdt

]
.

Remark 4. Since (uε) is bounded in the Hilbert space N 2
w(0, T, L2(Rd)), by identi-

fication, one shows that uε ⇀
∫ 1

0
u(., α)dα in the same space, and so

∫ 1

0
u(., α)dα is

a predictable process. The interesting point is the measurability of u with respect to
all its variables (t, x, ω, α). Revisiting the work of E. Yu. Panov [9] with the σ-field
PT ⊗ L(Rd), one shows that u is measurable for the σ-field PT ⊗ L(Rd×]0, 1[).

A separability argument for the norm of H1(Q) yields the existence of a Young
measure solution in the sense of the following definition.

Definition 3.1. u ∈ N 2
w

(
0, T, L2(Rd×]0, 1[)

)
∩ L∞

(
0, T, L2(Ω× Rd×]0, 1[)

)
is a

measure-valued entropy solution of (1) with the initial data u0 ∈ L2(Rd) if for any
η ∈ E and any (k, ϕ) ∈ R×D+([0, T ]× Rd),

0 ≤
∫ 1

0

µu,η,k(ϕ)dα, P − a.s.

4. Local Kato inequality. The aim of this section is to discuss about the way
to obtain the following interior Kato inequality, which permits to prove that the
measure-valued solution is an entropy solution in the sense of Definition 1.1.

Proposition 2. Let u1, u2 be measure-valued entropy solutions to (1) with initial
data u1,0, u2,0 ∈ L2(Rd), respectively. Then, for any function ϕ in D+([0, T ]×Rd),
one has

0 ≤
∫
Rd
|u1,0 − u2,0|ϕ(0)dx + E

∫
Q×]0,1[2

∣∣∣u1(t, x, α)− u2(t, x, β)
∣∣∣∂tϕdxdtdαdβ

−E
∫
Q×]0,1[2

F
(
u1(t, x, α),u2(t, x, β)

)
.∇ϕdxdtdαdβ. (4)

Proof. We propose here to present stages of the proof introduced in [2], emphasizing
on differences with the deterministic setting, and stochastic calculus tools chosen.
The main idea is to use Kruzhkov’s doubling variables method. Let us apply the
usual technique and advice when we meet difficulties. For this, we consider two
measure-valued solutions u1, u2 and these inequalities P-a.s.:

0 6
∫ 1

0

µu1(t,x,α),ηδ,k2(ψ)dα ; 0 6
∫ 1

0

µu2(s,y,β),ηδ,k1(ψ)dβ, (5)

where k1, k2 ∈ R and ψ ∈ D+([0, T ]× Rd).
Notice that, by comparing with the deterministic case, the stochastic perturba-
tion of our conservation law brings new terms in the entropy inequalities, the ones
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containing an Itô integral:∫ 1

0

∫
Q

η′δ(u1(t, x, α)− k2)h(u1)ψdxdw(t)dα∫ 1

0

∫
Q

η′δ(u2(s, y, β)− k1)h(u2)ψdydw(s)dβ, (6)

and others containing the second derivative of ηδ:

1

2

∫ 1

0

∫
Q

h2(u1(t, x, α))η′′δ (u1 − k2)ψdtdxdα

1

2

∫ 1

0

∫
Q

h2(u2(s, y, β))η′′δ (u2 − k1)ψdsdydβ. (7)

Usually, we take in (5) k1 = u1(t, x, α), k2 = u2(s, y, β), ψ(t, x, s, y) = ϕ(s, y)ρm(x−
y)ρn(t− s) with ϕ ∈ D+([0, T ]×Rd), suppϕ(t, .) ⊂ K a compact set of Rd, ρn and
ρm the usual mollifier sequences in R and Rd respectively. Then, we integrate the
first inequality with respect to (s, y, β) and the second one with respect to (t, x, α),
we add these two new inequalities and pass to the limit with respect to δ, n and
m.
In our case, there is a problem with this technique when we treat the stochastic inte-
grals (6). Indeed, because of the definition of the Itô integral, we require u2(s, y, β)
to be Ft-measurable and u1(t, x, α)to be Fs-measurable. This is not satisfied be-
cause we ignore if s > t or s < t (recall that Fs ⊂ Ft for 0 6 s 6 t).
For this reason, we keep the variable k in (5), we consider a new mollifier sequence ρl
and we multiply by ρl(u1(t, x, α)− k) the inequality coming from µu2,ηδ,k and inte-
grate with respect to (t, x, α). We also multiply by ρl(u2(s, y, β)−k) the inequality
coming from µu1,ηδ,k and integrate with respect to (s, y, β). Then we add these two
inequalities, integrate over k in R all the formulation and take the expectation, to
get:

0 6 E

∫
Q

∫
]0,1[2

∫
R
µu1,ηδ,k(ϕ(s, y)ρm(x− y)ρn(t− s))ρl(u2(s, y, β)− k)dkdαdβdsdy

+E

∫
Q

∫
]0,1[2

∫
R
µu2,ηδ,k(ϕ(s, y)ρm(x− y)ρn(t− s))ρl(u1(t, x, α)− k)dkdβdαdtdx.

With a judicious order for the passage to the limit, we are able to overcome our
initial difficulty. Indeed, we first pass to the limit as n → ∞, then we get the
same time everywhere (t or s), and the problem of measurability with respect to
the σ-field PT is forgotten. Then, passing to the limit on l, amounts to replacing
u1(t, x, α) and u2(t, y, β) in our formulation, as we wished at the beginning. And
we pass to the limit on δ and m.
The second delicate point appears with terms containing the second derivative of
ηδ (7) when we want to pass to the limit on δ. Indeed, because of η′′δ , we are not
able to identify the limit of those terms, all we can say is that the limit exists
(Tanaka formula). The problem is that we need to know the limit to obtain the
local Kato inequality. For this reason, we decide to apply the method, not with
u2, but with a viscous regular solution uε. Thus, the suitable regularity of such
a solution allows us to apply the Itô formula. Following the idea of J. Feng and
D. Nualart concerning the stochastic terms, the idea remains on combining terms
containing η′′δ with others coming from stochastic calculus. Then, passing to the
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limit as n and l go to infinity on terms containing η′′δ gives:

1

2
E

∫
Rd

∫
Q

∫ 1

0

h2(û)η′′δ (û− uε(t, y))ρm(x− y)ϕdαdtdxdy

+
1

2
E

∫
Rd

∫
Q

∫ 1

0

h2(uε)η
′′
δ (uε − û(t, x, α))ρm(x− y)ϕdαdtdxdy

:= A+B.

Moreover, thanks to the martingale property of the Itô integral, the stochastic terms
can be written like this

E

∫
Q

∫
R

∫ s

s−2/n

∫
Rd

∫ 1

0

η′δ(û− k)h(û)dαϕρm(x− y)ρn(t− s)dxdw(t)

×ρl(uε(s, y)− k)dkdyds

= E

∫
Q

∫
R

∫
Rd

∫ s

s−2/n

∫ 1

0

η′δ(û− k)h(û)dαρn(t− s)dw(t)ϕρm(x− y)dx

×[ρl(uε(s, y)− k)− ρl(uε(s− 2/n, y)− k)]dkdyds

:= Cn,l.

Here the choice of uε instead of u2 is crucial. Indeed, the regularity of uε allows us

to apply Itô’s formula with duε = [ε∆uε + div~f(uε)]dt +h(uε)dw = Aεdt +h(uε)dw
and to get:

ρl(uε(s, y)− k)− ρl(uε(s− 2/n, y)− k)

=

∫ s

s− 2
n

ρ′l(uε(σ, y)− k)Aε(σ, y)dσ +

∫ s

s− 2
n

ρ′l(uε(σ, y)− k)h(uε(σ, y))dw(σ)

+
1

2

∫ s

s− 2
n

ρ′′l (uε(σ, y)− k)h2(uε(σ, y))dσ,

which wasn’t possible with a measure-valued solution. Thus, an integration by parts
with respect to the variable k yields:

Cn,l = −E
∫
Q

∫
R

∫
Rd

∫ s

s−2/n

∫ 1

0

η′′δ (û− k)h(û)dαρn(t− s)dw(t)ϕρm(x− y)dx

×
[∫ s

s− 2
n

ρl(uε(σ, y)− k)Aε(σ, y)dσ+

∫ s

s− 2
n

ρl(uε(σ, y)− k)h(uε(σ, y))dw(σ)

+
1

2

∫ s

s− 2
n

ρ′l(uε(σ, y)− k)h2(uε(σ, y))dσ
]
dkdyds

→n,l −
∫
Q

∫
Rd

∫ 1

0

E
[
η′′δ (û(s, x, α)− uε(s, y)))h(û)h(uε)

]
ϕρm(x− y)dαdydxds

:= C.

Thus,

A+B + C =
1

2
E

∫
Q

∫
Rd

∫ 1

0

[h(û)− h(uε)]
2η′′δ (uε − û)ρm(x− y)ϕdαdydxds

→δ 0.

In summary, this is the plan of the proof. By doing stochastic computations on the
Itô integral and passing to the limit (with classical techniques) with respect to n,
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l, δ, ε, m in this order in

0 6 E

∫
Q

∫ 1

0

∫
R
µû,ηδ,k(ϕ(s, y)ρm(x− y)ρn(t− s))ρl(uε(s, y)− k)dkdαdsdy

+E

∫
Q

∫ 1

0

∫
R
µεuε,ηδ,k(ϕ(s, y)ρm(x− y)ρn(t− s))ρl(û(t, x, α)− k)dkdαdtdx,

we finally obtain the local Kato inequality.

Proposition 3. The measure-valued entropy solution is unique. Moreover, it is the
unique stochastic entropy solution.

Proof. As in the deterministic case, set κ = ‖f ′‖∞, û0 = u0, γ(t) = (T−t)+
T , and

denote by ψ any nonincreasing regular function with 1]−∞,K] ≤ ψ ≤ 1]−∞,K+1],
where K > 0. Then, considering K = R + κT for any R > 0 and ϕ(t, x) =
ψ(|x|+κt)γ(t) in (4) implies that, u(t, x, β) = û(t, x, α) for almost any x ∈ B(0, R),
t ∈]0, T [, ω ∈ Ω, α, β ∈]0, 1[. Thus, on the one hand u = û; on the other hand
u(t, x, α) = u(t, x) is independent of α. Hence, u is the unique stochastic entropy
solution in the sense of Definition 1.1.

Proposition 4. Stochastic entropy solutions satisfy a “contraction principle”: if
u1, u2 are stochastic entropy solutions of (1) corresponding to initial data u1,0, u2,0 ∈
L2(Rd), respectively, then, for any positive K and time t,

E

∫
B(0,K−κt)

|u1 − u2|dx ≤
∫
B(0,K)

|u1,0 − u2,0|dx,

where κ = ‖f ′‖∞.

Proof. This is a consequence of the previous proof when ψ converges to 1]−∞,K].
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Abstract. In this contribution, a macroscopic multi-pedestrian flow is mod-

elled by a system of convection-diffusion equations. The convection corresponds
to a movement towards a strategic direction, whereas the diffusion corresponds

to a tactical movement that avoids jams. Different populations moving in dif-

ferent directions are represented by different phases. Numerical experiments
demonstrate the qualitative behaviour of the simulation model.

1. Introduction. In the last two decades the modelling and simulation of pedes-
trian traffic has become an important tool both for scientific purposes and manage-
ment decisions in the fields of planning and operation of public spaces like airports,
shopping malls, sport stadiums, or public events and manifestations in the context
of trouble-free operation and security. While single destination problems, in par-
ticular evacuation scenarios, have been studied quite intensively, multi destination
problems, where distinct streams of pedestrians move from one or more starting
points to multiple destinations, still yield a broad field for further research. In
particular, intersecting pedestrian streams have not yet been studied in detail. In
the modelling of pedestrian behaviour, methods and models from two basic model
classes are usually applied [5]. In microscopic models, pedestrians are considered
as individual objects interacting with each other, while in it macroscopic models,
pedestrian behaviour is analyzed in terms of more global properties of a continu-
ous stream. Macroscopic models focus on the balancing relationships of particle
density, interpreting pedestrians as particles, flow intensity and flow speed etc. We
refer to [6] for a detailed overview of both vehicular and pedestrian traffic and
the main modelling and simulation approaches. The modelling of pedestrian flows
with macroscopic approaches has received various contributions in the last decade,
see [2, 4, 7, 8, 9, 10]. One reason to model pedestrian flows by fluid physical
models from gas or fluid dynamics results from the observation that in very dense
pedestrian crowds, pedestrians behave quite similarly to gas particles. Most of the
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research in the macroscopic area of pedestrian simulation is, therefore, focussed
on the discussion of partial differential equations, based on physical principles like
mass, momentum and energy balances. This contribution is a further development
of a model, where a convection-diffusion equation with only linear diffusion has been
considered [2, 3]; this further development models crowd avoiding behaviour and
will be part of the full paper version.

2. Modelling. We assume pedestrian flow to be a transport problem principally
defined by a mass balance. Let Ω be an open sufficiently smooth bounded domain
in R2 and (0, T ) an open interval. For (x, y) ∈ Ω, t ∈ (0, T ) the mass equation

∂%i
∂t

+∇ · (%i vi) = 0, i = 1, . . . , n, (1)

describes the mass flow, where t denotes time, %i ∈ [0, 1], vi = vi(%1, . . . , %n), 1 ≤
i ≤ n, the local densities and speeds, respectively, of the i-th component of n ∈ N
distinct pedestrian species. The model developed in the sequel has the general form

∂%i
∂t

+∇ · f i(%1, . . . , %n;x, y) =

n∑
j=1

∇ · (bij(%1, . . . , %n)∇%j), i = 1, . . . , n, (2)

or written in vector form

∂%

∂t
+∇ · f(%) = ∇ ·

(
B(%)∇%

)
, (3)

with the diffusion matrix B(%) = (bij)
n
i,j=1, bij ≡ bij(%1, . . . , %n), 1 ≤ i, j ≤ n,

a flow function f(%) = f i(%1, . . . , %n;x, y))i=1,...,n, and where % = (%1, . . . , %n)T ,
∇% = (∇%1, . . . ,∇%n)T . For n = 2, the equation (2) has been considered in [2] with
the constant diffusion matrix

B(%1, %2) =

(
ε δ
δ ε

)
. (4)

In the sequel we develop a model with a nonlinear diffusion matrix. We assume that
pedestrians, instead of following an uncontrolled uniform diffusion, will try to evade
from crowded spaces. Our model will be based on the assumption that pedestrians
avoid densely populated areas by modifying their motion into the direction of the
negative gradient of the total local density % = %1 + · · ·+ %n. This local orientation
can be metaphorically interpreted by the hypothetical behaviour of blind persons
with white canes, who generally stick to their planned direction, but modify it by
taking a direction away from congestion when they “detect” the gradient.

Our model has to reflect two aspects of pedestrian behaviour that correspond to
strategic and tactic decision making, respectively. On the one hand, a pedestrian
has a target, which he tries to reach, and on the other hand, he might be forced to
deal with local problems like high densities. To take account of these two aspects,
we restart from the mass equation (1) and decompose the velocity as

vi(%1, . . . , %n) = vs
i(%1, . . . , %n) + vt

i(%1, . . . , %n), i = 1, . . . , n, (5)

consisting of the following two components:

• a strategic component vs
i following a strategic goal of reaching a certain des-

tination on a desired path,
• and a tactical component vt

i, which locally avoids densely populated areas.
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Both velocity components are modelled as a product of velocity and direction,

vs
i = aiV ds

i , vt
i = biWdt

i, (6)

where ds
i and dt

i denote the direction field giving a desired strategic and an adapted
tactical walking direction, respectively. The functions V = V (%) and W = W (%)
with % =

∑n
i=1 %i are velocity modules denoting the magnitudes of the speeds in

the respective direction. The constants ai and bi are maximal direction velocities.
Standard strategic directions are for example opposite or perpendicular. For

a two-species model, where n = 2, the most simple examples are given by ds
1 =

(1, 0)T, ds
2 = (−1, 0)T and ds

1 = (1, 0)T, ds
2 = (0, 1)T, respectively.

With these specifications equation (1) can be written as

∂%i
∂t

+∇ ·

{
%i

[
aiV ds

i + biWdt
i

]}
= 0 (7)

The tactical direction is modelled as

dt
i =

{
−∇%/|∇%| for |∇%| > 1,

−∇% for |∇%| ≤ 1,
(8)

using a partial normalization which avoids unrealistic “escape” velocities. Defining

χ(%) =

{
1/|∇%| if |∇%| > 1,

1 if |∇%| ≤ 1,
(9)

we can interpret (7) as an example of model type (2) with

bij(%1, . . . , %n) = −bi %iW χ(%), i, j = 1, . . . , n, (10)

which describes a diffusive flux opposite to the gradient of the total density and
proportional to %i. Here, V is weighting the strategic part of the pedestrian way,
and W the tactical part. A generic assumption for V is to be decreasing,

V (0) = 1, V ′ ≤ 0, V (1) = 0, (11)

which describes a throttling effect at higher concentrations. The more persons are in
a given region, the more they get stuck on their way towards the strategic direction.
The tactical velocity W is assumed to increase,

W (0) = 0, W ′ ≥ 0, W (1) = 1, (12)

which reflects the model assumption that at higher concentrations the tendency
to evade increases. The more persons are blocking the way, the stronger is the
tendency to move on along an alternative trajectory. Being aware of the symmetry
of (11) and (12), one can impose the constraint

V +W = 1 (13)

in order to model the realistic assumption that the partitioning of the flux into a
strategically and a tactically caused directed part also results in a partitioning of a
total velocity, which is normalized to 1. Equality (13) expresses that a pedestrian
has an individual level of moving activity, which he partitions on the alternatives
of either rather moving to the desired target or rather evading from jams.

Condition (13) does not constrain the qualitative behaviour but reduces the
degree of freedom, which is helpful in absence of other modelling guidelines. In this
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contribution, we choose 1− % and opt for the assumption (13). This yields W = %,
hence (10) becomes

bij(%1, . . . , %n) = −bi %i %χ(%), i, j = 1, . . . , n, (14)

that yields a diffusion matrix of the form

B̂(%) = %

b1%1 . . . b1%1

...
...

bn%n . . . bn%n

χ(%). (15)

3. Numerical implementation. We apply a finite volume discretization, as this
approach is well suited for simulating pedestrian dynamics due to its mass pre-
serving properties. For the implementation we use the OpenFOAM package. Our
implementation allows for triangulations with possibly irregular grids. In view of
the reciprocal complementation of discrete microscopic and PDE based macroscopic
models, the further development of our approach will integrate data from a discrete
grid-based microscopic method [1]. In particular, we will use the same grids for both
approaches. This leads to the requirement of cells of approximately the same size
allover the used grids. We use an upwind approximation, obtaining thus a spatial
approximation of first order. This upwind strategy provides a necessary numerical
stabilization of a convective dominated transport equation and produces an artifi-
cial viscosity of at least the order of the meshsize. As a practical consequence we
also get a numerical tool for the resolution of jams reflecting real-life behaviour.

Figure 1. Direction fields of stream 1 (left) and 2 (right).

4. Examples. The following examples illustrate the different behaviour of model
variants (4) with linear diffusion matrix B, which we refer to as the “divergence” or

∆-simulation model and (15) with the nonlinear diffusion matrix B̂, which we refer
to as the “gradient” or ∇-simulation model. We choose the domain Ω = [−1, 1]2,
which we assume to be empty at the beginning, i.e. we set

%i(0, x, y) = 0 for all (x, y) ∈ Ω, i = 1, 2. (16)
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The subboundaries

Γsw =
{

(x, y) : x = −1, y ∈ [−1,−0, 7]
}
, Γnw =

{
(x, y) : x = −1, y ∈ [0.7, 1]

}
,

Γne =
{

(x, y) : x = 1, y ∈ [0.7, 1]
}
, Γse =

{
(x, y) : x = 1, y ∈ [−1,−0.7]

}
,

represent dedicated entries (Γsw,nw) and exits (Γne,se), while

Γc = ∂Ω \ (Γsw ∪ Γnw ∪ Γne ∪ Γse) (17)

denotes the walls. Stream 1 and 2 enter the domain by the entry Γsw and Γnw,
respectively, and leave it by exit Γne and Γse, respectively.

Figure 2. Simulation of the the ∇-model. Total density % =
%1 + %2 (left) and intersecting flux fields (right) at time t = 8.65
(steady state) for weak influxes V %1,2|Γsw,nw =0.0625.

We consider a situation with two pedestrian streams (n = 2) intersecting in an
angle of 90◦. In the strategic direction fields ds

1 and ds
2 the entrances are adjacent

corners. The corresponding exit is located in the remote corners of the square
(Figure 1).

The specification of the convective fluxes is completed by setting a1 = a2 = 1,
V = 1 − %. In order to illustrate the different qualitative behaviours of the two
approaches, we use normalized parameters for the coefficients of the linear diffusion
matrix by setting ε = 0.01, δ = 0 in (4) and b1 = b2 = 1 for the nonlinear diffusion
matrix (15). This choice is motivated by the experimental observation that a larger
ε corresponds to a larger diffusion that is spreading pedestrians rather quickly over
the available space. This takes place independently of the other phase and the total
density. As a consequence, a violation of the condition % ≤ 1 has been observed for
larger values of ε. This effect of undirected diffusion contradicts the assumption that
pedestrian streams are oriented towards specific targets. With these specifications
the model variants reduce for the linear ”∆-model” to

∂%i
∂t

+∇ ·
(
%i(1− %)ds

i

)
= ε∆%i, i = 1, 2, (18)

and for the nonlinear “∇-model” to

∂%i
∂t

+∇ ·
(
%i(1− %)ds

i

)
= ∇ ·

(
%i %χ(%)∇%

)
, i = 1, 2. (19)
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Figure 3. Stimulation results for ∆-model. Density %1 (left) and
flux field (right) at times t = 10 (top) and t = 155 (bottom).

On the walls Γc with exterior normal vector ν one would expect zero-flux boundary
conditions

fΓ =
(
%iV ds

i − ε∇%i
)
· ν for the ∆-model (18),

fΓ =
(
%iV ds

i − %iW χ(%)∇%
)
· ν for the ∇-model (19),

(20)

where V = V (%) is a speed function derived form the fundamental diagram and
W = W (V ) a density-evasion speed weight in Ω. For numerical reasons, these
boundary conditions are not sufficient because boundary layer effects would lead to
numerical densities greater than one in contradiction to the model. Therefore, we
impose the additional conditions

∇ρi · ν = 0, ds
i · ν = 0 for the ∆-model (18),

ρi = 0 for the ∇-model (19).
(21)

The following flux condition at the exits guarantees that all pedestrians entering
the region are able to leave it. The flux condition at the entries guarantees a density
dependent inflow rate while a constant influx rate would lead to a back flow through
the entry in the case of completely occupied regions (or cells in the discrete model)
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Figure 4. Simulation results for ∇-model. Density %1 (left) and
flux field (right) at times t = 10 and t = 395.

near the entry in contradiction to the model assumptions.

∇%i · ν = 0, ds
i · ν = 1, V |Γ = 1 on

{
Γne for i = 1
Γse for i = 2

(exits),

%i = ρi = const, ds
i · ν = −1,

V |Γ = 1 (∆-model),

V |Γ = 1, W |Γ = 0 (∇-model).

on

{
Γsw for i = 1
Γnw for i = 2.

(entries)

(22)

Obviously, numerical stability and conformity with real life situations have been
paid for by possibly discontinuous boundary conditions. This is one of the con-
sequences of the fact, that, on the one hand, PDE based macroscopic models are
indispensable because of their global properties, but, on the other hand, that for
very dense crowds the observed behaviour is only similar to gas dynamics.

The upwind direction is controlled by sign of ds
i in (18) and the sign of (1 −

%)ds
i − %χ(%)∇% in (19), respectively. The examples are computed on an 40× 40 -

grid with regular quadratic cells.
In the case of a 90◦-intersection, supercritical flows should behave more symmet-

ric than in a 180◦-intersection, where the entry of one phase is the shared exit of
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the other, such that a complete blocking by one “winning” phase takes place at the
entry of the other phase.

For small influxes the intersecting pedestrian streams behave qualitatively quite
similar for both models see Figure 2 for a simulation of the ∇-model.

The simulation results for high influxes are compared in Figure 3 and Figure 4
for the ∆-model and the ∇-model, respectively. Since both stream behave symmet-
rically only stream 1 is shown. In a simulation of the ∆-model, a mutual blocking
of both streams occurs in the center of the domain. Also a reciprocal obstruction
already near the entries is observed. These blockings are is caused by a missing eva-
sion strategy and gradually growing in time. The locking due to a missing evasion
strategy The simulation of the ∇-model in contrast there is no mutual blocking in
the center thanks to the avoidance strategy that allows for a better use of the space
to pass by each other. The larger tailback at the exits can be naturally explained by
the low exit rate. For the ∇-model, we observed a maximum flux of about 0.24375
which is well in accordance with the theoretically expected 0.25. A further increas-
ing of the influx would show the effect of overcrowding with a succeeding breakdown
of the flux. This behaviour is better suited to real life situations and probably due
to the more realistic densitiy distribution that emerges which includes a tendency to
phase separation. As a conclusion, comparing both models, the ∇-model is better
adapted at the intended simulation of pedestrian behaviour.
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SOME RESULTS ON THE TWO-DIMENSIONAL DISSIPATIVE

EULER EQUATIONS

Luigi C. Berselli

Dipartimento di Matematica
Università degli Studi di Pisa

Pisa, I-56126, Italy

Abstract. We make a review of some recent results concerning special solu-
tions and behavior at infinity for 2D dissipative Euler equations. In particu-

lar, we give a simplified proof –in the space-periodic setting– of the uniform

space/time boundedness of the first derivatives of the velocity, under suitable
assumptions on the external force and on the dissipation (damping) coefficient.

This is used to sketch the proof of existence of almost-periodic solutions.

1. Introduction. In this paper we summarize some results related with the long-
time behavior of the Euler equations for incompressible fluids in two space dimen-
sions. It is well-known that in the 2D case it is possible to prove, for smooth enough
data, existence and uniqueness of smooth solution, for all positive times (see also
the discussion in the next section for certain less-standard results). It is also clear
that without any smoothing or dissipation, one cannot expect to have uniform
boundedness of the energy and of other interesting quantities as the enstrophy or
higher norms of the velocity. To this end we consider the so-called dissipative Euler
equations

∂tu+ χu+ (u · ∇)u+∇p = f in ]0,+∞[×T,

∇ · u = 0 in ]0,+∞[×T,
(1)

where u = (u1, u2) is the velocity of the fluid with the initial condition u(0) = u0, p
is the kinematic pressure, f = f(t, x) is the external force field, T := (R/2πZ)2 is a
two dimensional torus and all quantities are 2π-space periodic and with vanishing
mean value. The damping term χu (with χ > 0) models the bottom friction in some
2D oceanic models (when the system is considered in a bounded domain; in that
case, the system is called the viscous Charney-Stommel barotropic ocean circulation
model of the gulf stream) or the Rayleigh friction in the planetary boundary layer
(with space-periodic boundary conditions). The positive constant χ is the Rayleigh
friction coefficient (or the Ekman pumping/dissipation constant) or also the sticky
viscosity, when the model is used to study motion in presence of rough boundaries,
see for instance Gallavotti [10]. Early existence results can be found in Barcilon,
Constantin, and Titi [2], while links between the driven and damped 2D Navier-
Stokes, attractors, and statistical solutions are proved in Ilyin, Miranville, and
Titi [12] and Constantin and Ramos [8]. The model (1) represents (probably)
the “weakest” dissipative modification of the Euler equations and results on the
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periodic solutions, transport equation.
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long-time behavior of the damped/driven Navier-Stokes do not directly pass to
the limit as the “viscosity goes to zero,” hence a completely different treatment is
required to study the problem without viscosity. This paper is aimed at sketching
the fundamental steps needed to show existence of almost-periodic solutions and one
key-result is that of showing a sort of asymptotic stability, cf. [15]. In order to use
standard tools based on dissipation to construct almost-periodic solutions we need a
control on the difference of two solutions. The presence of the nonlinear convection
term seems to require an estimate on ‖∇u‖L∞ . To this end we analyze the equation
for the vorticity. Taking the curl of (1) (define ξ := curlu := ∂2u1 − ∂1u2 and
φ := curl f) one obtains

∂tξ + χ ξ + (u · ∇) ξ = φ in ]0,∞[×T, (2)

which is a non-local scalar transport equation (with damping), which plays a fun-
damental role in the sequel.

Moreover, it is well-known that (by the Biot-Savart formula) the velocity can be
reconstructed from the vorticity by recalling that −∆u = ∇⊥ξ. Basic Calderon-
Zygmund or Schauder estimates for the Poisson equations allow us to state that
∇u and ξ are at the same level of regularity in Lp spaces (1 < p <∞) or in Hölder
spaces C0,α. Roughly speaking (full details are given in [5, 6]) the Lp-setting, with
p < +∞ is too weak, while the C0,α setting seems too strong in order to obtain
uniform estimates. This suggest to use a more precise functional framework and in
particular to employ the following well-known potential theoretic result:

∃C0 = C0(T) > 0 : ‖∇u‖L∞(T) ≤ C0‖ξ‖CD(T), (3)

to show boundedness of the gradient of u. We recall that the set of Dini-continuous
functions CD(T) ⊂ C(T) is the subset of continuous functions f : T→ R such that

‖f‖CD(T) := ‖f‖L∞(T) + [f ]CD := ‖f‖L∞(T) +

∫ √22π

0

ω(f, σ)
dσ

σ
< +∞,

where

ω(f, σ) := sup
{
|f(x)− f(y)| : x, y ∈ T, 0 < |x− y| < σ,

}
.

The main reason for the use of this functional space to study the vorticity stems in
the uniform estimate proved in Proposition 1, which –together with (3)– gives the
requested bound. We emphasize that the first use of these spaces for the vorticity
of Euler equations dates back to Beirão da Veiga [4] in the context of global well-
posedness of the 2D problem. In questions of stability the role of Dini-continuous
vorticity has been first recognised by Koch [14], while recent results on global at-
tractors are those proved in [5]. Close relationship between Dini and critical Besov
spaces is analyzed in [11]. We consider Stepanov almost-periodic solutions (see [1]
for further details), which seems the most natural setting for problems related with
the Euler equations. If X is a Banach space we define L2

uloc(X) as the space of
uniformly locally square integrable X-valued functions

L2
uloc(X) :=

{
v ∈ L2

loc(R;X) : sup
t∈R

∫ t+1

t

‖v(s)‖2X ds <∞
}
.

Next, we say that v ∈ L2
uloc(X) belongs to S2(X) or is Stepanov almost-periodic

(with values in X) if and only if the set of the time-translates of v is relatively
compact with respect to the L2

uloc(X)-topology.
The main result of this paper is then the following
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Theorem 1.1. Let be given a divergence-free external force f ∈ S2(L2(T)) with
curl f ∈ L∞(R;CD(T)). There exists χ0 = χ0(f) > 0 such that if χ > χ0, then
there exists an almost-periodic solution u ∈ S2(L2(T)) to the dissipative Euler equa-
tions (1).

Remark 1. The condition on χ can be also read as a smallness condition on f .
Moreover, by standard results due to Dafermos [9], obtained by compact embedding
and interpolation, the solution u will belong also to S2(H1(T)).

Remark 2. Appropriate modifications of the calculations from the next sections
can be used to handle also the more general case of a bounded smooth domain
Ω ⊂ R2 for the problem endowed with the boundary condition u · n = 0 on ∂Ω, see
[6] for full details.

The same approach can be also used (with some additional technical steps) to
prove, in the case of a time-independent force, the following result concerning the
existence of a global attractor, see [5] for full details.

Theorem 1.2. Let be given f ∈ H1(T) such that φ = curl f ∈ CD(T). There
exists χ0(f) > 0 such that if χ > χ0, then, there exists a global attractor A ⊂ C(T),
for the dissipative 2D Euler equations (1).

Remark 3. Also Thm. 1.2 holds true in a bounded smooth domain Ω ⊂ R2 and
moreover the Hausdorff dimension of A turns out to be finite, cf. [5]

2. Existence of weak solutions. In this section we recall some basic results on
existence and uniqueness of weak solutions, proved in Bessaih and Flandoli [7], by
adapting classical results by Yudovich [16] and Bardos [3]. Let V be the space
of infinitely differentiable, periodic, divergence-free, and with vanishing mean value
vector-fields on T. We introduce the usual Hilbert space H defined as the closure of
V with respect to the norm |·| of L2(T)2, with the inner product of L2(T)2, denoted
in the sequel by 〈·, ·〉. As usual, V is the closure of V with respect to the norm ‖ · ‖
of H1(T)2. Identifying H with its dual H ′, and H ′ with the corresponding natural
subspace of V ′, we have the standard Gelfand triple V ⊂ H ⊂ V ′ with continuous
and dense injections. (For simplicity we denote the dual pairing between V and V ′

by the same symbol as for the inner product of H.)

Definition 2.1. We say that the vector field u ∈ C(0,∞;H) ∩ L∞loc(0,∞;V ), with
∂tu ∈ L2

loc(0,∞;V ′), is a weak solution to (1) on [0,∞[ if the following properties
hold ∀ v ∈ V and all t ≥ t0 ≥ 0:

‖u(t)‖2 ≤ ‖u(t0)‖2e−χ(t−t0) + χ−1
∫ t

t0

‖f(s)‖2e−χ(t−s) ds,

|u(t)|2 + 2χ

∫ t

t0

|u(s)|2 ds ≤ |u(t0)|2 +

∫ t

t0

〈f(s), u(s)〉 ds,

〈u(t)− u(t0), v〉+ χ

∫ t

t0

〈u(s), v〉 ds+

∫ t

t0

〈(u(s) · ∇)u(s), v〉 ds =

∫ t

t0

〈f(s), v〉 ds.

We have the following result:

Theorem 2.2. Let be given u0 ∈ V and f ∈ L1
loc(0,+∞;V ). Then, there ex-

ists at least a weak solution to (1). Moreover, if curlu0 ∈ L∞(T) and curl f ∈
L1
loc(0,+∞;L∞(T)), such a solution is unique.
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Proof. The proof of this result is classically based on a vanishing-viscosity approx-
imation. The Navier-Stokes equations are considered for ν > 0

∂tu
ν + χuν + (uν · ∇)uν − ν∆uν +∇pν = f in ]0, T [×T,

∇ · uν = 0 in ]0, T [×T,

for which existence of Leray-Hopf weak solutions in [0, T ] for any positive T is well-
known. Next, by using the vorticity equation for ξν = curluν it is easy to prove
(along Galerkin approximation) that

d

dt
|ξν(t)|2 + χ|ξν(t)|2 + ν|∇ξν(t)|2 ≤ 1

χ
|φ|2,

which can be used to show an uniform bound for the vorticity in L2(T). Then, with
this it is possible to show that the limit u := limν→0+ uν is a weak solution to the
dissipative Euler equations.

The uniqueness in the case of a bounded vorticity for the Euler equations is more
delicate, and it is based on the inequality proved in [16].

∃C > 0, independent of p : ‖u‖Lp(T) ≤ C
√
p‖u‖W 1,2(T) ∀ p ≥ 2.

Since we have a unique solution of (1) we can prove better regularity on it simply
by using representation formulas. It is well-known that if ξ ∈ L∞(T), then this
is not enough to have ∇u ∈ L∞(T) (being the endpoint estimate) hence Lipschitz
characteristics. The boundedness of the vorticity implies that the velocity is Lip-Log
(called also quasi-Lipschitz) and then that the characteristics are unique and Hölder
continuous. In particular, the following result is well-known, see for instance [13].

Lemma 2.3. Let |||ξ||| := sup(s,y)∈[0,T ]×T |ξ(s, y)|, then there exists a constant

c > 0 such that, for all x, x1 ∈ T such that |x− x1| < 1

|u(t, x)− u(t, x1)| ≤ c |||ξ||| |x− x1|[1− log(|x− x1|)].

If U(s, t, x) denotes the solution of the Cauchy problem
dU(t, s, x)

dt
= u(t, U(t, s, x)),

U(s, s, x) = x,
(4)

then, defining δ as follows δ := e−c|||ξ|||T , it holds

|U(s, t, x)− U(s1, t1, x1)| ≤ c|||ξ||| |t− t1|+ e(1 + e c|||ξ|||)(|x− x1|δ + |s− s1|δ).

In order to have Lipschitz characteristics, it would be enough, to have bounded
gradient of the velocity, which will follow from Dini-continuous vorticity.

Moreover, remaining in the setting of Hölder functions it follows (by direct com-
putation) that the composition of Dini and of an Hölder continuous functions is
again a Dini-continuous function.

Lemma 2.4. Let be given f ∈ CD(T) and U ∈ C0,δ(T), then the following estimate
for the Dini’s semi-norm holds true:

[f ◦ U ]CD ≤
1

δ
[f ]CD +

2

δ
log[U ]δ(

√
22π)δ−1.
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Since the Hölder exponent of the characteristics decreases with time, we first fix
an interval [0, T ] and the previous lemma allows to control the Dini-norm of the vor-
ticity, by using the representation formula obtained by following the characteristics
in the equation for the vorticity

ξ(t, x) = ξ0(U(0, t, x)) e−χt +

∫ t

0

φ(s, U(s, t, x)) e−χ(t−s) ds, t ∈ [0, T ]. (5)

By using Lemma 2.4, formula (5), and by reasoning as in [4, 14] one can easily show
that if ξ0 ∈ CD(T) and φ ∈ L1

loc(0,+∞;CD(T)), then ξ ∈ L∞(0, T ;CD(T)), for all
positive T .

Remark 4. By using the Schauder’s fixed point theorem (employed in two slightly
different manners in Ref. [4, 14]) it is possible also to show that ξ ∈ C([0, T ];CD(T)),
for all T > 0, but this is not needed here.

For our purposes the continuity is not so important, but what will be relevant is
the following result.

Proposition 1. Let u0 ∈ V such that ξ0 ∈ CD(T) and φ ∈ L∞(0,+∞;CD(T)).
Then, for large enough χ > 0, the Dini-norm of ξ is uniformly bounded over [0,+∞[.

Proof. We are assuming that we have a unique solution ξ ∈ L∞(0, T ;CD(T)) of
the transport equation (2), for any given T > 0. Then for a.e. t ∈ [0, T ] it follows
∇u(t, ·) ∈ L∞ and U is Lipschitz continuous (especially in the space variable) and
the Lip-norm depends on the Dini-norm of ξ. More precisely, we have the estimate

|∇U(s, t, x)| ≤ e

∫ t
s

sup
y∈T
|∇u(τ, y)| dτ

for (s, t, x) ∈ [0, T ]2 ×T, (6)

but, since the bound on ‖∇u‖L∞ depends on ‖ξ(t)‖CD , it may depend on T > 0.
To show an uniform bound we first observe that the L∞ bound for the vorticity
(shown also in [7]) follows directly from (5) and it is independent of T :

‖ξ(t)‖L∞ ≤ ‖ξ0‖L∞e−χt + sup
t≥0
‖φ(t)‖L∞

1− e−χt

χ
.

We estimate the Dini-continuity of η = ξ eχt on [0, T ]. Observe that, for η we have

the representation formula η(t, x) = ξ0(U(0, t, x)) +
∫ t
0
φ(s, U(s, t, x)) eχs ds, and

‖η(t)‖L∞ ≤ ‖ξ0‖L∞ + sup
t≥0
‖φ(t)‖L∞

eχt − 1

χ
.

Moreover, we observe that [η(t)]CD = [ξ(t)]CDeχt, and we split it as follows:

[η(t)]CD :=

∫ 1

0

sup
|x−y|≤ρ

|η(t, x)− η(t, y)|dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(U(0, t, x))− ξ0(U(0, t, y))|dρ
ρ

+

∫ t

0

∫ 1

0

sup
|x−y|≤ρ

|φ(s, U(s, t, x))− φ(s, U(s, t, y))| eχs dρ
ρ
ds

=: B1 +B2.

(7)
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By making a change of variable by means of the unitary diffeomorphism U(0, t, x)
we have that

B1 ≤
∫ 1

0

sup
|x−y|≤ρ‖∇U(0,t,·)‖L∞

|ξ0(x)− ξ0(y)|dρ
ρ

≤
∫ 1

0

sup
|x−y|≤ρ

|ξ0(x)− ξ0(y)|dρ
ρ

+ 2‖ξ0‖L∞

∫ ‖∇U(0,t,·)‖L∞

1

dρ

ρ

≤ [ξ0]CD + 2‖ξ0‖L∞ log ‖∇U(0, t, ·)‖L∞ ,

and, by appealing to (6), we get

B1 ≤ [ξ0]CD + 2‖ξ0‖L∞

∫ t

0

‖∇u(s)‖L∞ds ≤ [ξ0]CD + 2C0‖ξ0‖L∞

∫ t

0

‖η(s)‖CD ds.

Concerning B2, by making the change of variables by means of U(s, t, x), we have

B2 ≤
∫ t

0

∫ 1

0

sup
|x−y|≤ρ‖∇U(s,t,·)‖L∞

|φ(s, x)− φ(s, y)|dρ
ρ

eχs ds

≤
∫ t

0

[φ(s)]CDeχsds+ 2‖φ(s)‖L∞

∫ t

0

∫ ‖∇U(s,t,·)‖L∞

1

dρ

ρ
eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

log ‖∇U(s, t, ·)‖L∞eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

log ‖∇U(s, t, ·)‖L∞eχsds

≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

∫ t

s

‖∇u(τ)‖L∞)eχsdτds.

Changing the order of integration in the last integral we have

B2 ≤ sup
t≥0

[φ(t)]CD

∫ t

0

eχsds+ 2 sup
t≥0
‖φ(t)‖L∞

∫ t

0

∫ τ

0

‖∇u(τ)‖L∞eχsdsdτ

≤ sup
t≥0

[φ(t)]CD
eχt

χ
+

2C0

χ
sup
t≥0
‖φ(t)‖L∞

∫ t

0

‖η(τ)‖CDdτ.

Collecting all the estimates and by defining Φ := sup
t≥0
‖φ(t)‖CD we arrive at

‖η(t)‖CD ≤ ‖ξ0‖CD +
2Φ

χ
eχt + 2C0

[
‖ξ0‖CD +

Φ

χ

] ∫ t

0

‖η(s)‖CD ds.

By using Gronwall lemma and by coming back to the variable ξ we get

‖ξ(t)‖CD ≤
[
‖ξ0‖CD +

2Φ

χ
− 2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)

]
e
t

[
2C0(Φ+‖ξ0‖CDχ)

χ −χ
]

+
2Φχ

χ2 − 2C0(Φ + ‖ξ0‖CDχ)

which is uniformly bounded on [0 +∞[ if 2C0Φ + 2C0‖ξ0‖CDχ− χ2 < 0, that is if

χ > χ0 := C0‖ξ0‖CD +
√
C2

0‖ξ0‖2CD + 2C0Φ, ending the proof.



ON THE 2D DISSIPATIVE EULER EQUATIONS 331

We are now ready to proceed to the proof of the main result. The first step
consists in proving existence of weak solution defined for all t ∈ R. This is classically
obtained by constructing solutions of the following problems

∂tun + χun + (un · ∇)un +∇pn = f in ]− n,+∞[×T,

∇ · un = 0 in ]− n,+∞[×T,

un(−n) = 0 in T.

(8)

The results of the previous section show the following result.

Proposition 2. Under the hypotheses of Thm. 1.1, for χ >
√

2C0Φ the unique weak
solution of (8) satisfies un ∈ L∞(−n,+∞;V ) and curlun ∈ L∞(−n,+∞;CD(T)).

By extending un to zero for t < n and by standard compactness tools it follows

that un
∗
⇀ u in L∞(R;V ) where u is a weak solution to the dissipative Euler

equations on the whole line. The uniform bounds on ‖∇un‖L∞ imply also that, for
χ large enough

∃C2 = C2(f, χ) : sup
t∈R
‖∇u(t)‖L∞(T) ≤ C2 < +∞, (9)

With the above estimate at hand we can give an outline of an existence result for
almost-periodic solutions.

Sketch of the Proof of Thm. 1.1. The condition that f is S2(H)-almost-periodic
reads: for any sequence {rm} there exists a sub-sequence {rmk} and a function

f̃(t, x) such that

sup
t∈R

∫ t+1

t

|f(τ + rmk)− f̃(τ)|2dτ → 0.

As in [15, §4], we proceed by contradiction. Therefore, there is a weak solution u
to (1) and a sequence {hm} such that

sup
t∈R

∫ t+1

t

|f(τ + hm)− f̃(τ)|2dτ → 0,

and there exist three sequences {tk}, {hmk}, {hnk} and a positive constant δ0 > 0
such that ∫ tk+1

tk

|u(s+ hmk)− u(s+ hnk)|2 ds ≥ δ0, ∀k ∈ N. (10)

Since f is S2(H)-almost-periodic, there exist f∗(x, t) such that

sup
t∈R

∫ t+1

t

|f(τ + tk + hmk)− f∗(τ)|2dτ → 0,

sup
t∈R

∫ t+1

t

|f(τ + tk + hnk)− f∗(τ)|2dτ → 0.

By defining the maps uk1(s) := u(s + tk + hmk) and uk2(s) := u(s + tk + hnk),
inequality (10) can be rewritten as follows

δ0 ≤
∫ tk+1

tk

|uk1(s− tk)−uk2(s− tk)|2ds =

∫ 1

0

|uk1(s)− uk2(s)|2 ds. (11)
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Using the a priori bounds on u we can extract a sub-sequence {ukli } of {uki }, i = 1, 2,
strongly convergent to ui in L2

loc(R;H), for i = 1, 2, respectively. Hence, we can
pass to the limit in (11) to get

δ0 ≤ C
∫ 1

0

|u1(s)− u2(s)|2ds. (12)

By studying the difference u1 − u2 on the interval [t0, 1], with t0 < 0, one can show

(by using (9)) that
∫ 1

0
|u1(s) − u2(s)|2 ds can be made smaller than any positive

constant, by taking t0 sufficiently small. This shows a contradiction and ends the
proof.
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Abstract. In this paper we extend the ADER-approach [12] onto networks

of scalar hyperbolic conservation laws. Within a single edge of the network

the classical scheme can be used. At the nodes we use the shrinking stencils of
[11] to compute the outflow. The inflow conditions are computed by applying

the inverse Lax-Wendroff method to the coupling conditions. Numerical ex-

amples confirm the aimed rates convergence and the stability for discontinuous
solutions.

1. Introduction. Networks of hyperbolic conservation laws have a wide field of ap-
plications. Classical examples are the flow of water or gas in networks of pipelines
[1, 3], as well as the human circulatory system [6]. Networks of scalar conservation
laws can be used to model traffic flow in a network of roads [2, 9], the productiv-
ity of supply chains [8] or telecommunication networks [5]. All these applications
need robust and accurate numerical methods in order to resolve the involved flow
phenomena.

One possible choice are ADER-schemes [12]. This class of schemes combines
high order accuracy in regions of smooth data and robustness in the presence of
discontinuous solutions. They especially provide good numerical results for waves
traveling over long times [12], which is important for networks of large spatial extent.
One main difficulty lies in capturing accurately the solution at the nodes. Since the
structure at the coupling points can be treated similarly to classical boundary value
problems [1], the present approach adapts the ideas of [11], in order to maintain the
high order of accuracy across the nodes .

In the following section the notation of the network problem is shortly recalled.
In section 3 we present the numerical method to compute the solutions at the nodes.
First the shrinking stencil approach is recalled for the outflow edges at a node. For
the inflow edges the temporal derivatives are determined by a successive use of the
coupling conditions and its derivatives. The spatial information is restored via the
inverse Lax-Wendroff procedure. In section 4 some numerical examples for networks
of advection equations and the Burgers equations are presented.

2. Network Notation. We consider a network N = (E,N) consisting of a set of
edges E and a set of nodes N . Along each edge e ∈ E the quantity ue evolves in
time according to a scalar hyperbolic conservation law

(ue(t, x))t + fe(ue(t, x))x = 0 x ∈ [0, Le] . (1)

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. ADER, coupling, hyperbolic conservation laws, network.

333



334 RAUL BORSCHE AND JOCHEN KALL

n

I1

Il Om

O1

...
...

Figure 1. A single node n with l incoming and m outgoing edges.

Here t ∈ R+ denotes the time, x the position on the edge, Le the length of the edge
and fe is the flux function.

At each end of the edge suitable boundary or coupling conditions have to be
prescribed. For classical boundary conditions we refer to [4] and only recall the
notation at a node. The coupling conditions at a single node n ∈ N connecting the
set of edges E(n) = {e1, ..., em} are given by

Φ (ue1(t, 0), ..., uem(t, 0)) = 0 . (2)

For simplicity we assume w.l.o.g. that all edges connected to node n are numbered
from 1 to m and that in each edge x starts at node n. The vector valued function
Φ usually represents a system of nonlinear equations. The well-posedness of such
coupling conditions is studied e.g. in [3] and the references therein. The main
assumptions are that no sonic points occur and in the scalar case the following
condition holds:

det

[
∂

∂ue1
Φ . . .

∂

∂uek
Φ

]
6= 0 , (3)

i.e. to each outgoing edge, e1, . . . , ek , a value can be assigned.
A common example for coupling conditions at a node n, with incoming edges

I(n) and outgoing ones O(n) (Figure 1), is the following set of equations

0 =
∑

e∈I(n)

fe(ue)−
∑

e∈O(n)

fe(ue) ,

fl(ul) = αl

∑
e∈I(n)

fe(ue) ∀l ∈ O(n) .
(4)

The first equation assures the conservation of mass at the node. The second one
distributes the incoming mass onto the outgoing edges according to the distribution
parameters 0 ≤ αl ≤ 1 , l ∈ O(n) with

∑
l∈O(n) αl = 1. Conditions of this type are

used in e.g. [7, 9].

3. Numerical Scheme. The conservation law (1) along the edges is solved using
a generic ADER scheme [12] with the classical WENO reconstruction [10]. For
further details we refer to the given references and focus in the following on the
behavior at the nodes.

3.1. Outflow ends. At a node, as well as at free outflow ends, no information from
outside the given edge is needed. We therefore use a one sided WENO extrapolation
at the boundary, a so called shrinking stencil as in [11].

The idea is, instead of mixing shifted stencils in a non-oscillatory way, to com-
bine a series of shortening stencils, as depicted in Figure 2 for e1. This resulting
reconstruction polynomial is used to extrapolate the data within the computational
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domain onto the ghost cells across the boundary. The actual update can then be
performed by the scheme used inside the edge.

The shrinking stencil only needs some mild modifications compared to the clas-
sical WENO approach. For example the smoothness indicators, detecting possible
discontinuities, can be chosen as usual, except for the smallest stencil of size one.
The computations in [11] show, that for smooth data the magnitude of β0 is of order
O(∆2

x), which motivates the following choices

β0 = (∆x)2 , βr =
k−1∑
l=1

∫ x
i+1

2

x
i− 1

2

∆2l−1
x

(
∂lpr(x)

∂lx

)2

dx .

Here pr denotes the reconstruction polynomial of the sub-stencil of length r ≤ kmax.
According to these choices the prototype weights now change depending to the
stencil length:

dk =

{
∆kmax−1−k

x 0 ≤ i < kmax − 1

1−∑kmax−2
l=0 ∆kmax−1−l

x k = kmax

.

The actual weights for the convex combination of the different reconstruction poly-
nomials can be computed as in the classical WENO procedure

αr =
dr

(ε+ βr)2
, ωr =

αr∑
αi

.

Finally the resulting non-oscillatory reconstruction polynomial

pshrinkkmax
(x) =

kmax∑
r=1

ωrpr(x)

can be used to compute the cell averages of the ghost cells. This approach main-
tains the full order of accuracy in case of smooth data, but as well provides sharp
resolutions in case of strong shock waves.

3.2. Inflow ends. For the inflow ends of the edges, we distinguish between classical
boundaries and inflow from other edges at a node. For the inflow ends of the edges,
we distinguish between classical boundaries and inflow from other edges at a node.
The classical boundaries can be treated exactly as described in [11] or considered
as a node without connection to other edges. The following procedure is used to
fill the missing information in the ghost cells of the edges, but small modifications
might allow a direct incorporation into the ADER approach.

Solving the coupling conditions (2) only restores information of order zero at the
node [9, 2]. The temporal derivatives are governed by the derivatives of the coupling
conditions. In order to achieve a higher order of accuracy we therefore transfer the
available spatial information from the incoming edges into temporal derivatives
at the node using the Lax-Wendroff or Cauchy-Kowalewski (CK) procedure. We
translate these values into temporal derivatives of the inflow edges by successive
application of the temporal derivatives of the coupling conditions (CCl). By the
help of the inverse Lax-Wendroff or Kowalewski-Cauchy (KC) procedure, these data
can be converted into spatial derivatives and thus a full reconstruction polynomial
is obtained, as sketched in Figure 2.

At a given junction we can use the reconstruction polynomials of the edges flowing
into the node, obtained from the shrinking stencils from section 3.1, to collect all the
ingoing information. These spatial reconstruction polynomials can be transformed
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e1

Vertex

Flow

ghost cells of e1
k = 1
k = 2
k = 3

e2

Extrapolation by shrinking Stencil

ghost cells of e2

∂l
xue1

CK→ ∂l
tue1

CCl

→ ∂l
tue2

KC→ ∂l
xue2

cell averages of
the inflow edges

spatial derivatives
at node n of influxes

shrinking stencil WENO reconstruction

temporal derivatives
at node n of influxes

Cauchy-Kowalewski procedure

temporal derivatives
at node n of e2

coupling

spatial derivatives
at node n of e2

Kowalewski-Cauchy procedure

values of ghost cells

integration

Figure 2. A schematic representation of the coupling process.

into polynomials in time at the boundary by the Cauchy-Kavalevsky procedure. As
this is done in the same way as for the ADER approach, no additional computational
effort is required.

The transfer of the information from the outflow ends onto the inflow ends is
managed by the coupling conditions. The leading terms of the temporal polyno-
mials of the edges leaving the node is computed by directly solving the coupling
conditions (2). For the temporal derivatives we consider the derivatives of the cou-
pling conditions w.r.t. time

dl

dtl
Φ(ue1(t, 0), ..., uem(t, 0)) = 0 ∀ 1 ≤ l ≤ kmax−1 . (5)

These resulting linear systems can all be solved easily, since the highest order tem-
poral derivatives in u are only accompanied by the first order derivative of Φ w.r.t.
u. Due to the well-posedness of the coupling conditions (3) this linear system always
has a unique solution. Finally the Kowalewski-Cauchy procedure can be applied,
since no sonic points occur, i.e. f ′ei(uei) 6= 0.

4. Numerical examples. As numerical examples we present a simple network of
advection or Burgers equations. In both cases we used a network of three edges and
two nodes, as depicted in Figure 3.
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n1 n2

e2

e3

e1

Figure 3. A network with one splitting and one merging node.

4.1. Advection equation. Consider for each edge of the network the conservation
law (1) with the flux function f(u) = u. At the nodes we choose the coupling
conditions (4), with α2 = 2

3 and α3 = 1
3 at n1. For n2 no parameter has to be

defined, since the one equation needed is given by the conservation of mass.
As initial data we take the following functions on the edges of the same length
Le1 = Le2 = Le3 = 1 :

ue1(0, x) = sin(2πx) + 3 , ue2(0, x) =
2

3
u0e1(x) , ue3(0, x) =

1

3
u0e1(x) .

They are chosen such that the coupling conditions (2) are matched, as well as all
its temporal derivatives (5) at the initial time. Since all edges transport with the
same speed and the frequencies coincide, the data remains smooth over time, even
across the coupling at the nodes. It is important to notice that we intentionally
used a CFL number less than one, since for a CFL number equal to one the scheme
yields the exact solution.
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0 0.5 1
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0.8
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1.2

1.4

x

K3

t = 0 / reference solution t = 100 k = 1 t = 100 k = 8

Figure 4. The solutions in e1 and e2 of an advection network at
t = 100, computed with 60 cells per edge.

In Figure 4 we show the solution at time t = 100 on the edges e1 and e2. At this
time the sine wave has passed 50 times the network. The solution of the scheme
of order k = 8 still matches perfectly the exact one, while the first order version
suffers remarkable diffusion. In Table 1 we show the errors and the corresponding
rates of convergence. We omit the data for finer grids and higher order methods,
since in both cases the errors reach the bounds of the machine imprecision.
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k = 4 k = 5
N L∞ order L1 order L∞ order L1 order
60 2.34e-07 1.51e-07 5.29e-09 3.37e-09
120 1.46e-08 4.00 9.33e-09 4.02 1.65e-10 5.00 1.05e-10 5.00
240 9.16e-10 4.00 5.83e-10 4.00 5.22e-12 4.99 3.30e-12 4.99

Table 1. Errors and rates of convergence on the advection network.

4.2. Burgers equation with smooth data. In this example we present the be-
havior of the scheme for a network of Burgers equations, i.e. we choose f(u) = u2

for (1). In (4) we choose α2 = 16
25 and α3 = 9

25 . The initial data is set according to
the following functions

ue1(0, x) =
1

10
sin(2πx) +

1

2
, ue2(0, x) =

2

25
sin

(
5

4
2πx

)
+

2

5
,

ue3(0, x) =
3

50
sin

(
5

3
2πx

)
+

3

10
.

Furthermore, the lengths of the edges are adjusted such that each contains exactly
one period of the initial values, i.e. Le1 = 1, Le2 = 4/5, Le3 = 3/5. All these
values are chosen such that the characteristics are always positive and the coupling
conditions, as well as the equations for all their derivatives (5), are met at the time
t = 0.
In Figure 5 the initial data and the solution in e1 and e2 at time t = 0.2 are shown.

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6
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0 0.2 0.4 0.6 0.8

0.35
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x
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0 0.2 0.4 0.6

0.25

0.3

0.35

x

K3

t = 0 t = 0.2

Figure 5. Burgers equation on e1 and e2, initial data and solution
at t = 0.2

At this time the waves only have moved a short distance, but the top already
starts forming into a shock wave. In Table 2 we show the errors and the rates of
convergence for the schemes of order k = 5 and k = 7. It can be clearly seen that the
desired order of convergence is present as long the error is not yet in the magnitude
of the machine imprecision. Especially methods of even higher order converge so
fast, that the imprecision of floating point operations prevents proper measurement
of the rates of convergence.
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k = 5 k = 7
N L∞ order L1 order L∞ order L1 order
50 3.19e-07 6.64e-08 3.58e-08 2.22e-09
100 9.74e-09 5.03 1.91e-09 5.12 2.88e-10 6.96 1.89e-11 6.87
200 2.30e-10 5.40 5.52e-11 5.11 2.22e-12 7.02 1.37e-13 7.11
400 7.31e-12 4.98 1.66e-12 5.06 2.49e-14 6.48 5.15e-15 4.74
800 2.26e-13 5.02 5.06e-14 5.03 3.81e-14 -0.61 5.53e-15 -0.10
Table 2. Errors and convergence rates for a network of Burgers equation.

4.3. Burgers equation with discontinuous data. As final example we consider
the network of Burgers equations with discontinuous data. As initial data a single
block is placed in e1, while the values in e2 and e3 are constant

ue1(0, x) =


4 x < 0.3

5 0.3 ≤ x ≤ 0.8

4 0.8 < x

, ue2(0, x) =
16

5
, ue3(0, x) =

12

5
.

All edges are of the same length Le = 1, e = e1, e2, e3 and the coupling conditions
are as in the example above. From the initial time t = 0 the block in e1 moves to
the right. While the front shock remains sharp, a rarefaction wave develops at the
first jump. At about t = 0.22 the discontinuity reaches the node n1 and splits up
into two blocks. Both waves pass the junction and travel further in the edges e2
and e3. In Figure 6 we show the solution of a scheme of order k = 5 on a grid
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Figure 6. The solution at t = 1.2 in e2 and e3, of a scheme of
order k = 5 with 50 cells.

of 50 cells together with a reference solution. The numerical values are displayed
as step function to emphasize the difference to the reference solution. We see that
the shock has passed the node without oscillations and is resolved sharply in both
edges. The not shown order of convergence is near to one due to the discontinuity
in the data.
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5. Conclusion. Based on the ideas of [11] we developed a ADER method for net-
works of scalar conservation laws. The numerical examples show a good agreement
with the expected accuracy and robustness in case of discontinuous data. The ad-
ditional computational costs at the nodes are small compared to the total effort of
the scheme.
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Abstract. In this work, we discuss some numerical properties of the viscous
numerical scheme introduced in [8] to solve the one-dimensional pressureless

gases system, and study in particular, from a computational viewpoint, its

asymptotic behavior when the viscosity parameter ε > 0 used in the scheme
becomes smaller.

1. Introduction. In this work, we focus on the one-dimensional system describing
a pressureless gas, which writes, for any T > 0,

∂tρ+ ∂x(ρu) = 0, (1)

∂tq + ∂x(qu) = 0, (2)

in (0, T ]×R, where ρ(t, x) ≥ 0 is the gas density and q(t, x) ∈ R is the momentum
at time t ∈ [0, T ] and location x ∈ R. The gas velocity u(t, x) ∈ R must be somehow
defined as a quotient of q by ρ, but there is trouble when ρ is 0. That is why one
needs the notion of duality solutions [5], previously introduced for conservation laws
[4]. Clearly, (1) and (2) can be seen as conservation laws, for mass and momentum
respectively. System (1)–(2) is supplemented with initial conditions

ρ(0, ·) = ρin, q(0, ·) = qin. (3)

This system arises from very various physical situations (cold plasmas [3], astro-
physics [17, 9], traffic models [1, 13]...) and has been mathematically studied in
numerous articles, such as [14, 10, 16, 5].

We here choose a periodic framework: we focus on [0, 1] and impose that mass
density, velocity and momentum have the same values at both x = 0 and x = 1, so
that the solutions are 1-periodic.
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When ρ and u are smooth, and if ρ remains non zero, (2) can be modified into
the standard Burgers equation thank to (1):

∂tu+ ∂x

(
u2

2

)
= ∂tu+ u∂xu = 0. (4)

The mass density ρ then solves a basic transport equation, where u is given: it
does not depend on ρ because of (4). But it is common knowledge that, in finite
time, a mass concentration phenomenon can happen, for instance, when u does not
increase. Consequently, the regularity properties of u and ρ are lost, and u does
not solve (4) anymore.

From the numerical viewpoint, one can think about several ways to discretize
(1)–(3). Kinetic schemes [3, 6] or particle methods [12] allow to use the kinetic
framework underlying the pressureless gas dynamics. It is also natural to try nu-
merical schemes related to hyperbolic conservation laws [15] or relaxation schemes
[2].

In [8], we prove that upwind schemes were not an option, since they failed to
ensure the discrete one-sided Lipschitz (OSL) condition introduced [11] for convex
scalar conservation laws. Then, following the strategy of [7] at the continuous level,
we add an artificial viscosity. The new diffusive scheme we obtain is proven to
be L∞-stable and consistent, hence converging towards the solution of the viscous
pressureless gases system. In particular, it satisfies the discrete OSL condition.
We here investigate, at the numerical level, the asymptotic behavior of the same
numerical scheme when the artificial viscosity vanishes.

2. Diffusive numerical scheme. Let us recall the diffusive scheme we presented
in [8]. Consider ∆t, ∆x > 0 such that N = T/∆t ∈ N and I = 1/∆x ∈ N, and set
λ = ∆t/∆x. Denote ρni , qni and uni the approximate values of ρ, q and u at time
n∆t ∈ [0, T ] and location (i + 1/2)∆x ∈ [0, 1], for 0 ≤ n ≤ N and 0 ≤ i < I. Of
course, thanks to the periodicity property, ρni , qni and uni can be extended for any
i ∈ Z.

For the sake of readability, in the previous notations, we may drop the time
iteration index n and replace n+ 1 by a prime symbol “ ′ ”.

Note that the discrete OSL condition can be written as nλ(uni+1 − uni ) ≤ 1, for
any i and n > 0.

Let us describe step by step the strategy for our scheme.

2.1. Periodic initial data. We choose arbitrary 1-periodic initial data ρin ≥ 0,
uin ≥ 0. Indeed, the viscous problem in [7] deals with mass density and velocity,
and not momentum.

2.2. Regularizing initial data. We take a fixed ε > 0, small enough. We may
have to regularize both uin and ρin so that uin, ρin ∈ C1(R;R∗+) satisfy the assump-
tions of Theorem 2 in [8], i.e.

ρin(x) ≥ Cε1/4, uin(x) ≤ C, (uin)′(x) ≤ C√
ε
, ∀x ∈ [0, 1], (5)

where C ≥ 0 is a constant not depending on ε. Note that ρin must lie in R∗+, since
the continuous viscous model involves a division by ρ.
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The following quantities

U = max
[0,1]

uin > 0, V = min
[0,1]

uin > 0,

A = max(0,max
[0,1]

(uin)′) ≥ 0, R = min
[0,1]

ρin > 0,

may depend on ε. More precisely, they must satisfy properties inherited from (5),
i.e.

R ≥ Cε1/4, V ≤ U ≤ C, A ≤ C√
ε
, (6)

where C ≥ 0 does not depend on ε.

2.3. Choosing the time and space steps. The steps ∆t and ∆x > 0 are then
chosen such that

0 < ∆x ≤ 2V

1 +A
, (7)

0 < ∆t ≤ min

(
1

4A+ 1
,

1

4U
∆x,

R

4ε(1 +AT )
∆x2

)
, (8)

where we set λ = ∆t/∆x and σ = ∆t/∆x2.

2.4. Writing the scheme. We eventually write the discretization of the viscous
pressureless gases system as

u′i = ui − λ
(
ui

2

2
− ui−1

2

2

)
+
εσ

ρi
(ui−1 + ui+1 − 2ui), (9)

ρ′i = (1− λu′i)ρi + λu′i−1ρi−1. (10)

2.5. Properties of the scheme. In [8], we prove the following

Theorem 2.1. We assume that (7)–(8) hold. Then we have, for any i and n ≥ 0,

V ≤ uni ≤ U, uni − uni−1 ≤
A∆x

1 +An∆t
, ρni ≥

R

1 +An∆t
≥ R

1 +AT
> 0.

Moreover, the discrete total mass is conserved. Finally, when ε > 0 is fixed, scheme
(9)–(10) is first-order consistent (in both t and x) with the viscous pressureless gases
system, and is monotonic.

In other words, both discrete unknown functions satisfy maximum principles, and
the discrete velocity satisfies the OSL condition. Assumptions (8) on ∆t are crucial
to ensure the stability of the scheme. They are related to the standard assumptions
to get stability for explicit schemes on transport or diffusion equations.

3. Numerical study. The viscosity parameter ε > 0 is chosen in the first place.
We use several values of ε in the following computations: 10−4, 10−5, 10−6, 5×10−7,
10−7 and the smallest value ε0 = 10−6/14, which will be considered as the reference
situation. We take T = 1 s as the final time. Moreover, we focus on one case with
(almost, see the discussion below) smooth initial data. It allows to point out all
the problems arising the pressureless gases system, in particular the regularity loss
phenomenon, already explained in Section 1.

We set, for any x ∈ [0, 1],

ρin(x) = 1 +
1

2
cos(4πx), uin(x) = 2x(1− x) +

1

2
.
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We clearly have U = 1, V = 1/2, A = 2 and R = 1/2. When ε belongs to the set
of values above, (6) is clearly satisfied. Nevertheless, uin is not C1(R;R∗+). Indeed,
there is an issue at the bounds of [0, 1]. Therefore, we should need to regularize
uin. Fortunately, it is not necessary: the regularization near 0 and 1 can happen on
intervals whose length may be chosen smaller than 2∆x. We can choose it so that
(uin)′ remains in [−2, 2], and consequently, A still equals 2.

Let us now choose ∆x = 20ε. Again, if ε belongs to our same set of values, (7)
obviously holds. Then ∆t can be taken as the optimal possible value given by (8),
i.e. ∆t = εmin (5, 50/(1 + 2T )) = 5ε.

We want to study the behavior of our numerical solution with respect to ε. In
the following, since % has a measure meaning when ε goes to zero, it is really more
convenient to focus on the cumulative mass M , defined by

M(t, x) =

∫ x

0

%(t, y) dy.

We first draw the evolution of M and u with respect to x, at two different times,
before and after approximately t = 0.5. Indeed, until t = 0.5, at the continuous
level, u solves the Burgers equation, and there is no regularity loss. But, near time
t = 0.5, a regularity loss happens because of mass concentration and subsequent
vacuum appearance.
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Figure 1. Behavior, at time 0.4, of M (a) on [0, 1], (b) focused
around x = 0.2
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Figure 2. Behavior, at time 0.4, of u (a) on [0, 1], (b) focused
around x = 0.2

The solutions are then displayed for various values of ε. More precisely, Fig. 1–2
respectively give the behavior of M and u at time t = 0.4, i.e. before the regularity
loss. Of course, the curves are sharpened with smaller values of ε, but there is still
no jump at all for either ρ or u.
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Fig. 3–4 then present the typical profiles of both M and u after the regularity
loss, here given at final time T = 1. The jump is now visible at x = 0.59 on both
figures, and u of course still decreases at the jump abscissa.
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Figure 3. Behavior, at final time, of M (a) on [0, 1], (b) focused
around x = 0.59
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Figure 4. Behavior, at final time, of u (a) on [0, 1], (b) focused
around x = 0.59

Let us now study the evolution of the total momentum

Q(t) =

∫ 1

0

ρ(t, x)u(t, x) dx

with respect to time.
As the reader can see on Fig. 5, till the regularity loss, the numerical conservation

of Q is quite satisfactorily ensured. The property is not recovered after the loss.
This drawback of our scheme (9)–(10) was already pointed out in [8]: we had to
choose between the total momentum conservation (if we write a scheme for ρ and
q) and the OSL condition (for which we wrote a scheme for ρ and u). The latter is
in fact crucial to ensure that we select the right solution to the pressureless gases
system. Nevertheless, we can at least state that the order of magnitude of Q is
conserved.

Eventually, we focus on the behavior with respect to ε. We focus on the following
quantities

EM (t) = max
x∈[0,1]

|M(t, x)−M0(t, x)|, (11)

Eu(t) = max
x∈[0,1]

|u(t, x)− u0(t, x)|, (12)

for the values ε under study. Quantities indexed by 0 are of course the ones related
to the reference value of ε, ε0. Quantities on coarser grids are projected on the
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Figure 5. Checking the momentum for several values of ε

(fine) grid of the reference value (ε0 corresponds to 700,000 space cells) in order to
compute the discretized versions of (11)–(12).

Fig. 6–7 respectively show the behavior of EM and Eu with respect to time.
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Figure 6. Behavior of EM w.r.t. t for several values of ε

These results give us hints of what should be the asymptotic behavior of our
solutions, in particular when we loose regularity. The convergence seems very slow
in ε but it was expected since the smallest power of ε in the main hypotheses of the
scheme is equal to one fourth, see Eqn. 6. That partially explains that the errors are
quite large, even for quite small values of ε. In fact, we were not able to understand
why ε = 10−7 gives such a different behavior (in order of magnitude) compared to
not so larger values of ε, whereas, from 10−4 to 10−6, the results are close after the
regularity loss.
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Figure 7. Behavior of Eu w.r.t. t for several values of ε

4. Perspectives. As expected, the crucial point in the asymptotic behavior of our
scheme is strongly linked to the regularity loss phenomenon which occurs for the
pressureless gases. We should be able to prove reasonable convergence estimates
with respect to ε as long as the solutions remain smooth. Beyond the regularity
loss, the situation remains quite unclear.
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Abstract. We analyze the coupling between different nonlinear hyperbolic
equations across possibly resonant interfaces. The proposed reformulation of

the problem involves a nonconservative product that is understood through

a self-similar viscous approximation. We obtain the existence of a coupled
solution to the Riemann problem in this thin interface regime, and underline

the persisting multiplicity of solutions for some Riemann data, even in simple

situations. Another regularization strategy is then studied, that corresponds
somehow to a thick interface regime. This other selection criterion leads to a

well-posed problem and we thus consider a finite volume scheme to approximate

its solution.

1. Introduction.

1.1. Context of this work. The main aim of this work consists in the improve-
ment of the numerical simulation of multi-scale phenomena in the nuclear technol-
ogy. Namely, in such a context one has typically to couple different existing codes
for thermalhydraulic flows, each one of them computing a different and specific
part of the flow in the powerplant installation. There is however a strong practical
constraint in play: the coupling procedure has to be as non-invasive as possible,
using for example the data for the physical variables in only one cell on each side
of the inferface, or making the usefull information passing through a buffer zone.
The natural question is then: how to design such a coupling procedure adapted
to nonlinear hyperbolic problems ? More importantly: how much is this coupling
procedure mathematically and physically satisfactory?
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These questions have made the object of a large litterature in the past decade and
connects strongly with the problematic of solving discontinuous conservation laws.
We refer the reader for example to the works of Audusse and Perthame [2], Seguin
and Vovelle [16], Andreianov, Karlsen and Risebro[1], or Panov [15]. However it
is important to notice that our point of view is here slightly different. We are
interested in the nonconservative coupling. This framework also applies to consider
active control devices in which mass may be injected at a well chosen location
to prevent from slugging effects in the flow, therefore with a singular (localized)
nonconservative term.

1.2. The state-coupling problem. Let consider the coupling between different
nonlinear hyperbolic equations across a fixed interface, say at x = 0 considering for
convenience only the one space variable problem, with unknown w(x, t) ∈ Rd:

∂tw + ∂xf
±(w) = 0, t > 0, ±x > 0. (1)

The flux functions f+ and f− are supposed to be different and a supplemented
coupling condition, modeling the transient exchange of informations at the interface,
reads as the continuity of the unknown w or of a nonlinear transformation of it
u(x, t) = θ±(w(x, t)), ±x > 0, say

u(0−, t) = u(0+, t), t > 0. (2)

In the hyperbolic framework, it is well-known that such a trace condition has to
be formulated in a weak form, for example following the theory for boundary con-
ditions in hyperbolic problems developed by Dubois and LeFloch [12] and used
more recently in the context of the coupling by Godlewski and Raviart [13]. How-
ever, multiple solutions to a given Riemann problem may then occur. We underline
that due to the expected continuity condition (2), the Rankine-Hugoniot relation at
x = 0 only provides another global formulation of (1) with a measure source term:

∂tw + ∂xf(x,w) = (f+(w(0+, t))− f−(w(0−, t)))δx=0, t > 0, x ∈ R, (3)

where f(x,w) := f±(w) for ±x > 0.
Using the set of admissible traces in half-Riemann problems, Chalons, Raviart

and Seguin [10] have studied the coupling of two Euler systems with different equa-
tion of states. They obtain some uniqueness results under condition and prove in
certain cases a large non-uniqueness. Another similar result is obtained in the case
of general scalar flux functions in [9]. The difficulty arising with the thin interface
coupling problem lies in the fact that the initial value problem, even with appar-
ently well-defined interface conditions, is often ill-posed, so that this model does
not fully determine the dynamic of the relevant solution. A supplemented selection
criterion has to be added to recover uniqueness. As an example for such a selection
criterion, one can think at this level of the theory of L1-dissipative admissibility
germs developed by Andreianov, Karlsen and Risebro in [1].

1.3. Formulation of the extended system. The keystone of the present work
consists in considering the coupling interface as being a standing wave for an aug-
mented system of partial differential equations

∂tu+A(u, v)∂xu = 0, ∂tv = 0. (4)

For the sake of simplicity, we restrict here the situation to the situation where
θ± = Id. The new variable v ∈ R plays the role of a color function and one sets for
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example A(u, v) = v∇f+(u)+(1−v)∇f−(u), with v(x) = 0 for x ≤ 0 and v(x) = 1
for x > 0.

Obviously, when ∇f+ and ∇f− have eigenvalues with different signs, then the
whole system (4) in (u, v) may fall only non-strictly hyperbolic: 0 is an eigenvalue
with multiplicity more than two. Think typically to the scalar situation where one
has A(u, v) = vλ+(u) + (1− v)λ−(u) which may vanish for some v ∈ (0, 1) as soon
as λ+(u)λ−(u) < 0.

The system (4) inherits therefore the well-posedness difficulty of the original
coupling problem, through its non-strict hyperbolicity and its nonconservativeness.

1.4. Outline of the paper. The present paper organizes as follows. In a first
part we consider the so-said thin interface regime. Considering vanishing viscosity
self-similar solutions, we get an existence result and illustrate the remaining non-
uniqueness for some simple scalar examples. Then, in a second part, we explore a
thick interface regime derived from the previous extended PDE system and prospect
the above mentionned non-uniqueness through some numerical experiments.

2. The thin interface regime.

2.1. The self-similar viscous approximation. The definition of the weak solu-
tions for the nonconservative system (4) in the resonant regime is tackled turning
back to the self-similar vanishing viscosity analysis of Dafermos [11]. This method-
ology was successfully introduced by Tzavaras [17] and by Joseph and LeFloch [14]
to get existence results in hyperbolic systems in nonconservative form. The first
results of existence for such solutions in the coupling framework have been obtained
in the scalar case by Boutin, Coquel and Godlewski [4]. In [5], we extend this
analysis to the coupling of hyperbolic systems. We consider the solution uε of

(−ξId +A(uε, vε))uεξ = εuεξξ, −ξvεξ = ε2vεξξ, (5)

together with the boundary conditions:

lim
ξ→−∞

uε = u`, lim
ξ→+∞

uε = ur. (6)

2.2. An existence result. Under fairly general assumptions we obtain the exis-
tence of self-similar weak solutions to the Riemann problem for (4), as limit of (a
subsequence of) uε as ε goes to zero.

Theorem 2.1 ([5]). There exists a solution uε of (5)-(6) that converges pointwise
to u ∈ BV satisfying in the sense of distributions

− ξuξ + (f±(u))ξ = 0, ±ξ > 0, (7)

and the entropy inequalities (with η± two convex functions and q± the associated
entropy fluxes)

− ξ(η±(u))ξ + (q±(u))ξ ≤ 0, ±ξ > 0. (8)

The proof of this result is based on a fixed point argument and requires some
smallness estimate on the interaction coefficients involving the different waves of
the hyperbolic system (including the stationnary wave emanating from the sup-
plemented variable v). These smallness estimates follow directly from the strictly
hyperbolic character of the whole system in the variable u and from the closeness of
the fluxes f+ and f− and of the Riemann data u` and ur. Moreover the interaction
coefficient involving the interfacial wave and the possibly resonant wave is under
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control. In the easier scalar setting, the same result extends without any closeness
assumption on the Riemann data, nor on the flux functions.

2.3. The analysis of the internal structure of the layer. In order to un-
derstand if the diffusive approach achieves a selection of solutions in the resonant
situations, we investigate the internal structure of the coupling interface [6]. To
that aim, we consider a usual change of variable in the analysis of shock profiles
and set Uε(y) = uε(εy) and Vε(y) = vε(εy) for y ∈ R.

Hereafter follow some property of the limiting profile in the scalar setting:

• U is a monotone bounded smooth function (U ∈ C2(R)), with the same mono-
tonicity as u (given by the sign of ur − u`),
• the limit of U as y tends to ∞ (denoted U∞), and as y tends to −∞ (de-

noted U−∞) satisfy to the following conditions: f−(u(0−)) = f−(U−∞),
q−(u(0−)) ≥ q−(U−∞) and f+(U+∞) = f+(u(0+)), q+(U+∞) ≥ q+(u(0+)).
In other words, there may be an interfacial layer corresponding to an entropy
0-shock for the left problem, or for the right problem, or for both,
• U solves the ODE: A(U ,V)Uy = Uyy, on y ∈ R.

In Figures 1 and 2, we draw up a map of possible diffusive self-similar Riemann
solutions for each given Riemann data (u`, ur). To that purpose, we rule out the
solutions for which all known necessar conditions are not fullfiled. The Figure 1
concerns the fluxes f−(u) = u2/2 and f+(u) = (u − c)2/2 with c > 0. In the
Figure 2, we choose c < 0, reverting the natural order between the sonic points of
these quadratic fluxes. As a consequence the resonance phenomenon reveals a large
variety of non-uniqueness situations. The vanishing viscosity process however has
selected at most a finite number of solutions for each Riemann data, as expected (a
Laplace stability analysis provides a new necessar condition for solutions involving
two waves and an intermediate constant state, see [6]).

3. The thick interface regime.

3.1. A well-posed balance law. In [7] and [8], we consider another regulariza-
tion strategy based on thick interfaces. First of all, we reformulate the augmented
system (4) to handle the case of a smoothed fixed color function v so that it reads
as a conservation law with lipschitz source term (it should be understood as a
regularization of the singular source term in (3)):

∂tw + ∂xf(w, v) = `(w, v)∂xv, with `(w, v) = ∂vf(w, v). (9)

The choice for the interface profile function v is thought here somehow arbitrary
but it suppresses any difficulty due to the above mentionned resonant behavior. It
is yet expected that different choices of v lead to different solutions w.

On the other side, we define a thick coupling condition to fully characterize the
dynamic of solutions through the thick interface. The expected coupling condition
(2), i.e. θ−(w(0−, t)) = θ+(w(0+, t)), is now ensured by requiring the PDE (and
later the scheme) to preserve the u-constant states w where we set w = C0(u, v).
Here C0(u, v) is a function connecting smoothly θ−1

− (u) to θ−1
+ (u) as v goes from

0 to 1. It is supposed to realize the following monotonicity assumptions that
∂uC0(u, v) > 0 for any u ∈ R and any v ∈ [0, 1].

Theorem 3.1 (A Kružkov theorem). As soon as v ∈W 2,∞(R), and for any initial
Cauchy data w0 ∈ L1(R) ∩ L∞(R), there exists a unique w ∈ L∞(R+, L

1(R) ∩
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Figure 1. Diffusive self-similar Riemann solutions for the coupling
of two quadratic fluxes (c > 0)

L∞(R)) , solution of (9) satisfying the entropy inequalities

∂tU(w) + ∂xF(w, v)− L(w, v)∂xv ≤ 0. (10)

(See [7] for the details of the notation)

3.2. Finite volume approximation and prospecting results. A new well-
balanced finite volume scheme is proposed in [7]. It approximates the entropy
solution of (9) and preserves exactly the equilibria satisfying the thick coupling
condition. This scheme is based on a non co-localized finite volume method with two
distinct grids. An adapted reconstruction step ensures the required well-balanced
property (see [3] for a review). The family of approximate solutions is proved to be
uniformly bounded in sup-norm under a naturel CFL condition and the convergence
of the numerical solution to an entropy measure-valued solution is obtained via
infiniety many entropy inequalities and the use of DiPerna’s theory. The numerical
solution is shown to converge to the unique solution of Kružkov theorem.

Some numerical experiments are conducted in order to understand the sensitive-
ness of the selected solution with relation to the structure of the interface. We
parametrize the choice of the interface profile with two parameters η > 0 and ζ ∈ R
and set v(x) = 1

2 (erf(x/η+ζ)+1). The fluxes are the one corresponding to Figure 2
(with c < 0) where the resonant effects occur in the thin interface regime. In Fig-
ure 3 we represent three different selected interface profiles with various values for
the parameter ζ and the same fixed small value for the parameter η. In Figures 4
and 5, the corresponding solutions w computed with 1000 points for the coupling
problem with θ± = Id. In the first case, the solution consists in a double rarefaction
fan with an intermediate constant state. We observe that the obtained intermediate
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Figure 2. Diffusive self-similar Riemann solutions for the coupling
of two quadratic fluxes (c < 0)
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Figure 3. Three interface profiles

state depends on the interface profile. In the second case, the solution consist in a
unique shock, either for the left problem, or for the right problem, or a standing
discontinuity at x = 0. These numerical results illustrate the unstability of the
solution with respect to the interface profile function in the resonant situations.
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GLOBALLY OPTIMAL AND NASH EQUILIBRIUM SOLUTIONS

FOR TRAFFIC FLOW ON NETWORKS

Alberto Bressan
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Abstract. We consider a conservation law model of traffic flow on a network
of roads, where drivers choose their departure times in order to minimize the

sum of a departure cost and an arrival cost. Drivers can have different origins

and destinations, and different cost functions. Under natural assumptions,
two main results have been established: (i) the existence of a globally optimal

solution, minimizing the sum of the costs to all drivers, and (ii) the existence

of a Nash equilibrium solution, where no driver can lower his own cost by
changing his departure time or the route taken to reach destination. In the

special case of one single road, the global optimum and the Nash equilibrium

are uniquely determined.

1. Introduction. Starting with the classical papers [14, 15], conservation law mod-
els have been widely used in the analysis of traffic flow [5, 6, 7, 10, 11, 12, 13]. Most
of these studies were concerned with modeling, prediction, and control of traffic
flow, on a single road or on a network of roads.

We adopt here a different perspective, looking at vehicular traffic in connection
with decision problems [1, 2, 3, 4, 8, 9]. Traffic patterns are determined by the
choices of a large number of individual drivers; each one choosing his departure time
and the route to reach destination in an optimal way, for a given cost criterion.

To begin with a simple example, consider a group of drivers starting from a
location A (a residential neighborhood), who wish to reach a destination B (a
working place) at a given time T , all driving on the same road. There is a cost
for starting early and a cost for arriving late. These costs can also account for
the discomfort of waking up early in the morning or spending a long time stuck in
traffic. Denoting by τd and τa respectively the departure and the arrival time, the
total cost to each driver can be described as

Ψ
.
= ϕ(τd) + ψ(τa) . (1)

For example, one could choose the penalty functions

ϕ(s) = −s , ψ(s) = aeb(s−T ) (2)

for suitable constants a, b > 0. If L is the length of the road connecting A with B,
and v is the (constant) speed of cars, then τa = τd + L

v and the optimal departure
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time for each driver is

τdopt = argmin
s

{
ϕ(s) + ψ

(
s+

L

v

)}
. (3)

However, if everyone adopts this same strategy and departs exactly at the same time,
in a real life situation a big traffic jam is created and this strategy is not optimal
anymore. Clearly, the simple-minded solution (3) does not take into account the
impact of traffic density on the velocity of cars.

Calling ρ = ρ(t, x) the density of cars at time t at the point x along the road, we
thus consider the conservation law

ρt + [ρ v(ρ)]x = 0 . (4)

Here the decreasing function v = v(ρ) describes the velocity of cars depending on
the density. Let κ > 0 be the total number of drivers. In connection with the above
model, a natural problem can be considered.

(I) - Global Optimization Problem. Find a departure rate ū(·) which mini-
mizes the combined total cost to all drivers.

Let x ∈ [0, L] be the space variable, denoting points along the road, and let

u(t, 0)
.
= ρ(t, 0) v(ρ(t, 0)) = ū(t) (5)

be the departure rate at time t, measuring how many drivers enter the highway per
unit time. We regard t 7→ ū(t) as a control function, that can be assigned at will,
subject to the obvious constraints

ū(t) ≥ 0 ,

∫ ∞
−∞

ū(t) dt = κ . (6)

Let ρ = ρ(t, x) be the solution of conservation law (4), defined for (t, x) ∈ IR ×
[0, L], with boundary data (5) assigned at x = 0, and let

u(t, x)
.
= ρ(t, x) v(ρ(t, x)) t ≥ 0 , x ∈ [0, L]

be the corresponding flux. The optimization problem can thus be stated as

minimize: J(u) =

∫
ϕ(t)u(t, 0) dt+

∫
ψ(t)u(t, L) dt . (7)

The above problem is relevant if there exists a central planner who can decide
the departure time of all vehicles. In a more realistic situation each driver makes
an individual choice, minimizing his own cost function given the traffic pattern
determined by the decisions of all the other drivers. This leads to a different math-
ematical problem, namely:

(II) - Equilibrium problem. Find a departure rate ū(·) which yields a Nash
equilibrium solution, i.e., a solution where no driver can reduce his own cost by
choosing a different departure time.

Clearly, this implies that in an equilibrium solution all drivers share the same
total cost (departure cost + arrival cost).

Recent results concerning the existence, uniqueness, and characterization of glob-
ally optimal and of Nash equilibrium solutions are described in Section 2. As men-
tioned in Section 3, the existence results remain valid also in the case of several
groups of drivers, with different origins and destinations, different departure and
arrival costs, traveling on a general networks of roads. The difficult issue of stability
of Nash equilibria is discussed in Section 4.
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2. A single road. As usual, we assume that the flux function ρ 7→ ρ v(ρ) is strictly
concave down and attains a positive maximum M for some density ρ∗ > 0. Here
M is the maximum flux of cars that can transit on the highway. Since in (6) we
are not requiring that ū(t) ≤ M , we need to specify what happens if the flux of
cars arriving at the entrance of the highway is strictly larger that this maximum
flux. As in [1], we shall simply assume that a queue is formed at the entrance of
the highway. The length q(t) of this queue varies in time according to

q̇(t) =

{
ū(t)−M if q(t) > 0 ,

0 if q(t) = 0 .

As remarked in [1], it is convenient to switch the usual role of the variables t, x,
and write (4) in the form of a conservation law for the flux u = ρv(ρ):

ux + f(u)t = 0 , u(t, 0) = ū(t) . (8)

The function u 7→ f(u) = ρ is here defined as a partial inverse of the function
ρ 7→ ρ v(ρ) = u, mapping [0,M ] onto [0, ρ∗]. The advantage of this new formulation
is that, instead of a boundary value problem, we now have a Cauchy problem, whose
solution can be determined by the Lax formula. More precisely, let

U(t, x)
.
=

∫ t

−∞
u(τ, x) dτ

be the total number of drivers that have crossed the point x along the highway before
time t. Then the function U provides a viscosity solution to the Hamilton-Jacobi
equation

Ux + f(Ut) = 0 , U(t, 0) = U(t) . (9)

Here U(t) =
∫ t
−∞ ū(s) ds denotes the total number of drivers that have started their

journey before time t (joining the queue at the entrance of the highway, if there is
any). Interpreting U = U(t, x) as the value function for an auxiliary optimization
problem, and calling f∗ the Legendre transform of f , for every x > 0 the solution
of (9) is provided by

U(t, x)
.
= inf

τ

{
x f∗

( t− τ
x

)
+ U(τ)

}
. (10)

Globally optimal solutions and Nash equilibrium solutions will be studied under
the following natural set of assumptions.

(A1) The flux function f : [0,M ] 7→ IR is continuous, increasing, and strictly
convex. It is twice continuously differentiable on the open interval ]0, M [
and satisfies

f(0) = 0 , f ′′(u) ≥ b > 0 for 0 < u < M . (11)

(A2) The cost functions ϕ,ψ are locally Lipschitz continuous and satisfy

ϕ′ < 0 , ψ, ψ′ > 0 , lim
x→−∞

ϕ(x) = lim
x→+∞

(
ϕ(x)+ψ(x)

)
= +∞ . (12)

The following results were proved in [1].

Theorem 1 (globally optimal solutions). Under the assumptions (A1)-(A2),
for every κ > 0 there exists a unique solution u = u(t, x) of (8), with initial values
u(0, x) = ū satisfying the constraint (6), which minimizes the total cost (7).

(i) The optimal solution is continuous, i.e., it contains no shocks. Moreover, it
does not produce any queue at the entrance of the highway.
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(ii) On the support of u, the sum of the departure and arrival costs along all
characteristics is constant. More precisely, if x 7→ t(x) = t0 + xf ′(ū(t0)) is
any characteristic line where u > 0, then

ϕ(t0) + ψ(t(L)) = C , (13)

for some constant C independent of t0.

Theorem 2 (Nash equilibrium solutions). Under the assumptions (A1)-(A2),
for every κ > 0 there exists a unique Nash equilibrium solution u = u(t, x) of (8),
with initial values u(0, x) = ū satisfying the constraint (6).

Calling τa(t) the arrival time of a driver departing at time t, one has

ϕ(t) + ψ(τa(t)) = C (14)

for every t in the support of ū. Here C is a constant independent of t.

Remark 1. In general, the Nash equilibrium solution produces a queue at the
entrance of the highway, and contains shocks. Notice the further difference between
(13) and (14):

• For a globally optimal solution, the sum ϕ(t(0)) + ψ(t(L)) is constant along
characteristics. These are straight lines, defined by dx/dt = v(ρ) + ρv′(ρ).
• For a Nash equilibrium solution, the sum ϕ(τ(0)) +ψ(τ(L)) is constant along

car trajectories. These are curves defined by dx/dt = v(ρ).

Remark 2. The Nash equilibrium satisfies a minimax property: among all admis-
sible departure rates ū which satisfy (6), it minimizes the maximum total cost to
each driver. With the same notation as in (14), it was proved in [4] that the Nash
equilibrium provides a solution to the problem

minimize: sup
{
ϕ(t) + ψ(τa(t)) ; t ∈ Supp(ū)

}
.

For further analysis and examples of these solutions we refer to [1]. Continuous
dependence on data was studied in [4].

3. A network of roads. In this section we consider a more general model of traffic
flow where drivers travel on a network of roads. Let A1, . . . , Am be the nodes of
the network. Along the arc γij connecting Ai with Aj , we assume that the flow of
traffic is described by the conservation law

ρt + [ρ vij(ρ)]x = 0 . (15)

Here t is time and x ∈ [0, Lij ] is the space variable along γij . We assume that the
velocity vij is a continuous, nonincreasing function of the car density ρ. If vij(0) > 0
we say that the arc γij is viable. If the two nodes i, j are not directly linked by a
road, we simply take vij ≡ 0, so that the arc is not viable. We consider n groups
of drivers traveling on the network, distinguished by the locations of departure and
arrival, or by their cost functions. More precisely:

• All drivers of the k-th group depart from a node Ad(k) and arrive at a node
Aa(k), but can choose different paths to reach destination.

• Any driver of the k-th group, departing at time τd and arriving at destination
at time τa, will incur in the total cost ϕk(τd) + ψk(τa).
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For k ∈ {1, . . . , n}, let Gk be the total number of drivers in the k-th group. Of
course, we assume that there exists at least one chain of viable arcs

Γ
.
=
(
γ
i(0),i(1)

, γ
i(1),i(2)

, . . . , γ
i(ν−1),i(ν)

)
(16)

with i(0) = d(k) and i(ν) = a(k), connecting the departure node Ad(k) with the
arrival node Aa(k). We denote by

V .
=
{

Γ1, Γ2, . . . , ΓN

}
the set of all viable paths (i.e. concatenations of viable arcs) which do not contain
any closed loop. For a given k ∈ {1, . . . , n}, we call Vk ⊂ V the set of all viable
paths for the k-drivers, connecting Ad(k) with Aa(k).

Let Gk,p be the total number of k-drivers who travel along the path Γp. The
assumption that every driver eventually reaches destination means that∑

Γp ∈ Vk
Gk,p = Gk for every k. (17)

We shall use the Lagrangian variable β ∈ [0, Gk,p] to label a particular driver in this
subgroup. The departure and arrival time of this driver will be denoted by τdk,p(β)

and τak,p(β), respectively. With this notation, the definition of globally optimal and
of Nash equilibrium solution can be more precisely formulated.

Definition 1. Given population sizes G1, . . . , Gn, a family of departure timings
τdk,p : [0, Gk,p] 7→ IR is a globally optimal solution if it provides a global minimum
to the functional

J
.
=
∑
k,p

∫ Gk,p

0

(
ϕk(τdk,p(β)) + ψk(τak,p(β))

)
dβ , (18)

subject to the constraints (17).

Definition 2. A family of departure timings {τdk,p} is a Nash equilibrium solu-
tion if no driver can lower his total cost by changing departure time or the route
taken to reach destination. This is the case if and only if there exist constants
c1, . . . , cn such that:

(i) For almost every β ∈ [0, Gk,p] one has

ϕk(τdk,p(β)) + ψk(τak,p(β)) = ck . (19)

(ii) For all τ ∈ IR, there holds

ϕk(τ) + ψk(Ak,p(τ)) ≥ ck . (20)

Here Ak,p(τ) is the arrival time of a driver that starts at time τ from the node Ad(k)

and reaches the node Aa(k) traveling along the path Γp.

Notice that (i) means that all k-drivers bear the same cost ck, regardless of the
path Γp that they take to reach destination. Moreover, (ii) means that no k-driver
can achieve a cost < ck by choosing any other starting time τ .

We observe that, given the departure times τdk,p(β), the corresponding arrival

times τak,p(β) depend on the overall traffic pattern on the entire network. This is

obtained by solving the various conservation laws (15) on every arc, with suitable
conditions at junctions, specifying the priorities assigned to drivers that wish to
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enter the same road. A simple condition governing junctions was considered in [3],
assuming that a separate queue can form at the entrance of each road. Drivers
arriving at the node Ai from all incoming roads γ`i, and who want to travel along
the arc γij , join a queue at the entrance of this outgoing arc. Their place in the
queue is determined by the time at which they arrive at Ai, first in first out. With
these modeling assumptions, the following results were proved in [3].

Theorem 3 (existence of globally optimal solutions on networks). Assume
that, for every viable arc γij the corresponding flux function f = fij satisfies (A1).
Moreover, assume that for every k = 1, . . . , n the cost functions ϕk, ψk satisfy (A2).
Then, for any n-tuple (G1, . . . , Gn) of nonnegative numbers, there exists departure
timings τdk,p : [0, Gk,p] 7→ IR satisfying (17) which yield a globally optimal solution
of the traffic flow problem.

Theorem 4 (existence of a Nash equilibrium solutions on networks). Un-
der the same assumptions on Theorem 3, for any n-tuple (G1, . . . , Gn) of nonneg-
ative numbers there exists departure timings τdk,p : [0, Gk,p] 7→ IR satisfying (17),
which yield a Nash solution of the traffic flow problem.

Remark 3. In the case of one group of drivers traveling on a single road, the
uniqueness of the globally optimal solution stated in Theorem 1 is an easy conse-
quence of the characterization (14). The uniqueness of the Nash equilibrium, stated
in Theorem 2, is derived from a monotonicity argument. Indeed, the departure dis-

tribution U(t) =
∫ t
−∞ ū(t) dt for a Nash equilibrium can be characterized as the

pointwise supremum of a family of admissible distributions, satisfying an additional
constraint of the form (14). In the case of several groups of drivers on a network of
roads, the existence of a Nash equilibrium stated in Theorem 4 is proved by a fixed
point argument. By its nature, this topological technique does not yield information
about uniqueness or continuous dependence of the Nash equilibrium.

Remark 4. It would be interesting to see if the above theorems remain valid
for more general models of road intersections. Instead of putting a buffer at the
beginning of each outgoing road, the Riemann solvers studied in [6, 10, 11] allow
for the back-propagation of queues along incoming roads. These models are more
realistic. However, it is not clear if the corresponding solutions are sufficiently well
behaved, in order to to apply the same arguments used in [3].

4. Stability of the Nash equilibrium. For simplicity, consider one group of
drivers on a single road. Assume that on a given day the departure rate is ū(·). If
this is not a Nash equilibrium, on the next day some drivers may decide to depart at
a different time, hopefully achieving a lower individual cost. An interesting question
is whether, iterating this process, after several days the traffic pattern will approach
an equilibrium solution.

To set the ideas, given a departure distribution ū, call

Φū(t) = ϕ(t) + ψ(τa(t))

the total cost to a driver who departs at time t. Notice that the arrival time τa

depends on the departure time t but also on the overall traffic pattern, i.e. on ū.
Two models have been proposed in [4], describing how drivers can change their
behavior day after day. To simplify the mathematical analysis, it is convenient to
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replace the discrete variable recording the day on the calendar by a continuous time
variable s.

Model 1. Drivers who initially depart at time t continuously modify their departure
time, depending on the gradient Φūt of the cost. The evolution of the departure rate
ū is then described by

d

ds
ū = (Φūt ū)t . (21)

Model 2. Drivers who depart at time t may decide to jump to a different departure
time τ ∈ IR, with probability proportional to the difference in cost. This leads to
the integro-differential evolution equation

d

ds
ū(t) =

∫
ū(τ)

[
Φū(τ)− Φū(t)

]
+
dτ −

∫
ū(t)

[
Φū(t)− Φū(τ)

]
+
dτ , (22)

where [a]+
.
= max{a, 0}.

In both cases the key issue is whether, as s → ∞, the departure rate ū(·) con-
verges to the unique Nash equilibrium. At the present date, this problem is com-
pletely open. Quite surprisingly, numerical simulations reported in [4] indicate that
the equilibrium solution may be unstable, while solutions of (21) or (22) approach
a chaotic attractor. Even for initial data close to equilibrium, linearized stability
has not been rigorously investigated.
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Abstract. We introduce new finite differences schemes to approximate one

dimensional dissipative semilinear hyperbolic systems with a BGK structure.

Using accurate analytical time-decay properties of the local truncation error,
it is possible to design schemes based on standard upwinding schemes, which

are increasingly accurate for large times when computing small perturbations

of constants asymptotic states.

1. Introduction. Consider the following class of one dimensional BGK systems:

∂tf
i + λi∂xf

i = Mi(u)− f i, i = 1, ...,m. (1)

Here f i ∈ Rk, u :=
∑m
i=1 f

i, x ∈ R and t > 0, and the functions Mi = Mi(u) ∈ Rk
are smooth functions of u such that:

∑m
i=1Mi(u) = u.

To obtain the time decay rates of these solutions, we need to rewrite the problem
in more suitable coordinates. Following [3], we rewrite the BGK system in its
conservative-dissipative form for the new unknowns

Z = (u, Z̃)T .

It is proved in [3] that, under some dissipativity conditions and for initial data
which are small and smooth in some suitable norms, the time decay of the global
solutions, for large times and in the L∞-norm, is given by

∂lxu = O(t−1/2−l/2), ∂lxZ̃ = O(t−1−l/2),

and similar estimates are available for their time derivatives. Notice that the im-
proved estimate for Z̃ can only be obtained in these new coordinates.

The aim of this paper is to give a brief overview of the way it is possible to take
advantage of these precise decay estimates to build up more accurate numerical
schemes. Actually, we can see that, for standard numerical schemes, like for instance

2000 Mathematics Subject Classification. Primary: 65M12; Secondary: 35L65.
Key words and phrases. Finite differences methods, dissipative hyperbolic problems, BGK

systems, asymptotic behavior, asymptotic high order schemes.
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the upwind scheme with the source term approximated pointwise by the standard
Euler scheme, the truncation error has the following decay as t→ +∞:

Tu(x, t) = O(∆x t−3/2) +O(∆t t−3/2),
TZ̃(x, t) = O(∆x t−3/2) +O(∆t t−3/2).

(2)

It can be seen numerically that the corresponding absolute error, for a fixed space
step, decays as

eu(t) = O(t−1/2),ez(t) = O(t−1),

which implies that the relative error is essentially constant in time.
Here, our main goal is to improve the decay estimates on the truncation order to

achieve an effective decay in time of the relative error, both in u and Z̃. To obtain
this result, we perform a detailed analysis of the behavior of the truncation error
for a general class of schemes, called ”Time Asymptotically High Order” (TAHO)
schemes, which generalize those introduced in [2]. Thanks to this analysis, we are
able to select some schemes such that the truncation order behaves as

Tu(x, t) = O(∆x t−2), TZ̃(x, t)) = O(∆x t−2), (3)

for a fixed CFL ratio and such that the numerical error observed in the practical
tests improves of t−1/2 on other schemes.

The plan of the paper is the following. In Section 2, we introduce our analytical
framework. The main schemes are derived in Section 3, where we show how to
improve the time decay of their local truncation error. Section 4 presents some
numerical tests which show the nice behavior of our new schemes in two test cases.

2. The analytical framework. Following [3], we rewrite system 1 in its conserva-
tive-dissipative form. This means that we assume that there exists an invertible
matrix

D =

(
D11 D12

D21 D22

)
, (4)

such that, setting m1 = k, m2 = k(m− 1), the new unknown

Z = Df = (u, Z̃)T ∈ Rk × Rm2 , (5)

solves the system {
∂tu+A11∂xu+A12∂xZ̃ = 0,

∂tZ̃ +A21∂xu+A22∂xZ̃ = Q̃(u)− Z̃, (6)

where A is symmetric and Q̃(u) is quadratic in u, i.e.: Q̃(0) = 0 and Q̃′(0) = 0.
Observe that, after this transformation, which a priori is not unique, the source
term is zero in the first component and the second one is the sum of a quadratic
term and of the dissipative term −Z̃.

Moreover, when transforming system 1 in system 6, we can always assume that
blocks D11 and D12 have the special form

D11 = Ik, D12 = (IkIk · · · Ik) ∈ Rk×m2 ,

and, setting Λ = diag(λ1Ik, ..., λmIk), we have that

A =

(
A11 A12

A21 A22

)
= DΛD−1.

Therefore, we can rewrite our system in a more compact form:

∂tZ +A∂xZ = −Z +DM(u). (7)
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To guarantee the existence of the matrix D in 4, we can assume that our system
is strictly entropy dissipative in the sense of [5] and verifies the Shizuta-Kawashima
condition [6, 5, 3].

For instance, using Bouchut’s Entropy dissipation condition [4], it is possible to
prove the existence of a matrix D in 4, with all the above properties.

2.1. The simplest example: the Jin-Xin 2× 2 relaxation system. Consider
the following system {

∂tu+ ∂xv = 0,
∂tv + λ2∂xu = F (u)− v, (8)

with λ > 0. The unknowns u and v are scalar and the function F = F (u) is smooth,
with F (0) = 0. This case is obtained from 1 for k = 1, m = 2, and λ2 = −λ1 = λ,
by setting

u = f1 + f2, v = λ(f2 − f1), F (u) = λ(M2 −M1).

Under the condition

λ > |F ′(0)|, (9)

the problem is dissipative, at least in a small neighborhood of the origin, in the
sense of [5] and the Shizuta-Kawashima condition is verified.

In this case the conservative-dissipative form is obtained by using

D =

(
1 1

−µa+ µa−

)
,

where a = F ′(0), µ = (λ2 − a2)−1/2 is real and positive, a± = λ ± a > 0, from
assumption 9.

2.2. A 3 × 3 BGK example. Let us now compute the conservative-dissipative
form for the following 3× 3 BGK model, ∂tf1 − λ∂xf1 = M1(u)− f1,

∂tf2 = M2(u)− f2,
∂tf3 + λ∂xf3 = M3(u)− f3.

Let F = F (u) be a smooth scalar function such that F (0) = 0 and let γ be such
that γ′(u) = |F ′(u)|, with γ(0) = 0. We choose our three maxwellian functions as
follows, for β ∈]0, 1[ and λ > 0

M1(u) =
1

2

(
γ(u)− F (u)

λ
+ βu

)
,M3(u) =

1

2

(
γ(u) + F (u)

λ
+ βu

)
,

M2(u) = u−M1(u)−M3(u) = (1− β)u− γ(u)

λ
.

The functions Mi, i = 1, 2, 3, are strictly increasing if for any u under consideration

λ >
|F ′(u)|
1− β

,

and so the entropy dissipation condition [4] is verified. Let a = F ′(0) and α =
|a| + βλ, following the results in [4, 5, 3], the matrix D for the transformation in
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the conservative–dissipative form 5 is given by

D =



1 1 1

α+a
α−a

√
λ(α−a)
α(α+a) 0 −

√
λ(α−a)
α(α+a)

−
√

λ−α
α −

√
λ−α
α + λ√

α(λ−α)
−
√

λ−α
α

 .

3. The numerical approximation. In this section we first introduce general fi-
nite difference approximations for system 1. Then, we compute the local truncation
error of these schemes and we discuss its decays properties. The main result is
given in Theorem 3.1, where a class of Time Asymptotically High Order (TAHO)
schemes is fully characterized. First, we approximate the differential part following
the direction of the characteristic velocities, so we study the methods for the system
in diagonal form 1.

We denote by f = (f1, ..., fm) the exact solution. Let ∆x the uniform mesh-
length and xj = j∆x the spatial grid points for all j ∈ Z. The time levels tn, with
t0 = 0, are also spaced uniformly with mesh-length ∆t = tn+1 − tn for n ∈ N. We
denote by ρ the CFL ratio ρ = ∆t/∆x, which is taken constant through all the
paper.

We consider the Cauchy problem for system 1 possibly subjected to some stability
conditions. The initial data f0 is supposed to be smooth and approximated by its
node values. The approximate solution (f1j,n, ..., f

m
j,n)T , f ij,n ∈ Rk, i = 1, ...,m, for

j ∈ Z and n ∈ N, is given by

f ij,n+1 − f ij,n
∆t

+
λi

2∆x

(
f ij+1,n − f ij−1,n

)
− qi

2∆x
δ2xf

i
j,n

=
∑

l=−1,0,1

(
Bil(uj+l,n)− βilf ij+l,n

)
,

(10)

with f ij,0 = f i0(xj) and δ2xfj,n = (fj+1,n − 2fj,n + fj+1,n), for all i = 1, ...,m.

The artificial diffusion terms qi are diagonal matrices in Rk×k+ . The source term

approximation is defined, for l = −1, 0, 1, by the diagonal matrices βil ∈ Rk×k and
by the vectors of functions Bil(·) ∈ Rk.

We assume the scheme 10 is consistent with system 1, i.e, for all i = 1, ...,m

βi−1 + βi0 + βi1 = Ik + ∆xCi,

Bi−1(u) + Bi0(u) + Bi1(u) = Mi(u) + ∆xCi(u),

where Ci = diag(ci1, ..., c
i
k) ∈ Rk×k and Ci(u) are k functions to be defined.

3.1. Decay properties of the local truncation error. In this section we focus
on the local truncation error for the general scheme 10. By applying the time decay
properties given in [3], we will show how it is possible to build up numerical schemes
which are more accurate for large times.

Set, for i = 1, ...,m,

C = diag(Ci), C̄ = DCD−1, C(u) = (Ci(u))T , γi = (βi1 − βi−1).

Scheme 10 is clearly consistent. Now, using the time decay estimates in [3] and
similar estimates for their time derivatives, we obtain for a general approximation
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the following estimates for the local truncation error, as t→ +∞:

Tu(x, t) = O(∆x t−3/2) +O(∆t t−3/2),Tz(x, t) = O(∆x t−3/2) +O(∆t t−3/2).

We would like to improve the decay property of this local truncation error to build
up more accurate numerical schemes. The main idea is to chose the free parameters
of the scheme to delete the terms that decay more slowly in the Taylor expansion
of the local truncation error (see [1] for details).

Let gi = diag(γ(i−1)k+1, ..., γik) for i = 1, ...,m and G = diag(g1, ..., gm).

Theorem 3.1 (Local Truncation Error). Let ∆t/∆x = ρ be fixed and let H =
diag(h1, . . . , hm) be the block diagonal matrix given by H = DTD and set P =∑m
i=1 λ

2
ih
−1
i . Assume A11 6= 0 and that the following condition holds:

the matrix (λiIk −A11) is invertible for i = 1, ...,m.

If we make the following choice for the coefficients of the scheme 10,

C = −ρ
2
Ikm, C = CM(u) = −ρ

2
M(u), (11)

gi = −
(

1

2
qih
−1
i −

ρ

2
h−1i

(
P − (λiIk −A11)2

))
(λiIk −A11)−1hi (12)

and

Γ′i(u) = giM
′
i(u) +

ρ

2

(h−1i −M
′
i(u))A11 + λiM

′
i(u)− h−1i

m∑
j=1

λjM
′
j(u)

 , (13)

both for i = 1, ...,m, then the scheme 10 is TAHO and the local truncation error
reads

Tu(x, t) = O
(
∆x t−2

)
+O

(
∆x2 t−3/2

)
,Tz(x, t) = O

(
∆x t−2

)
+O

(
∆x2 t−3/2

)
.

For the proof and further considerations in case A11 = 0 we refer to [1].

4. Numerical tests. In this Section we show how, for large time simulations,
TAHO schemes give better numerical results than standard approximations for both
examples considered in Sections 2.1 and 2.2.

Specifically, we shall compare our TAHO scheme with two numerical approxi-
mations: i) a source pointwise approximation, denoted by STD and defined by 10
with Γi = 0, γi = 0, Ci = 0 and Ci = 0, for i = 1 =, ...,m; ii) a source upwinding
approximation, denoted by ROE and defined by

f ij,n+1 − f ij,n
∆t

+
λi

2∆x

(
f ij+1,n − f ij−1,n

)
− |λi|

2∆x
δ2xf

i
j,n

=
Mi(u

n
j−1) + 2Mi(u

n
j ) +Mi(u

n
j+1)

4
+
sgn(λi)

4
(Mi(u

n
j−1)−Mi(u

n
j+1))

−
f ij−1,n + 2f ij,n + f ij+1,n

4
− sgn(λi)

4
(f ij−1,n − f ij+1,n).

(14)

To complete the definition of scheme 10 coupled with conditions 11-13 it is still
necessary to choose some free parameters, such as for the 2×2 case B1,20 (·) and β1,2

0 .
For both cases considered, such parameters can be defined by applying monotonicity
conditions to the scheme. We refer to [1] for more details.

For all tests, we focus our attention on the numerical error as a function of time:
we plot the error e(t) = ‖(uH − Uh)(t)‖L∞ as the time t = n∆t increases, where
uH is the reference solution obtained by the ROE scheme 14, with ∆x = O(10−4).
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Then, given different numerical approximations Uh, we look for a constant C
and γ which best fit the equality

e(t) = ‖(uH − Uh)(t)‖L∞ = Ct−γ . (15)

Given N data points (ti, e(ti))i=1,N , we shall define γ and C as the solution of the
following least squares problem,

min
C,γ

N∑
i=1

| ln(e(ti))− ln(Ct−γ)|2.

For all schemes, we fix the steps ratio ρ to verify all the CFL conditions. Since
all schemes are of first order approximation, to emphasize the good behaviour of
TAHO compared to the others schemes, we compute the numerical solutions Uh by
using a quite big grid step ∆x = O(10−1).

All numerical results we present show that for standard approximations, such as
STD and ROE, the absolute error e(t), for a fixed space step, decays as

eu(t) = O(t−1/2), ez(t) = O(t−1),

while for the TAHO scheme, it improves of t−1/2 on the previous schemes.

4.1. Results for the Jin–Xin 2 × 2 system. We fix q = λ and we compare for
the 2×2 case the TAHO scheme coupled with monotonicity assumptions, with ROE
and STD scheme. We shall consider as initial datum the function

u0 = χ[−1,1]
(
−x2 + 1

)
, z0 =

1

λ
F (u0(x)),

and we fix

F (u) = a
(
u− u2

)
.

The numerical results 1 show a better performance of the TAHO scheme; for both
conservative and dissipative variable, the numerical solution obtained by TAHO
fit better the benchmark curve. Again, the decay of the errors eu(t) and ez(t),
Figure 1-(c)-(d), goes faster for the TAHO scheme, as confirmed by Table 1. There
the decay parameter γ is numerically computed for all three schemes. The value
obtained for the TAHO scheme improve of t−1/2 on the others. We stress on that
the numerical solutions are computed with quite big step ∆x = 0.1.

4.2. Results for the 3× 3 system. As initial data, we take the smooth function
u0 defined by

u0(x) = χ[−1,1] exp

(
1− 1

1− x2

)
.

Then we set f0(x) = M(u0(x)). We choose a = 1, λ = 2.1, β = (α − a)/λ = 0.1.
The discretization parameters are ∆x = 0.1, ρ = 1

2λ , which satisfy all monotonicity
requirements, see [1].

The numerical results show as in the 2×2 case a better performance of the TAHO
scheme. In Figure 2-(a)-(b), we plot the time evolution of the l∞ errors eu(t) and
ez(t). They show how for the TAHO scheme both errors decay as time increases
more quickly than other. This result is also confirmed by Table 2, where the values
of γ and C are computed. Looking at the different values of γ, it is clear that for
the TAHO approximation the decay velocity of the absolute error improves of t−1/2

on the previous schemes.
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scheme Cu γu Cz γz
STD 0.013797 0.374708 0.010744 0.341554
ROE 0.004874 0.333634 0.007850 0.439996

TAHO 0.111380 1.151517 0.495480 1.451030
Table 1. The 2 × 2 Test, see subsection 4.1. Evaluation of con-
stants γ and C for eu(t) = Cut

−γu and ez(t) = Czt
−γz defined

in 15. For standard approximation STD and ROE, the absolute
error decays as eu,z(t) ≈ O(t−1/2); while, for the TAHO scheme it

improves of t−1/2.
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Figure 1. The 2×2 Test, see subsection 4.1. (a)-(b) Zoom on the
solutions u and z respectively obtained by the different schemes
at final time T . The plot show that TAHO scheme gives better
results than others with a quite big step ∆x = 0.1. (c)-(d) Time
evolution of the l∞ errors eu(t) and ez(t) defined in 15 for the
different schemes. As expected by our asymptotic analysis, for the
TAHO scheme the absolute errors eu,z(t) decay faster as the time
increases. This result is confirmed in Table 1, where we compute
the decay parameters γ of absolute errors previously plotted.
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Abstract. In this paper, we consider a system of micro-beam resonators
within the thermoelastic theory of Lord and Shulman. It is a particular case of
a thermoelastic system given by a coupling of a plate equation to a hyperbolic
heat equation arising from Cattaneo’s law of heat conduction. In a bounded
domain, the system can be damped by a term such that it is exponentially
stable. In the whole space, one can determine the decay rates for the system.

1. Introduction. Resonators are systems which naturally oscillate at some fre-
quencies, called its resonant frequencies. There are many kinds of resonators. We
consider mechanical resonators. Microresonators have high sensitivity at room tem-
perature. Thermoelastic damping is one of the reasons for the dissipation or loss of
energy from the system to its surroundings, see [8, 1, 2].

We model the problem of thermoelastic damping in micro-resonators by coupling
the plate equation to a modified heat equation with one relaxation parameter pro-
posed by Lord and Shulman [4]. One can find a good review of the relevance of the
thermoelastic damping and the derivation for the one dimensional case in [8].

We consider the system in the dimensionless form. The system of equations reads
as

a∆2u+ ∆θ + utt = F, (1)
∆θ −mθ + d∆ût = cθ̂t +G, (2)

where f̂ = f + τft.

We assume first that a, d, c and τ are positive constants. The constant m may
be non-negative. F and G correspond to the external force and heat supply. First,
we consider a bounded domain B ⊂ Rn whose boundary satisfies the assumptions
of the divergence theorem. In this paper solutions (u, θ) = (u(x, t), θ(x, t)) with
x ∈ B, t ≥ 0 are considered. The initial conditions are given by

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x) (3)
and the boundary conditions read

u(x, t) = ∆u(x, t) = θ(x, t) = 0, x ∈ ∂B, t ∈ [0,∞) (4)

2000 Mathematics Subject Classification. 35L30.
Key words and phrases. Hyperbolic models in thermoelasticity, mechanical resonator, expo-

nential stability, decay rates.
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or

u(x, t) = ∇u(x, t) · n(x) = θ(x, t) = 0, x ∈ ∂B, t ∈ [0,∞). (5)

In this context n(x) is the outer normal vector to ∂B at a certain x ∈ ∂B.

2. Exponential Stability of a damped System. The system (1), (2) in a
bounded domain with the initial conditions (3) and boundary conditions(4) or (5)
was partly considered in [5]. Unfortunately, [5] includes a mistake which was cor-
rected in [6]. It is shown in [6] that the associated semigroup

{
etA
}
t≥0 for τ > 0

is not exponentially stable. This effect can also be observed in some Timoshenko
systems, see [7].

Next, we want to introduce an additional term, called damping, to assure for the
exponential stability. The damped system has the form

a∆2u+ ∆θ + utt + γut = 0, (6)
∆θ −mθ + d∆ût = cθ̂t, (7)

where γ > 0 is a damping factor. The natural energy is given by

E(t) =
∫
B

(dû2
t + ad|∆û|2 + cθ̂2 + τ(|∇θ|2 +mθ2))dB.

One can show that

d

dt
E(t) = −2

∫
B

(|∇θ|2 +mθ2)dB − 2γd
∫
B

û2
tdB. (8)

Our aim is to determine a suitable Lyapunov functional which is equivalent to the
energy. First of all we define

η(x, t) :=
t∫

0

θ(x, s)ds. (9)

Letting Q be the solution to

∆Q−mQ = [cθ0 + cτθ1 − d∆u0 − dτ∆u1] (10)

with homogenous boundary conditions Q = 0 on ∂B, we observe that β := η + Q
satisfies the homogenized equation

∆β −mβ = cθ̂ − d∆û. (11)

Now we define the Lyapunov functional

F (t) := NE(t) +
∫
B

(
1
2(|∇β|2 +mβ2) + τ∇β∇βt +mτββt + dûût + γd

2 û2
)
dB,
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for a constant N > 0 being arbitrary for a moment. It yields
d

dt
F (t) = −2N

∫
B

(|∇θ|2 +mθ2)dB − 2Nγ
∫
B

dû2
tdB −

∫
B

cθ̂2dB

−
∫
B

ad|∆û|2dB +
∫
B

dû2
tdB + τ

∫
B

(|∇θ|2 +mθ2)dB

=
(
−2N + τ

τ

)
τ

∫
B

(|∇θ|2 +mθ2)dB + (−2Nγ + 1)
∫
B

dû2
tdB

−
∫
B

cθ̂2dB −
∫
B

ad|∆û|2dB.

We choose N to satisfy
−2N
τ

+ 1 < 0 and − 2Nγ + 1 < 0. (12)

Thus, we obtain
d

dt
F (t) ≤ −min

{2N
τ
− 1, 2Nγ − 1, 1

}
︸ ︷︷ ︸

=:C

∫
B

(dû2
t + ad|∆û|2 + cθ̂2 + τ(|∇θ|2 +mθ2))dB

︸ ︷︷ ︸
=E(t)

meaning
d

dt
F (t) ≤ −CE(t), C > 0.

Using the homogenized equation (11), one can show the equivalence of the functional
and the energy, i.e.,

∃c1, c2 > 0 : c1E(t) ≤ F (t) ≤ c2E(t).

In particular, we can show that there is a positive constant C such that

|F (t)−NE(t)| 6 CE(t).

Altogether we obtain for generic positive constant C
d

dt
F (t) ≤ −CF (t).

Gronwall’s lemma implies
F (t) ≤ e−CtF (0).

This yields the exponential stability of the damped system.

Theorem 2.1. For the energy of the damped system (6), (7), there exist constants
c̃1 > 0 and c̃2 > 0 independent from the initial data such that

E(t) ≤ c̃1E(0)e−c̃2t (13)

holds for all t ≥ 0.

Remark 1. One can similarly show that the following damped system is also
exponentially stable:

a∆2u+ ∆θ + utt − γ∆ut = 0, (14)
∆θ −mθ + d∆ût = cθ̂t. (15)
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3. Asymptotics and Decay Rates. The resonator equations in the whole space
have not been studied in the literature before. Here, we want to study the asymp-
totic behaviour of the solutions to the Cauchy problem

a∆2u+ ∆θ + utt = 0, (16)
∆θ −mθ + d∆ût = cθ̂t, (17)

where t ∈ R+ and x ∈ Rn. Our aim is to determine the decay rates of this system.
Now we have to asssume m 6= 0. The initial conditions are

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x)

for x ∈ Rn. We assume the existence of smooth solutions which can be shown by
using the Fourier transform. Application of the Fourier transform (Fu(x, t))(ξ) =:
v(ξ, t), (Fθ(x, t))(ξ) =: w(ξ, t) implies

aρ2v(ξ, t)− ρw(ξ, t) + vtt(ξ, t) = 0, (18)
ρw(ξ, t)−mw(ξ, t)− dρv̂t(ξ, t) = cŵt(ξ, t), (19)

where ρ := |ξ|2. It is easy to see that both v and w satisfy the following fourth-order
ordinary differential equation

vtttt + 1
τ
vttt + 1

cτ

(
(ac+ d)τρ2 +m+ ρ

)
vtt

+ 1
cτ
ρ2 (ac+ d) vt + a

cτ
ρ2(ρ+m)v = 0.

(20)

The characteristic polynomial of equation (20) is given by

Pρ(λ) = λ4 + 1
τ
λ3 + 1

cτ
(ρ+m+ τ(ac+ d)ρ2)λ2 + 1

cτ
(ac+ d)ρ2λ+ a

cτ
(ρ3 +mρ2).

(21)

First, we study the behaviour of the roots for ρ→ 0. By a straightforward analysis,
we obtain the following asymptotic properties of the roots which give information
about the decay rates.

Proposition 1. The roots of the characteristic polynomial have the following prop-
erties for ξ → 0 and ρ := |ξ|2:

λ1 = − d
2mρ

2 +O(ρ3) + i
√
aρ+ iO(ρ2),

λ2 = − d
2mρ

2 +O(ρ3)− i
√
aρ+ iO(ρ2),

λ3 = − 1
2τ + 1

2
( 1
τ2 − 4m

cτ

)1/2 − 1
cτ
( 1
τ2 − 4m

cτ

)1/2 ρ+O(ρ2),

λ4 = − 1
2τ −

1
2
( 1
τ2 − 4m

cτ

)1/2 + 1
cτ
( 1
τ2 − 4m

cτ

)1/2 ρ+O(ρ2).

One can numerically verify these properties. One can also determine the asymp-
totic behaviour of the roots for ρ → ∞. The following proposition describes the
asymptotic behaviour of the roots for ρ→∞.

Proposition 2. The roots of the characteristic polynomial have the following prop-
erties for ξ → ∞ and ρ := |ξ|2. There are positive constants c1, c2, c3, c4 > 0 such
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that

λ1,2 = −c1
1
ρ

+O
(

1
ρ2

)
± c2ρi+ iO(ρ2),

λ3,4 = −c3 +O
(

1
ρ

)
± c4
√
ρi+ iO(ρ).

3.1. Decay Rates for m 6= 0. In this section C stands for a generic positive
constant. We want to determine the decay rates for the homogenous system (1),
(2) for the case m 6= 0. A fundamental system for equation (20) is given by{

eλ1t, eλ2t, eλ3t, eλ4t
}
.

Every solution of equation (20) has the form
v(t, ξ) = a1(ξ)eλ1t + a2(ξ)eλ2t + a3(ξ)eλ3t + a4(ξ)eλ4t.

We can explicitly determine the coefficients aj(ξ) as

aj(ξ) =
3∑
k=0

bkj vk for j = 1, 2, 3, 4,

where bkj are given by

b0j =
−
∏
l6=j

λl∏
l6=j

λj−λl
, b1j =

∑
l6=j 6=i

λiλl∏
l6=j

λj−λl
,

b2j =
−
∑
l6=j

λl∏
l6=j

λj−λl
, b3j = 1∏

l6=j

λj−λl
.

The following lemma describes the asymptotic behaviour of the coeffiecients aj(ξ).

Lemma 3.1. ∃C > 0, ∃R1 > 0, ∀ρ ≤ R1:
|a3(ξ)eλ3(ξ)t| ≤ C (|v0(ξ)|+ |v1(ξ)|+ |v2(ξ)|+ |v3(ξ)|) eReλ3t,

|a4(ξ)eλ4(ξ)t| ≤ C (|v0(ξ)|+ |v1(ξ)|+ |v2(ξ)|+ |v3(ξ)|) eReλ4t.

We can also estimate the first part of the solution for small ρ.

Lemma 3.2. ∃C > 0, ∃R1 > 0, ∀ρ ≤ R1:
|a1(ξ)eλ1(ξ)t + a2(ξ)eλ2(ξ)t|

≤ C

(
|v0(ξ)|+ C

| sin(ρt)|
ρ

(|v1(ξ)|+ |v2(ξ)|+ |v3(ξ)|)
)
eReλ1t.

As a corollary we obtain

Corollary 1. ∃C > 0, ∃R1 > 0, ∀ρ ≤ R1:

|ai(ξ)eλi(ξ)t| ≤ C|v0(ξ)|eReλit + C
1
ρ

(|v1(ξ)|+ |v2(ξ)|+ |v3(ξ)|) eReλit,

where i = 1, 2.

For large ρ, we have

Lemma 3.3. ∃R2 > 0, ∃C > 0, ∀ρ ≥ R2:
|aieλit| ≤ CeReλit(|v0|+ |v1|+ |v2|+ |v3|),

where i = 1, 2, 3, 4.
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These results lead to the estimate

|vt| = |λ1a1e
λ1t + λ2a2e

λ2t + λ3a3e
λ3t + λ4a4e

λ4t|
≤ |λ1||a1e

λ1t|+ |λ2||a2e
λ2t|+ |λ3||a3e

λ3t|+ |λ4||a4e
λ4t|.

Let ũ be the Fourier transformed of v, yielding

|ũt| = C|
∫
Rn

eixξvt(ξ, t)dξ|

≤ C

∫
|ξ|≤R1

|vt(ξ, t)|dξ + C

∫
R1≤|ξ|≤R2

|vt(ξ, t)|dξ + C

∫
|ξ|≥R2

|vt(ξ, t)|dξ

Altogether, these results lead to the following estimate∫
|ξ|>R2

|vt(ξ, t)|dξ ≤C (||v0||3n+3,∞ + ||v1||3n+3,∞ + ||v2||3n+3,∞ + ||v3||3n+3,∞)×

×
(
e−Ct + t−n

)
.

We obtain for all t ≥ 0:

|ũt| 6 C(1 + t)−n/4 (||ũ0||3n+3,1 + ||ũ1||3n+3,1 + ||ũ2||3n+3,1 + ||ũ3||3n+3,1) .

We can also get an estimate for the solution in the L2-norm since the system is
dissipative. Now we can use interpolation techniques to describe the asymptotic
behaviour of the solutions.

Theorem 3.4. Let 2 6 q 6 ∞, 1/p + 1/q = 1, m 6= 0, Np > (1 − 2/q)(3n + 3).
Then ∃c = c(n, q) > 0 ∀V0 ∈WNp,p(Rn) ∀t ≥ 0:

||Vt(t)||q 6 c(1 + t)−
n
4 (1− 2

q )||V0||Np,p,

where V (t) = (û(t), ût(t), θ(t), θt(t)) and (u, θ) the solutions of the system (16),
(17).

It should be mentioned that m 6= 0 has been assumed. We will see that the decay
rates differ from the case m = 0. Compared to the classical linear thermoelastic
plate equations τ = 0, i.e.,

a∆2u+ ∆θ + utt = 0,
cθt −∆θ − d∆ut = 0,

we also observe different decay rates. Namely, the decay rates in the system of
linear thermoelastic plate equation has the form t−n/2. We remark that the decay
rate t−n/4 for the case m = 0 is not the decay rate of the classical plate equation

utt + ∆2u = 0

having the rate of t−n/2 corresponding to that of the heat equation. We compare the
decay rates of the systems, i.e., we estimate the vector V (t) in some time derivatives
to the decay rate. In this case you can do this for first time derivative.
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3.2. Decay Rates for m = 0. Letting m = 0, we observe that the homogenized
system

a∆2u+ ∆θ + utt = 0, (22)
∆θ −mθ + d∆ût = cθ̂t (23)

can be rewritten as

a∆2u+ ∆θ + utt = 0, (24)
cθt +∇′q − d∆ut = 0, (25)

τqt + q +∇θ = 0, (26)

where q is the heat flux. The system is given by a coupling of the plate equation to
the heat equation after Cattaneo’s law. The last equation represents the Cattaneo’s
law. One can easily get for τ = 0 and m = 0 the classical thermoelastic plate
equations.

As mentioned before, the system changes its decay rates for m = 0, because the
roots of the characteristic polynomial change their behaviour. We assume a = c =
d = 1 and m = 0. By a similar analysis we obtain the following proposition.

Proposition 3. There holds for m = 0, ρ→ 0:

λ1 = 1
2(c1 − 1)ρ+O(ρ2) +

(
O(ρ2)

)1/2
,

λ2 = 1
2(c1 − 1)ρ+O(ρ2)−

(
O(ρ2)

)1/2
,

λ3 = −c1ρ+O(ρ2),

λ4 = −1
τ

+ ρ+O(ρ2),

where

c1 ≈ 0, 56984, c1 − 1 ≈ −0, 43015.

The behaviour of the roots for ρ → ∞ does not change, so we have the same
result as before for ρ → ∞. Analogously, we can study the asymptotics of the
system for m = 0. By a similar analysis of the solution as in the section before, we
can obtain an estimate for the second time derivative of the solution. So we have
the following theorem.

Theorem 3.5. Let 2 6 q 6 ∞, 1/p + 1/q = 1, m = 0, Np > (1 − 2/q)(3n + 5).
Then ∃c = c(n, q) > 0 ∀V0 ∈WNp,p(Rn) ∀t ≥ 0:

||Vtt(t)||q 6 c(1 + t)−
n
2 (1− 2

q )||V0||Np,p,

where V (t) = (û(t), ût(t), θ(t), θt(t)).

One can get estimates for the vector V (t) putting some conditions on the space
dimension. These theorems are presented next without proofs which can be done
analogously.

Theorem 3.6. Let 2 6 q 6 ∞, 1/p + 1/q = 1, m 6= 0, Np > (1 − 2/q)(3n + 1),
n > 3. Then ∃c = c(n, q) > 0 ∀V0 ∈WNp,p(Rn) ∀t > 0:

||V (t)||q 6 c(1 + t)−
n−2

4 (1− 2
q )||V0||Np,p.
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Theorem 3.7. Let 2 6 q 6 ∞, 1/p + 1/q = 1, m = 0, Np > (1 − 2/q)(3n + 1),
n > 5. Then ∃c = c(n, q) > 0 ∀V0 ∈WNp,p(Rn) ∀t > 0:

||V (t)||q 6 c(1 + t)−
n−4

2 (1− 2
q )||V0||Np,p.
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Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Concepción
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Abstract. The sedimentation of a polydisperse suspension with N particle
size classes can be described by a system of N nonlinear scalar first-order

conservation laws. For its numerical solution, Bürger et al. [J. Comput. Phys.

230, 2322–2344 (2011)] proposed a spectral weighted essentially non-oscillatory
(WENO) scheme based on a hyperbolicity analysis. It is demonstrated that this

scheme becomes more efficient by the technique of Adaptive Mesh Refinement

(AMR), which concentrates computational effort on zones of strong variation.

1. Introduction. The sedimentation of a polydisperse suspension of small rigid
equal-density spheres of N size classes can be described by a spatially one-dimensio-
nal system of first-order nonlinear conservation laws

∂tΦ + ∂xf(Φ) = 0, Φ = (φ1, . . . , φN )T, f(Φ) =
(
f1(Φ), . . . , fN (Φ)

)T
, (1)

where t > 0 and x ∈ I ⊂ R. The unknowns are the volume fractions (concentra-
tions) φi of species i, i = 1, . . . , N , as functions of depth x and time t. The flux
density functions are fi(Φ) = φivi(Φ), where the settling velocities vi are given func-
tions of Φ. The model (1) is widely used in engineering and other applications, and
a very similar model describes multi-class traffic flow. See [5, 7, 10] for references.

Typical solutions of (1) include discontinuities (kinematic shocks) separating
areas of different composition. The accurate numerical approximation of these so-
lutions is a challenge since closed-form eigenvalues and eigenvectors of the flux Ja-
cobian Jf (Φ) = (fij(Φ))1≤i,j≤N := (∂fi(Φ)/∂φj)1≤i,j≤N are usually not available.
Some of these sedimentation models, including the widely used one by Masliyah,
Lockett and Bassoon (MLB model, cf. [5]), lead to flux Jacobians that can be ana-
lyzed by a convenient hyperbolicity criterion that has become known as the “secular
equation” [1, 6]. When this approach applies, hyperbolicity can be ensured under
easily verifiable conditions and the eigenstructure of the Jacobian can be computed
numerically, so that efficient shock capturing schemes may be applied for (1).

381
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Adaptive techniques, as the Adaptive Mesh Refinement (AMR) algorithm [4],
aim to reduce the computational cost of these schemes, by using a higher reso-
lution near shocks, heads and tails of rarefactions, etc., while employing a coarse
mesh near smooth regions of the flow. We herein apply the AMR technique to
a WENO scheme implemented in a component-wise fashion combined with global
Lax-Friedrichs flux vector splitting (denoted by “COMP-GLF”), and alternatively,
to a WENO scheme applied in a characteristic-wise (spectral) fashion (denoted
by “SPEC-INT”) [7]. The scheme COMP-GLF does not rely on characteristic in-
formation, is much easier to implement than SPEC-INT, and on a fixed uniform
grid is several times faster than SPEC-INT. However, SPEC-INT is more accurate
than COMP-GLF, and more efficient than COMP-GLF in terms of reduction of
numerical error per CPU time [7]. It turns out that equipping both versions with
AMR produces substantial gains in computational efficiency when compared with
the corresponding non-adaptive version, and that the adaptive versions based on
SPEC-INT are consistently more efficient than those relying on COMP-GLF.

Any kind of adaptativity that permits to restrict the use of a high-resolution
scheme on a fine grid to a portion of the computational domain will make com-
putations more efficient (cf., e.g., [8, 9, 17]). AMR is a grid adaptation technique,
introduced by Berger and Oliger [4] for hyperbolic conservation laws, which is based
not so much on the reduction of the number of cells on the grid as on the reduction
of the overall number of applications of the integration algorithm. This algorithm
in very time-consuming especially for high-resolution shock capturing schemes. The
AMR algorithm is a two-fold adaptive method. The goal of allowing arbitrary grid
resolution is attained by the definition of a set of overlapping grids of different res-
olutions –a grid hierarchy– being the grid at each resolution level defined only on
the part of the domain that is foreseen to require such a resolution. The way in
which the grids are overlapped allows to refine also in time, in the sense that each
grid is integrated with temporal steps adapted to its spatial grid size. This time
refinement further improves the overall performance of the algorithm [3, 4].

2. Sedimentation of polydisperse suspensions. The MLB model arises from
the continuity and linear momentum balance equations for the solid species and
the fluid through suitable constitutive assumptions and simplifications (cf. [5]). For
particles that have the same density, the MLB velocities v1, . . . , vN are given by

vi(Φ) :=
(%s − %f)gd

2
1

18µf
(1− φ)V (φ)(δi − δTΦ), i = 1, . . . , N, (2)

where d1 > d2 > · · · > dN are the respective species diameters, δi := d2
i /d

2
1,

δ := (δ1, . . . , δN )T, %s and %f are the solid and fluid densities, g is the acceleration
of gravity, µf is the fluid viscosity, φ := φ1+· · ·+φN , and V (φ) is a hindered settling
factor that should satisfy V (0) = 1, V (φmax) = 0 and V ′(φ) ≤ 0 for φ ∈ [0, φmax],
where φmax denotes the maximum total solids concentration. A standard choice is

V (φ) = (1− φ)nRZ−2 if Φ ∈ Dφmax
, nRZ > 2; V (φ) = 0 otherwise, (3)

where Dφmax
:= {Φ ∈ Rn |φ1 ≥ 0, . . . , φN ≥ 0, φ ≤ φmax}. The components

f1(Φ), . . . , fN (Φ) of the flux vector f(Φ) of the MLB model are given by

fi(Φ) := v1(0)φi(1− φ)V (φ)(δi − δTΦ), i = 1, . . . , N. (4)
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3. Secular equation and hyperbolicity analysis. For general kinematic mod-
els with vi = vi(φ1, . . . , φN ), the spectral information of Jf (Φ) cannot be readily
obtained. However, when vi = vi(p1, . . . , pm) and pl = pl(Φ) for i = 1, . . . , N and
l = 1, . . . ,m � N , then Jf (Φ) is a rank-m perturbation of D := diag(v1, . . . , vN )
of the form Jf = D +BAT, where

B := (Bil) =

(
φi∂vi
∂pl

)
, A := (Ajl) =

(
∂pl
∂φj

)
, 1 ≤ i, j ≤ N, 1 ≤ l ≤ m. (5)

The hyperbolicity analysis is then based on the following theorem.

Theorem 3.1 (The secular equation, [1, 10]). Assume that vi > vj for i < j, and
that A and B have the formats specified in (5). Let λ 6= vi for i = 1, . . . , N . Then

λ is an eigenvalue of D +BAT if and only if

R(λ) := det
(
I +AT(D − λI)−1B

)
= 1 +

N∑
i=1

γi
vi − λ

= 0,

where γi can be effectively computed from vi and determinants of submatrices of
A,B. The relation R(λ) = 0 is known as the secular equation [1].

When m ≤ 2, one may easily compute γ1, . . . , γN , and the hyperbolicity analysis
via Theorem 3.1 is less involved than discussing the zeros of det(Jf (Φ)− λI). For
the MLB model with equal-density spheres, vi depends on p1 := φ and p2 := δTΦ.
Thus, m = 2 and γi = −v1(0)(n− 1)(1− φ)n−2φiδi > 0 if φi > 0 and φ < 1.

The proof of the following corollary follows from Theorem 3.1 by a discussion of
the poles of R(λ) and its asymptotic behavior as λ→ ±∞, see [6].

Corollary 1 ([6]). With the notation of Theorem 3.1, assume that γi · γj > 0 for
i, j = 1, . . . , N . Then D +BAT is diagonalizable with real eigenvalues λ1, . . . , λN .
If γ1, . . . , γN < 0, the following so-called interlacing property holds:

vN+1 := vN + γ1 + · · ·+ γN < λN < vN < λN−1 < · · · < v2 < λ1 < v1. (6)

As a consequence, we see that the model (1) with the flux vector f(Φ) of the MLB
model given by (4) is strictly hyperbolic if φ1 > 0, . . . , φN > 0 and φ < φmax < 1.

4. SPEC-INT and COMP-GLF schemes. For grid points xi = (i + 1/2)∆x,
tn = n∆t, a conservative scheme for Φni ≈ Φ(xi, tn) is given by

Φn+1
i = Φni −

∆t

∆x

(
f̂ i+1/2 − f̂ i−1/2

)
, f̂ i+1/2 = f̂

(
Φni−s+1, . . . ,Φ

n
i+s

)
for i = 0, . . . ,M − 1 along with f̂−1/2 = f̂M−1/2 = 0 (zero-flux boundary condi-
tions). The key point is the design of the numerical flux f̂ i+1/2 so that the resulting
scheme is (at least formally second-order) accurate and stable. The most common
approach for this task is to solve Riemann problems, either exactly or approxi-
mately. For polydisperse sedimentation, exact Riemann solvers are out of reach,
since the eigenstructure of the flux Jacobian is hard to compute.

In [7] we used Shu-Osher’s technique [16] along with the information provided by
the secular equation to get efficient schemes for polydisperse sedimentation models.
We here briefly describe this scheme, which is based on applying the third-order
TVD Runge-Kutta method of [16] to spatially semi-discretized equations. For the
discretization of the flux derivative we use local characteristic projections. Local
characteristic information to compute f̂ i+1/2 is provided by the eigenstructure of
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Jf (Φi+1/2), where Φi+1/2 := 1
2 (Φi + Φi+1), given by the right and left eigenvectors,

ri+1/2,j and li+1/2,j , respectively, that form the respective matrices

Ri+1/2 =
[
ri+1/2,1 . . . ri+1/2,N

]
,
(
R−1
i+1/2

)T
=
[
li+1/2,1 . . . li+1/2,N

]
.

From a local flux-splitting f±,k (we omit its dependency on i + 1/2) given by
f−,k + f+,k = f , where ±λk(Jf±,k(Φ)) ≥ 0, Φ ≈ Φi+1/2 and λk is the k-th ei-
genvalue, we can define the k-th characteristic flux as g±,kj = lTi+1/2,k · f

±,k(Φj),
k = 1, . . . , N . If R+ and R− denote upwind-biased reconstructions (in our experi-
ments we use the fifth-order WENO method introduced in [13]), then

ĝi+1/2,k = R+
(
g+,k
i−s+1, . . . , g

+,k
i+s−1;xi+1/2

)
+R−

(
g−,ki−s+2, . . . , g

−,k
i+s ;xi+1/2

)
,

f̂ i+1/2 = Ri+1/2ĝi+1/2 = ĝi+1/2,1ri+1/2,1 + · · ·+ ĝi+1/2,nri+1/2,n.

If we do not want to use local characteristic information, we can use the previous
formula with Ri+1/2 = IN , where IN denotes the N × N identity matrix, and a
global flux splitting f− + f+ = f , where ±λk(Jf±(Φ)) ≥ 0 for all k. With this
choice, and denoting by ek the kth unit vector, we get g±,kj = eT

k f
±(Φj) = f±k (Φj),

i.e., g±,kj are the components of the split fluxes, and the numerical flux is com-
puted component by component by reconstructing the split fluxes component by
component, i.e., f̂ i+1/2 = (f̂i+1/2,1, . . . , f̂i+1/2,N )T, where

f̂i+1/2,k = R+
(
g+,k
i−s+1, . . . , g

+,k
i+s−1;xi+1/2

)
+R−

(
g−,ki−s+2, . . . , g

−,k
i+s ;xi+1/2

)
for k = 1, . . . , N . This scheme will be referred to as COMP-GLF and it is a high-
order extension of the Lax-Friedrichs scheme.

We now explain the SPEC-INT scheme. If λk(Jf (Φ)) > 0 (respectively, < 0) for
all Φ ∈ Γi := [Φi,Φi+1], where Γi ⊂ RN denotes the segment joining both states,
then we upwind (since then there is no need for flux splitting):

f+,k = f , f−,k = 0 if λk(Jf (Φ)) > 0, f+,k = 0, f−,k = f if λk(Jf (Φ)) < 0.

On the other hand, if λk(Jf (Φ)) changes sign on Γi, then we use a Local Lax-
Friedrichs flux splitting given by f±,k(Φ) = f(Φ)± αkΦ, where the numerical vis-
cosity parameter αk should satisfy αk ≥ maxΦ∈Γi

|λk(Jf (Φ))|. The usual choice of
the numerical viscosity αk = max{|λk(Jf (Φi))|, |λk(Jf (Φi+1))|} produces oscilla-
tions in the numerical solution indicating that the amount of numerical viscosity is
insufficient. Usually maxΦ∈Γi |λk(Jf (Φ))| cannot be evaluated exactly. However,
in the case of the MLB model, we have γk < 0 (see [6, 10]) and may employ the
interlacing property (6) to obtain efficiently computable bounds

max
Φ∈Γi

|λk(Φ)| ≤ αk := max

{
max
Φ∈Γi

∣∣vk(Φ)
∣∣,max

Φ∈Γi

∣∣vk+1(Φ)
∣∣}, k = 1, . . . , N. (7)

(This property also holds for other models, under appropriate circumstances [6].)
We denote by “SPEC-INT” the scheme for which α1, . . . , αN are defined by (7).

5. Adaptive Mesh Refinement (AMR). We now outline the main building
blocks of the AMR algorithm and refer to [2] for details. We denote by G0, . . . , GL
a 1D grid hierarchy composed of L+ 1 grids, such that, except for the coarsest grid
G0, cells of a given grid are obtained by the subdivision of cells of the immediately
coarser grid into r parts (we assume r = 2). The unit interval is thus divided
into N0, . . . , NL subintervals of length hl = 1/Nl, with Nl = 2lN0, l = 0, . . . , L,
whose centers will be denoted by xlj = (j + 1/2)hl, j = 0, . . . , Nl − 1, l = 0, . . . , L.
A “mesh” Gl at resolution level l is just a subset of the index set {0, . . . , Nl − 1}
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whose “extent”, the union of the cells indexed by elements of Gl, is denoted by
Ωl(Gl). We consider only “nested” grid hierarchies, i.e., Ωl(Gl) ⊆ Ωl−1(Gl−1) for
1 ≤ l ≤ L is assumed to hold along with Ω0(G0) = Ω.

The meshes will be dynamically updated so that they adapt to the features of
the solution, and we denote by Gtll the mesh that corresponds to the resolution
level l and time tl. Over each mesh we consider a numerical solution defined by a
discrete function Φtll = (Φtll,j), with Φtll,j ≈ Φ(xlj , tl) and j ∈ Gtll .

The algorithm can be described by the time evolution of the meshes and their
associated numerical solutions, starting with tl = 0, l = 0, . . . , L and ending at
tl = T , l = 0, . . . , L, for some T > 0. The main building blocks of the AMR algo-
rithm — integration and adaptation of the grids and projection from fine to coarse
grids — are described next. The time step ∆t0 to integrate G0 is selected to com-
ply with a CFL condition that takes into account the maximal characteristic speed,
computed from the spectral radius (or a estimate of it in case of the COMP-GLF
scheme) of all Jacobian matrices Jf (Φ) appearing in the grid hierarchy. The time
steps for the rest of the grids are taken by ∆tl = ∆tl−1/2 for l = 1, . . . , L, so the
equivalent CFL condition holds for each grid. The grids are integrated according to
the order dictated by the following condition: tl′ ≤ tl ≤ tl′ + ∆tl if l ≤ l′. At some
step of this time evolution, (Φtl+k∆tl

l , Gtll ), k = 1, 2, are sequentially computed from
(Φtll , G

tl
l ), supplemented by boundary conditions at a band surrounding Ωl(G

tl
l ) ob-

tained by MUSCL-type interpolation from (Φtll−1, G
tl
l−1) and (Φtl+2∆tl

l−1 , Gtll−1), which
must have been computed in previous steps. Once (Φtl+2∆tl

l , Gtll ) is computed, there
is data that overlay Ωl(G

tl
l ) at different resolution levels. A suitable projection of

the data at the fine resolution level should be applied to modify the values Φtl+2∆tl
l−1,j

of the immediately coarser grid function that correspond to cells overlaid by cells
at Gtll and adjacent to them as well. This can be achieved by modifying the coarse
numerical fluxes so that discrete conservation is maintained.

The update of the grids is performed by marking some cells to be refined following
the following criteria: Let I(Φtl−1, x) be an interpolation operator defined on the
data Φtl−1 = {Φtl−1,i}i∈Gt

l−1
, then the cell centered at xl−1

j/2 is selected for refinement
if |Φtl,j − I(Φtl−1, x

l
j)| > τp ·maxl,j |Φtl,j − I(Φtl−1, x

l
j)|, where τp is a given tolerance.

Further, we also include a cell in the refinement list if the modulus of the discrete
gradient, computed in the coarser grid, exceeds some large threshold, so that shock
formation can be detected from steepened data.

Once the cells that will compose the refined grid have been selected we add a
certain number of extra cells forming a band around each marked cell to ensure that
the cells adjacent to a singularity are refined. This device of creating “safety points”
follows the spirit of [12, 14, 15]. These extra cells will avoid singularities to escape
from the fine grid during one coarse time step and provide smooth data for accurate
interpolation to the next finer grid. This refinement procedure is performed from
fine to coarse resolution levels to ensure that Ωl(G

t
l) ⊆ Ωl−1(Gtl−1) for all t.

Once the new grid Ĝl is computed such that Ωl(Ĝ
t
l) ⊆ Ωl−1(Gtl−1), one sets

Φ̂tl,j = I(Φtl−1, x
l
j) if j ∈ Ĝtl \Gtl , Φ̂tl,j = Φtl,j if j ∈ Gtl ,

i.e., the value at the j-th cell is interpolated from data at the next coarser level for
cells not in Gtl . The refined grid is therefore defined by (Ĝtl , Φ̂

t
l). Discrete boundary

conditions are also applied if the grid overlaps the domain boundary.

6. Numerical example. This example is based on experimental data from [11],
where a suspension in a column of height h = 0.227 m is considered and which
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i 1 2 3 4 5 6 7

φ0
i [10−2] 0.21285 0.99351 3.21012 3.48984 5.43924 9.80982 3.84462

di [10
−5 m] 280 240 200 150 110 80 40
δi 1.000000 0.734693 0.510204 0.286989 0.154336 0.081632 0.020481

Table 1. Particle sizes di and normalized squared particle sizes δi.

(a) t = 600 s (b) t = 1200 s
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(c) t = 2000 s (d) t = 3600 s
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Figure 1. Numerical solutions obtained with SPEC-INT-AMR
with L+ 1 = 5 levels with coarsest grid of N0 = 50 subintervals.

is characterized by (2) with N = 7, %s = 2790 kg/m3, %f = 1208 kg/m3, µf =
0.02416 Pa s, g = 9.8 m/s2. Initial concentrations φ0

i , the diameters di and normal-
ized diameters δi = di/d1 are given in Table 1. The maximum total concentration
is φmax = 0.6 and V (φ) is given by (3) with the exponent nRZ = 5.

We simulate the process until the phenomenon enters in a steady state. Figure 1
shows the numerical solution obtained by SPEC-INT-AMR at four different times
together with the corresponding grid hierarchy. We have used L+ 1 = 5 levels with
a coarsest grid of N0 = 50 points so that results are comparable with those for a
fixed grid of N4 = 800 points. We have tested for different choices for the threshold
value τp and observed that τp = 10−2 is the most efficient choice. The plotted
positions indicate that the adaptive mesh refinement technique works correctly, in
the sense that the scheme detects the shock formation and refines these areas.

In Table 2, we present the percentages of storage space, number of integrations
and CPU time required by AMR with respect to schemes on the uniform finest mesh.
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SPEC-INT-AMR at t = 600 s SPEC-INT-AMR at t = 2000 s

NL %Int’s %Memory %CPU time %Int’s %Memory %CPU time [s]

800 30.33 27.28 25.54 27.14 27.96 28.11
1600 17.22 15.33 14.02 15.20 15.43 14.98
3200 8.88 8.21 7.54 7.88 8.23 8.05
6400 4.67 4.43 4.00 4.14 4.63 4.18

Table 2. Percentage of storage space (memory), number of inte-
grations and CPU time of the adaptive algorithm with respect to
the fixed grid algorithm with τp = 10−2 at two simulated times t
for a hierarchy of L+ 1 = 5 levels and four different values of N0.

SPEC-INT SPEC-INT-AMR

t = 600 s t = 2000 s t = 600 s t = 2000 s

M error cr cpu [s] error cr cpu [s] M error cr cpu [s] error cr cpu [s]

400 221.5 — 141.9 404.4 — 337.7 25 241.9 – 58.6 424.5 – 161.4
800 110.1 1.00 564.6 204.5 0.98 1316.9 50 130.3 0.89 144.2 217.1 0.96 370.2
1600 49.10 1.16 2263.9 69.6 1.55 5280.8 100 63.1 1.04 317.3 84.8 1.35 791.0
3200 25.70 0.93 8942.3 36.6 0.92 20859.2 200 28.7 1.13 674.5 40.3 1.07 1678.6
6400 12.81 1.00 36216.5 18.3 1.00 85522.9 400 14.4 0.99 1450.1 20.0 1.00 3574.8

Table 3. Total approximate L1 errors (×10−5), convergence rates
and CPU times at two different times for SPEC-INT on a fixed grid
and SPEC-INT-AMR with L+ 1 = 5 levels of refinament.

The indicated percentages represent the average memory load over all iterations.
The values of Table 2 correspond to coarsest grids of N0 = 50, 100, 200 and 400
subintervals and L+ 1 = 5 levels of refinement. CPU times and the percentages of
memory allocated by SPEC-INT-AMR decrease as N0 increases, as expected.

Table 3 and Figure 2 show approximate L1 errors and CPU times at two different
times for the method SPEC-INT-AMR using a grid hierarchy for different levels,
corresponding to N0 = 25, 50, 100, 200 and 400, and for the method SPEC-INT
using a fixed uniform grid corresponding to N0 = 400, 800, 1600, 3200 and 6400.

For a fixed L1 error, the CPU time is smaller for the AMR technique than for
the equivalent fixed-grid computation. In many cases the AMR technique is around
twice faster at least for short simulated times.
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Abstract. Motivated by modeling blood flow in human arteries, we study a

fluid-structure interaction problem in which the structure is composed of mul-

tiple layers, each with possibly different mechanical characteristics and thick-
ness. In the problem presented in this manuscript the structure is composed

of two layers: a thin layer modeled by the 1D wave equation, and a thick

layer modeled by the 2D equations of linear elasticity. The flow of an in-
compressible, viscous fluid is modeled by the Navier-Stokes equations. The

thin structure is in contact with the fluid thereby serving as a fluid-structure

interface with mass. The coupling between the fluid and the structure is non-
linear. The resulting problem is a nonlinear, moving-boundary problem of

parabolic-hyperbolic-hyperbolic type. We show that the model problem has a
well-defined energy, and that the energy is bounded by the work done by the in-

let and outlet dynamic pressure data. The spaces of weak solutions reveal that

the presence of a thin fluid-structure interface with mass regularizes solutions
of the coupled problem. This opens up a new area withing the field of fluid-

structure interaction problems, possibly revealing properties of FSI solutions

that have not been studied before.

1. Motivation. Fluid-structure interaction (FSI) problems arise in many applica-
tions. They include multi-physics problems in engineering such as aeroelasticity and
propeller turbines, as well as biofluidic application such as self-propulsion organisms,
fluid-cell interactions, and the interaction between blood flow and cardiovascular tis-
sue. In biofluidic applications, such as the interaction between blood flow and car-
diovascular tissue, the density of the structure (arterial walls) is roughly equal to the
density of the fluid (blood). In such problems the energy exchange between the fluid
and the structure is significant, leading to a highly nonlinear FSI coupling which is
responsible for the instabilities in loosely coupled partitioned algorithms [3]. Despite
a significant progress within the past decade [1, 2, 7, 8, 10, 13, 14, 6, 5, 4, 11, 15],
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a comprehensive study of these problems remains to be a challenge due to their
strong nonlinearity and multi-physics nature. In the blood flow application, the
problems are further exacerbated by the fact that arterial walls of major arteries
are composed of several layers, each with different mechanical characteristics. The
main layers are the tunica intima, the tunica media, and the tunica adventitia.
They are separated by the thin elastic laminae, see Figure 1, left. To this date,

Figure 1. Left: Arterial wall structure. Right: Domain sketch.

there are no fluid-structure interaction models or computational solvers in hemody-
namics that take into account the multi-layered structure of arterial walls. In this
manuscript we take a first step in this direction by proposing a benchmark problem
in fluid-multi-layered-structure interaction. The proposed problem is a nonlinear
moving-boundary problem of parabolic-hyperbolic-hyperbolic type for which the
questions of well-posedness and numerical simulation are wide open. This opens
up a new area within the field of FSI problems, in which the structure is com-
posed of multiple layers, each with possibly different mechanical characteristics and
thickness.

2. The benchmark problem. We study a FSI problem in which the structure
consists of two layers: a “thin” structural layer (modeled, e.g., by the linearly elastic
Koiter shell equations), and a “thick” layer (modeled, e.g., by the equations of
2D/3D elasticity). To simplify matters, we will be assuming that the elastodynamics
of the thin structure is modeled by the 1D linear wave equation. The wave equation
model retains the main difficulties associated with the study of solutions to the
more general elastodynamics models mentioned above. The thin structural layer
is in contact with the flow of an incompressible, viscous fluid, modeled by the
Navier-Stokes equations. From an application point of view, it is of interest to
study this fluid-multi-structure interaction problem on a cylindrical domain, with
the flow driven by the time-dependent dynamic pressure data, see Figure 1, right.
The Navier-Stokes equations are defined in a time-dependent fluid domain ΩF (t),
which is not known a priori:

FLUID :
ρF (∂tu + u · ∇u) = ∇ · σ,

∇ · u = 0,

}
in ΩF (t), t ∈ (0, T ), (1)

where ρF denotes the fluid density; u the fluid velocity; σ = −pI + 2µFD(u) is
the fluid Cauchy stress tensor; p is the fluid pressure; µF is the dynamic viscosity
coefficient; and D(u) = 1

2 (∇u +∇Tu) is the symmetrized gradient of u.
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We assume that the reference fluid domain is a cylinder of radius R and length
L, denoted by ΩF , with the lateral boundary denoted by Γ. To fix ideas, consider
the fluid domain to be a subset of R2 with z and r denoting the axial (horizontal)
and radial (vertical) coordinates. The cylinder wall is assumed to be compliant and
consisting of two layers: a thin layer, whose location at time t is denoted by Γ(t),
and a thick structural layer, whose location at time t is denoted by ΩS(t), as shown
in Figure 1, right. The thin layer Γ(t) is modeled by the 1D linear wave equation

THIN STRUCTURE : m∂ttη = T∂zzη + f, on Γ× (0, T ). (2)

Here η := η(t, z) denotes the radial (transverse) displacement from the reference
position Γ = {(z,R)|z ∈ (0, L)}, f is the source term (the radial component), m is
mass per unit length, and T is tension. The elastodynamics of the thick structural
layer is governed by the 2D equations of linear elasticity:

THICK STRUCTURE : ρ∂ttd = ∇ · S in ΩS , t ∈ (0, T ). (3)

Here d := (dr(t, z, r), dz(t, z, r)) describes the displacement of a thick elastic struc-
ture with respect to a fixed, reference configuration ΩS , and S is the first Piola-
Kirchoff stress tensor S = 2µD(d) + λ(∇ · d)I, with the Lamé constants λ and µ,
where D(d) is the symmetrized gradient of d, and ρ is the mass density.

To capture a full two-way coupling between the fluid and the structure, and
between the two structural layers, two sets of boundary conditions need to be pre-
scribed: the kinematic and dynamic coupling conditions. The kinematic condition
provides information about the kinematic quantities, such as velocity. We adopt
the no-slip condition requiring continuity of velocities at both the fluid-structure
interface and at the structure-structure interface. The dynamic coupling condition,
on the other hand, describes the second Newton’s Law of motion. This condition
states that the rate of change of (radial) momentum ∂ttη of the interface with mass
is a result of the balancing of all the forces exerted onto Γ(t), which includes the
radial component of the trace of normal stress σn exerted by the fluid onto Γ(t),
the trace of the radial component of the normal Piola-Kirchoff stress Ser exerted
by the thick structure onto Γ(t), and the action of the elastic forces associated with
Γ(t). Therefore, the coupling conditions are given by:

COUPLING :
u|Γ(t) = (∂tη, 0)T

d|Γ = (η, 0)T (or ∂td|Γ = (∂tη, 0)T ),
m∂ttη − T∂zzη = −Jσn|Γ(t) · er + S|Γer · er,

 on Γ
×(0, T ),

(4)

where J =
√

1 + (∂zη)2 is the Jacobian of the transformation between the La-
grangian coordinates used in the formulation of the structure problem and the
Eulerian coordinates used in the formulation of the fluid problem. Vector er is the
unit normal to the reference cylinder Γ, while ur and dr denote the vertical compo-
nents of the velocity and displacement of the thick structure, respectively. Notation
u|Γ(t) = (∂tη, 0)T means u(t, z, R+ η(t, z)) = (∂tη(t, z), 0)T on Γ× (0, T ).

We supplement this problem by the initial and boundary conditions. For exam-
ple, let the inlet and outlet boundary data for the fluid be given in terms of the
dynamic pressure (p + |u|2/2 = Pin/out(t) on Γin/out) and assume that the fluid
is entering and leaving the domain parallel to the axis of symmetry (ur = 0 on
Γin/out). Furthermore, assume that the displacement of both structures is equal to
zero at the in/out boundaries (η = dr = dz = 0 on Γin/out), and that Ser = 0 at the
external wall of the thick structure. We can also introduce the symmetry boundary
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Γb = {(z, 0)|z ∈ (0, L)} with the symmetry boundary conditions ur = ∂ruz = 0,
and consider the problem only in the upper half-domain.

The resulting fluid-multi-structure-interaction problem can be summarized as
follows (for simplicity we take all the parameters in the problem equal to 1, i.e.,
m = T = ρ = λ = µ = ρF = µF = 1): find u, η and d such that

(∂tu + (u · ∇)u) = ∇ · σ
∇ · u = 0

}
in ΩF (t), t ∈ (0, T ), (5)

∂ttd = ∇ · S on ΩS × (0, T ), (6)

u|Γ(t) = (∂tη, 0)T ,
d|Γ = (η, 0)T ,

∂ttη − ∂zzη = −Jσn|Γ(t) · er + S|Γer · er

 on Γ× (0, T ), (7)

p+ |u|2/2 = Pin/out(t)
ur = 0

}
on Γfin/out × (0, T ), (8)

η = 0 on ∂Γ
d = 0 on ΓSin/out

(9)

Ser = 0 on Γext, (10)

ur = 0
∂ruz = 0

}
on Γb × (0, T ), (11)

with u(0, ·) = u0, η(0, ·) = η0, ∂tη(0, ·) = v0,d(0, ·) = d0, ∂d(0, ·) = V0.
Problem (5)-(7) defines a nonlinear, moving boundary problem of mixed, parabo-

lic-hyperbolic-hyperbolic type. The nonlinearity appears both in the equations, as
well as in the coupling conditions (7) via the composite function u|Γ(t) := u(t, z, R+
η(t, z)). The hyperbolic problem in (7) (3rd equation) serves as a lateral boundary
condition for both the fluid problem (5) and for the thick-structure problem (6).

Lemma 2.1. Problem (5)-(10) satisfies the following energy inequality

d

dt
(Ekin(t) + Eel(t)) +D(t) ≤ C(Pin(t), Pout(t)), (12)

where

Ekin(t) := ‖u‖2L2(Ω(t)) + ‖∂tη‖2L2(Γ) + ‖∂td‖2L2(ΩS),

Eel(t) := ‖∂zη‖2L2(Γ) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS),

denote the kinetic and elastic energy of the coupled problem, respectively, and
the term D(t) captures dissipation D(t) := ‖D(u)‖2L2(Ω(t)). The bound C(Pin(t),

Pout(t))) depends only on the inlet and outlet pressure data.

Proof. To show that (12) holds,multiply the first equation in (5) by u, integrate
over ΩF (t), and formally integrate by parts to obtain:∫

ΩF (t)

(
∂tu·u+(u·∇)u·u

)
+2

∫
ΩF (t)

|Du|2−
∫
∂ΩF (t)

(−pI+2D(u))n(t)·u = 0. (13)

To deal with the inertia term we first recall that ΩF (t) is moving in time and
that the velocity of the lateral boundary is given by u|Γ(t). The transport theorem
applied to the first term on the left hand-side of the above equation then gives:∫

ΩF (t)

∂tu · u =
1

2

d

dt

∫
ΩF (t)

|u|2 − 1

2

∫
Γ(t)

|u|2u · n(t).
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To deal with the nonlinear advection term in (13) we integrate by parts, and use
the divergence-free condition to obtain:∫

ΩF (t)

(u · ∇)u · u =
1

2

∫
∂ΩF (t)

|u|2u · n(t) =
1

2

( ∫
Γ(t)

|u|2u · n(t)

−
∫

Γin

|u|2uz +

∫
Γout

|u|2uz
)
.

These two terms added together give∫
Ωη(t)

∂tu · u +

∫
Ωη(t)

(u · ∇)u · u =
1

2

d

dt

∫
Ωη(t)

|u|2 − 1

2

∫
Γin

|u|2uz +
1

2

∫
Γout

|u|2uz.

(14)
Notice the importance of nonlinear advection in canceling the cubic term

∫
Γ(t)
|u|2u·

n(t)!
To deal with the boundary integral over ∂ΩF (t) of the normal stress in (13)

we first employ the boundary condition ur = 0 form (8) in combination with the
divergence-free condition to obtain ∂zuz = −∂rur = 0. Now, using the fact that
the normal to Γin/out is n = (∓1, 0), we get:∫

Γin/out

(−pI + 2D(u))n · u =

∫
Γin

Pinuz −
∫

Γout

Poutuz. (15)

In a similar way, using the symmetry boundary condition (11), we obtain∫
Γb

(−pI + 2D(u))n · u = 0.

What is left is to integrate the normal stress over Γ(t). For this purpose we consider
the wave equation (2), multiply it by ∂tη, and integrate by parts to obtain∫

Γ

f∂tη =
1

2

d

dt
‖∂tη‖2L2(Γ) +

1

2

d

dt
‖∂zη‖2L2(Γ) (16)

Furthermore, we consider the elasticity equation (6), multiply it by ∂td and integrate
by parts over ΩS to obtain:

1

2

d

dt

(
‖∂td‖2L2(ΩS) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS)

)
= −

∫
Γ

Ser · ∂td. (17)

By enforcing the dynamic and kinematic coupling conditions (7) we obtain

−
∫

Γ(t)

σn(t) · u = −
∫

Γ

Jσn · u =

∫
Γ

(f − Ser)∂tη. (18)

Finally, by combining (18) with (16), (17), and by adding the remaining contribu-
tions to the energy of the FSI problem one obtains the following energy equality:

1

2

d

dt

∫
ΩF (t)

|u|2 +
1

2

d

dt
‖∂tη‖2L2(0,1) + 2

∫
ΩF (t)

|Du|2 +
1

2

d

dt
‖∂zη‖2L2(0,1)

+
1

2

d

dt

(
‖∂td‖2L2(ΩS) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS)

)
= ±Pin/out(t)

∫
Γin/out

uz

By using the trace inequality and Korn inequality one can estimate:

|Pin/out(t)
∫

Γin/out

uz| ≤ C|Pin/out|‖u‖H1(ΩF (t))
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≤ C

2ε
|Pin/out|2 +

εC

2
‖D(u)‖2L2(ΩF (t).

By choosing ε such that εC
2 ≤ 1 we get the energy inequality (12).

3. Weak Solutions. To define weak solutions of the moving-bounday problem
(5)-(11) we introduce the following notation. We use aS to denote the following
bilinear form associated with the elastic properties of the thick structure:

aS(d,ψ) :=

∫
ΩS

2D(d) : D(ψ) + (∇ · d) (∇ ·ψ). (19)

Here A : B := tr
[
ABT

]
. Furthermore, we use b to denote the following trilinear

form corresponding to the (symmetrized) nonlinear advection term in the Navier-
Stokes equations:

b(t,u,v,w) :=
1

2

∫
ΩF (t)

(u · ∇)v ·w − 1

2

∫
ΩF (t)

(u · ∇)w · v. (20)

Finally, we define a linear functional which associates the inlet and outlet dynamic
pressure boundary data to a test function v in the following way:

〈F (t),v〉Γin/out = Pin(t)

∫
Γin

vz − Pout(t)
∫

Γout

vz.

To define a weak solution to problem (5)-(11) we introduce the following function
spaces. For the fluid velocity we would like to work with the classical function space.
However, due to the moving fluid-structure interface which is modeled by the wave
equation, the lateral boundary of the fluid domain is not necessarily a Lipshitz
function. Namely, from the energy inequality (12) we see that η ∈ H1(0, 1). The
Sobolev embedding then implies that η ∈ C0,1/2(0, 1), which means that ΩF (t) is
not necessarily a Lipshitz domain. However, ΩF (t) is locally a sub-graph of a Hölder
continuous function. In that case one can define a“Lagrangian” trace

γΓ(t) : C1(ΩF (t))→ C(Γ),

γΓ(t) : v 7→ v(t, z, r + η(t, z)).
(21)

Furthermore, it was shown in [4, 11, 16] that the trace operator γΓ(t) can be extended

by continuity to a linear operator from H1(ΩF (t)) to Hs(Γ), 0 ≤ s < 1
4 . Therefore,

we define the fluid velocity solution space to be the closure in H1(ΩF (t)) of the set

{u = (uz, ur) ∈ C1(ΩF (t))2 : ∇ · u = 0,uz = 0 on Γ(t), ur = 0 on ΩF (t) \ Γ(t)}. U-
sing the fact that ΩF (t) is locally a sub-graph of a Hölder continuous function we
can get the following characterization of the velocity solution space VF (t): (see
[4, 11])

VF (t) = {u = (uz, ur) ∈ H1(Ωη(t))2 : ∇ · u = 0,
uz = 0 on Γ(t), ur = 0 on Ωη(t) \ Γ(t)}. (22)

The function space associated displacement of the thin structural layer is

VK = H1
0 (Γ), (23)

and the function space associated with displacement of the thick structural layer is

VS = {d = (dz, dr) ∈ H1(ΩS)2 : dz = 0 on Γ, d = 0 on Γsin/out ∪ Γext}. (24)
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Motivated by the energy inequality (12) we also define the corresponding evolution
spaces for the fluid and structure sub-problems, respectively:

WF (0, T ) = L∞(0, T ;L2(ΩF (t)) ∩ L2(0, T ;VF (t)), (25)

WK(0, T ) = W 1,∞(0, T ;L2(Γ)) ∩ L2(0, T ;VK), (26)

WS(0, T ) = W 1,∞(0, T ;L2(ΩS)) ∩ L2(0, T ;VS). (27)

Finally, we are in a position to define the solution space for the coupled fluid-
multi-layered-structure interaction problem. This space must involve the kinematic
coupling condition. The dynamic coupling condition will be enforced in a weak
sense, through integration by parts in the weak formulation of the problem. Thus,
we define

W(0, T ) = {(u, η,d) ∈ WF (0, T )×WK(0, T )×WS(0, T ) :
u(t, z, R+ η(t, z)) = ∂tη(t, z)er, d(t, z, R) = η(t, z)er}.

(28)

The equality u(t, z, R + η(t, z)) = ∂tη(t, z)er is taken in a sense of operator γΓ(t),
defined in (21). The corresponding test space will be denoted by

Q(0, T ) = {(q, ψ,ψ) ∈ C1
c ([0, T );VF × VK × VS) :

q(t, z, R+ η(t, z)) = ψ(t, z)er = ψ(t, z, R)}. (29)

Definition 3.1. (Weak Solution) We say that (u, η,d) ∈ W(0, T ) is a weak
solution of problem (5)-(11) if for every (q, ψ,ψ) ∈ Q(0, T ) the following holds:

−
∫ T

0

∫
ΩF (t)

u · ∂tq +

∫ T

0

b(t,u,u,q) + 2

∫ T

0

∫
ΩF (t)

D(u) : D(q)

−1

2

∫ T

0

∫
Γ

(∂tη)2ψ −
∫ T

0

∫
Γ

∂tη∂tψ +

∫ T

0

∫
Γ

∂zη∂zψ

−
∫ T

0

∫
ΩS

∂td · ∂tψ +

∫ T

0

as(d,ψ) =

∫ T

0

〈F (t),q〉Γin/out

+

∫
ΩF (0)

u0 · q(0) +

∫
Γ

v0ψ(0) +

∫
ΩS

V0 ·ψ(0).

(30)

In deriving the weak formulation we used integration by parts in a classical way,
and the following equalities which hold for smooth functions:∫

ΩF (t)

(u · ∇)u · q =
1

2

∫
ΩF (t)

(u · ∇)u · q− 1

2

∫
ΩF (t)

(u · ∇)q · u

+
1

2

∫
Γ

(∂tη)2ψ ± 1

2

∫
Γout/in

|ur|2vr,

∫ T

0

∫
ΩF (t)

∂tu · q = −
∫ T

0

∫
ΩF (t)

u · ∂tq−
∫

ΩF (0)

u0 · q(0)−
∫ T

0

∫
Γ

(∂tη)2ψ.
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4. Conclusions. The energy estimate (12) and the spaces of weak solutions show
that the presence of a fluid-structure interface with mass regularizes the solution
of this fluid-structure interaction problem. If we had a FSI problem between an
incompressible, viscous fluid and a thick structure only, the trace of the displacement
of the structure would not have been defined at the fluid-structure interface, and
the evolution of the fluid-structure interface could not be controlled by the energy
estimates. In problem (5)-(11) not only that the trace of the displacement and
the axial derivative of the displacement of the fluid-structure interface are well
defined, but the time-derivative of the displacement of the fluid-structure interface
is controlled by the energy estimate. The kinetic energy term ‖∂tη‖2 in the energy
estimate (12), which is responsible for the control of the evolution of the fluid-
structure interface, appears in (12) due to the inertia of the fluid-structure interface
with mass. Our preliminary results indicate that this will play a crucial role in
proving existence of a weak solution to this fluid-multi-structure interaction problem
[17]. Namely, in a problem in which viscoelasticity of the structure is lacking,
the inertia of the fluid-structure interface with mass provides a new regularizing
mechanism for a weak solution to exist. This is reminiscent of the results by Hansen
and Zuazua [12] in which the presence of a point mass at the interface between two
linearly elastic strings with solutions in asymmetric spaces (different regularity on
each side) allowed the proof of well-posedness due to the regularizing effects by the
point mass. Further research in this direction for problem (5)-(11) is under way [17].
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continuous functions. to appear in Networks and Heterogeneous Media
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Abstract. We consider continuous solutions u to the balance equation

∂tu(t, x) + ∂x [f(u(t, x))] = g(t, x) f ∈ C2(R), g ∈ L∞(R+ × R)

for a bounded source term g. Continuity improves to Hölder continuity when
f is uniformly convex, but it is not more regular in general. We discuss the

reduction to ODEs on characteristics, mainly based on the joint works [5, 1].

We provide here local Lipschitz regularity results holding in the region where
f ′(u)f ′′(u) 6= 0 and only in the simpler case of autonomous sources g = g(x),

but for solutions u(t, x) which may depend on time. This corresponds to a

local Lipschitz regularity result, in that region, for the system of ODEs{
γ̇(t) = f ′(u(t, γ(t)))
d
dt
u(t, γ(t)) = g(γ(t)).

1. Introduction. In the context of classical solutions, the balance law

∂tu(t, x) + ∂x [f(u(t, x))] = g(t, x), f ∈ C2(R), (1.1)

can be reduced to ordinary differential equations along characteristic curves, defined
as those curves t 7→ (t, γ(t)) satisfying γ̇(t) = f ′(u(t, γ(t))). Indeed,

g(t, γ(t)) = ∂tu(t, γ(t)) + ∂x [f(u(t, γ(t)))]

= ∂tu(t, γ(t)) + f ′(u(t, γ(t)))∂xu(t, γ(t))

= ∂tu(t, γ(t)) + γ̇(t)∂xu(t, γ(t)) =
d

dt
u(t, γ(t)).

This more generally allows a parallel between the Cauchy problem for a scalar quasi-
linear first order PDE and for a system of ODEs, which is known as the method
of characteristics (see for instance [10], where it is also provided an application to
determine local existence).
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If one interprets f ′(u) as a velocity, this is just the change of variable from the
Eulerian (PDE) to the Lagrangian (ODEs) formulation.

We discuss here what remains of this equivalence when u is just continuous and
g is bounded. We prove then in Section 2 that when g depends only on x, but not
on the time t, then u(t, x) is locally Lipschitz continuous on the open set where
f ′(u)f ′′(u) is nonvanishing. This is sensibly better than the general case, where u
is only Hölder continuous. It is based on proving the corresponding result for the
system of ODEs. As we are discussing local issues, we will fix for simplicity the
domain R2 and we will assume u bounded.

1.1. A motivation for a different setting. The development of Geometric Mea-
sure Theory in the context of the sub-Riemannian Heisenberg group Hn brought
the attention to continuous solutions to the equation

∂tu(t, x) + ∂x

[
u2(t, x))

2

]
= g(t, x). (1.2)

Continuity is natural from the fact that u parametrizes a surface. As one stud-
ies surfaces that have differentiability properties in the intrinsic structure of the
Heisenberg group, but not in the Euclidean structure, then it is not natural assum-
ing more regularity of u than continuity [13], which for bounded sources improves
to 1/2-Hölder continuity [4, 5]. Notice that with u continuous the second term of
the equation cannot even be rewritten as u∂xu, because ∂xu is only a distribution
and u is not a suitable test function.

The PDE arises if one wants to show the equivalence between a pointwise, metric
notion of differentiability and a distributional one: for n = 1 the distributional
definition is precisely (1.2), while for n > 1 it is a related multi-D system of PDEs.
The correspondence was introduced first in [3, 4] for intrinsic regular hypersurfaces,
which are the analogue of what are C1-hypersurfaces in the Euclidean setting. It
was extended in [5, 7] when considering intrinsic Lipschitz hypersurfaces, analogue
of Lipschitz hypersurfeces in the Euclidean setting. The source term g, in H1, turns
out to be what is called the intrinsic gradient of u, which is the counterpart of
the gradient in Euclidean geometry; in Hn it is one if its components: u locally
parametrizes an intrinsic regular hypersurface if and only if (1.2) holds locally with
g continuous; it parametrizes an intrinsic regular hypersurface if and only if (1.2)
holds locally with g bounded. As the notion of differentiability they provide in the
intrinsic structure of Hn is closer to the Lagrangian formulation, the equivalence
between Lagrangian and Eulerian formulation arises as intermediate step of this
characterization.

When considering intrinsic Lipschitz hypersurfaces the fact that g is only bounded
gives rise to new subtleties. In particular, one already knows by an intrinsic
Rademacher theorem [11] that the intrinsic differential exists and it is unique L2-
a.e. However, for the ODE formulation this is not enough: as one needs to restrict
this L∞ function on curves, a precise representative is needed also at points where u
is not intrinsically differentiable. Viceversa, if one chooses badly the representative
of the source of the ODE formulation a priori it differs on a positive measure set
from the source of the ODE. There is however a canonical choice for defining the
two sources, which makes the formulations equivalent when the inflection points of
f are negligible.
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1.2. Summary of the equivalence. When u is Lipschitz, the ODEs{
χ̇(t, x) = f ′(u(t, χ(t, x)))

χ(0, x) = x
x ∈ R, f ∈ C2

provides a local diffeomorphism by the classical theory on ODE. If u is instead
continuous, Peano’s theorem ensures local existence of solutions, but more char-
acteristics may start at one point and characteristics from different points may
collapse (see in [5] the classical example of the square-root). This makes clearly
impossible to have a local diffeomorphism, or even having a Lagrangian flow in the
sense by Ambrosio-DiPerna-Lions [9, 2]. A recent result about this can be obtained
for u not depending on time [6], but it is clearly not our assumption. Dropping out
injectivity, it is however possible to construct a continuous change of variables with
bounded variation.

Let u be a continuous, bounded function.

Lemma 1.1. There exists a continuous function χ : R× R→ R such that

• τ 7→ χ(t, τ) is nondecreasing for every t and surjective;
• ∂tχ(t, τ) = f ′(u(t, τ)).

We call it Lagrangian parameterization. This function is not unique.

See [1, 5] for the proof. See also [12] for a similar change of variable, for a
1D-system. In general one cannot have that χ is SBV [1].

Consider now u continuous distributional solution to (1.1) with g bounded.

Lemma 1.2. Assume that L1(clos({Inflection points of f})) = 0. Then u is Lips-
chitz continuous along every characteristic curve.

The proof follows a computation by Dafermos [8]. For general fluxes, there
are cases when u is not Lipschitz along some Lagrangian parameterization [1]. The
counterexample holds also for continuous autonomous sources g(t, x) = g0(x). What
we find more striking is the following.

Theorem 1.3. Assume that L1(clos({Inflection points of f})) = 0. Then there
exists a pointwise defined function ĝ(t, x)

d

dt
u(t, γ(t)) = ĝ(t, γ(t)) in D′(R) for every characteristic curve γ.

The proof is based on a selection theorem as a technical device, but ĝ is essentially
uniquely defined as the derivative of u along some characteristic.

Remark 1.4. There is a substantial difference between the uniformly convex and
the strictly convex cases: in the former at almost every (t, x) there exists a unique
value for d

dtu(t, γ(t)), γ(t) = x, and it does not depend on which characteristic γ(s)
one has chosen. That value is the most natural choice of ĝ at those points, and this
a.e. defined function ĝ identifies the same distribution as the source term g. With-
out uniform convexity d

dtu(t, γ(t)) may not exist on a set of positive L2-measure,
independently of which characteristic γ one choses through the point. The corre-
spondence between distributional and Lagrangian sources gets more complicated
with non-covexity.

The converse also holds. We give here a weaker statement without the negligibil-
ity condition on the inflection points. As mentioned identifying sources is delicate,
we refer for it to the more extensive work [1].
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Theorem 1.5. Assume that a continuous function u has a Lagrangian parameter-
ization χ for which there exists a bounded function g̃ s.t. it satisfies

d

dt
u(t, χ(t, τ)) = g̃(t, χ(t, τ)) in D′(R) for every τ ∈ R. (1.3)

Then there exists a function g(t, x) s.t. (1.1) holds.
Viceversa, if (1.1) holds then there exists a Lagrangian parameterization χ and

function g̃ s.t. (1.3) holds.

We finally mention that continuous distributional solutions to this simple equa-
tion do not dissipate entropy.

Theorem 1.6. Let u be a continuous distributional solution to (1.1) with bounded
source g. Then for every smooth function η and q satisfying q′ = η′f ′

∂t [η(u(t, x))] + ∂x [q(u(t, x))] = η′(u(t, x))g(t, x).

2. Some Local Regularity with Autonomous Sources. We mention a local
regularity result holding in the case of autonomous sources: the continuous function
u(t, x) is locally Lipschitz continuous in the (open) complementary of the 0-level set
of the product f ′(u)f ′′(u). For f(u) = u2/2, this means u 6= 0. When the source
is not autonomous, then this fails to be true, indeed characteristics may bifurcate
also at points where u is not vanishing.

We remind [1] that when f has inflection points of positive measure, then a priori
u may not be Lipschitz along some characteristics, even with g = g(x).

Lemma 2.1. There may be locally multiple solutions to the ordinary differential
equation{

γ̇(t) = u(t, γ(t))

γ̈(t) = g(γ(t))
γ(t̄) = x̄ u(t, x) continuous, g(x) bounded

only if u(t̄, x̄) = 0 but it does not identically vanish in a whole neighborhood.

Remark 2.2. We are not stating existence. The lemma is however still not obvious
because we do not have differentiability properties of u, which follow a posteriori by
the next corollary in the region where u does not vanish. As a consequence, we do
not have now the differentiability of the map γ(t) w.r.t. the initial data of the ODE.
The lemma asserts indeed the continuity in this variable in that region, provided it
exists. We remind that when g depends on t bifurcations may easily occur also if
u 6= 0.

Proof. We just prove that if u does not vanish at some point (t̄, x̄), at that point
there is at most one solution of the ODE, as an effect of the autonomous source. The
reason is that if u(t̄, x̄) does not vanish, then any Lipschitz characteristic x = γ(t),
with x̄ = γ(t̄), is a diffeomorphism in some neighborhood of (t̄, x̄), and we can invert
it. This allows to have the space variable as a parameter: the characteristic can
be expressed as t = θ(x). However, the second order relation γ̈(t) = g(γ(t)), once
expressed in the x variable, can be integrated determining the function θ.

By elementary arguments, it suffices to show that there exists (locally) only one
characteristic passing through (t̄, x̄) = (0, 0) with slope u(0, 0) = 1. Focus the
attention on a neighborhood U of the origin where u is bigger than some ε > 0. Let
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x = γ(t) be any Lipschitz continuous solution of the ODE. Since γ̇(0) = u(0, 0) > 0,
by the inverse function theorem there exists δ > 0 and a function

θ : (γ(−δ), γ(δ))→ (−δ, δ) : θ(γ(t)) = t, γ(θ(x)) = x.

Moreover, it is continuously differentiable with derivative

θ̇(x) =
1

γ̇(θ(x))
=

1

u(θ(x), x)
∈
[

1

max |u|
,

1

ε

]
. (2.1)

From the Lipschitz continuity of u(t, γ(t)) and the fact that γ is a local diffeomor-
phism with inverse θ we deduce that the composite function u(θ(x), x) is Lipschitz
continuous. At points X ⊂ U of differentiability by the classical chain rule

lim
h↓0

γ̇(θ(x+ h))− γ̇(θ(x))

h

=
γ̇(θ(x+ h))− γ̇(θ(x))

θ(x+ h)− θ(x)

θ(x+ h)− θ(x)

h
= γ̈(θ(x))θ̇(x)

and by (2.1) we have that θ̇ is differentiable at x ∈ X with derivative

θ̈(x) = − γ̈(θ(x))θ̇(x)

[γ̇(θ(x))]2
= − g(θ(x))

u3(θ(x), x)
⇔ − θ̈(x)

[θ̇(x)]3
= g(x).

For those x ∈ X, the differential equation may be rewritten as

d

dx

[
1

2[θ̇(x)]2

]
= g(x) ⇔ d

dx

u2(θ(x), x)

2
= g(x).

The explicit ODE for θ(x), with initial data θ(0) = 0, [θ̇(0)]−1 = u(0, 0) = 1 is
easily solved locally by

u2(θ(x), x) =
1

θ̇2(x)
= 1 + 2

∫ x

0

g(z)dz. (2.2)

This shows that the slope of every characteristic through the origin, which is a
local diffeomophism, is fixed at each x independently of the characteristic we have
chosen: therefore there can be only one characteristic, precisely (in the space pa-
rameterization)

θ(x; t̄, x̄) = t̄+

∫ x

x̄

1√
u2(t̄, x̄) + 2

∫ w
x̄
g(z)dz

dw. (2.3)

Notice finally that if u vanishes in a neighborhood, being γ̇(t) ≡ 0 there charac-
teristics must be vertical (in that region of the (x, t)-plane).

Lemma 2.3. Under the hypothesis of Lemma 2.1, if g(x) is continuous it should
also vanish at points where there are more characteristics, but it must not identically
vanish in a neighborhood.

Proof. We show that not only u, but also g must vanish. The argument shows
that when two characteristics meet and have both second derivative with the same
value, this value must be 0. For simplifying notations, consider two characteristics
γ1(t) ≤ γ2(t) for arbitrarily small t > 0 with γ1(0) = γ2(0) = 0. If γ1(tk)γ2(tk) ≤ 0
for tk ↓ 0, then

0 ≤ γ̈2(0) = g(0) = γ̈1(0) ≤ 0,

thus g vanishes. If instead e.g. g > 0 near the origin, having excluded the above
case there exists δ > 0 such that 0 < γ1(t) ≤ γ2(t) for t ∈ [0, δ]. Then (2.2) implies
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that the two curves coincide: having γ̇1(tk) = 0 or γ̇2(tk) = 0 for a sequence |tk| ↓ 0
would contradict the positivity of g, therefore for small t > 0 necessarily γ̇1(t) > 0,
γ̇2(t) > 0 and therefore

u2(γ−1
1 (x), x) + 2

∫ 0

x

g(z)dz = γ̇2
1(0)

= 0 = γ̇2
2(0) = u2(γ−1

2 (x), x) + 2

∫ 0

x

g(z)dz.

Being γ̇i(t) = u(t, γi(t)), i = 1, 2, by the differential relation, this shows that γ̇1(t) ≡
γ̇2(t) for small times. This implies that the two curves coincide.

Finally, suppose g vanishes in a neighborhood. Then, as γ̈(t) = 0 in that neigh-
borhood, characteristics are straight lines. As by the continuity of u characteristics
may only intersect with the same derivative, they must be parallel lines and there-
fore bifurcation of characteristics does not occur.

We now show that in case u does not vanish, in the above lemma much more
regularity holds.

Lemma 2.4. If for every (t̄, x̄) ∈ Ω open in R2 there exists a curve γ s.t.{
γ̇(t) = u(t, γ(t))

γ̈(t) = g(γ(t))
γ(t̄) = x̄ u(t, x) continuous, g(x) bounded

then u(t, x) is locally Lipschitz in the open set
{

(t, x) : u(t, x) 6= 0
}
⊂ Ω.

Corollary 2.5. If u is not locally Lipschitz where nonvanishing then the system in
Lemma 2.1 cannot have solutions through each point of the plane. In particular, u
cannot be a continuous solution to

∂tu(t, x) + ∂x [f(u(t, x))] = g(x).

Proof. By Lemma 2.1 there is a unique characteristic starting at each point (t̄, x̄) ∈
Ω =

{
(t, x) : u(t, x) 6= 0

}
, which is given by (2.3). We start comparing the value

of u at two points (0, 0), (−t, 0), t > 0, in a ball B compactly contained in Ω. In
particular, there exists δ(B) s.t. the two characteristics starting from the points we
have chosen do not intersect if 0 < x < δ(B), as there u does not vanish. For such
small x one has by (2.3)∫ x

0

1√
λ2

1 + 2
∫ w

0
g(z)dz

dw > −t+

∫ x

0

1√
λ2

2 + 2
∫ w

0
g(z)dz

dw, (2.4)

where we defined λ1 = u(0, 0) and λ2 = u(−t, 0). Equivalently

t >

∫ x

0

 1√
λ2

2 + 2
∫ w

0
g(z)dz

− 1√
λ2

1 + 2
∫ w

0
g(z)dz

 dw.
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Suppose λ1 > λ2. By convexity of the graph of r 7→ 1√
r
, the RHS is more than∫ x

0

d

dr

{
1√
r

} ∣∣∣
r=λ2

1+2
∫ w
0
g(z)dz

(λ2
2 − λ2

1)dw

=

{
λ2 + λ1

−2

∫ x

0

1

(λ2
1 + 2

∫ w
0
g(z)dz)3/2

dw

}
(λ2 − λ1)

≥
{

λ2 + λ1

2(λ2
1 + 2Gx)3/2

x

}
(λ1 − λ2)

The argument in the last brackets is uniformly continuous and as t ↓ 0 it is more
than x/λ2

1. As the inequalities hold for every positive t, x < δ = δ(B), the non-
intersecting condition (2.4) implies

t >

(
λ2

1

δ
+ ε

)−1

(λ1 − λ2) ⇒ u(0, 0)− u(t, 0) = λ1 − λ2 ≤
(
λ2

1

δ
+ ε

)
t,

which is half the Lipschitz inequality at the points (0, 0), (−t, 0). The other half,
for λ1 < λ2 is similarly obtained considering small negative x.

For comparing two generic close points (t, x) and (0, 0), by the finite speed of
propagation one can combine the Lipschitz regularity along characteristics and the
Lipschitz regularity along vertical lines.

Corollary 2.6. Let u(t, x) be a continuous solution to the balance equation

∂tu(t, x) + ∂x [f(u(t, x))] = g(x), g ∈ L∞(R).

The function u(t, x) is locally Lipschitz in the open set{
(t, x) : f ′(u(t, x)) · f ′′(u(t, x)) 6= 0

}
.

Proof. We first consider the case of quadratic flux f(u) = u2/2. By Theorem 1.3,
there exists a function ĝ(t, x) such that we can apply Lemma 2.1, which gives the
thesis. If g ∈ L∞ they may a priori differ on an L2-negligible set, but one can prove
that ĝ(t, x) = ĝ(x).

Being u an entropy solution by Theorem 1.6, f ′(u) solves the equation[
f ′(u)

]
t

+

[
f ′(u)2

2

]
x

= f ′′(u)g.

By the previous case then f ′(u) is Lipschitz in the open set where it does not vanish.
If moreover f ′′(u) does not vanish, then the regularity of u can be proved just by
inverting f ′.
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Abstract. Traveling waves arising in detonation physics are described by the

reactive Euler equations obtained in the fluid dynamical limit of the Boltzmann
equation for a binary reactive mixture. The hydrodynamic linear stability of

the detonation wave solution is investigated with a normal mode analysis.
Numerical simulations are performed for both the detonation wave solution

and its linear stability.

1. Introduction. Detonation waves are combustion fronts triggered by a strong
shock and sustained by a chemical reaction [1, 2]. They can be mathematically
modeled by the reactive Euler equations, which includes conservation laws of mo-
mentum and total energy (kinetic and chemical) of the mixture as well as reaction
rate equation for the constituents. Experimental studies show that the detonation
waves tend to be structurally unstable and a first attempt to understand and de-
scribe the instabilities is a hydrodynamic stability analysis based on the linearization
of the governing Euler equations and a normal-mode representation of the pertur-
bations [3]. It is well known that the numerical analysis of detonation waves and
its hydrodynamic stability is a rich and challenging problem with many engineering
applications [2, 3]. We investigate this problem starting by considering a binary
mixture modeled by the Boltzmann equation for the constituent distribution func-
tions, with both elastic scattering and reactive collision terms. Then we pass to
the fluid dynamical limit for an Eulerian regime and use the resulting macroscopic
reactive equations to investigate the existence of detonation wave solutions. The
analysis presented in this paper includes the modeling of the detonation waves, its
hydrodynamic stability and the numerical treatment of these problems.

2. The model for the explosive reactive mixture. We consider an idealized
explosive mixture of two constituents, denoted by A and B, whose particles undergo
a reversible symmetric chemical reaction of type A + A 
 B + B. The molecules
have binding energies EA and EB , the same mass m and equal diameter d.

2000 Mathematics Subject Classification. Primary: 35L67, 80A25, 76E99; Secondary: 80A32,

82C40.
Key words and phrases. Reactive Euler equations, Detonation wave solutions, Hydrodynamic
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In one-space dimension, the macroscopic physical observables of the reactive
mixture are the constituent number densities nA, nB , the mixture mean velocity
v and the mixture temperature T . Neglecting diffusion and heat fluxes, as well as
shear and non-equilibrium stresses, the governing equations of the mixture are the
reactive Euler equations, namely the rate equations of the constituents together
with the conservation laws of momentum and total energy of the whole mixture.
They are given by

∂nα
∂t

+
∂

∂x
(nαv) = τα, α = A,B (1)

∂

∂t
(%v) +

∂

∂x

(
%v2 + p

)
= 0 (2)

∂

∂t

(1

2
%v2 +

3

2
nkT + nAEA + nBEB

)
(3)

+
∂

∂x

[
pv +

(1

2
%v2 +

3

2
nkT + nAEA + nBEB

)
v

]
= 0

where τα represents the reaction rate of the α−constituent, such that τB = −τA as
predicted by the chemical law. Moreover, %, p and n are the mass density, pressure
and number density of the whole mixture, with

n = nA + nB , % = mn, p = nkT (4)

The number density nα represents a measure of the concentration of the constituent
α and thus Eq. 1 constitutes the rate equation of the considered reactive mixture.
The term nAEA + nBEB appearing in Eq. 3 represents the chemical bond energy
of the mixture, and k is the Boltzmann constant.

The above governing equations 1-3 have been derived from a kinetic theory based
on the Boltzmann equation extended to the considered reactive mixture, see Ref.
[4, 5]. In particular, a chemical regime of slow reactive process is assumed and an
appropriate scalling is introduced in terms of the Knudsen number associated to
elastic scattering. The corresponding fluid dynamic limit is obtained by means of
the Chapman-Enskog method [6] which leads to a distribution function containing
the non-equilibrium effects associated to the chemical reaction. The procedure leads
to the explicit computation of the reaction rate τα, which follows an Arrhenius-type
law, given by

τB = −τA, τA = −4n2Ad
2
r

√
πkT

m
e−ε

?
A

[
1 + ε?A +

n2A
128n2

(
d

dr

)2
Q?R

×
(
1 +Q?R +Q?Rε

?
A + ε?A − 2ε?2A

) (
4ε?3A − 8ε?2A − ε?A − 1

)
e−ε

?
A

]
(5)

where ε?A is the activation energy of the forward chemical reaction in units of kT
and Q?R = 2(EB − Ea)/kT is the reaction heat of the chemical reaction, also in
units of kT . The details of the passage to the fluid dynamic limit are given in Ref.
[7] and revisited in Refs. [4, 5].

The qualitative properties of the Euler equations are well known in literature,
see for example Refs. [8, 9, 10]. In particular they constitute an hyperbolic set of
non-linear PDE’s and admit shock profile solutions.

In addition, when a reactive gaseous mixture is considered, like the one previously
introduced in this section, an interesting and relevant type of shock solutions may
arise, namely steady traveling detonation wave solutions.
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3. Detonation waves. Physically, detonation wave solutions represent a combus-
tion front in which a strong shock wave ignites the explosive mixture and the burning
keeps the shock advancing and proceeding to equilibrium in the reaction zone be-
hind the shock. The configuration of such solutions is well described in the literature
of the detonation phenomenon and a good and accepted model for such solutions is
the well known znd model developed by Zeldovich, von Neumann and Doering, the
founders of the modern detonation theory, see Refs. [1, 2]. According to the znd
model, the structure of the detonation wave solution consists of a leadind planar
non-reactive shock propagating with constant velocity, followed by a finite reaction
zone where the chemical process evolves.

3.1. Steady detonation solutions. We investigate one-dimensional znd steady
detonation wave solutions propagating in an explosive mixture described by the
model of Section 2. Mathematically, these solutions are traveling waves for the
reactive Euler equations 1-3.

We consider a planar shock wave propagating in the x−direction with constant
velocity D from left to the right. Ahead the shock front, we consider the initial
quiescent mixture at rest, where the rate of the chemical reaction is negligible.
Such initial state is labeled as I = (n+A, n

+
B , 0, T

+). The passage of the shock
raises the density and temperature above the ignition values, so that the chemical
reaction is suddenly activated. The state just behind the shock wave, where the
chemical reaction is triggered, is the von Neumann state which is labeled as N =
(nA, nB , v, T ). The shock wave is followed by a reaction zone with a finite length,
where the chemical reaction continuously proceeds from the state N to a final state
F of chemical equilibrium. All states inside the reaction zone are intermediate states
R of partial reaction.

Traveling detonation waves with velocity D are determined as solutions depend-
ing on the normalized steady variable

xs =
x−Dt
Dtc

, with tc =
1

4n+d2

√
m

πkT+
(6)

where tc is a characteristic time. The Euler equations 1-3 are transformed to the
steady frame attached to the shock wave and re-written in terms of the variable xS .
They transform to a system of four ODE’s for the unknowns nA, n, v, T , which can
be writen in the more conservative form

d

dx

[
(v −D)nA

]
= DtcτA (7)

d

dx

[
(v −D)n

]
= 0 (8)

d

dx

[
(v −D) %v + nkT
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= 0 (9)

d

dx

[
(v −D)

(
3

2
nkT +

%v2

2
+ EAnA + EBnB

)
+ nkTv

]
= 0 (10)

where we have written x in place of xS . The explicit expression of the reaction rate
is given by expression 5.

Von Neumann state. State N , just behind the shock wave, is the solution of a
non-reactive shock problem. Euler equations 7-10 hold true with vanishing reaction
rate and should be taken in a weak integrated sense between the initial state and
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the von Neumann state. The integration leads to the algebraic Rankine-Hugoniot
jump conditions connecting the state N to the state I, namely

nA (v −D) = −n+AD (11)

n (v −D) = −n+D (12)

%v (v −D) + nkT = kn+T+ (13)(
3

2
nkT +

%v2

2
+ EAnA + EBnB

)
(v −D) + nkTv

= −
(

3

2
kn+T+ + EAn

+
A + EBn

+
B

)
D (14)

Intermediate and final states. States R and F , in the reaction zone, are obtained
solving an initial value problem for the number density nA, with initial condition
assigned at the von Neumann state. The chemical reaction is the dominant process
within this problem since the evolution of the gaseous mixture within the reaction
zone is determined by the reactive process. More in detail, conservative Eqs. 8-10
are integrated between the initial state and an arbitrary state within the reaction
zone. The resulting three algebraic Rankine-Hugoniot conditions allow to express
the state variables nB , v and T in terms of nA and reduce the system to the ODE

dnA
dx

=
DtcτA

v −D + nA
dv
dnA

(15)

Equation 15 represents the rate law in the shock attached frame and specifies the
chemical composition of the explosive mixture in the reaction zone. The integration
of Eq. 15 and further computation of the remaining state variables through the three
algebraic Rankine-Hugoniot conditions characterize the thermodynamical state of
the mixture in the reaction zone. The final state of chemical equilibrium, is obtained
when the reaction rate τA vanishes and nA becomes constant, so that the chemical
concentrations of constituents A and B remain unchanged.

3.2. Numerical solutions. Numerical solutions of the detonation wave problem
can be determined, characterizing the states N , R and F for different values of the
velocity D, reaction heat Q∗R and activation energy ε?A. Some numerical simulations
are performed for one elementary reaction of a theoretical detonating mixture. The
initial state are assumed as follows

m = 0.01Kg/mol, n+A = 0.35mol/l, n+B = 0mol/l

T+ = 298.15K, EA = 2400K, ε?A = 6 (16)

Some representative profiles are shown in Figure 1 for the mixture pressure, in
dependence of the algebraic distance behind the shock wave. The left frame of
Figure 1 is obtained for a fixed detonation velocity and refers to exothermic chemical
reactions with reaction heat Q∗R = −2 and Q∗R = −1. It shows that the pressure
profile and the thickness of the reaction zone decrease for the hight absolute value
of the reaction heat. The right frame refers to exothermic reaction with Q∗R = −1
and detonation velocity D = 1600ms−1 and D = 1700ms−1. It shows that the
pressure profile increases and the thickness of the reaction zone decreases for the
hight value of the detonation velocity. The results are in a good agreement with
the analytical studies and numerical predictions known from the literature on the
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Figure 1. Mixture pressure profile. Left: detonation velocity
D=1700ms−1, exothermic reaction with Q?R=−1 (solid line) and
Q?R=−2 (dashed line). Right: reaction heat Q?R=−1 (exothermic
reaction), detonation velocity D= 1700ms−1 (solid line) and D=
1600ms−1 (dashed line).

detonation phenomenon. See, for example, Refs. [1, 2]. A more detailed discussion
about these results can be seen in Ref. [5].

4. Hidrodynamic linear stability. It is well known from theoretical studies and
experimental investigations, see Refs. [1, 2], that the detonation wave solution tends
to be structurally unstable and can degenerate into an oscillatory solution in the
long-time limit. Such oscillatory configuration exhibits complex three-dimensional
non-linear perturbations, so that its characterization results to be a very complex
and difficult problem, from either analytical or numerical point of view.

As a first step of a formal treatment, one studies the problem of hydrodynamical
stability of the steady solution, formulated as follows: one assumes that a small
rear boundary perturbation is instantaneously assigned, inducing a deviation on
the shock wave position; as a consequence, small perturbations are induced on the
state variables and one is interested in their evolution in the reaction zone. The
pertinent question is to investigate if all perturbations decay with time or if any
perturbation grow with time. In the first case, the steady solution becomes stable
and in the latter it becomes unstable.

4.1. Stability analysis. From the mathematical point of view, the stability prob-
lem requires first the transformation to the perturbed wave coordinate

x = x− ψ(t), with ψ(t) = Dt+ ψ̃(t) (17)

where ψ(t) represents the location of the perturbed shock wave and ψ̃(t) the dis-
placement of the wave from the unperturbed position.

Normal mode approach. Since the perturbations are small, we then linearize the
governing equations and Rankine-Hugoniot conditions about the steady detonation
solution, assuming the following expansions for the the state variables and shock
distortion with exponential time dependence,

z(x, t) = z∗(x) + eat z(x), ψ(t) = eat, a ∈ C (18)

where z=[nA nB v p]T , z∗(x) is the steady solution, z(x) is the vector of complex
eigenfunctions representing the unknown spatially disturbances, and a is the com-
plex eigenvalue, with Re a and Ima being the disturbance growth rate and frequency,
respectively.
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Linearized stability equations. The transformation to the perturbed shock and the
linearization by means of the expansions 18 lead to the stability equations

Danα+(v∗−D)
dnα
dx

+
dn∗α
dx

(v−aD)+
dv∗

dx
nα+n∗α

dv

dx
= τα, α = A,B (19)

%∗aDv +
dp

dx
+ %∗

dv∗

dx
(v−aD) + (v∗ −D)

dv∗

dx
%+ %∗ (v∗−D)

dv

dx
= 0 (20)
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Q∗RDtcτA

3
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where the linearized reaction rate τα is given by

τA = −4d2r

√
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+ 2
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]
, τB = −τA

Equations 19-21 constitute a system of eight first-order homogeneous linear ordinary
differential equations with spatially varying coefficients, for the real and imaginary
parts of the complex perturbations.

Initial conditions. The initial conditions for the stability equations are obtained
from the Rankine-Hugoniot relations 11-14, after transforming to the wave coordi-
nate and linearizing around the steady state. The resulting conditions are

nα(0) =
(n∗α − n+α ) a− n∗αv(0)

v∗ −D
, α = A,B (22)

v(0) =
3%+v∗2 + 3

2 (p∗ − p+)− 3
2D%

+v∗ + 2EAn
+ +Q∗Rn

+
B

−%∗ (v∗ −D)
2

+ 5
2p
∗

a (23)

p(0) = −%+av∗ − (v∗ −D) %∗v(0) (24)

Closure condition. Equations 19-21 and their initial conditions 22-24 involve the
complex perturbation parameter a and therefore the stability system is not closed.
The closure condition is given by the dispersion relation of the normal modes 18
formulated at the final state F , that is

vF + a =
−1

γ%∗eqc
∗
eq

pF , (25)

where γ is the ratio of specific heats, c∗eq and %∗eq the isentropic sound speed and
gas density at the equilibrium final state.

Stability problem. The linear stability problem consists in the eight ordinary differ-
ential equations 19-21 for the complex eigenfunction disturbances z(x) and complex
eigenvalue parameter a, with initial conditions 22-24 and closure condition 25.

The objective is to determine the instability modes which correspond to a positive
growth rate Re a. Moreover, since these modes occur in conjugate pairs, they are
searched in the upper-right quarter of the complex plane.

The stability problem is solved numerically and its solution gives valuable pre-
dictions about the stability of the steady detonation solutions.
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4.2. Numerical technique. For a given set of thermodynamical and chemical
parameters characterizing the steady detonation wave solution, eigenfunctions z(x)
and eigenvalues a are determined. We apply a numerical technique which combines
the iterative shooting method proposed by Lee and Stewart in paper [3] with the
argument principle used by Erpenbeck in paper [11].The basic idea is the following,
see Ref. [5]: (i) we start with a trial value of a in a fixed bounded domain R of the
complex plane; (ii) then we use a fourth order Runge-Kutta routine to integrate
the stability equations 19-21 in the reaction zone, say for x ∈ ]xF , 0[, with initial
conditions 22-24 at x= 0; (iii) finally we enquire if the approximate solution z(x),
x ∈ ]xF , 0] and related parameter a satisfy the boundary condition 25; (iv) if this
is not the case, we iterate the procedure on the trial value a until condition 25 is
satisfied. Since, in general, a trial value of a does not produce a stability solution,
in the sense that condition 25 is not verified, the key preliminary step consists
in searching appropriate trial values for a. To do this, we introduce the residual
function

H (a) = v(xF ) + a+
1

γ%∗eqc
∗
eq

p(xF ) , a ∈ R, (26)

and search the zeros of H in the considered region R. To count the number Z of
zeros we use the argument principle and estimate the quantity

Z =
1

2πi

∫ `

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt (27)

where ζ : [k, `] → C is a path smooth by parts, describing the contour of R in the
positive direction. Such estimation requires a rather involved numerical technique
which is explained in detail in Refs. [4, 5]. Finally successive refinements of R are
considered and a three-dimensional plot of |H | in the last refinement is used to
determine the location of the zeros.

Some numerical simulations are performed in order to investigate the response
of the steady detonation wave solution to the rear boundary perturbations.

4.3. Stability results. The stability problem is solved numerically for the set of
thermodynamical and chemical parameters given in Eq. 16. We choose a rectan-
gular region R in the upper-right complex plane such that 0.001 < Re(a) < 0.02
and 0.001 < Im(a) < 0.1. The reaction heat and the detonation velocity are varying
in the ranges −2 ≤ Q∗R ≤ 2 and 1278ms−1 ≤ D ≤ 1896ms−1, respectively. Table
1 shows the number of instability modes in the region R, for different values of the
detonation velocity, and for fixed reaction heat and activation energy, Q?R = −1
and ε? = 6.5. One can see that the number of instability modes in the region R is
zero when D ≥ 1645ms−1, and that it increases for lower values of D.

Detonation velocity Number of modes Detonation velocity Number of modes

1896ms−1 0 1518ms−1 17 to 28
1700ms−1 0 1391ms−1 57 to 120
1645ms−1 0 1328ms−1 250 to 334
1581ms−1 1 to 3 1278ms−1 442 to 493

Table 1. Number of instability modes in the regionR, for different
values of the detonation velocity D. The reaction is exothermic
with reaction heat Q?R = −1 and activation energy ε? = 6.5.
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Figure 2 shows the stability boundary in the parameter plane Q∗R− ε?A, for detona-
tion velocity D=1700ms−1. A pair (Q∗R, ε

?
A) in the stability zone indicates that for

the corresponding values of Q∗R and ε?A, no instability modes have been found in the
domain R. Conversely, a pair in the instability zone indicates that one instability
mode, at least, has been found in R.

-2 -1 0 1 2
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Figure 2. Stability boundary in the Q?R−ε? plane, for detonation
velocity D=1700ms−1 and for the considered region R.

The results of Table 1 can be compared to those of Figure 2 considering, simultane-
ously, Q?R = −1, ε? = 6.5 and D=1700ms−1. The results in both representations
indicate a stable solution since no instability modes are found.
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Abstract. We focus on a system of two conservation laws representing a
large class of models relevant for petroleum engineering, the domain of which

possesses singular points. It has been conjectured that the structure of the

Riemann solution in the saturation triangle is strongly influenced by the nature
of the umbilic point. In the current work we show that features originally

related to umbilic points actually belong to a distinct point, the new Equal-

Speed Shocks point.
Even though the location of the umbilic point is known, for the first time,

we relate the umbilic point to a physical property, namely, the minimum of the

total mobility for any Corey model.

1. Introduction. We are interested in the study of injection problems for 2 × 2
systems of conservation laws; a survey may be found in [2, 4, 7, 12] and references
therein. The solution construction for the injection of water and gas is presented in
[2] for the case of quadratic Corey models.

We discuss the location of the umbilic point in the interior of the triangle and
the new “Equal-Speed Shocks” (ESS) point, which arises in these more general
non-symmetric models. Analyses on umbilic points were made in the last few years
[8, 9, 14]. The special case of quadratic Corey models is discussed in [1].

We consider models for reservoirs that may contain three fluids, for concreteness,
we call them water, gas, and oil; although they could be any three fluids that are
immiscible with each other. For simplicity, we assume that the three phases are
incompressible, that gravitational segregation and capillary effects are negligible,
and that there is no mass transfer among the phases. The flow occurs in one
dimension at constant injection rate and fixed proportion of injected fluids. The
mobility of each phase is assumed to be a convex function of its own saturation and
inversely proportional to the phase viscosity. The mathematical model consists of
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two conservation laws representing Darcy’s law combined with mass conservation
for two of the phases. The flow problem depends on two viscosity ratios and the
precise choice of mobilities. (The overall picture of solutions given in [2] is essentially
unchanged in the more general class of models treated in this work, see [5, 6].)

A Corey-type model loses strict hyperbolicity at an umbilic point. Models with-
out umbilic points have been considered for three-phase flow; see [7]. They yield
simple solutions for the injection problem. However, they are unrealistic because
immiscibility of the three phases seems to be related to loss of strict hyperbolic-
ity [3, 14, 16], i.e., either umbilic points or elliptic regions are present. Models with
umbilic points have complicated solutions, but are still well behaved mathemati-
cally; see [9, 12] for a review of their properties.

This work is organized as follows. In Sec. 2 the convex permeability models are
introduced; in Sec. 2.1.1 we give a brief review of rarefaction fans, shock waves
and properties of quadratic Corey models. Section 3 describes certain structures in
state space; in Sec. 3.1 we identify features of the umbilic point and in Sec. 3.2 we
describe curves with a certain equal shock speed property to the boundaries, the
intersection of which is the ESS point. Finally, the conclusions are in Sec. 4.

2. Mathematical model. Consider the flow of a mixture of three fluid phases
(which, for concreteness, are called water, gas and oil) in a thin, horizontal cylinder
of porous rock. Let sw(x, t), sg(x, t) and so(x, t) denote the respective saturations
at distance x along the cylinder, at time t. Because sw + sg + so = 1 and 0 ≤
sw, sg, so ≤ 1, the state space of the fluid mixture is the saturation triangle ∆; see
e.g. Fig. 1. In our analysis, we choose sw and sg as the two independent variables,
thus S := (sw, sg); the vertices of ∆ are W = (1, 0), G = (0, 1) and O = (0, 0).

2.1. Conservation laws. Three-phase flow in 1d at constant injected rate is gov-
erned by the non-dimensionalized system ∂S/∂t+ ∂F (S)/∂x = 0, or

∂sw
∂t

+
∂fw(sw, sg)

∂x
= 0, (1)

∂sg
∂t

+
∂fg(sw, sg)

∂x
= 0, (2)

representing conservation of water and gas. The flow functions fw(sw, sg) and
fg(sw, sg) are determined by the relative permeabilities of the three phases.

Although each fluid phase becomes immobile below an residual saturation, for
simplicity we assume that the relative permeabilities are strictly positive within
the saturation triangle. (In Engineering language, sw, sg, and so are “reduced
saturations”.) From Darcy’s law the fluxes are

fα(S) =
mα(S)

m(S)
, for α = w, g, o, where m := mw + mg + mo (3)

is the total mobility; mw, mg, mo represent the relative mobility of each phase.
Each mobility is a ratio between relative permeability and viscosity of the fluid, it
is described by the continuous function:

mα(S) :=
kα(S)

µα
, α = w, g, o, (4)

where µα is the given constant viscosity of each phase α.
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A Corey type model is defined by a set of mobilities mα(sα) that are nonde-
creasing continuous functions of their own saturation sα. In this work we focus on
convex Corey models, which obey the following restrictions.

Definition 2.1. A Corey model is said to be convex when the mobilities are
C1[0, 1] ∩ C2(0, 1) functions satisfying:

1. mα(sα) > 0 for sα ∈ (0, 1] and mα(0) = 0,
2. m′

α(sα) > 0 for sα ∈ (0, 1] and m′
α(0) = 0,

3. m′′
α(sα) ≥ 0 for sα ∈ (0, 1),

4. no pair of the quantities m′′
w(sw), m′′

g(sg), m′′
o(so) vanish simultaneously for

any point in the interior of the saturation triangle (0 < sw, sg, so < 1).

Remark 1. In the presence of nonzero residual saturations, one can easily formulate
an appropriate extension of Definition 2.1.

Remark 2. In this work, for the purpose of illustrating facts with figures, we use
the following mobilities:

mw(sw) = (sw)3.2857/1, mg(sg) = (sg)2.65/0.5, mo(so) = (so)5.8357/2,

based on a best fit for homogeneous porous media of the Corey-Brooks model, [4].

2.1.1. Basic solutions. Equations (1)–(2) have solutions that propagate as waves.
The Jacobian matrix of the fluxes is the key for rarefaction curves. The character-
istic speeds are the two eigenvalues of the Jacobian derivative matrix

J(S) :=
∂(fw(S), fg(S))

∂(sw, sg)
=
∂F (S)

∂S
, (5)

provided that these eigenvalues are real, in which case the smaller one is called
the slow-family characteristic speed λ s(sw, sg) and the larger one is called the fast-
family characteristic speed λ f(sw, sg). For the Corey model, both eigenvalues are
real and nonnegative for each state in the saturation triangle.

The self-similarity of solutions of a Riemann problem implies that if u(x, t) is
such a solution at a given time t, then u(αx, αt) is also a solution for any α > 0.
Centered rarefaction and shock waves are based on self-similarity.

System (1)–(2) has continuous solutions called slow- and fast-family rarefaction
waves. They arise by solving an ODE, namely,

{J(S)− ξ I}~r(S) = 0,
dS

dξ
= ~r(S),

where S(ξ), for ξ = x/t, is the profile of the rarefaction provided ξ is monotonic
increasing. Some integral curves appearing in the solution of Riemann problems
are plotted in Fig. 1.

This system also admits solutions that have jump discontinuities. The Hugoniot
locus of a point So, denoted as H(So), is given by all the points S that satisfy the
Rankine-Hugoniot (RH) condition:

F (S)− F (So) = σ(S − So), (6)

where σ = σ(So, S) is the velocity of the discontinuity, and the fluxes F (S) and
saturations S are given as before. (Notice that S belongs to H(So) if and only if So

belongs to H(S).) Admissibility of discontinuites for systems of conservation laws
such as (1)–(2) is discussed in [2].

Notice that if the RH condition between states Sa and So holds with a certain
speed σ, and it also holds for the same speed between states So and Sb, it is easy
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O

WG

O

WG

Figure 1. Integral curves; slow and fast families. The triple inter-
section is the umbilic point. Dots on integral curves are inflections,
arrows point in the increasing eigenvalue direction. (The specific
mobilities are in Remark 2.)

to see that the RH condition is satisfied between states Sa and Sb with the same
speed. This is the essence of the triple-shock rule [9]. The definition of σij as the
shock speed σ(Si, Sj) will be useful.

Theorem 2.2 (Triple-shock rule). Let the states S1, S2 belong to H(S0). If σ01 =
σ02 holds, then S1 belongs to H(S2) and the relations σ01 = σ02 = σ12 hold.

Proof. Define σ as σ01 = σ02. Subtract versions of equation (6) written for (S0, S1)
and for (S0, S2), obtaining F (S2) − F (S1) = σ(S2 − S1), which indicates that S1

belongs to H(S2) and σ12 is equal to σ.

The following variant of Theorem 2.2 has been used in several works appearing
in this conference.

Lemma 2.3. Let S0, S1, S2 be non-collinear states such that S1, S2 belong to H(S0)
and S1 belongs to H(S2). Then σ01 = σ02 = σ12 holds.

Proof. Let us express the RH relations of the involved states; we have

F (S1)− F (S0) = σ01(S1 − S0), F (S2)− F (S0) = σ02(S2 − S0),

F (S1)− F (S2) = σ12(S1 − S2). (7)

By subtracting (7.b) and (7.c) from (7.a), we obtain

0 = σ01(S1 − S0)− σ02(S2 − S0)− σ12(S1 − S2).

We subtract the trivial relation 0 = σ12(S1 − S0) − σ12(S2 − S0) − σ12(S1 − S2)
obtaining 0 = (σ01 − σ12)(S1 − S0)− (σ02 − σ12)(S2 − S0). Recalling that the sates
are non-collinear, we notice that the latter relation holds if and only if σ01 − σ12
and σ02 − σ12 are zero, which proves the lemma.

A system is called strictly hyperbolic if the characteristic speeds satisfy the in-
equality λ s(S) < λ f(S) everywhere; they are well studied [10, 11]. In three-phase
flow models there are points where the characteristic speeds coincide, which are
called coincidence points. Furthermore, in Corey models there are isolated coinci-
dence points where the Jacobian matrix is a multiple of the identity, i.e., umbilic
points.
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The quadratic Corey model is defined by the permeabilities kα(S) = s2α for
α = w, g, o. Such a model is well understood; in particular, the location and
characteristics of umbilic points are well known. There is a unique umbilic point
U = (uw, ug) in the interior of ∆, with uo = 1− uw − ug, the coordinates of which
are

uα = µα/(µw + µg + µo), for α = w, g, o.

Such a point satisfies the following.

Property 2.4. For the quadratic Corey model, the characteristic speeds are equal
to 2 at the interior umbilic point.

Three other umbilic points lie on the vertices of the saturation triangle.

Property 2.5. For the quadratic Corey model, the shock speed from the interior
umbilic point to vertices of the triangle are equal to 1.

3. Structures in the saturation triangle for convex Corey models. When
two of the permeabilities in (4) cease to be scalar multiples of the same convex
function, the umbilic point gives rise to two points: the first one is still an umbilic
point, and Property 2.4 holds, and at the second one, only Property 2.5 holds. It is
because of the shock speed equality that the latter point will be called Equal-Speed
Shocks to vertices or ESS.

3.1. The umbilic point location. Inmiscible three-phase flow models are typi-
cally non-strictly hyperbolic, except in the model in [7]. Lemma 3.1 follows from
results in [14] for the case where the gravity force is not active. (In [8, 15] there are
shorter proofs.)

Lemma 3.1. Consider a convex Corey permeability model, see Definition 2.1.
There is always a single point U in the interior of the saturation triangle satis-
fying m′

w(uw) = m′
g(ug) = m′

o(uo), (8)

which is the unique umbilic point in the interior of the triangle. It has characteristic
speed λ(U) = m′

w(uw)/m(U).

An important feature of the models considered is the following: from properties
(3) and (4) of Definition 2.1, one can see that the Hessian for the total mobility:(

m′′
w + m′′

o m′′
o

m′′
o m′′

g + m′′
o

)
(9)

is a positive definite matrix. Hence the motivation of the following result.

Corollary 1. For a convex Corey type model, the total mobility has a single ex-
tremum in the interior of the triangle, which occurs at the umbilic point. The
extremum is a minimum.

Proof. Equating to zero the partial derivatives of m in (3.b) relatively to sw and
sg implies m′

w = m′
o as well as m′

g = m′
o; then Lemma 3.1 guarantees that this

extremum occurs at the single umbilic point. Thus from the positive definiteness of
(9) we obtained that this extremum is the minimum.

Remark 3. Darcy’s law says that the total flow rate of a fluid mixture is propor-
tional to the pressure gradient; the proportionality coefficient is (minus) the total
mobility. Corollary 1 implies that maximum pressure gradient is needed to displace
the fluid mixture at saturations given by the umbilic point, for a given total flow
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rate. In other words the umbilic point gives the saturation proportion for which
each of the three fluids hinders maximally the flow of the other two. (Total flow is
minimal for a specific pressure gradient.)

We will call m′
w(sw) the sensitivity of the water mobility to water saturation.

The first equality in (8), m′
w(sw) = m′

g(sg), defines the equal water-gas sensitivity
curve, which can be parametrized either as a function of sw or sg; it contains U and
O. Similarly we can define equal water-oil and gas-oil sensitivity curves. See the
three dashed curves in Fig. 2. (In the absence of gravitational force these curves
were called two-phase-like-flow sets in [14].)

Let us summarize properties of the equal sensitivity curves. First of all, recall
that m′

w = m′
g implies ∂m/∂sw = ∂m/∂sg, for brevity we call ∂m such a value, thus

the Jacobian matrix at any point of the equal water-gas sensitivity curve is

J(S) =
1

m2

(
m′

wm−mw∂m −mw∂m
−mg∂m m′

wm−mg∂m

)
.

Along the curve one eigenvalue is λ = m′
w/m with eigenvector (1, −1) (in Cartesian

coordinates), which is parallel to the side so = 0.
Moreover, the total mobility is minimum on the equal sensitivity curve in the

direction of such eigenvector. Indeed, ∇m · (1, −1) = ∂m/∂sw − ∂m/∂sg is zero on
the sensitivity curve, which turns out to be at a minimum because the Hessian in
(9) is positive definite. (Analogous statements hold for other sensitivity curves.)

U

H

O

WG Hwg

Hwo

Hgo

Figure 2. Location of umbilic and ESS points. Solid curves are
Hugoniot loci from pure saturations. The umbilic location is given
from similar dashed curves.

Remark 4. For non-convex Corey models we have the following facts. A converse
to Lemma 3.1 holds: an umbilic point in the interior of the triangle satisfies (8).
Instead of Corollary 1, every extremum of the total mobility is a coincidence point;
such a point is umbilic provided that the second derivatives of two of the mobilities
do not vanish simultaneously there. (The extrema are not necessarily unique and
do not need to be minima.)

3.2. The equal-speed shocks curves. Let us consider the vertex O = (0, 0), and
look for points S = (sw, sg) in ∆ satisfying RH relation (6):

fw(S) = σsw, fg(S) = σsg; (10)
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where we used the fact that water and gas saturations for pure oil are zero, water
and gas permeabilities are also zero. For the same reason the sides sw = 0 and
sg = 0 are part of the Hugoniot locus of O. A third solution appears equating σ in
Eqs. (10) leading to

σ(S, O) =
fw(S)

sw
=

fg(S)

sg
; (11)

points S satisfying the last equality in (11) form a curve inside ∆.
We denote by Hi(O) the locus in ∆ that satisfies Eq. (11), i.e., the “interior

Hugoniot locus” from O; the Hugoniot locus of the vertex O is given by Hi(O) and
the sides WO and GO. Since for any state S on Hi(O), H(S) intersects both sides
WO and GO, see [5], from Lemma 2.3 we have the following

Claim 3.2. All points in the internal Hugoniot locus Hi(O) satisfy the triple-shock
rule between O and points on the boundary WO; they also satisfy the triple-shock
rule between O and points on the boundary GO.

We define Hi(O), from equality (11), as the equal water-gas shock speed curve
(as we will show presently), which can be parametrized either as a function of sw
or sg. Actually, since each mα(sα) is an increasing continuous function, its inverse
is well defined and increasing. With aid of the constraint sw + sg + so = 1, it is
easy to see that points (sw, sg) satisfying the second equality in relation (11) can
be parametrized by so, i.e., there exist smooth functions

Hw, Hg : [0, 1]→ [0, 1] s.t. (Hw(so), Hg(so)) ∈ Hi(O), (12)

for all so ∈ [0, 1]; notice that H ′
w and H ′

g are negative because when so increases
sw + sg decreases. Similarly we can define equal water-oil and gas-oil shock speed
curves; Hi(G) and Hi(W).

The intersection of Hi(W), Hi(G) and Hi(O), is denoted by H := (hw, hg), with
ho = 1− hw − hg, and satisfies

σ =
fw(H)

hw
=

fg(H)

hg
=

fo(H)

ho
. (13)

This is the ESS point (Equal-Speed Shocks); the shock speeds from H to any
vertex have the same value σ. Notice from relations (13) that H satisfies σ =
Σαfα(H)/Σαhα = 1. Defining Hwg, Hwo, Hgo as the intersection of the internal
Hugoniot Hi(O), Hi(G), Hi(W) with the sides WG, WO, GO respectively (see
Fig. 2), we notice that the triple-shock rule (see Theorem 2.2) holds with speed one
for seven points, namely,

σ(A, B) = 1, with A, B ∈ {H, W, G, O, Hwg, Hwo, Hgo},
since each point belongs to the Hugoniot locus of the three vertices.

4. Concluding remark. The internal Hugoniot loci of the vertices give rise to the
ESS point, while the equal sensitivity curves give rise to the umbilic point.

As in [15] one can follow the ordering of increasing directions of fast rarefaction
curves near the boundary, see Fig. 1, and notice that there is an orientation reversal,
thus a quadratic expansion of the fluxes about the umbilic point shows that in our
case it must be classified as Type I or II, see Fig. 3 and [13].

Acknowledgments. The authors are grateful to Prof. J. Bruining (TU-Delft) for
many enlightening discussions.
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Type I Type II

Figure 3. In the saturation triangle there are two possible umbilic
point types for Corey permeability models with different viscosities.
We represent the two possibilities. The rarefaction behavior around
the umbilic type is sketched in the small insets. (Lighter curves
represent slow family, darker curves represent fast family.)
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LINEARLY IMPLICIT SCHEMES FOR
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Abstract. We present a family of schemes for the approximation of one di-

mensional convection-diffusion equations. It is based on a linearization tech-
nique that allows to treat explicitly the hyperbolic term and linearly implicitly

the parabolic one. This avoids the parabolic stability constraint ∆t ≤ ch2 of

explicit schemes, and does not require any non-linear solver for the implicit
problem. We present several numerical simulations to show the effectiveness

of the proposed schemes and to investigate their stability, convergence and

accuracy. In particular, since the proposed schemes provide to be accurate
for both smooth and non-smooth solutions, they turn out to be attractive for

adaptivity.

1. Introduction. In this paper we investigate the numerical behaviour of a family
of schemes for the one dimensional non-linear convection-diffusion equation

∂tu+ ∂xf(u) = ∂xxp(u), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = u0(x), x ∈ [a, b],
(1)

where p(u) is a non-decreasing regular function with Lipschitz constant Lp and
p(0) = 0. For easy, we will just consider homogeneous Dirichlet boundary conditions,
but other conditions can be taken into account as well.

Equation (1) is particularly challenging due to the presence of both the hyperbolic
term f(u) and the nonlinear parabolic term p(u), in particular when the diffusion
p(u) is degenerate, i.e. when the derivative p′(u) vanishes for some values. In this
paper we will just consider the case of p′(u) = 0 for isolated values of u, as in the
porous media equation with p(u) = um, m > 1, for which p′(0) = 0. The strongly
degenerate case (p′(u) = 0 on whole intervals) is not considered for now.

When dealing with the approximation of equation (1), the hyperbolic term f(u) is
usually treated explicitly in time, while the spatial approximation is performed using
the non-linear techniques developed for conservation laws, such as slope-limiters
or ENO/WENO reconstructions (see for example [10]). The parabolic term can
be handled explicitly too, and the non-linear approximation techniques used for
the convection term provided to be very effective also in this case, as shown in
[7, 11, 6]. The main drawback of fully explicit schemes lies in the constraint ∆t ≤
ch2 that must be imposed on the time step ∆t with respect to the grid size h to
guarantee the stability of the parabolic term. On the other hand, non-linear implicit
approximations of the parabolic term require non-linear iterative solvers.

2000 Mathematics Subject Classification. Primary: 65M06; Secondary: 35K65.
Key words and phrases. Convection-diffusion, degenerate parabolic problems, linearly implicit

schemes, finite differences.
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To overcome these problems we propose a linearization of the parabolic term,
similar to that introduced in [4], in order to obtain numerical schemes that avoid
non-linear implicit problems, and then we apply an implicit-explicit (IMEX) Runge-
Kutta method to the convection-diffusion equation. Several numerical schemes for
parabolic equations rest upon a similar linearization technique, as [12, 9, 13, 14],
but they are usually first order approximations. Conversely, a high order approach
turns out to be particularly attractive for adaptivity, since both the resolution of
the space-time discretization and the order of the scheme can be modified according
to the local regularity of the solution.

2. Numerical schemes. Let us introduce tn = n∆t, where ∆t is a uniform time
step, and, for the space discretization, let us consider the uniform grid xi = a+h/2+
(i−1)h, i = 1, ..., N on [a, b] where h = (b−a)/N. Finally, let us introduce uni , which
is the approximation of u(x, t) in x = xi at time t = tn and set unh = (uni )Ti=1,...,N .

The family of schemes we are going to introduce is based on an implicit-explicit
(IMEX) Runge-Kutta time integration. In particular, we consider the IMEX(s,s+
1,r) schemes proposed in [1]. These schemes can be represented through a pair
of Butcher tableau’s which describe the s-stages diagonally implicit scheme and
the (s+ 1)-stages explicit scheme. Moreover, the coefficients ãi,j , b̃i of the implicit
scheme and the coefficients ai,j , bi of the explicit scheme are chosen so that the
resulting scheme converges with order r.

For the space approximation we use finite difference methods. We detail the
method only for the internal grid points, as the boundary conditions are treated in a
standard way. For further details about the implementation of boundary conditions,
we refer to [4] for the implicit parabolic term and to [8] for the convection term.
For the discretization of ∂xx, let us introduce the linear operator Lh : RN → RN ,
which is

(Lhuh)i =
ui+1 − 2ui + ui−1

h2
, (2)

for a second order approximation, and

(Lhuh)i =
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12h2
, (3)

for a fourth order one. For the convection flux, let us consider the operator Dh :
RN → RN , defined by

(Dhuh)i =
F̂i+1/2(uh)− F̂i−1/2(uh)

h
,

where F̂ is a numerical flux. In our simulations we used Lax-Friedrichs flux

F̂i+1/2(uh) =
f(u+

i+1/2) + f(u−i+1/2)

2
− a

u+
i+1/2 + u−i+1/2

2
, (4)

where u±i+1/2 are reconstructions of suitable order at the cell boundaries and a =

maxu |f ′(u)|. Finally let us introduce

ξ(un) = p′(un) + αn, (5)

where αn is a constant in space, positive, correction term.
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The family of schemes we present generalizes the first order scheme introduced
in [2] for purely diffusive equations

qnh =
p(unh)

ξ
,

qn+1
h = qnh + ∆tLhq

n+1
h ,

un+1
h = unh + qn+1

h − qnh ,

(6)

where ξ is a constant such that ξ ≥ maxu p
′(u). Our high order generalization of

scheme (6) for the convection-diffusion problem (1) is based on the following steps:
first we perform a linearization of the diffusion term introducing the variable qnh

qnh =
p(unh)

ξ(unh)
. (7a)

Then, defining the values q
(0)
h = qnh and u

(0)
h = unh, we perform each stage of the

IMEX scheme,

q
(i)
h = qnh + ∆t

i∑
j=1

ai,jLh(ξ(unh)q
(j)
h )−∆t

i−1∑
j=0

ãi+1,j+1Dh(u
(j)
h ), i = 1, . . . , s (7b)

where we treated in implicit the linear diffusion equation in q
(i)
h and in explicit the

convection term. At the end of each stage, we can reconstruct u
(i)
h through

u
(i)
h = unh + q

(i)
h − q

n
h . (7c)

Finally, the reconstruction stage of the IMEX method allows to obtain

qn+1
h = qnh + ∆t

s∑
i=1

biLh(ξ(unh)q
(i)
h )−∆t

s∑
i=0

b̃i+1Dh(u
(i)
h ), (7d)

and then to find the updated solution at time tn+1

un+1
h = unh + qn+1

h − qnh . (7e)

Let us make some considerations about (7). In (6) the linearization is performed
using a constant ξ which approximates p′(unh) on its whole domain and stability is
guaranteed under the condition ξ ≥ Lp. Moreover, the evolution of q is performed
using backward Euler method. Since ξ only provides a global approximation of
p′(u), we have that scheme introduced (6) is only first order accurate, even if we
use a higher order scheme for the evolution of qn, and it is not very accurate near
discontinuities.

The scheme introduced in [2] was enhanced in [9, 13], where local versions of
ξ were considered to improve the accuracy of the method. The ideal choice of ξ
would be ξ(un) = p′(un), but unfortunately the resulting scheme would be in general
unstable. A solution is to introduce, like in (5), a positive correction. We remark
that in all the previous works the authors considered only first order schemes.

In the matter of the correction term αn , let us underline that if we chose αn

too small, instabilities would arise in the numerical solution, while too large αn

would deteriorate the accuracy of the scheme. We are studying in [3] a way to
obtain optimal values of αn from the solution unh, together with its influence on the
stability of the solution. In this work we do not detail explicitly the strategy to
choose αn . We will only plot the values of αn we chose for the scheme to show that
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they guaranteed stability and accuracy. We remark that, to improve accuracy, also
non-constant in space corrections αn(x) can be considered.

The last remark on scheme (7) is about its convergence rate. It is easy to see
that the time consistency error of the above schemes can be 2 only if α = O(∆t). It
is worth noticing that, the family of schemes (7) does not allow approximations of
order higher than 2, even if both the IMEX scheme and the spatial approximation
have a higher order of accuracy. This is mainly due to the linearization of p(u)
through ξ(unh). Schemes of order higher than 2 are under consideration and some
preliminary results shows how also the time integration need to be modified to
obtain third order accuracy. Finally, for non-smooth solutions, it is necessary that
αn stay bounded as ∆t→ 0, to avoid that increasingly large corrections destroy the
accuracy of the scheme on fine grids.

3. Numerical tests. We consider three different schemes of the family (7). The
first order scheme (identified in the following by L1), is obtained using IMEX(1,1,1)
scheme for the time integration while the spatial approximation relies on constant
reconstructions for the flux (4) and operator (2) for the discretization of ∂xx. The
second order scheme (L2) is obtained using IMEX(2,3,2) scheme, linear ENO re-
constructions and again operator (2). The third scheme (L3) is obtained using
IMEX(3,4,3) scheme, parabolic ENO reconstructions and operator (3). We remark
that scheme L3 would give rise to a third order accurate scheme in absence of
the linearization error, but actually it is only second order accurate. We will also
consider for comparison the solutions of the explicit hyperbolic/non-linear implicit
parabolic scheme obtained applying directly the IMEX(s,s + 1,r) scheme to (1)
without linearization. In this case, the final non-linear problem is solved by Newton
iterative method and the schemes are identified by NL1,NL2 and NL3.

In the first simulations, we consider equation (1) with the hyperbolic Burger flux
f(u) = u2 and the porous media diffusion flux p(u) = u3, and we test the scheme
starting with the C2 initial datum

u(x, 0) = cos2
(π

2
x
)
χ[−1,1], x ∈ [−3/2, 3/2], (8)

and with the discontinuous one

u(x, 0) = 5χ[−1/2,1/2]. (9)

Since analytic solutions are not available, in both cases the numerical approxima-
tions obtained with L1,L2 and L3 are compared with the solutions computed with
NL3 on a very fine grid. We observe that the solution obtained evolving (8) stays
regular for a small time, so in this case we can also study the convergence rate. In
Table 1 we report the L1 norm of the relative errors (E1) and the estimated con-
vergence rates (r) of the numerical solutions of problem (8) obtained at t = 0.01.
As expected, scheme L1 is first order accurate, while schemes L2 and L3 are second
order methods. We also note that L3 is more accurate than L2.

In Table 2 we compare the errors obtained with the three linear schemes for the
initial datum (9) on a coarse and a fine grid. As we can see, we can take benefit
from increasing the order of the approximation also in the case of a non-smooth
solution.

As we remarked in Section 2, the constant αn plays an important role in the
stability and the accuracy of the schemes (7). In Figure 1 we plot the values of
αn we used in the previous simulations for both the smooth problem (8) and the
non-smooth problem (9) for a grid with N = 270 cells and for different choices of
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L1 L2 L3
N E1 r E1 r E1 r
10 1.86e-01 1.86e-01 1.86e-01
30 2.25e-02 1.92 8.25e-03 2.84 6.14e-03 3.11
90 6.98e-03 1.07 6.61e-04 2.30 2.72e-04 2.84
270 2.04e-03 1.12 5.89e-05 2.20 1.15e-05 2.88
810 6.80e-04 1.00 5.90e-06 2.09 1.16e-06 2.09
2430 2.27e-04 0.99 6.32e-07 2.03 1.34e-07 1.96

Table 1. Comparison of the L1 norms (E1) of the relative errors
and of the estimated convergence rates (r) for the solution of prob-
lem (9) on several grids with N cells. The expected convergence
rates are achieved.

N L1 L2 L3
90 9.22e-03 2.52e-03 1.94e-03
810 8.04e-04 8.32e-05 6.21e-05

Table 2. Comparison of the L1 norms of the relative errors for the
solution of problem (9) with schemes L1,L2 and L3 on two different
grids.

∆t. We report only the results for L3, since those for L1 and L2 are very similar. As
we can see, the values of αn at each time step decreases as ∆t decreases. Moreover,
for the non-smooth problem we have that αn stays bounded with respect to ∆t,
also at the earlier simulation times when the solution is less regular.
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Figure 1. Evolution of αn for the problem with the smooth initial
datum (8) (left plot) and with the non-smooth initial datum (8)
(right plot).

When the solution is smooth, it is also important that αn = O(∆t) to grant second
order accuracy, as remarked in Section 2. In Figure 2 we plot the behaviour of
αn at t = 0.01, 0.02, 0.03 for different choices of ∆t and we can see that actually
αn = O(∆t2).
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Figure 2. Evolution of αn with respect to ∆t at times t =
0.01, 0.02, 0.03. in the simulation of problem (8)

We remark that we obtained similar results to those reported in Figures 1 and 2
when we considered ∆t = ch and studied αn versus h for increasingly smaller values
of h. Finally, we compare in Figure 3 the errors obtained with L1,L2 and L3 with
those obtained with NL1,NL2 and NL3. As we can see, the linear and the non-
linear scheme provide almost the same accuracy both in the case of regular and
non-regular solutions. Only scheme NL3 is noticeably more accurate than L3 for
the smooth problem (8) but this is quite predictable since NL3 is a true third order
scheme, unlike L3 which is actually a second order scheme. Even if the regularity
of the solution allows only a second order convergence rate, scheme NL3 can take
advantage of its higher accuracy, especially on finer grids.

We remark that even if non-linear schemes are slightly more accurate, the ap-
proach we proposed can still be considered very effective since it is much less ex-
pensive, especially on finer grids, where the number of iterations required by the
iterative method increases and the restrictions on ∆t to guarantee the convergence
can be quite constraining. If we wanted to compare two computationally equivalent
approaches we would need to consider only one iteration per time step in the Newton
method or to suitably decrease the time step ∆t in the linear methods. In both the
situations, schemes (7) provide better accuracy than the non-linear scheme. More
details about the comparison of the two approaches can be found in [4] for diffusion
equations, since the results for the convection-diffusion problem are similar. In the
last simulation we consider the non-convex Buckley-Leverett flux

f(u) =
u2

u2 + (1− u)2
, (10a)

and the diffusion function

p(u) = 10−2(2u2 − 4

3
u3), (10b)

which is doubly degenerate, since p′(u) = 0 for u = 0 and u = 1. The initial datum
is the step function

u(x, 0) = χ[1/2,3/4], x ∈ [0, 1].
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Figure 3. Comparison of the errors obtained with the linear
schemes L1, L2 and L3 and with the non-linear ones NL1,NL2 and
NL3 for the smooth problem (8) (left plot) and the non-smooth
problem (9) (right plot).
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Figure 4. Numerical solution (circle) of problem (10) at time
t = 0.005 (left plot) and at time t = 0.015 (right plot). The
approximations are in accordance with the “exact” solution (solid
line), computed with an entropic numerical scheme on a fine grid.

In particular, since the convective flux is non-convex, we want to check that the
schemes we introduced be able to pick the correct entropic solution. In Figure 3 we
plot the approximate solution at times t = 0.005 and t = 0.015 obtained with L3
and the “exact solution” obtained with a high order, explicit, entropic scheme on a
very fine grid. Also in this case, the linear scheme is very accurate and approximates
the correct entropic solution.

4. Conclusion and perspectives. We presented a family of schemes for the so-
lution of convection-diffusion equations, based on the explicit discretization of the
hyperbolic term and on the linearly implicit approximation of the parabolic term.
The schemes we introduced are accurate for both smooth and non-smooth solu-
tions and provide approximations which are comparable to those obtained with a
non-linear scheme, being at the same time less expensive since each time step does
not require iterative methods. Up to now, due to the linearization, we are able to
achieve only second order accuracy, but we are looking for different time integration
techniques to recover higher order of accuracy. In a work in preparation [3], we are
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investigating the stability of the scheme with respect to the choice of the constant
αn. The final goal is to develop an adaptive scheme based on the family of schemes
(7), to take advantage of the freedom of the spatial and temporal accuracy they
provide. We also plan to investigate, as in [5], approximations with finite element
methods, to treat also multidimensional problems on non-cartesian geometries.
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Abstract. We study the inviscid limit for the two dimensional Navier-Stokes

equations with non-homogeneous Navier slip boundary condition. We show

that the vanishing viscosity limit of Navier-Stokes’s solutions verifies the Euler
equations with the corresponding Navier slip boundary condition just on the

inflow boundary. The convergence result is established with respect to the
strong topology of the Sobolev spaces W 1

p , p > 2.

1. Introduction. We consider the Navier-Stokes equations for the viscous incom-
pressible fluid in a bounded domain of R2 and investigate the convergence (up to
the boundary) of their solutions as the viscosity goes to zero.

When the Navier-Stokes equations are supplemented with the usual Dirichlet
boundary condition, the vanishing viscosity limit is a long-open problem. A discus-
sion about the mathematical difficulties, related with Dirichlet boundary condition,
can be found in the review articles [3], [12] and references therein. For a long time
the Dirichlet boundary condition was considered as the natural one, however recent
theoretical and experimental results ([8], [17], [27]) have pointed out, for instance,
the relevance of the surface roughness on the slip behavior of the fluid particles
on the surface wall. Slip type boundary conditions, which were firstly suggested
by Navier (1823), have renewed interest in order to describe accurately physical
processes.

The study of the vanishing viscous problem under homogeneous Navier’s bound-
ary conditions have been greatly developed in the last two decades. Lions in [19]
considered a particular case of the Navier’s boundary conditions, which is equiv-
alent to the vorticity condition ων = 0 on the boundary. In the article [9], the
authors considered the Navier-Stokes equations with general homogeneous Navier
slip boundary conditions and proved that the inviscid limit is a solution of the cor-
responding Euler equations. This study was performed in the functional space of
L∞-bounded vorticity. Later on, in [21], this result was generalized for the class
of Lp-bounded vorticity with p > 2. A rate of the vanishing viscous convergence,
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209 of Centro de Matemática e Aplicações Fundamentais da Universidade de Lisboa (CMAF

/ UL). The second author is supported by the projects FCT - PTDC/MAT/104173/2008 and
EURATOM/IST.

431



432 NIKOLAI CHEMETOV AND FERNANDA CIPRIANO

in the class of almost L∞-bounded vorticity was obtained in [18]. For the three
dimensional developments we refer [4], [5], [31], where the Hk, k ≥ 3, convergence
results have been obtained for the domains with flat boundaries. For a general 3D
domain a precise rate of the viscous convergence of velocities in L2 and H1-norms
has been established in [16].

Throughout the twentieth century, extensive research has been carried out within
the aircraft industry by the application of injection/suction devices to control turbu-
lent boundary layers (see [1], [7], [23], [29]). To describe accurately injection-suction
systems with slippage non-homogeneous Navier slip boundary conditions should be
considered.

The purpose of this work is to investigate the problem of vanishing viscosity
limit for the Navier-Stokes equations with non-homogeneous Navier’s boundary
conditions. To our knowledge, the vanishing viscous convergence results for the
Navier-Stokes equations with non-homogeneous Navier boundary conditions have
been obtained just in two articles. In the article [2], a particular case of Navier’s
boundary conditions (a prescribed vorticity on a permeable boundary) was studied.
General non-homogeneous Navier boundary conditions was considered in [24], but
in a very restrictive case, when the fluid domain is very small. However, it has not
been proved that the inviscous limit fulfills the boundary condition on the injection
zone. Both results are valid only in the W 1

∞-weak topology for velocities. See also
an interesting conditional result in [30] for non-homogeneous Dirichlet’s boundary
condition.

Our article is organized as follows: in the section 2, we formulate the problem and
state the main result Theorem 2.1. In the section 3, we establish the W 1

p -boundness
for the velocity independently of the viscosity. This estimate allows to obtain the
convergence of the solutions of the Navier-Stokes equations in W 1

p - weak topology.
The section 4 contains the proof of Theorem 2.1. The key point of our approach
is the application of the entropy method, which was introduced by S. Kruzkov and
developed by F. Otto (see [22], [26]) for non linear hyperbolic equations. We extend
the entropy method for the Navier-Stokes and Euler equations, in order to prove
the strong convergence of ων to ω in the Lp-topology and establish the trace result
for ω.

2. General setting. The motion of an incompressible viscous fluid in a bounded
domain Ω ⊂ R2 is described by the Navier-Stokes equations

vt + div (v ⊗ v)−5p = ν∆v, divv = 0, (t,x) ∈ ΩT := (0, T )× Ω, (1)

added by a given initial condition

v(0,x) = v0(x) x ∈ Ω, such that divv0 = 0, (2)

where v = v(t,x) is the velocity, p = p(t,x) is the pressure and ν is the viscosity
of the fluid. Let us admit a flow of the fluid through the boundary Γ ∈ C2 of the
domain Ω, which can be described by the flux condition

v · n = a on ΓT := (0, T )×Γ (3)

and by the Navier slip boundary condition

2D(v)n · s + αv · s = b (4)

on ΓT . Here D(v) := 1
2 [∇v + (∇v)T ] is the rate-of-strain tensor; n is the external

normal to Γ and s is the tangent vector to Γ, such that (n, s) forms a standard
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orientation in R2. The quantity a of inflow and outflow fluid through Γ has to fulfill
the natural condition ∫

Γ

a(t,x) dx = 0 for ∀t ∈ [0, T ]. (5)

The functions α = α(t,x) and b = b(t,x) prescribe physical properties of the bound-
ary Γ.

We will show the vanishing viscous convergence up to the boundary Γ of solutions
vν of the Navier-Stokes system (1)-(5) (shortly designated by NSSν) to a solution
of the Euler equations

vt + div (v ⊗ v)−5p = 0, divv = 0, (t,x) ∈ ΩT (6)

with the initial-boundary conditions (2)-(3), and (4) just on the influx boundary
Γ−T := {(t,x) ∈ ΓT : a(t,x) < 0}.

In this work we consider the data in the following Banach’s spaces:

a ∈W 1
1 (0, T ;W

1− 1
p

p (Γ)) ∩ L2(0, T ;W
2− 1

p
p (Γ)), α ∈ L∞(ΓT ), v0 ∈W 1

p (Ω),

b ∈ L2(0, T ;W
1− 1

p
p (Γ) ∩W 1

1 (0, T ;W
− 1

p
p (Γ)) with p ∈ (2,+∞)

(7)

and prove the strong convergence of vν to v in W 1
p (Ω).

Theorem 2.1. Under the hypothesis (7), there exists a subsequence {vν , ων :=
rotvν} of solutions to NSSν , such that

vν → v strongly in Lr(0, T ;W 1
p (Ω)),

ων → ω strongly in Lr(0, T ;Lp(Ω)) for any r ∈ [1,∞).
(8)

The limit pair {v, ω} is a solution of the Euler equations (6)(see (27) too), satisfy-
ing (2)-(3) and the Navier slip boundary condition (4) on the influx boundary Γ−T .
Moreover we have∫

ΩT

β(ω)
(
ψt + v · ∇ψ

)
dt dx +

∫
Ω

β(ω0) ψ(0,x) dx

=

∫
Γ−T

aβ(ωΓ(v))ψ dt dx for any β ∈ C(R),
(9)

where ψ ∈ C1,1(ΩT ), such that ψ = 0 at t = T .

3. Main estimates. In the first paragraph of this section, we estimate the L2−
norm of the velocity vν by the Lp−norm of the corresponding vorticity ων = rotvν .
In the next one, we obtain estimates for the solutions vν and ων independently of
the viscosity.

Through the article, we denote by C all constants that are independent of the
viscosity ν.

3.1. Estimate for the velocity by the corresponding vorticity. The result
of the following Lemma will be useful in the subsection 3.2 to establish a Gronwall
type inequality for the vorticity.

Lemma 3.1. Assume that the hypothesis (7) hold, then there exists a unique solu-
tion vν ∈ C([0, T ] ; W 1

2 (Ω)) for NSSν , satisfying the estimate

‖vν(t, ·)‖2L2(Ω) ≤ C
(
‖v0‖2L2(Ω) +

∫ t

0

f(r)‖ων(r, ·)‖2Lp(Ω) dr + 1

)
(10)
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for any t ∈ [0, T ], where f(t) ∈ L1(0, T ) depends only on the data.

Proof. Let hν , ha be the solutions of the systems{
−∆hν = ων in Ω,

hν = 0 on Γ,

{
−∆ha = 0 in Ω,
∂ha

∂n = a on Γ
a.e. on (0, T ). (11)

Let us introduce the functions uν := ∇⊥hν , a := ∇ha. It is easy to check that
uν = vν − a is a solution of the system

∂tuν + a · ∇uν −5p = ν∆uν + Fν , divuν = 0 in ΩT ,

uν · n = 0, 2D(uν) n · s + αuν · s = b̃ on ΓT ,

uν(0,x) = v0(x)− a(0,x) in Ω

(12)

with Fν := ν∆a−∂ta−uν ·∇uν−a ·∇a− uν ·∇a and b̃ := b− [2D(a) n · s + αa · s].
Multiplying the first equation in (12) by uν , integrating over Ω and using the

Calderon-Zygmund estimates ([25], Theorem 9.9, p. 230 in [14] and Theorem 1.8,
p. 12 & Theorem 1.10, p. 15 in [15]) we obtain

1

2

d

dt
||uν‖2L2(Ω) + ν

∫
Ω

|D(uν)|2 dx

≤ f(t)(||uν‖2L2(Ω) + ‖ων‖2Lp(Ω) + 1) + ν

∫
Ω

|D(a)|2 dx

with f(t) ∈ L1(0, T ) depending only on the data a, b, α (independently on ν) due
to (7). Applying Gronwall’s Lemma, we deduce (10).

3.2. Uniform estimate for the vorticity. Let us parametrize the boundary Γ
using the arc length s and denote by k the curvature of Γ. Since Γ ∈ C2 we know
that k is a continuous function.

From Lemma 1 of [10] the Navier slip boundary condition (4) is equivalent to
the following boundary condition for the vorticity

ων = ωΓ(vν) := γ vν · s + g on ΓT with γ := 2k − α, g := b− 2
∂a

∂s
. (13)

Therefore NSSν can be written in terms of vorticity as
∂tων + div(ωνvν) = ν∆ων , rotvν = ων , div vν = 0 in ΩT ,

vν · n = a on ΓT and ων = ωΓ(vν) on ΓT ,

ων
∣∣
t=0

= ω0 in Ω with ω0 := rotv0,

(14)

which we will continue to designate by NSSν . In the following lemma we deduce
uniform estimates on the viscosity ν for the solutions ων of NSSν .

Lemma 3.2. Under the hypothesis (7), the estimates

‖ων‖L∞(0,T ;Lp(Ω)) ≤ C, ‖vν‖L∞(0,T ; W 1
p (Ω)) ≤ C, (15)

‖∂t(vν − a)‖L∞(0,T ;H−1(Ω)) ≤ C (16)

hold. For the trace value of vν − a on ΓT , we have

(vν − a) · s ∈ P[ΓT ] := L2

(
0, T ;H1/2(Γ)

)
∩H1/4

(
0, T ;L2(Γ)

)
,

such that

‖(vν − a) · s‖P[ΓT ]≤ C. (17)
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Proof. Let us extend ωΓ(vν) into the domain Ω by the solution B(t, ·) of the system

−∆B = 0 in Ω, B
∣∣
Γ

= ωΓ(vν), for all t ∈ (0, T ) .

The function z = ων −B solves the system{
∂tz + div(zvν) = ν∆ z + F in ΩT ,

z = 0 on ΓT , z|t=0 = ω0 −B|t=0 in Ω.
(18)

with F := F1 +F2, F1 = −∂tB−vν ·∇B and F2 = ν∆B. Multiplying the equation
in (18) by G := p|z|p−2z, integrating over Ω and using Lemma 3.1, finally we obtain

‖ων‖2L∞(0,t;Lp(Ω)) ≤ C
{∫ t

0

f(t)‖ων(t, ·)‖2Lp(Ω) dt+ 1

}
(19)

for any t ∈ [0, T ]. Applying Gronwall’s Lemma we obtain the first estimate of (15).
The second estimate of (15) is a direct consequence of the Calderon-Zygmund
estimates.

In order to deduce (16) we take the time derivative of the 1st system in (11) and
set a system for the function ∂thν , then we deduce the following estimate

‖∂thν(t, ·)‖L2(Ω) ≤ C‖Gν(t, ·)‖H−2(Ω) a.a. t ∈ (0, T ) (20)

with Gν := div(−vν ων)+ν4ων . By (15) we get ‖Gν(t, ·)‖H−2(Ω) ≤ C, that implies
(16). By Lemma 8, p. 700 of [11] we have (17).

4. Proof of Theorem 2.1. The proof is based on the entropy method of F. Otto
[26] (see also [22]).

Since Γ ∈ C2, there exists a small δ0 > 0, such that the distance d(x) :=
infy∈Γ |x− y| is C2-function in the set Uδ0(Γ) := {x ∈ Ω : d(x) < δ0}. Let

l(x) :=

{
min{δ0, d(x)}, if x ∈ Ω ;

−min{δ0, d(x)}, otherwise ,
L := sup

0<l(x)<δ0

|∆l(x)|. (21)

By (15) and the embedding W 1
p (Ω) ↪→ L∞(Ω), we have ‖vν‖L∞(ΩT ) ≤ M for a

constant M independent on ν. We define a cut-off function by

ξν(x) := 1− exp(−M + νL

ν
l(x)), ∀ν > 0.

Let us take a convex function η ∈ C2(R) and a non negative function φ ∈
C2,1(ΩT ) with φ|t=T = 0. If we multiply the differential equation of NSSν by
η′(ων)φξν and integrate over ΩT , we obtain the inequality∫

ΩT

η(ων) [φt + vν · ∇φ+ ν∆φ] ξν + 2 ν η(ων) (∇φ · ∇ξν) dt dx

+

∫
ΓT

(M + νL)η(ωΓ(vν))φdt dx +

∫
Ω

η(ω0)φ(0) ξν dx ≥ 0

(22)

with the help of the differential inequality (8.3), p. 129-131 of [22].
Let us denote by |v|+ the positive part and |v|− the negative part of a function

v. It is clear that inequality (22) is true also for η(v) = |v− c|+ and η(v) = |v− c|−
with arbitrary chosen c ∈ R.



436 NIKOLAI CHEMETOV AND FERNANDA CIPRIANO

Estimates (15)-(17), Corollary 4 of [28] and the compact embedding P[ΓT ] ↪→
L2(ΓT ), guarantee the existence of an appropriate subsequence of {ων ,vν} for ν →
0+, satisfying

|ων − c|+ ⇀ z1, |ων − c|− ⇀ z2, (ων − c) ⇀ (ω − c) = z1 − z2

weakly− ∗ in L∞(0, T ;Lp(Ω)), ∀c ∈ R,
vν → v strongly in L2(ΩT ) and weakly-* in L∞(0, T ;W 1

p (Ω)),

vν · s→ v · s strongly in L2(ΓT ).

(23)

Let us take η(v) = |v − c|+ and η(v) = |v − c|− in (22), respectively, and pass
to the limit as ν → 0. Using (23), Lebesgue’s dominated convergence theorem
and ν|∇ξν | ≤ M + L, ν∇ξν → 0 in Ω, we obtain that the functions z1, z2 ∈
L∞(0, T ;Lp(Ω)) and v ∈ L∞(0, T ;W 1

p (Ω)) satisfy the entropy inequalities∫
ΩT

z1
(
φt + v · ∇φ

)
dt dx

+M

∫
ΓT

|ωΓ(v)− c|+φ dt dx +

∫
Ω

|ω0 − c|+φ(0,x) dx ≥ 0

(24)

and ∫
ΩT

z2
(
φt + v · ∇φ

)
dt dx

+M

∫
ΓT

|ωΓ(v)− c|−φ dt dx +

∫
Ω

|ω0 − c|−φ(0,x) dx ≥ 0,

(25)

for any non negative function φ ∈ C1,1(ΩT ) with φ|t=T = 0.
Formally, the entropy inequalities (24)-(25) for z1 and z2 can be expressed

through the following systems
∂tz

1 + (v · ∇)z1 ≤ 0 in ΩT ,

z1 ≤M |ωΓ(v)− c|+ on Γ−T ,

z1 ≤ |ω0 − c|+ at t = 0

and


∂tz

2 + (v · ∇)z2 ≤ 0 in ΩT ,

z2 ≤M |ωΓ(v)− c|− on Γ−T ,

z2 ≤ |ω0 − c|− at t = 0.

Since z1, z2 are non-negative functions, we can apply Diperna-Lions’s [13] and
Boyer’s [6] methods, to verify that the function z1z2 fulfills the system

∂t(z
1z2) + (v · ∇)(z1z2) ≤ 0 in ΩT ,

z1z2 = 0 on Γ−T ,

z1z2 = 0 at t = 0,

which implies z1 z2 = 0 in ΩT . Hence multiplying the identity ω − c = z1 − z2 by
z1 and z2, respectively, we obtain |ω− c|+ = z1 and |ω− c|− = z2. Taking the sum
of (24) and (25) we obtain∫

ΩT

|ω − c|
(
φt + v · ∇φ

)
dt dx

+M

∫
ΓT

|ωΓ(v)− c|φ dt dx +

∫
Ω

|ω0 − c| φ(0,x) dx ≥0,

(26)

which is valid for any fixed constant c ∈ R and arbitrary non negative function
φ ∈ C1(ΩT ), such that φ = 0 at t = T .
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Due to (14) and (23) the pair {v,ω} satisfies the equality∫
ΩT

ω [ψt + v · ∇ψ] dt dx +

∫
Ω

ω0 ψ(0,x) dx = 0, ∀ψ ∈ C1(ΩT ) (27)

with ψ = 0 on ΓT and at t = T . Therefore, applying Theorem 3.1 of [6], the
vorticity ω has a trace γω measurable on ΓT , such that∫

ΩT

|ω − c|
(
φt + v · ∇φ

)
dt dx +

∫
Ω

|ω0 − c| φ(0,x) dx

=

∫
ΓT

a|γω − c|φ dt dx
(28)

with φ as in (26). By (26) and (28) we conclude

a(t,x) |γω(t,x)− c|+M |ωΓ(v)(t,x)− c|≥0 for a.a. (t,x) ∈ ΓT .

Choosing c := ωΓ(v)(t,x), we derive γω = ωΓ(v) on Γ−T . Hence we see that Theorem
3.1 of [6] implies (9).

From above we have

|ων − c|± ⇀ |ω − c|± weakly − ∗ in L∞(0, T ;Lp(Ω)), ∀c ∈ R.
Due to the formula

|v|p = p(p− 1)

{∫ ∞
0

|v − c|+cp−2 dc+

∫ 0

−∞
|v − c|− |c|p−2 dc

}
,

which is valid for any v ∈ R, we deduce∫
ΩT

|ων |p dt dx→
∫

ΩT

|ω|p dt dx. (29)

Therefore, applying Theorem 2.11, p. 57 of [20], we obtain gν(t) := ||ων−ω‖p/2Lp(Ω) →
0 and |gν(t)| ≤ C for a.a. t ∈ (0, T ). By Lebesgue’s dominated convergence theorem
there exists a subsequence of ων , denoted by the same index ν:

ων → ω strongly in Lr(0, T ;Lp(Ω)) for any r ∈ [1,∞).

Finally by Calderon-Zygmund´s estimate

‖vν(t, ·)− v(t, ·)‖W 1
p (Ω) ≤ C‖ων(t, ·)− ω(t, ·)‖Lp(Ω) for a.a. t ∈ (0, T ),

we have the strong convergence (8) for the velocity v.
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Splošn. Sredy Vyp.] 24, Dinamika Zidk. so Svobod. Granicami], 169 (1976), 15–35.

[3] C. Bardos and E. S. Titi, Euler equations for incompressible ideal fluids, Russian Math.

Surveys, 62 (2007), 409–451.
[4] H. Beirão da Veiga and F. Crispo, Concerning the Wk,p-Inviscid Limit for 3-D Flows Under

a Slip Boundary Condition, J. Math. Fluid Mech., 13 (2011), 117–135.
[5] H. Beirão da Veiga and F. Crispo, The 3-D Inviscid Limit Result Under Slip Boundary

Conditions. A Negative Answer, J. Math. Fluid Mech., 14 (2012), 55–59.

[6] F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport
equation, Differential and integral equations, 18 (2005), 891–934.

[7] A. L. Braslow, “A History of Suction-Type Laminar-Flow Control with Emphasis on Flight
Research”, NASA History Division (1999).

http://www.ams.org/mathscinet-getitem?mr=MR0483960&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2784899&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2891190&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2150445&return=pdf


438 NIKOLAI CHEMETOV AND FERNANDA CIPRIANO

[8] D. Bucur, E. Feireisl and S. Necasova, Boundary Behavior of Viscous Fluids: influence of
wall roughness and friction-driven Boundary Conditions, Arch. Rational Mech. Anal., 197

(2010), 117–138.

[9] T. Clopeau, A. Mikelic and R. Robert, On the vanishing viscosity limit for the 2D incom-
pressible Navier-Stokes equations with the friction type boundary conditions, Nonlinearity, 11

(1998), 1625–1636.
[10] N.V. Chemetov and S.N. Antontsev, Euler equations with non-homogeneous Navier slip

boundary condition, Physica D: Nonlinear Phenomena, 237 (2008), 92–105.

[11] N.V. Chemetov, F. Cipriano and S. Gavrilyuk, Shallow water model for lakes with friction
and penetration, Math. Methods Appl. Sci., 33 (2010), 687–703.

[12] P. Constantin, Euler and Navier-Stokes equations, Publ. Mat., 52 (2008), 235–265.

[13] R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Invent. Math., 98 (1989), 511–547.

[14] D. Gilbarg and N.S. Trudinger, “Elliptic Partial Differential Equations”, Springer-Verlag,

Berlin Heidelberg New-York (2001).
[15] V. Girault and P.-A. Raviart, “Finite Element Methods for Navier-Stokes equations”, Theory

and Algorithms. Springer-Verlag, Berlin Heidelberg New-York (1986).

[16] D. Iftimie and F. Sueur, Viscous boundary layers for the Navier-Stokes equations with the
Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145–175.

[17] W. Jager and A. Mikelic, On the roughness-induced effective boundary conditions for a viscous
flow, J. Differential Equations, 170 (2001), 96–122.

[18] J. Kelliher, Navier-Stokes equations with Navier boundary conditions for a bounded domain

in the plane, SIAM J. Math. Anal., 38 (2006), 210–232.
[19] P.-L. Lions, “Mathematical Topics in Fluid Mechanics” Vol. 1, The Clarendon Press Oxford

University Press, New York (1996).

[20] E.H. Lieb and M. Loss, “Analysis”, 2nd edition, Graduate Studies in Math., vol. 14, AMS,
Providence RI (2001).

[21] M.C. Lopes Filho, H.J. Nussenzveig Lopes and G. Planas, On the inviscid limit for 2d in-

compressible flow with Navier friction condition, SIAM Math. Anal., 36 (2005), 1130–1141.
[22] J. Malek, J. Necas, M. Rokyta and M. Ruzicka, “Weak and Measure-Valued Solutions to

Evolutionary PDEs”, Chapman & Hall, London (1996).

[23] L.A. Marshall, “Boundary-Layer Transition Results From the F-16XL-2 Supersonic Lam-
inar Flow Control Experiment”, NASA/TM-1999-209013, Dryden Flight Research Center

Edwards, California, 93523-0273, December, 1999.
[24] P. Mucha, On the inviscid limit of the Navier–Stokes equations for flows with large flux,

Nonlinearity, 16 (2003), 1715–1732.

[25] J. Necas, “Direct Methods in the Theory of Elliptic Equations”, Springer-Verlag, Berlin Hei-
delberg New-York (2010).

[26] F. Otto, Initial-boundary value problem for a scalar conservation law, C.R. Acad. Sci. Paris
Sér. I Math., 322 (1996), 729–734.

[27] N.V. Priezjev and S.M. Troian, Influence of periodic wall roughness on the slip behavior at

liquid/solid interfaces: molecular-scale simulations versus continuum predictions, J. Fluid

Mech., 554 (2006), 25–46.
[28] J. Simon, Compact Sets in the space Lp(0, T ;B), Annali di Matematica Pura ed Applicata,

146 (1986), 65–96.
[29] H. Schlichting and K. Gersten, “Boundary-Layer Theory”, Springer-Verlag, Berlin Heidelberg

New-York (2003).

[30] R. Temam and X. Wang, Boundary Layers Associated with Incompressible Navier–Stokes
Equations: The Noncharacteristic Boundary Case, J. Diff. Equations, 179 (2002), 647–686.

[31] Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with

a slip boundary condition, Communications on Pure and Applied Mathematics, 60 (2007),
1027–1055.

E-mail address: chemetov@ptmat.fc.ul.pt

E-mail address: cipriano@cii.fc.ul.pt

http://www.ams.org/mathscinet-getitem?mr=MR2646816&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1660366&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2450926&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2643415&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2436725&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0851383&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2754340&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1813101&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2217315&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1422251&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1817225&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2139203&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1409366&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1999576&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1387428&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1885683&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2319054&return=pdf


A FINITE VOLUME EVOLUTION GALERKIN SCHEME FOR

ACOUSTIC WAVES IN HETEROGENEOUS MEDIA

Koottungal Revi Arun

Institut für Geometrie und Praktische Mathematik

RWTH-Aachen, Templergraben 55

D-52056 Aachen, Germany

Guoxian Chen∗

School of Mathematics and Statistics
Wuhan University, Wuhan, 430072, China

and

Institut für Geometrie und Praktische Mathematik
RWTH-Aachen, Templergraben 55

D-52056 Aachen, Germany

Sebastian Noelle

Institut für Geometrie und Praktische Mathematik

RWTH-Aachen, Templergraben 55
D-52056 Aachen, Germany

Abstract. In this paper, we present a numerical scheme for the propagation
of acoustic waves in a heterogeneous medium in the context of the finite vol-

ume evolution Galerkin (FVEG) method (M. Lukáčová-Medvid’ová et al. J.

Comput. Phys., 183:533–562, 2002). As a mathematical model we consider a
wave equation system with space dependent wave-speed and impedance, which

is used to study the wave propagation in a complex media. A main building

block of our scheme is a genuinely multidimensional evolution operator based
on the bicharacteristic theory of hyperbolic systems under the assumption of

space dependent Jacobian matrices. We employ a novel approximation of the

evolution operator, resulting from quadratures, in the flux evaluation stage of
a finite volume scheme. The results of several numerical case studies clearly

demonstrate the efficiency and robustness of the new FVEG scheme.

1. Introduction. Hyperbolic conservation laws with spatially varying flux func-
tions model acoustic or elastic waves in a heterogeneous medium [2]. In exploration
seismology, e.g., one studies the propagation of small amplitude man-made waves
in earth and their reflection off geological structures. The hope is to determine the
geological structure (for example oil reservoirs) from measurements at the surface.
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A similar principle as in seismological exploration of the earth is used also in ul-
trasound exploration of human tissues. In all of these cases new phenomena can
appear since reflections of waves at interfaces can lead to discontinuities even for
linear equations.

The goal of the present work is to develop a numerical scheme for the propagation
of acoustic waves in a heterogeneous medium in the context of the finite volume
evolution Galerkin (FVEG) method. The FVEG method has been developed orig-
inally by Lukáčová and her coworkers, cf. e.g. [3, 4]. It is a predictor-corrector
method combining the finite volume corrector step with the evolutionary predictor
step. The corrector step approximates the fluxes by the midpoint rule in time and
trapezoidal rule in space. At the space-time quadrature nodes, point values of the
solution are predicted by a multidimensional approximate evolution operator. The
latter is constructed using the theory of bicharacteristics under the assumption of
spatially dependent Jacobian matrices. In the previous works of Lukáčová and oth-
ers the evolution operators were derived for constant coefficient, locally linearised
systems where bicharacteristics reduce to straight lines. An attempt to design a
generalised FVEG scheme for linear hyperbolic systems with variable coefficients
is done by Arun et al. in [1], where the methodology is demonstrated for a simple
acoustic wave equation. The present work is a continuation along the lines of [1]
to study wave propagation in complex media and to this end, we consider more
general and practically relevant mathematical models.

Using a general version of the compatibility condition on a bicharacteristic curve
[5], we derive an exact and (then use it to get) an approximate evolution operator.
As shown in [1], in order to obtain a stable scheme, the coefficients of the hetero-
geneous medium must be approximated over a staggered grid that is centered at
the integration points on cell interfaces. Our numerical experiments for wave prop-
agation with continuous as well as discontinuous wave speeds, through smooth as
well as non-smooth interfaces confirm robustness and reliability of the new FVEG
scheme.

2. Finite Volume Evolution Galerkin Method. In this section we design an
FVEG scheme for the numerical simulation of acoustic waves in a heterogeneous
medium. In contrast to [1], the mathematical model used here for the propagation
of acoustic waves is obtained by linearising the isentropic Euler equations or the
elasticity equations; see [2] for a derivation. The system of equations reads

∂tU + ∂xF1(U) + ∂yF2(U) = 0, (1)

with the vector of unknowns U and the flux-vectors F1(U) and F2(U) given as

U =

 φ
ρu
ρv

 , F1(U) =

 u
Kφ
0

 , F2(U) =

 v
0
Kφ

 . (2)

Here, φ can be thought as the amplitude of a pressure wave and u, v are respectively
the velocities in the x and y directions. The parameters K(x, y) and ρ(x, y) are
respectively the bulk modulus and density and hence, are material dependent.

Let X be the vector-valued space of solutions to (1) and let E(τ) : X → X be
the exact solution operator, i.e.

U(·, t+ τ) = E(τ)U(·, t). (3)
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Let Vr be an approximation space of vector-valued piecewise polynomials of degree
r and let us denote by Un, the approximation to the exact solution U(·, tn) in
the space Vr. Since the exact solution is not always available, we suppose that an
adequate approximate solution operator Eτ : Vr → X is given. Let us also denote
by R : Vs → Vr, a suitable recovery operator, where Vs ⊂ Vr is the space of vector-
valued piecewise polynomials of degree s. Starting from Un, the FVEG scheme can
be recursively defined by

Definition 2.1.

Un+1 = Un − 1

∆x

∫ ∆t

0

δxF1

(
Un+ τ

∆t

)
dτ − 1

∆y

∫ ∆t

0

δyF2

(
Un+ τ

∆t

)
dτ. (4)

Here, δx and δy are finite difference operators, e.g. δxf(x) = f(x+h/2)−f(x−h/2)

and δxF1(Un+τ/∆t) and δyF2(Un+τ/∆t) are respectively the flux differences in the
x and y directions at time tn + τ . In order to evolve these fluxes, the approximate
evolution operator is used, i.e.

Un+ τ
∆t =

∑(
1

|∂Ω|

∫
∂Ω

EτRU
ndσ

)
χ∂Ω, (5)

where χ is the characteristic function of the edge ∂Ω and summation is taken over
all the computational cells.

In traditional predictor-corrector schemes like the two step Lax-Wendroff scheme,
the predictor step is done by a multi-dimensional finite difference operator, for exam-
ple the Lax-Friedrichs scheme. The FVEG scheme tries to replace the Lax-Friedrichs
step by a more accurate evolution operator based on the theory of bicharacteristic
curves, which is then approximated by quadrature; see [3] for details. The appealing
element of the latter is that it systematically tries to take into account the infinitely
many directions of wave propagation.

3. Exact and Approximate Evolution Operators. Let us write the wave equa-
tion system in the primitive form:

∂tV +A1∂xV +A2∂yV = 0, (6)

where

V =

pu
v

 , A1 =

 0 K(x, y) 0
1

ρ(x,y) 0 0

0 0 0

 , A2 =

 0 0 K(x, y)
0 0 0
1

ρ(x,y) 0 0

 . (7)

We define the wavespeed c and the impedance Z via the relations c :=
√
K/ρ and

Z :=
√
Kρ.

We fix a point P = (x, y, tn + τ) in space-time and consider the characteristic
conoid of (6), passing through P and enveloped by the bicharacteristics given by

dx

dt
= −c(x, y) cos θ,

dy

dt
= −c(x, y) sin θ,

dθ

dt
= − sin θ∂xc+ cos θ∂yc. (8)

Here, (cos θ, sin θ) is the unit normal to the wavefront, which is the section of the
conoid by t = Const hyperplanes. We solve the system of equations (8) with the
initial values x(ω, t+τ) = x, y(ω, t+τ) = y and θ(ω, t+τ) = ω ∈ [0, 2π]. Let Q and
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Q̃ be respectively arbitrary points on the wavefronts at t = tn and t = t̃ ∈ (tn, tn+τ).
Proceeding as in [1], we can derive the exact evolution operatorspu

v

 (P ) =
1

2π

∫ 2π

0

(p− Z cos θu− Z sin θv) (Q)

 1
cosω
sinω

 dω

− 1

2π

∫ 2π

0

 1
−2 cosω
Z(P )

−2 sinω
Z(P )

 dω

∫ tn+τ

tn

{
u
d

dt
(Z cos θ) + v

d

dt
(Z sin θ)

}
(Q̃)dt̃

− 1

2π

∫ 2π

0

 1
−2 cosω
Z(P )

−2 sinω
Z(P )

 dω

∫ tn+τ

tn
(ZS)(Q̃)dt̃,

(9)
where

S := c
{
∂xu sin2 θ − (∂yu+ ∂xv) sin θ cos θ + ∂yv cos2 θ

}
. (10)

We begin the approximation to the operator (9) by applying the rectangular
quadrature rule in time. The approximation of the last integral (involving the term
S) is done exactly as in [1] and hence we do not elaborate them here. However, the
approximation of the first two terms in (9) are done differently as outlined below.
Let

I := (Z cos θu)(Q) +

∫ tn+τ

tn
u
d

dt
(Z cos θ)(Q̃)dt̃ (11)

Using Taylor development for Z(Q) cos θ in the first summand of (11) and rectangle
rule for the time integral in the second summand yields

I = u(Q)

{
Z(P ) cosω + (tn − (tn + τ))

d

dt
(Z cos θ)(P )

}
+O(τ2)

+ τu
d

dt
(Z cos θ)(Q) +O(τ2).

= u(Q)

{
Z(P ) cosω − τ d

dt
(Z cos θ)(P )

}
+ τu(Q)

d

dt
(Z cos θ)(P ) +O(τ2)

= u(Q)Z(P ) cosω +O(τ2). (12)

The terms involving v are treated analogously. Using these approximations together
with the approximation of the source term integrals as in [1] yields the approximate
evolution operators, e.g. for pressure,

p(P ) =
1

2π

∫ 2π

0

[p− Z(P )(u cosω + v sinω)]dω

− 1

2π

∑
j

[
Z(ω)(−u sinω + v cosω)

]ω+
j

ω−
j

− 1

2π

∫ 2π

0

[
u

(dZ(ω) sinω)

dω
− v d(Z(ω) cosω)

dω

]
dω.

(13)

The expressions for u and v are analogous; see also [1, 3, 4] for more details on the
use of the evolution operators in a finite volume framework, leading to the FVEG
scheme.
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4. Numerical Case Studies. In this section we demonstrate the performance
of our scheme for smooth and non-smooth data. The scheme is implemented as
follows: In order to avoid the overlap of the discontinuities along the integration
paths in (13), both c and Z are stored at the centres of a staggered grid, whereas
p, u and v are stored in the physical grid; see also [1]. We use a piecewise linear
reconstruction for Z, p, u and v on their respective grids with the minmod limiter
to limit overshoots and undershoots of the linearly recovered approximations. The
rectangle rule is used for spatial integral of flux (5) on the edges and for all the
numerical experiments performed, the CFL number is set to be 0.5.

4.1. Order of Convergence. Our first goal is to demonstrate the second order
convergence of the scheme by computing the experimental order of convergence
(EOC). To this end, we choose smooth coefficients and initial data

ρ(x, y) = K(x, y) = 1 +
1

4
(sin(4πx) + cos(4πy)) ,

p(x, y, 0) = sin(2πx) + cos(2πy), u(x, y, 0) = v(x, y, 0) = 0.

The computational domain [0, 1] × [0, 1] is successively divided into 10 × 10, 20 ×
20, . . . , 320× 320 mesh cells and the final time is set to t = 1.0. The boundary con-
ditions are periodic everywhere. Since an exact solution of this initial value problem
is not available, the numerical solution obtained an N ×N grid is compared to the
one obtained on a 2N × 2N grid. The errors in p, u and v and the corresponding
EOCs obtained in the L1 norm is shown in table 1. The table clearly shows the
second order convergence of the scheme.

N error of p EOC error of u EOC error of v EOC
10 8.52E-02 - 7.54E-02 - 5.54E-02 -
20 3.96E-02 1.11 2.57E-02 1.55 1.55E-02 1.84
40 1.70E-02 1.22 5.93E-03 2.12 4.60E-03 1.75
80 3.53E-03 2.27 1.37E-03 2.11 1.24E-03 1.89
160 6.35E-04 2.47 3.05E-04 2.17 3.00E-04 2.05
320 1.32E-04 2.27 7.30E-05 2.06 7.37E-05 2.02

Table 1. Wave propagation in a medium with smoothly varying
density and bulk modulus: EOCs for p, u and v measured in the
L1-norm.

4.2. Wave Propagation in a Heterogeneous Layered Medium. This test
problem is motivated an anlogous study in [1] and the problem models the prop-
agation of a pressure pulse through a heterogeneous layered medium with a single
interface. The density and bulk modulus are initialised as

(ρ(x, y),K(x, y)) =

{
(1, 1), if x ≤ 0.5,

(4, 2), otherwise.

The initial data read

p(x, y, 0) =

{
1 + 0.5(cos(πr/0.1)− 1), if r ≤ 0.1,

0, otherwise,

u(x, y, 0) = 0 = v(x, y, 0),



444 KOOTTUNGAL REVI ARUN, GUOXIAN CHEN AND SEBASTIAN NOELLE

where r denotes the distance r =
√

(x− 0.25)2 + (y − 0.4)2. The computational
domain is [−0.95, 1.05]× [−0.8, 1.6] and the boundary conditions are absorbing via
simple extrapolation of the variables on all sides. The contours of p, u and v at times
t = 0.2, 0.4, 0.6 and 0.8 are plotted in Figure 1. In the figure we clearly notice a
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Figure 1. Waves passing through the interface of a layered medium.

good resolution of the circular waves, which confirms the genuine multidimensional
behaviour of the FVEG scheme. There are no spurious oscillations at the interface
and the deformation of the wave due to the change in the medium is captured very
well. Due to the jump in the impedances of the media, a part of the wave is reflected
backwards as seen in the plots at t = 0.4 onwards.

4.3. Waves passing through a wavy interface. In this test we simulate the
waves passing through a complex, wavy interface, which is not aligned to the grid.
The initial values of p, u and v are same as in the previous problem. The material
parameters K and ρ are initialised as

K(x, y) = 1, ρ(x, y) =

{
1, if x ≤ 0.5 cos(2π(y − 0.4)) + 0.4,

4, otherwise.

The computational domain is [−0.95, 1.2]× [−0.675, 1.475] and the boundary condi-
tions are absorbing everywhere. The isolines of the solutions at times t = 0.2, 0.4, 0.6
and 1.0 are depicted in Figure 2. As in the previous problem we observe both the
reflection and transmission of the waves at the interface. However, due to the wavy
geometry of the material interface, a complex flow pattern of the reflected waves
can be observed at the interface.
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Figure 2. Waves passing through a wavy interface of a layered medium.

4.4. Wave Propagation through a Nonsmooth Interface. This test is taken
from the reference [2]. The setup consists of a planar square wave pressure pulse
passing through a heterogeneous medium with piecewise constant density and bulk
modulus. The density and bulk modulus have the initial values

ρ(x, y) = 1.0, K(x, y) =

{
0.25 if x > 0 and y < 0.55x,

1.0 otherwise.

The initial data read

v(x, y, 0) = 0, p(x, y, 0) = u(x, y, 0) =

{
1 if − 0.35 < x < −0.2,

0 otherwise.

We apply periodic boundary conditions and the simulations are performed for t =
0.4, 0.6 and 1.0. The isolines of the pressure obtained on a 100×100 mesh are plotted
in Figure 3 and for the sake of comparison we also plot the pressure obtained on
finer mesh of 400×400 cells. The results clearly show the reflection and transmission
of waves at the interface. After passing through interface, a part of the waves get
reflected off due to the ramp-like geometry of the interface. It has to be noted
that both reflected and transmitted waves are oblique to the grid and the genuinely
multidimensional FVEG scheme resolve these waves without any grid alignment
effect or spurious oscillations.
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Abstract. We discuss the problem of asymptotic stabilization of the hyper-
elastic-rod wave equation on the real line

∂tu− ∂3txxu+ 3u∂xu = γ
(
2∂xu ∂

2
xxu+ u ∂3xxxu

)
, t > 0, x ∈ R.

We consider the equation with an additional forcing term of the form f :
H1(R)→ H−1(R), f [u] = −λ(u−∂2xxu), for some λ > 0. We resume the results

of [1] on the existence of a semigroup of global weak dissipative solutions of
the corresponding closed-loop system defined for every initial data u0 ∈ H1(R).

Any such solution decays exponentially to 0 as t→∞.

1. Introduction. In this note we present some recent results obtained in [1] on
the problem of asymptotic stabilization of the hyperelastic-rod wave equation on the
real line

∂tu− ∂3txxu+ 3u∂xu = γ
(
2∂xu∂

2
xxu+ u∂3xxxu

)
, t > 0, x ∈ R. (1)

Here u(t, x) represents a (small amplitude) radial deformation in a cylindrical com-
pressible hyperelastic rod and γ > 0 is some given constant depending on the
material and on the prestress of the rod (see Dai [8, 7, 9]). When γ = 1, the equa-
tion (1) can be also seen as a model of propagation of water waves in the shallow
water regime with a flat bottom, the classical Camassa-Holm equation [5, 15], where
u(t, x) represents the fluid velocity.

The asymptotic stabilizability of the Camassa–Holm equation through a station-
ary feedback law was recently established in [10] by means of a forcing term acting
as a control, within the space of H2 solutions on a torus, and in [16] by means of
a boundary feedback, for H2 solutions on a bounded interval. On the other hand,
it is well known that there exist solitary wave solutions of (1), called peakons, that
have discontinuous first derivatives, as well as solutions of (1) whose slope blows
up in finite time. The existence of solutions of the Camassa–Holm equation and
of the hyperelastic-rod wave equation that possess only H1 regularity was shown
in various papers of the last decade (see [2, 3, 6, 11]). We have thus addressed

2000 Mathematics Subject Classification. Primary: 35G25, 35L05; Secondary: 35B40.
Key words and phrases. Hyperelastic-rod wave equation, Camassa–Holm equation, weak solu-

tions, asymptotic stabilization.
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in [1] the problem of constructing a feedback law for (1) that makes the correspond-
ing closed-loop dynamic asymptotically stable at the equilibrium state for solutions
with initial data

u(0, ·) = u0 ∈ H1(R). (2)

As a first step in this direction, we have considered the equation (1) with an addi-
tional forcing term acting on the whole line of the form

f [u]
.
= −λ(u− ∂2xxu), (3)

for some λ > 0. We are thus concerned with the Cauchy problem for the nonlinear
equation

∂tu− ∂3txxu+ 3u∂xu = γ
(
2∂xu∂

2
xxu+ u∂3xxxu

)
− λ(u− ∂2xxu), t > 0, x ∈ R. (4)

Rewriting (4) as

(1− ∂2xx)∂tu+ γ(1− ∂2xx)(u∂xu) + ∂x

(
3− γ

2
u2 +

γ

2
(∂xu)2

)
= −λ(1− ∂2xx)u,

and applying the operator (1 − ∂2xx)−1, we obtain the formally equivalent elliptic-
hyperbolic system

∂tu+ γu∂xu+ ∂xP = −λu, (5)

−∂2xxP + P =
3− γ

2
u2 +

γ

2
(∂xu)

2
. (6)

Since e−|x|/2 is the Green’s function of the Helmholtz operator −∂2xx + 1, we see
that a Lipschitz continuous map t→ u(t, ·) with values in H1(R) will be a solution
of (5)-(6) if it satisfies the equality

d

dt
u = −γu∂xu− ∂xP [u]− λu, for a.e. t ≥ 0, (7)

with the source term P [u] defined as a convolution:

P [u]
.
=
e−|x|

2
∗
(

3− γ
2

u2 +
γ

2
(∂xu)2

)
. (8)

Observe that, if u is a smooth solution of (5)-(6), differentiating (5) w.r.t. x,
then multiplying the equation (5) by u and its x-differentiation by ∂xu, we get

∂t

(
u2 + (∂xu)2

2

)
+ ∂x

(
γ

2
u(∂xu)2 − 1− γ

2
u3 + uP

)
= −λ

(
u2 + (∂xu)2

)
. (9)

Hence, the total energy

E(t) := ‖u(t, ·)‖2H1(R) =

∫
R

(
u(t, x)2 + (∂xu(t, x))2

)
dx (10)

for smooth solutions satisfies the ordinary differential equation

d

dt
E(t) = −2λE(t)

and we have
E(t) = E(0)e−2λt, t ≥ 0. (11)

On the other hand, as observed before, the hyperelastic-rod wave equation (1)
possesses solutions that produce wave breaking in finite time, in the sense that
the functions remain uniformly bounded while the spatial derivatives becomes un-
bounded. Moreover, when solutions experience the presence of peakons (moving to
the right) and antipeakons (moving to the left) that collide annihilating each other,
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it immediately raises the question about the behaviour of the solution after the col-
lision time. Two different scenarios can be put forward (cfr. [12]-[13] and references
therein). The first one assumes a total annihilation at the collision time, which
leads to the null solution for all times after the annihilation has taken place. In-
stead, the second scenario assumes that a switching phenomenon occurs: the waves
pass through each other, each one continuing unscathed as a solitary wave. For the
hyperelastic-rod wave equation with forcing term (4), in view of (11), it is natu-
ral to consider dissipative solutions, which correspond to the first scenario where
a partial or even total loss of energy can occur during wave breaking. Moreover,
we shall require that our solutions satisfy an Oleynik type inequality that should
characterize such solutions within the class of dissipative solutions. We thus employ
the following

Definition 1.1. Given an initial datum u0 ∈ H1(R), we say that an Hölder con-
tinuous function u = u(t, x) defined on [0,∞)×R and such that u(t, ·) ∈ H1(R) at
every t ∈ [0,∞), is a weak solution of the Cauchy problem (5)-(6),(2), on [0,∞) if
the map t→ u(t, ·) is Lipschitz continuous from [0,∞) into L2(R), the initial condi-
tion (2) holds and (7) is satisfied as equality between functions in L2(R). Moreover,
we say that u is dissipative if its energy E(t) in (10) is a non-increasing function of
time and if it satisfies the inequality

∂xu(t, x) ≤ C
(

1 +
1

t

)
∀ t > 0, a.e. x ∈ R, (12)

for some constant C > 0. Here and in (7) ∂xu is understood as the distributional
derivative of u.

Following the approach for the analysis of the Camassa-Holm equation developed
in [2]-[3], we have construct in [1] a semigroup of dissipative weak solutions of (5)-
(6) on the space H1(R), whose energy decays exponentially in time. More precisely,
our main result in [1] is the following:

Theorem 1.2. There exists a semigroup S : [0,∞)×H1(R)→ H1(R) that enjoys
the following properties.

i. For every u0 ∈ H1(R), the function u(t, x)
.
= St(u0)(x) is a dissipative weak

solution of (5)-(6),(2) in the sense of Definition 1.1. Moreover, the constant
C > 0 in (12) depends only on ‖u0‖H1(R).

ii. The total energy introduced in (10) decays exponentially, namely

E(t) ≤ E(0)e−2λt, t ≥ 0. (13)

iii. For every given sequence of initial data {u0,n}n ⊂ H1(R) and u0 ∈ H1(R),
one has

u0,n → u0 in H1(R) =⇒ S(u0,n)→ S(u0) in L∞loc((0,∞)× R). (14)

Notice that the semigroup S of dissipative solutions provided by Theorem 1.2
is not continuous as a map with values in H1. In fact, even a single trajectory
t 7→ St(u0) may fail to be continuous with respect to the the H1-norm. Indeed,
as observed in [3, Section 7] for the Camassa-Holm equation, one can construct
a dissipative solution of (5)-(6) with a pair of peakons and antipeakons of the
same strength that collide and completely annihilate each other, thus producing a
discontinuity in the H1-norm at the time of annihilation.

In the following sections we will we will sketch the main arguments envolved in
the proof of Theorem 1.2. For all details we refer to [1].
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2. Semilinear System. Let u be a smooth solution of (1). Following [1, 3] we
introduce an energy variable ξ ∈ R. This will play the role of a Lagrangian variable,
remaining constant along characteristics. The map

y ∈ R 7−→
∫ y

0

(
1 + (∂xu0)2

)
dx

is continuous, increasing, and goes to ∞ and −∞ as y →∞ and y → −∞, respec-
tively. So we can define implicitly the function y0 = y0(ξ) by the relation∫ y0(ξ)

0

(
1 + (∂xu0)2

)
dx = ξ, ξ ∈ R. (15)

Let t 7→ y(t, ξ) be the characteristic curve starting at y0(ξ), namely

∂ty(t, ξ) = γu(t, y(t, ξ)), y(0, ξ) = y0(ξ). (16)

Throughout the following, we use the notation

u(t, ξ) := u(t, y(t, ξ)), P (t, ξ) := P (t, y(t, ξ)),

and define the variables v = v(t, ξ) and q = q(t, ξ) as

v := 2 arctan(∂xu), q := (1 + (∂xu)2)∂ξy. (17)

We have

q ≥ 0. (18)

Recall that

P (t, x) =
1

2

∫
R
e−|x−y|

(
3− γ

2
u(t, y)2 +

γ

2
(∂xu(t, y))

2

)
dy,

∂xP (t, x) =
1

2

∫
R
e−|x−y|sign(y − x)

(
3− γ

2
u(t, y)2 +

γ

2
(∂xu(t, y))

2

)
dy.

(19)

The system satisfied by u = u(t, ξ), v = v(t, ξ), q = q(t, ξ) is
∂tu = −∂xP − λu,
∂tv =

(
3−γ
2 u2 − P

)
(1 + cos(v))− γ sin2

(
v
2

)
− λ sin(v),

∂tq =
(
3−γ
2 u2 − P + γ

2

)
sin(v)q − 2λ sin2

(
v
2

)
q,

u(0, ξ) = u0(y0(ξ)), v(0, ξ) = 2 arctan(∂xu0(y0(ξ))), q(0, ξ) = 1,

(20)

where

P (t, ξ) =
1

2

∫
R
e
−
∣∣∣∫ ξ′ξ cos2( v(t,s)2 )q(t,s)ds

∣∣∣×
×
(

3− γ
2

u(t, ξ′)2 cos2
(
v(t, ξ′)

2

)
+
γ

2
sin2

(
v(t, ξ′)

2

))
q(t, ξ′)dξ′,

∂xP (t, ξ) =
1

2

∫
R
e
−
∣∣∣∫ ξ′ξ cos2( v(t,s)2 )q(t,s)ds

∣∣∣×
× sign(xi− ξ′)

(
3− γ

2
u(t, ξ′)2 cos2

(
v(t, ξ′)

2

)
+
γ

2
sin2

(
v(t, ξ′)

2

))
q(t, ξ′)dξ′.

In order to obtain global dissipative solutions, a modification of the system (20)
is needed. In essence, we require the following. Assume that, along a given char-
acteristic t 7→ y(t, ξ), the wave breaks at a first time t = τ(ξ). Arguing as for
the Burgers equation and reminding that ∂xu satisfies (12), the wave break means
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∂xu(t, ξ) → −∞, as t → τ(ξ)−. For all t ≥ τ(ξ) we then set v(t, ξ) ≡ −π and re-
move the values of u(t, ξ), v(t, ξ), q(t, ξ) from the computation of P and ∂xP . More
precisely, we replace (20) by

∂tu = −∂xP − λu,

∂tv =

{(
3−γ
2 u2 − P

)
(1 + cos(v))− γ sin2

(
v
2

)
− λ sin(v), if v > −π,

0, if v ≤ −π,

∂tq =

{(
3−γ
2 u2 − P + γ

2

)
sin(v)q − 2λ sin2

(
v
2

)
q, if v > −π,

0, if v ≤ −π,

u(0, ξ) = u0(y0(ξ)), v(0, ξ) = 2 arctan(∂xu0(y0(ξ))), q(0, ξ) = 1,

(21)

and

P (t, ξ) =
1

2

∫
{v(t,ξ′)>−π}

e
−
∣∣∣∫{ξ′≤ξ, v(t,ξ′)>−π} cos2( v(t,s)2 )q(t,s)ds

∣∣∣×
×
(

3− γ
2

u(t, ξ′)2 cos2
(
v(t, ξ′)

2

)
+
γ

2
sin2

(
v(t, ξ′)

2

))
q(t, ξ′)dξ′,

∂xP (t, ξ) =
1

2

∫
{v(t,ξ′)>−π}

e
−
∣∣∣∫{ξ′≤ξ, v(t,ξ′)>−π} cos2( v(t,s)2 )q(t,s)ds

∣∣∣×
× sign(ξ − ξ′)

(
3− γ

2
u(t, ξ′)2 cos2

(
v(t, ξ′)

2

)
+
γ

2
sin2

(
v(t, ξ′)

2

))
q(t, ξ′)dξ′.

The local existence and uniqueness of the solution is obtained following the main
lines of [4], see [1, Theorem 3.1]. A global bound on the total energy

E(t) =

∫
{v(t,ξ)>−π}

(
u2(t, ξ) cos2

(
v(t, ξ)

2

)
+ sin2

(
v(t, ξ)

2

))
q(t, ξ)dξ (22)

guarantees that the local solutions of the semilinear system (21) can be globally
extended for all times t ≥ 0, see [1, Section 4].

2.1. Stability for the semilinear system. The following statement holds [1,
Section 5]

Let {u0,n}n ⊂ H1(R) and u0 ∈ H1(R). If

u0,n −→ u0 in H1(R), (23)

then
un −→ u in L∞((0, T )× R) for every T > 0, (24)

where un and u are the solutions of the semilinear dissipative system (21) in
correspondence of u0,n and u0, respectively.

Let (u, v, q) and (ũ, ṽ, q̃) be any two solutions of the semilinear dissipative system
(21) and T > 0.

For every

ξ ∈ {ξ ∈ R; v(T, ξ) = −π} ∪ {ξ ∈ R; ṽ(T, ξ) = −π},
let τ(ξ) be the first time at which one of the two solutions reaches the value −π,
namely

τ(ξ) = inf{t ∈ [0, T ]; min{v(t, ξ), ṽ(t, ξ)} = −π}.
Since the map τ(·) is measurable, we can construct a measure-preserving, measur-
able map α 7−→ ξ(α) from [0, α∗] onto Λ such that

α ≤ α′ ⇐⇒ τ(ξ(α′)) ≤ τ(ξ(α)).
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The inverse mapping ξ 7−→ α(ξ) from Λ into [0, α∗] is still measure-preserving.
We introduce the distance functional

j(t) =J((u(t, ·), v(t, ·), q(t, ·)), (ũ(t, ·), ṽ(t, ·), q̃(t, ·)))
=‖u(t, ·)− ũ(t, ·)‖L∞(R) + ‖v(t, ·)− ṽ(t, ·)‖L2(R) + ‖q(t, ·)− q̃(t, ·)‖L2(R)

+K0

∫ α∗

0

eKα|v(t, ξ(α))− ṽ(t, ξ(α))|dα.

Choosing suitably the positive constants K and K0 we get

d

dt
j(t) ≤Mj(t),

for some constant M > 0. Therefore

j(t) ≤ eMtj(0), 0 ≤ t ≤ T. (25)

Consider a sequence {u0,n}n ⊂ H1(R) and u0 ∈ H1(R) satisfying (23). The
boundedness of {‖u0,n‖H1(R)}n, the Sobolev embedding H1(R) ⊂ L∞(R) (see [14,
Theorem 8.5]), and (25) imply (24). Then our claim is proved.

3. Global Dissipative Solutions in the Original Variables. Let (u, v, q) be
the solution of the semilinear system (21). Define

y(t, ξ) = y0(ξ) +

∫ t

0

u(τ, ξ)dτ.

For each fixed ξ, the function t 7−→ y(t, ξ) solves

∂ty(t, ξ) = u(t, ξ), y(0, ξ) = y0(ξ).

We set

u(t, x) = u(t, ξ) if y(t, ξ) = x.

Clearly

u(0, x) = u0(x) x ∈ R.
Due to the energy estimate on ‖u(t, ·)‖H1(R) and the fact that the image of the
singular set where v = −π has measure zero (in the x-variable), i.e.,

meas({y(t, ξ); v(t, ξ) = −π}) = 0

we have that u is continuous, t 7−→ u(t, ·) ∈ L2(R) is Lipschitz continuous, and

d

dt
u = −γu∂xu− ∂xP − λu.

Therefore u is a weak solution of the hyperelastic rod wave equation in the sense of
Definition 1.1.

3.1. The Semigroup. Given an initial data u0 ∈ H1(R), we denote by u(t, x) =
St(u0)(x) the corresponding global solution of the hyperelastic-rod wave equation.
We have to prove

St(Sτ (u0)) = St+τ (u0), t, τ > 0.

Let (u, v, q) be the solution of the problem in the auxiliary variables. Call ũ =
Sτ (u0). We choose ξ0 such that y(τ, ξ0) = 0 and consider the new energy variable
σ = σ(ξ) as a solution of

d

dξ
σ(ξ) =

{
q(τ, ξ) if v(τ, ξ) > −π,
0 if v(τ, ξ) = −π,

σ(ξ0) = 0.
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We have ∫ y(τ,ξ)

0

(
1 + (∂xu(τ, x))2

)
dx = σ(ξ).

The map ξ = ξ(σ)
ξ(σ) = sup{s;σ(s) ≤ σ}

provides almost everywhere an inverse of σ(·).
Define

ũ(t, σ) = u(τ + t, ξ(σ)), ṽ(t, σ) = v(τ + t, ξ(σ)), q̃(t, σ) =
q(τ + t, ξ(σ))

q(τ, ξ(σ))
.

Since (ũ, ṽ, q̃) solves the same equations of (u, v, q), S is a semigroup.

3.2. The decay as t −→ ∞. Given an initial data u0 ∈ H1(R), let u = u(t, x) be
the corresponding global solution of the hyperelastic-rod wave equation and (u, v, q)
be the solution of the problem in the auxiliary variables. Consider

E(t) =‖u(t, ·)‖2H1(R) =

∫
R

(
u(t, x)2 + (∂xu(t, x))2

)
dx

=

∫
{v(t,ξ)>−π}

(
u2(t, ξ) cos2

(
v(t, ξ)

2

)
+ sin2

(
v(t, ξ)

2

))
q(t, ξ)dξ.

We have
d

dt
E(t) ≤ −2λE(t).

Therefore
E(t) ≤ e−2λtE(0), t ≥ 0.

3.3. The Oleinik type estimate. Since

∂tv
∣∣∣
v=π

=

(
3− γ

2
u2 − P

)
(1 + cos(v))− γ sin2

(v
2

)
− λ sin(v)

∣∣∣
v=π

= −γ,

we can choose δ > 0 so that

∂tv(t, ξ) ≤ −γ
2
, v ∈ [π − δ, π).

As a consequence

v(t, ξ) < min

{
π − δ, π − tγ

2

}
, v ∈ [π − δ, π).

Hence (12) follows from the identity

∂xu =
sin(v)

1 + cos(v)
.

4. Further Problems. It is clear that [1] is only the first attempt on the control-
lability and stabilizability of weak solutions of the hyperelastic-rod wave equation.
Indeed the results of [10, 16] apply to H2 solutions.

In [1] we damp the waves of an hyperelastc-rod adding an external forcing term
f [u] acting on all the rod. It is very interesting to consider the case of an external
forcing term acting only on a region w of the rod or only on one of the end points
of it.

Here we consider the asymptotic stabilization, in the sense that we use our feed-
back law to damp all the waves of the rod and in the limit we do not want any wave.
Of course one can be interested in a particular profile at infinity (say a peakon or
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any stationary wave). In this case one should find a feedback law damping all the
waves except the desired one. Clearly the asymptotic profile can be H1 as the ini-
tial condition or smoother and vice-versa. In other words we can ask for a feedback
law that regularize all the singularities generated by the initial condition or on the
contrary a feedback laws that is able to generate say a peakon even if the initial
profile is not doing that.

REFERENCES

[1] F. Ancona and G. M. Coclite, Asymptotic Stabilization of weak solutions to a generalized

hyperelastic-rod wave equation: dissipative semigroup, preprint.

[2] A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,
Arch. Ration. Mech. Anal., 183 (2007), 215–239.

[3] A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,

Analysis and Applications, 5 (2007), 1–27.
[4] A. Bressan and W. Shen. Unique solutions of directionally continuous ordinary differential

equations in Banach spaces, Analysis and Applications, 4 (2006), 247–262.

[5] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys.
Rev. Lett., 71 (1993), 1661–1664.

[6] G. M. Coclite, H. Holden, and K. H. Karlsen. Global weak solutions to a generalized

hyperelastic-rod wave equation. SIAM J. Math. Anal., 37 (2005), 1044–1069.
[7] H.-H. Dai, Exact travelling-wave solutions of an integrable equation arising in hyperelastic

rods, Wave Motion, 28 (1998), 367–381.
[8] H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin

rod, Acta Mech., 127 (1998), 193–207.

[9] H.-H. Dai and Y. Huo, Solitary shock waves and other travelling waves in a general com-
pressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A, 456 (2000), 331–363.

[10] O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation, J. Dif-

ferential Equations, 245 (2008), 1584–1615.
[11] H. Holden and X. Raynaud. Global conservative solutions of the generalized hyperelastic-rod

wave equation. J. Differential Equations, 233 (2007), 448–484.

[12] H. Holden and X. Raynaud. Global conservative multipeakons solutions of the Camassa-Holm
equation. J. Hyperbolic Differ. Equ. , 4 (2007), 39–64.

[13] H. Holden and X. Raynaud. Global dissipative multipeakons solutions of the Camassa-Holm

equation. Comm. Partial Differential Equations, 33 (2008), 2040–2063.
[14] E. H. Lieb and M. Loss, “Analysis”, American Mathematical Society, Providence, RI, 2001.

[15] R. S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, J.

Fluid Mech., 455 (2002), 63–82.
[16] V. Perrollaz, Initial boundary value problem and asymptotic stabilization of the Camassa-

Holm equation on an interval, J. Funct. Anal., 259 (2010), 2333–2365.

E-mail address: ancona@math.unipd.it

E-mail address: coclitegm@dm.uniba.it

http://www.ams.org/mathscinet-getitem?mr=MR2278406&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2288533&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2239406&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1234453&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2192287&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1642422&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1606738&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1811323&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2436454&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2292515&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2303475&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2475329&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1817225&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1894796&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2674116&return=pdf


BOUNDARY TREATMENT IN GHOST POINT FINITE

DIFFERENCE METHODS FOR COMPRESSIBLE GAS

DYNAMICS IN DOMAIN WITH MOVING BOUNDARIES

Armando Coco

Dipartimento di Scienze della Terra e Geoambientali
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Abstract. We propose a set of boundary conditions to be employed in the
context of the Euler equation for compressible gas dynamics with fixed or mov-

ing smooth impenetrable obstacles in two space dimensions. The conditions

are prescribed on the primitive variables. The equations are discretized on a
regular Cartesian grid, in which the domain is described by a level set function.

The evolution of interior points is determined by solving the Euler equations,

discretized by a finite difference shock capturing scheme. Ghost points out
of the domain, near the boundary, are used to close the system. The value

of the field variables at the boundary are obtained by discretization of the

boundary conditions. For fixed domain, in addition to classical conditions of
impenetrability and pressure gradient balancing centrifugal force, we adopt

two additional conditions, one relating pressure and density gradient, and one

on the normal component of the tangential velocity. The last condition is
derived by imposing that the flow near the boundary is locally irrotational.

Equivalence between this condition and the condition of constant enthalpy is
shown. Generalization to moving domains is derived. An iterative technique

to discretize the boundary conditions on the ghost points, which is based on an

approach recently applied in the context of elliptic problems [5], is presented.
Some numerical results for moving boundaries are illustrated, that show the
effect of the additional terms on the pressure gradient which are not present

in the case of fixed boundary.

1. Introduction. We are interested in developing a simple, accurate, and robust
numerical method for the boundary treatment in compressible fluid dynamics in
presence of solid obstacles. In the two-dimensional (2-D) case, the governing equa-
tions are the compressible Euler equations, written in conservation form:

∂w

∂t
+
∂f(w)

∂x
+
∂g(w)

∂y
= 0 (1)

2000 Mathematics Subject Classification. Primary: 35L65, 65M06; Secondary: 35L50, 76N99.
Key words and phrases. Boundary condition, ghost-point, finite difference, compressible gas

dynamics, moving boundaries.
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where w = (ρ, ρu, ρv, E)T , f = (ρu, ρu2 + p, ρuv, u(E + p))T , g = (ρv, ρuv, ρv2 +
p, v(E + p))T .

Here ρ is the fluid density, u and v are the velocities, E is the total energy, and
p is the pressure. System (1) is closed using the equation of state (EOS), which, for
ideal gases, reads:

E =
p

γ − 1
+
ρ

2
(u2 + v2), γ = const. (2)

We also introduce the notation c2s := (∂p/∂ρ)s = γp/ρ for the square of the sound
speed, which will be used throughout the paper (s denotes the entropy).

The computational domain Ω(t) ⊆ R is identified by a region in which a time
dependent level-set function φ(x, t) is negative. The rectangular region R in which
the Ω(t) is immersed is discretized by a regular square grid. In the whole paper we
assume that Ω is the region in R external to a fixed or moving obstacle D(t) (see
Fig. 1).

Two sets of nodes are identified in R at each time t: internal nodes x ∈ Ω(t), and
ghost nodes, i.e. nodes in R, which are external to Ω, but are close to the boundary
(within one or few grid points from an internal node). For fixed domains, i.e. if
Ω does not depend on time, the sets of internal and ghost points do not change,
otherwise it has to be updated at every time step. Conservative finite difference will
be used as space discretization. In one time step, from tn to tn+1, the evolution of
the system is performed as follows: for points that will be internal at time tn+1 the
field variables are evolved by integrating the semidiscrete system in time, while the
values of all the ghost points which are required to close the system of equations are
computed by making use of boundary conditions. This approach has been adopted
in the forthcoming paper [2].

For Euler equation, each node contains four quantities in two space dimensions,
say density, pressure and the two components of the velocity, therefore four equa-
tions are needed for each ghost point. Of course, because of the hyperbolic nature
of the problem, the conditions cannot be applied independently, and have to be
compatible with the equations.

We assume that the boundary conditions on the obstacle D(t) are the classical
no slip conditions of inviscid Euler equation on a wall, so one boundary condition
states that the normal velocity of the gas on ∂D is equal to the normal velocity
of the boundary. The second condition is obtained balancing centrifugal force on
the gas with pressure gradient. The third condition is obtained from adiabaticity,
and relates variations in pressure and density, and the last condition, imposed on
the transversal velocity, is a condition on the enthalpy, commonly adopted in gas
dynamics [6].

Because the conditions on one ghost point are related to the conditions on neigh-
bor ghost points, they are not independent, rather they constitute a system that
has to be solved quickly in order to proceed with the integration of the equations
on internal points. High order extrapolation will be able to define the equations for
the ghost points to high order accuracy in space.

A recently developed relaxation procedure, successfully applied in the numeri-
cal solution of elliptic problems [5, 4], is applied to the solution of the system of
equations to compute the field at ghost nodes. A detailed exposition on the finite
difference discretization for inside equations and numerical tests showing the sec-
ond order accuracy will be provided in [2]. Other works recently developed about
boundary methods in compressible fluid-dynamics are [6, 8, 1].
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In presence of moving boundary the condition on the pressure is extended with
additional terms (see Sec. 3.3). A numerical test presented in Sec. 4 validates such
extension.

2. Finite difference scheme. Let us suppose that the domain Ω is defined by
a level set function φ, namely as the set {~x ∈ R : φ(~x) < 0}, while the obstacle is
identified by {~x ∈ R : φ(~x) > 0} and the boundary by {~x ∈ R : φ(~x) = 0}.

By the level-set function we identify different points (see Fig. 1):

• internal points ~Xjk ∈ Ω, (j, k ∈ I). These are the points where we solve the
problem, and for which we write the differential equation.

• Ghost points ~Xjk, (j, k ∈ G). These are points external to Ω, that are near
the boundary. In particular, for a second order method, they are points within
one or two grid cells (in either direction x or y) from the boundary.
• Inactive points

By inactive points we denote points external to the domain, which are not
ghost.

Ω(t) D(t)

Figure 1. Grid points of the setup: the
red full circular points are inner points,
while the blue empty circular and the yel-
low empty squared points are respectively
the first and second layer of ghost points.

G

BΩ

Figure 2. St
(I)
G is the sten-

cil composed by the red empty
circular grid points, while

St
(II)
G is composed by the blue

full circular grid points.

Within ghost points, we distinguish between first layer L1 and second layer,
L2 : L1∪L2 = G. The first layer of points is within one grid cell from the boundary
(in either direction). The second layer is made of points within two grid points from
the boundary, which are not in the first layer.

The Finite difference approximation on system (1) is:

dwjk
dt

+
f̂j+ 1

2 ,k
− f̂j− 1

2 ,k

∆x
+
ĝj,k+ 1

2
− ĝj,k− 1

2

∆y
, (j, k) ∈ I.

These equations require the computation of the fluxes, which are at interface be-
tween internal cells, or between internal cells and first layer cells. They are computed
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as follows:

f̂j+ 1
2 ,k

= f̂+
j+ 1

2 ,k
+ f̂−

j+ 1
2 ,k

(3)

f̂+
j+ 1

2 ,k
= F̂+

j,k

(
xj+ 1

2
, yk

)
, f̂−

j+ 1
2 ,k

= F̂−
j+1,k

(
xj+ 1

2
, yk

)
(4)

ĝj,k+ 1
2

= ĝ+
j,k+ 1

2

+ ĝ−
j,k+ 1

2

(5)

ĝ+
j,k+ 1

2

= Ĝ+
j,k

(
xj , yk+ 1

2

)
, ĝ−

j,k+ 1
2

= Ĝ−
j,k+1

(
xj , yk+ 1

2

)
(6)

The four flux functions F̂±, Ĝ± have to be reconstructed in cells (j, k) ∈ I ∪ L1

from the pointwise values of the fluxes f± and g±, which, in turn, determine a split
of the flux functions:

f(w) = f+(w) + f−(w), g(w) = g+(w) + g−(w)

We use local Lax-Friedrichs splitting. Once the values of the fluxes are computed
at each grid node,

f±j,k = f±(wj,k), g±j,k = g±(wj,k), (j, k) ∈ I ∪ G.

then F̂±, Ĝ± are reconstructed using classical WENO reconstruction from cell
averages to pointwise values [7].

The definition of field values at ghost cells requires the solution of equations that
arise from the discretization of the boundary conditions.

3. Boundary treatment of Euler equations in 2D.

3.1. Fixed boundary. We denote by ~n and ~τ respectively the normal and the
tangential unit vector to the boundary, while κ is the signed curvature (see Fig. 3).
We assume that the unit normal points outside the fluid domain.

n

τ

Ω

n

τ

Ω
Figure 3. Locally convex boundary κ < 0 (left) and locally con-
cave boundary κ > 0 (right).

3.1.1. Condition on the normal component of the velocity. Let us denote by un =
~u · ~n and uτ = ~u · ~τ respectively the normal and tangential velocity. The condition
on the normal velocity is:

un = 0 on ∂Ω, (7)
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3.1.2. Condition on the pressure. The equation of motion for a fluid particle (bal-
ance of momentum) for Euler equations reads:

ρ
D~u

Dt
+∇p = 0 (8)

where D/Dt = ∂/∂t+ ~u · ∇ denotes the Lagrangian derivative.
Condition (7) implies that, along the boundary of the domain, the velocity vector
is ~u = uτ~τ where uτ denotes the tangential component. It is therefore:

D~u

Dt
=
Duτ
Dt

~τ + uτ
D~τ

Dt
= aτ~τ + u2

τ κ ~n (9)

where κ denotes the curvature. It is |κ| = 1/R, where R is the local radius of
curvature of the boundary. With the notation in the Fig. 3, the sign of κ is negative
for locally convex regions, and positive for locally concave regions, and aτ denotes
the tangential acceleration of the fluid. By projecting Eq. (8) on the normal
direction, and making use of (9), one obtain the boundary condition on the pressure:

∂p

∂n
= −ρ u2

τ κ. (10)

3.1.3. Condition on the tangential component of the velocity. We impose the fol-
lowing condition for uτ

∂uτ
∂n

= uτ κ. (11)

Such condition can be obtained in the following two manners.

• By imposing that the vorticity is zero. This means imposing that
∮

Γ
~u ·d~l = 0

for each closed circuit Γ. We choose the circuit in Fig. 4, which is composed
by two concentric arcs and two segments aligned with the common center of
the arcs. The arc with the smaller radius and the boundary are tangent and
have the same curvature.

R+dR

R

Figure 4. We impose the vorticity is zero.

Supposing that the uτ is constants along the arcs, we obtain:∮
Γ

~u · d~l = (R+ ∆R)uτ |R+∆R −R uτ |R = 0. (12)

Using Taylor expansion, and going to the limit ∆R → 0, we obtain (11)
(observing that |κ| = 1/R).
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• By imposing that the normal derivative of the total enthalpy (density) is zero
on the boundary (this is commonly adopted in gas dynamics [6]), because
enthalpy is conserved for smooth flows, and it is assumed that the far field is

a constant flow. Let us recall that the enthalpy is H =
1

2
u2 + e +

p

ρ
, where

e = e(ρ, p) =
p

(γ − 1)ρ
is the internal energy. The condition reads:

0 =
∂H

∂n
= ~u · ∂~u

∂n
+

(
1

γ − 1
+ 1

)(
∂p

∂n

1

ρ
− p

ρ2

∂ρ

∂n

)
.

Using the boundary conditions (10) and (14) and the fact that ~u = vττ on
the boundary, we obtain:

0 =
∂uτ
∂n

uτ +
γ

γ − 1

∂p

∂n

(
1

ρ
− p

c2sρ
2

)
=
∂uτ
∂n

uτ +
γ

γ − 1
κ u2

τ

(
1− p

c2sρ

)
(13)

where c2s is the square of the speed sound. For a polytropic gas we have
c2s = γp/ρ. Therefore:

0 =
∂uτ
∂n

uτ + κ u2
τ

which implies the (11).

3.1.4. Condition on the density. Finally, the condition on the density is given by
the requirement that the boundary is adiabatic, i.e. that locally the entropy is flat
(just as in the case of the enthalpy, one uses the fact that entropy is an invariant of
the flow, for smooth flows, and assumes that the far field is constant). This means
∂s/∂n = 0, which implies

∂p

∂n
= c2s

∂ρ

∂n
. (14)

3.2. Discretization of the boundary conditions. We use the boundary con-
ditions (7),(11),(10),(14) to extrapolate ~u, p, ρ in ghost points. From now on we
assume that the level set function φ is actually a signed distance function from the
boundary, therefore |∇φ| = 1. We also assume that grid spacing in x and y are the
same, i.e. ∆x = ∆y = h.

The linear system coming from the discretization of the boundary conditions is
obtained by writing a linear equation for each unknown of the system, i.e. for each
u(G), v(G), p(G), ρ(G), where G ∈ G is a ghost point. In detail: let G be a ghost
point. We compute the projection point B on the interface, making use of the signed
distance function φ, that is B ≡ (xB , yB) = G − φ(G)~nG = G − φ(G)∇φ(G). Let

us define two 3× 3 stencils: St
(I)
G and St

(II)
G . Each of this stencil can be divided in

four (overlapped) 2×2 sub-stencils. St
(I)
G is a stencil in upwind direction containing

G, possibly enlarged in such a way that the boundary point B is contained in the
2× 2 sub-stencil containing G (see Fig. 2). In formulas:

St
(I)
G =

{
(xG + sx k1 h, yG + sy k2 h) : (k1, k2) ∈ {0, 1, 2}2

}
,

where sx = d|xB − xG| /he sgn(xB − xG), sy = d|yB − yG| /he sgn(yB − yG).

Stencil St
(II)
G is not enlarged and it contains the boundary point B and in upwind

direction. It cannot contain the grid point G. See Fig. 2. Note that St
(II)
G ≡ St(II)G

if G belongs to the first layer of ghost points, i.e. G ∈ L1. Let us denote by L[ω;St]
the biquadratic interpolant of ω in the stencil St.
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We transform the system of the boundary conditions (7), (11), (10), (14) into a
time dependent problem with a fictitious time τ :

∂un
∂τ

+ un = 0 (15)

∂uτ
∂τ

+ µ1
∂uτ
∂n

= µ1uτ κ (16)

∂p

∂τ
+ µ2

∂p

∂n
= −µ2ρ κ u

2 (17)

∂ρ

∂τ
+ µ3

∂ρ

∂n
= µ3

1

c2s

∂p

∂n
(18)

where µi, i = 1, 2, 3 are suitable constants. The iterative scheme is obtained by
discretizing the previous problem in space and time and looking for the steady
state solution (the fictitious time τ represents an iterative parameter). The partial
derivatives with respect to τ are computed to first order in space (i.e. the quantities
are evaluated at the ghost points G rather than in B), since they vanish as τ goes to
infinity, while all the other terms are discretized to second order (in the boundary
point B). The iterative scheme becomes:

uG (m+1)
n = uG (m)

n −∆τL[u(m)
n ;St

(I)
G ](B) (19)

uG (m+1)
τ = uG (m)

τ

− µ1∆τ

(
∂L[u

(m)
τ ;St

(I)
G ](B)

∂n
− L[u(m)

τ ;St
(I)
G ](B) κ(B)

)
(20)

p
(m+1)
G = p

(m)
G

− µ2∆τ

(
∂L[p(m);St

(I)
G ](B)

∂n
(21)

+ κ(B) L[ρ(m);St
(II)
G ](B)

(
L[u(m)

τ ;St
(II)
G ](B)

)2
)

(22)

ρ
(m+1)
G = ρ

(m)
G − µ3∆τ

(
∂L[ρ(m);St

(I)
G ](B)

∂n
(23)

− 1

c2s(B)

∂L[p(m);St
(II)
G ](B)

∂n

)
(24)

where, in order to simplify the notation, we denoted c2s(B) the quantity γp(m)/ρ(m)

reconstructed by L in B. The time step ∆τ and the constants µi, i = 1, 2, 3
are chosen in order to satisfy the CFL conditions for (19), (20), (22), (24), i.e.
∆τ < 1, µi∆τ < h, i = 1, 2, 3. The iterations scheme (19) - (24) is performed
until the residual falls below a fixed tolerance.

Such iterative technique for the boundary conditions is successfully employed in
the context of elliptic equations, where it is merged with an iteration scheme for
the inner equations and it is embedded in a multigrid framework [5]. However, in
this case we do not iterate on inside grid points, since we already have an updated
value in such points, while we just want to extrapolate the quantity q = ρ, u, p
in ghost points according to the boundary conditions. If we perform the iteration
scheme (19) - (24) without a multigrid solver, it results in a slow convergence. For
this reason, it is convenient to apply a block-relaxation, since the equations for the
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ghost points are not always fully coupled, unlike the elliptic case (that involves also
the inner equations).

For the special case of a rigid ball inside a fluid, the ghost equations are even

fully decoupled. In fact, it can be easily proved that the stencils St
(I,II)
G involve

only ghost points closer to the interface (besides inside points). Then, if we order
the ghost points according to the distance from the interface and we perform the
iteration from the closer to the farther point in a Gauss-Seidel fashion, we get
convergence in one sweep. Without ordering the ghost points, we however obtain
the convergence in few iterations. The Gauss-Seidel fashion can be obtained from
the iterative scheme (19)-(24) with a suitable choice of the time step ∆τ and the
constant µi.

3.3. Treatment of moving boundary. Let us assume that the normal boundary
velocity is given by a function V (~x, t). Such function can be easily computed, for
example, in the case in which the distance function is known analytically, as is the
case of the motion of a rigid body: if φ (~x, t) is a signed distance function, then one
has

∂φ

∂t
+ V |∇φ| = 0⇒ V (~x, t) = −∂φ

∂t
.

For example, if we have a disk of radius R whose center ~c ≡ (x0, y0) moves according

to some law ~U0(t) = (u0(t), v0(t)), then one has

V (~x, t) =
~c− ~x
|~c− ~x|

· ~U0 = ~n · ~U0. (25)

In the case of a moving boundary, the boundary conditions on ∂Ω for the velocity
(i.e. (7) and (11)) become:

un = V (26)

∂uτ
∂n

= uτ κ. (27)

The condition for the pressure is obtained as follows. The velocity of the fluid on
the boundary is given by:

~u = uτ~τ + V ~n. (28)

From the equation of motion, one has:

ρ
D~u

Dt
+∇p = 0.

Projecting this relation along the normal to the line, we obtain:

− ∂p

∂n
= ρ

D~u

Dt
· ~n. (29)

Differentiating (28) along the trajectory, taking the scalar product with ~n, consid-

ering that ~τ · ~n = 0 and
D~n

Dt
· ~n = 0, from (29) we obtain:

−1

ρ

∂p

∂n
= uτ~n ·

D~τ

Dt
+
DV

Dt

Furthermore,

D~τ

Dt
=
∂~τ

∂t
+ ~u · ∇~τ =

∂~τ

∂t
+ uτ

∂~τ

∂τ
=
∂~τ

∂t
+ uτ κ ~n
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which gives

− 1

ρ

∂p

∂n
= ~n · ∂~τ

∂t
uτ + u2

τ κ+
DV

Dt
. (30)

In Cartesian coordinates, we obtain the expression

~n · ∂~τ
∂t

= −φxφyt + φyφxt (31)

where the subscripts denote derivatives. DV/Dt = ∂V/∂t+~u ·∇V should be easily
obtained from the analytical expression of V .
In principle, Eq. (30), together with the conditions on the velocity (26) and (27)
and the usual adiabatic condition (14), should be sufficient to provide second order
boundary conditions.

4. Numerical test. We show that, in case of moving boundary, the condition on
the pressure (30) is better than (10). The numerical test is taken from [3, Example
4]. We consider a simple rigid movement of a ball with center (xc, yc) with respect
to the following equations

xc(t) = 0.5, yc(0) = 0.5, ẏc(t) = 0.01 cos(10πt).

The initial conditions of the characteristic variables are:

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) = (1, 0, 0, 10).

We compute the pressure at time t = 0.025. The pressure p is computed in three
directions (red, blue and green) through the ball, as illustrated in Fig. 5. The
numerical results obtained by the conditions (10) and (30) are illustrated in Fig. 6.
We observe that, going inside the ball, the extrapolation obtained by (30) converges
more quickly as the grid is refined, than the one obtained by (10). In all figures,
star points refer to the test with 25× 25, dot points refer to the test with 50× 50,
circle points refer to the test with 100× 100.
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Figure 5. Velocity field and the three directions in which
we compute p: vertical (red), oblique (blue) and horizontal
(green) direction.
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Figure 6. p computed in the vertical (red), oblique (blue) and
horizontal (green) directions of Fig. 5 using the condition (10) (left)
and (30) (right).
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Abstract. Models for crowd dynamics are presented and compared. Well

posedness results allow to exhibit the existence of optimal controls in various

situations. A new approach not based on partial differential equations is also
briefly considered.

1. Introduction. From a macroscopic viewpoint, a moving crowd can be described
through its density ρ = ρ(t, x), a function of time t ∈ R+ and space x ∈ R2 attaining
values in [0, 1]. In standard situations, the number of pedestrians is conserved, so
that

∫
R2 ρ(t, x) dx is independent of t. Hence, it is natural to use the conservation

law
∂tρ+ divx (ρ V ) = 0 . (1)

Any model of this kind depends on the speed law that defines the velocity V of the
crowd as a function of t, x, ρ, . . . A simple version of (1) is obtained assigning

V = v(ρ)~v(x) with
v ∈ C2([0, 1];R+) non increasing and v(1) = 0 ,
~v ∈ C2(R2;S1) .

(2)

In this case, Kružkov Theorem [24, Theorem 1] applies and ensures that the Cauchy
problem for (1)–(2) has a unique solution in C0,1

(
R+; L1(R2; [0, 1])

)
which depends

Lipschitz continuously from the data and, by [12, Theorem 2.6], also from v and ~v.
According to (2), at time t the pedestrian at x moves along a prescribed tra-

jectory, an integral curve of ~v, with a speed v(ρ) that depends on ρ evaluated at
point x and time t. On the contrary, Section 2 is devoted to (1) with the speed
of the individual at x depending on an average of the density ρ in a neighborhood
of x. The resulting model has a rich analytical structure, the solutions being also
differentiable with respect to the data and to the speed law.

In Section 3 the direction chosen by the pedestrian at x depends from an average
of the density gradient ∇ρ around x, while his/her speed depends from ρ evaluated
at x. The resulting solutions display qualitative properties usually seen in context

Key words and phrases. Conservation laws, nonlocal conservation laws, crowd dynamics.
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where individuals have a proper volume such as the Braess paradox [3] and the
formation of queues [23].

If the various individuals have different destinations then it is possible to subdi-
vide the crowd under consideration into different, say n, populations with densities
ρ1, . . . , ρn, each having a different destination. The resulting model

∂tρi + divx (ρi Vi) = 0 i = 1, . . . , n (3)

consists of a system of conservation laws that, when n = 1, reduces to (1). The
results in both Section 2 and Section 3 can be extended to this more general setting.

Finally, Section 4 approaches the problem of driving a crowd with a few moving
individuals. First, a model based on (1) is recalled and then an approach based on
differential inclusions is presented. The latter approach, developed following [5, 6],
neglects the crowd internal dynamics and allows for a simpler analytical framework.

We refer for instance to [2] for an account of the fast development of the recent
macroscopic modeling of crowd dynamics. Moreover, measure valued conservation
laws were considered in [18, 26]; the results in [25] deal with constrained velocity
models; various 1D attempts are found in [1, 15, 16, 20, 21]. Throughout, for the
basic results in the theory of conservation laws we refer to [4, 19].

2. Nonlocal speed choice. Consider (1) with the nonlocal speed law

V (ρ) = v
(
ρ(t) ∗ η

)
~v . (4)

Here, the speed v at time t of the pedestrian at x depends on the averaged density(
ρ(t) ∗ η

)
(x) =

∫
R2 ρ(t, x− y) η(y) dy. The direction of the velocity is given by the

(fixed) vector ~v(x).
For simplicity, we state the results below in R2. However, the case where the

region available to the crowd is constrained by, say, walls or doors can be easily
recovered in the present framework, along the technique used in [7, 8]

As is typical whenever Kružkov techniques apply, space dimension 2 plays no
role and the results below can be extended to Rn.

Existence and uniqueness of a solution to the Cauchy problem for (1)–(4) follow
from the next result.

Theorem 2.1. [9, Proposition 4.1], [10, Theorem 2.2] Let v ∈ (C2 ∩W2,∞)(R;R),
~ν ∈ (C2 ∩W2,1)(R2;R2), η ∈ (C2 ∩W2,∞)(R2;R). Assume ρo ∈ (L1 ∩ L∞ ∩
BV)(R2;R+). Then, (1)–(4) with initial condition ρo admits a unique weak entropy
solution ρ ∈ C0

(
R+; L1(R2;R+)

)
. Furthermore, we have the estimate

∥∥ρ(t)
∥∥
L∞ ≤

‖ρo‖L∞e
Ct, where the constant C depends on v, ~ν and η.

The definition of weak entropy solutions is based on Kružkov notion [24, Defini-
tion 1], see also [9, 10]. The proof relies on a contraction argument based on the
key estimates provided by [12, Theorem 2.6].

Another contraction argument, based on tools from optimal transport theory,
allows to extend the above result to the measure valued setting in [17]. (Below,
M+(R+) is the set of positive Radon measures on R2).

Theorem 2.2. [17, Theorem 1.1] Assume v ∈ (L∞ ∩ Lip)(R;R), ~ν ∈ (L∞ ∩
Lip)(R2;R2), η ∈ (L∞ ∩ Lip)(R2;R+). Let ρo ∈ M+(R2). Then, there exists a
unique weak measure valued solution ρ ∈ L∞(R+;M+(R2)) to (1)–(4) with initial
condition ρo. If furthermore ρo ∈ L1(R2;R+), then ρ ∈ C0

(
R+; L1(R2;R+)

)
.
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In general, in (1)–(4) no a priori uniform L∞ bound on the density is possible.
Indeed, assume that the density is 1 all along the trajectory of the pedestrian at
x. The averaged density around x may well be less than 1, forcing the pedestrian
to proceed and, hence, leading to a increase in the density. This behavior can be
related to the rise of panic, see [15, 16]. In the literature, values of ρ of up to 10
individuals per square meter were measured, see for instance [22].

Aiming at preventing the insurgence of these phenomena, it is natural to consider
control problems where functionals of the density of the type

JT (ρo) =

∫ T

0

∫
Ω

f
(
ρ(t, x)

)
dx dt where ρ solves (1)–(4) with datum ρo (5)

have to be minimized. Here, Ω is the region where the density needs to be controlled
and f is a C1 function weighing 0 on acceptable densities and quickly increasing
when ρ approaches dangerous values. Necessary conditions for the minima of (5)
are available once the differentiability of the solution to (1)–(4) with respect to the
initial datum is proved. This motivates the following result.

Theorem 2.3. [9, Theorem 4.2] [10, Theorem 2.2] Let ρo ∈ (W2,∞∩W2,1)(R2;R+),
ro ∈ (W1,1∩L∞)(R2;R). Assume v ∈ (C4∩W2,∞)(R;R), ~ν ∈ (C3∩W2,1)(R2;R2),
η ∈ (C3 ∩ W2,∞)(R2;R+). Then, there exists a unique weak entropy solution
r ∈ C0(R+; L1

(
R2;R)

)
to the Cauchy problem

∂tr + div (r v(ρ ∗ η)~ν(x)) = −div (ρ v′(ρ ∗ η)~ν(x)) , r(0) = ro . (6)

Furthermore, for all ρo ∈ (W2,1 ∩W2,∞)(R2;R+) and ro ∈ (W1,1 ∩ L∞)(R2;R),
call ρh the solution to (1)–(4) with initial datum ρo + hro. Then, for all t ∈ R+,

lim
h→0

∥∥∥∥ρh(t)− ρ(t)

h
− r(t)

∥∥∥∥
L1

= 0 (7)

i.e., the solution ρ to (1)–(4) is Gâteaux differentiable in ρo along any direction ro.

To prove this theorem, first the well posedness of (6) is obtained and then the
limit (7) is computed. In both steps, the estimates in [12] play a key role. At present,
no analog to Theorem 2.3 is available in the setting of Theorem 2.2. Indeed, a good
definition of Gâteaux differentiability on the set of probability measures equipped
with the Wasserstein distance of order 1 is, to our knowledge, not available.

3. Nonlocal Route choice. Consider (1) with the nonlocal speed law

V (ρ) = v(ρ)
(
~ν(x) + I(ρ)

)
. (8)

Here, the individual in x at time t moves at the speed v
(
ρ(t, x)

)
that depends on

the density ρ(t, x) evaluated at the same time t and x. The vector ~ν(x) ∈ R2 is the
preferred direction of the pedestrian at x, while I(ρ)(x) describes how the pedestrian
at x deviates from the preferred direction, given that the crowd distribution is ρ.
Thus, the individual at time t in x is assumed to move in the direction of the vector

~ν(x) +
(
I
(
ρ(t)

))
(x). The basic well posedness result for (1)–(8) is the following.

Theorem 3.1. [8, Theorem 2.1, Theorem 2.2] Let the following conditions hold:

(v): v ∈ C2(R;R) is non increasing, v(0) = V and v(R) = 0 for fixed V,R > 0.
(~ν): ~ν ∈ (C2 ∩W1,∞)(R2;R2) is such that div ~ν ∈ (W1,1 ∩W1,∞)(R2;R).
(I): I ∈ C0

(
L1(R2; [0, R]); C2(R2;R2)

)
satisfies the estimates:

(I.1) There exists an increasing CI ∈ L∞loc(R+;R+) such that, for all r ∈
L1(R2; [0, R]),

∥∥I(r)
∥∥
W1,∞≤ CI(‖r‖L1) and

∥∥div I(r)
∥∥
L1 ≤ CI(‖r‖L1).
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(I.2) There exists an increasing CI ∈ L∞loc(R+;R+) such that, for all r ∈
L1(R2; [0, R]),

∥∥∇ div I(r)
∥∥
L1 ≤ CI(‖r‖L1).

(I.3) There exists a constant KI such that for all r1, r2 ∈ L1(R2; [0, R]),∥∥I(r1)− I(r2)
∥∥
L∞ ≤ KI · ‖r1 − r2‖L1 ,∥∥I(r1)− I(r2)

∥∥
L1 +

∥∥div (I(r1)− I(r2))
∥∥
L1 ≤ KI · ‖r1 − r2‖L1 .

Choose any ρo ∈ (L1 ∩ BV)(R2; [0, R]). Then, there exists a unique weak entropy
solution ρ ∈ C0

(
R+; L1(R2; [0, R])

)
to (1)–(8). Moreover, ρ satisfies the bounds∥∥ρ(t)

∥∥
L1 = ‖ρo‖L1 , for a.e. t ∈ R+ ,

TV (ρ(t)) ≤ TV (ρo) e
kt +

π

4
tektN‖q‖L∞([0,R])

(
‖∇div ~ν‖L1 + CI(‖ρo‖L1)

)
,

where k = (2N + 1)
∥∥q′∥∥

L∞([0,R])

(
‖∇~ν‖L∞ + CI(‖ρo‖L1)

)
. If also the speed law

V ′(ρ) = v′(ρ)
(
~ν′(x) + I ′(ρ)

)
(9)

satisfies the same assumptions, then the solution ρ to (1)–(8) and ρ′ to (1)–(9),
with data ρo, ρ

′
o ∈ (L1 ∩BV)(R2; [0, R]), satisfy∥∥ρ1(t)− ρ2(t)
∥∥
L1 ≤

(
1 + C(t)

)∥∥ρ0,1 − ρ0,2

∥∥
L1 + C(t)

(
‖q1 − q2‖W1,∞ + d (I1, I2)

)
+C(t)

(
‖~ν1 − ~ν2‖L∞ +

∥∥div (~ν1 − ~ν2)
∥∥
L1

)
where

d(I1, I2)= sup

{∥∥I1(ρ)− I2(ρ)
∥∥
L∞ +

∥∥∥div
(
I1(ρ)− I2(ρ)

)∥∥∥
L1

: ρ ∈ L1(R2; [0, R])

}
.

The map C ∈ C0(R+;R+) vanishes at t = 0 and depends on TV (ρ0,1),
∥∥ρ0,1

∥∥
L1 ,

‖~ν1‖L∞ , ‖div ~ν1‖W1,1 , ‖q1‖W1,∞ , ‖q2‖W1,∞ .

In operation research, Braess paradox states that adding extra capacity to a net-
work can, in some cases, reduce the overall performance of the network, see [3]. A
relevant problem in the design of escape routes is the planning of suitable devices
that reduce the exit time. The model (1)–(8) allows to show that the careful intro-
duction of suitable obstacles in suitable locations does indeed reduce the exit time.
In fact, these obstacles reduce congested areas at the sides of the door jambs.
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(x),

ρo(x) = 0.75χ
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(x) ,

r = 0.6 , ε = 0.4 .

(10)

Figure 1. Initial datum and room geometry, without obstacles.

We consider a room with an exit, as in Figure 1. The vector ~ν = ~ν(x) is the
unit vector tangent at x to the geodesic connecting x to the exit and I(ρ) =

−ε
(
∇(ρ ∗ η)

)/√
1 +

∥∥∇(ρ ∗ η)
∥∥2

, see (10).
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Figure 2. Solution to (1)–(8)–(10) with ε = 0.2, at times t =
4.438, 6.253, 11.396. On the first line, no obstacle is present. On
the second line, 4 columns direct the crowd flow. The exit time in
the latter case is shorter than in the former one, see [7].

The careful positioning of obstacles as in the second line of Figure 2 diminishes
the size of the congested region and, with the chosen initial datum, gives an exit
time lower than that with the room free from any obstacle, see Figure 2.

4. Individuals driving a population. We finally introduce a model describing
the situation in which a discrete set of isolated individuals interacts with a contin-
uum crowd. Examples can be a (group of) predator(s) running after their preys,
shepherd dogs driving a herd of sheep, or a leader attracting a group of followers to
a given region. Let ρ ∈ R+ be the population density and p ≡ (p1, . . . , pk) ∈ R2k

be the positions of the k individuals. Following [11], the interaction is described by ∂tρ+ div
(
ρ V
(
t, x, ρ(t, x), p(t)

))
= 0 ,

ṗ = ϕ
(
t, p(t), ρ(t)

)
.

(11)

Here, ϕ is typically nonlocal, meaning that the individuals p react to averages of
quantities depending on ρ. The well posedness of (11) is proved in [11, Theorem 2.2],
by means of Kružkov theory, the estimates in [12] and tools from the stability of
ordinary differential equations.

As a first illustrating example, assume that the vector p ∈ R2 is the position of
a leader (e.g. a magic piper) and ρ is the density of the followers (e.g. rats). We are
thus lead to consider (11) with

V (t, x, ρ, p) = v(ρ) (p− x) e−‖p−x‖

ϕ(t, p, ρ) =
(
1 + (ρ ∗ η)(p)

)
~ψ(t) .

(12)

The function v essentially describes the speed of the followers and is, as usual, a
smooth decreasing function vanishing at, say, ρ = 1. The follower located at x
moves along p(t)−x toward the leader, with a speed exponentially decreasing with
the distance ‖p− x‖ between leader and follower. The speed of the leader increases
with the averaged density ρ ∗ η, computed at the leader’s position. Indeed, we
expect the leader to wait for the followers to join him when the followers’ density

around him is small. The direction ~ψ of the leader is chosen a priori. See Figure 3
for a numerical integration of (11)–(12) and [11] for further details.

As a further example, consider n shepherd dogs, located in pi(t) ∈ R2 for i ∈
{1, . . . , n} and a group of sheep of density ρ. The dogs have to confine the sheep
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Figure 3. Solution of (11)–(12) in the square [−1, 1] × [−1, 1] at
times 0.000, 0.171, 0.543, 0.945, 1.447 and 1.930, from [11].

within a given area. We are thus lead to consider (11) with

V (t, x, ρ, p) = v(ρ)~ν(x) +
∑n
i=1(x− pi)e−‖pi−x‖

ϕ(t, p, ρ) = (ρ∗∇η)⊥(pi)√
1+‖ρ∗∇η(pi)‖2

, for i ∈ {1, . . . n} . (13)

As above, the speed of the sheep is given by the decreasing function v(ρ) that
vanishes in ρ = 1. The direction of a sheep located at x is a sum of two terms.
The first one is the sheep’s preferred direction ~ν(x); the second one is the vector∑n
i=1(x− pi(t))e−‖pi−x‖ representing the repulsive effects of the dogs on the sheep.

Each dog runs around the flock along the direction perpendicular to the gradient
of the sheep average density.

5. A different approach. Following [6, 14, 13], we present another framework to
describe the population–individuals interactions. Initially, the population occupies
the compact set Ko ⊂ R2. If there are no individuals, the member at x of the
population is free to wander in R2, according to the differential inclusion

ẋ ∈ B(0, c) , x(0) ∈ Ko , (14)

c being the maximal wandering speed and B(0, c) the closed ball in R2 centered at
0 with radius c. Hence, the population fills the reachable set of (14). Introduce now
n individuals sited at ξ ≡ (ξ1, ξ2, . . . , ξn) ∈ R2n. Then, the interaction between the
individuals and each population member leads to the modified differential inclusion

ẋ ∈ v
(
x, ξ(t)

)
+B(0, c), x(0) ∈ Ko, (15)

where the vector field v ∈ C0,1(R2×R2n;R2) is the drift speed due to the attractive
or repulsive effect that each agent has on each member of the population. Thus,
given the individuals’ trajectory ξ ∈ C0,1

loc(R+;R2n), the reachable set Rξ(Ko, t)
of (15) at time t is the set occupied by the population at time t under the effect of
the agents. With the present assumptions, Rξ(Ko, t) is non-empty and compact.
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If only one agent is present (n = 1) and v is spherically symmetric, i.e.,

v(x, ξ) = ψ(|x− ξ|)(x− ξ) for a suitable ψ : R→ R. (16)

the next result exhibits a trajectory ξ confining the population in a given set K.
Theorem 5.1. [14, Theorem 2.8] Let c > 0. Fix a bounded ψ ∈ C1,1

loc(Rn;R) and
define v as in (16). Assume that there exist positive R−∗ , R+

∗ and R such that

1

π

∫ π

0

ψ
(√

R2 +R2
∗ − 2R∗R cos θ

)
(R∗ −R cos θ) dθ < −c

for all R∗ ∈ [R−∗ , R
+
∗ ]. Then, there exists a ξ ∈ C0,1

loc

(
R+; ∂B(0, R)

)
such that,

calling Ko the region initially occupied by the population,

if Ko ⊆ B(0, R−∗ ) then Rξ(t,Ko) ⊆ B(0, R+
∗ ) for all t ≥ 0 .

Note that the confining strategy t 7→ ξ(t) above is constructed explicitly, see [13,
Theorem 2.5]. A negative result is also available. Before stating it, recall that
for a measurable function ϕ : R+ → R, its non–decreasing rearrangement is the
function ϕ∗ : R+ → R, which is non–decreasing and satisfies L1

(
ϕ−1
∗ (]−∞, a])

)
=

L1
(
ϕ−1(]−∞, a])

)
for all a ∈ R.

Theorem 5.2. [14, Theorem 2.7] Let c > 0. Fix a bounded ψ ∈ C1,1
loc(R;R) and

define v as in (16). Let ϕ∗ be the non–decreasing rearrangement of the function

ϕ(s) = ψ′

(
2

√
s

π

)
2

√
s

π
+ 2ψ

(
2

√
s

π

)
.

If the initial set Ko is such that

2 c
√
πσ +

∫ σ

0

ϕ∗(s) ds > 0 for all σ ≥ L2(Ko)

then, for every ξ ∈ C0,1
loc(R+;Rkn), the measure L2

(
Rξ(t,Ko)

)
of the reachable set

Rξ(t,Ko) of (15) increases unboundedly in time, so that no confinement is possible.

We refer to the cited references for the statement of these results in arbitrary
space dimension. Theorem 5.2 holds also in the case of several individuals, each
acting as in (16) (see [14]).
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Abstract. We introduce a simple hyperbolic system of three equations, in

one space dimension, which models a fluid flow through a porous medium.
The model also allows for phase transitions of the fluid: both liquid and vapor

phases may be present as well as mixtures of them. At last, an equilibrium

pressure makes metastable states possible. The porous medium is modeled by
a damping term that depends on the phase and is linear in the velocity.

First, we give some necessary conditions in order that two end-states can
be joined by a traveling wave. Then, we provide several sufficient conditions

which yield the existence and uniqueness of traveling waves in many different

situations. We also verify some structural properties of the model, which imply
the global existence of smooth solutions for states close to the stable-liquid or

stable-vapor regions.

1. Introduction. We propose in this paper a model for dynamic liquid-vapor
phase transitions that occur in the fluid flow through a porous medium. We make
the assumptions that the fluid is inviscid and that the flow may be assumed to be
isothermal. In Lagrangian coordinates, the system is written as vt − ux = 0 ,

ut + p(v, λ)x = −α(λ)u ,
λt = 1

τ (p(v, λ)− pe)λ(λ− 1) ,
(1)

for t > 0 and x ∈ R. The notation is standard: v > 0 denotes the specific volume, u
the velocity, p the pressure, λ ∈ [0, 1] the mass-density fraction of the vapor in the
fluid. We write for short w = (v, u, λ). The flow occurs through a porous medium
and the friction force exerted by the medium is assumed to be proportional to the
linear momentum, with opposite direction; we emphasize that the proportionality
factor α(λ) may depend, in a smooth way, on the phase (or the mixtures of phases)
of the fluid. The model is completed by a reaction term in the equation for the
evolution of the phases: there, the constants τ > 0 and pe > 0 denote a characteristic
reaction time and an equilibrium pressure, respectively.

2000 Mathematics Subject Classification. Primary: 35C07, 76S05, 82B26; Secondary: 35L65.
Key words and phrases. Traveling waves, Phase transitions, Porous media.
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In order to close the model, we assume that the pressure p(v, λ) is a given smooth
function satisfying the following physical requirements:

pv < 0, pλ > 0, pvv > 0, pvλ < 0. (2)

As a consequence of the assumption pv < 0, the homogeneous part of 1 is hyper-
bolic with eigenvalues ±

√
−pv and 0. A simple example of a pressure law satisfying

2 is

p =
κ0 + λ(κ1 − κ0)

vγ
,

for γ ≥ 1 and κ0 < κ1.
The system 1 is a particular case of a much more complete model proposed in

[10], which we adapted here to the case of a flow in a porous medium. About the
homogeneous system, we refer to [10] for traveling waves, to [1] for the Riemann
problem and to [4] for many structural properties on the stability of large waves.
The existence of global weak solutions to the initial-value problem, with initial data
of bounded variation, was first proved in [2] and then in [5] in a different way.
Similar results were proved in [3] for the nonhomogeneous system in the undamped
case α = 0; in that paper, the relaxation limit τ → 0 was also studied for states
close either to λ = 0 or λ = 1. Related results about the 2 × 2 Riemann problem
with the constraint (p−pe)λ(λ−1) = 0 can be found in [6]. On the other hand, the
purely damped system, where the third equation reduces to λt = 0, was considered
in [13]; in that case, the damping effect of the source term allowed to prove the
existence of (small) smooth global solutions. We mention that if the state variable
λ is missing, then the related 2×2 system was studied for instance in [15, 14, 12, 9].

In this note, we provide some results about the existence of traveling waves for
1 in the case that α(λ) is bounded away from zero. First, we state some necessary
conditions on the end states; then, we provide many sufficient conditions for the
existence of such solutions. The sufficient conditions are concerned with the possible
mutual intersections of three curves: the equilibrium curve G, the sound-speed curve
S and the equilibrium-pressure curve P where p equals pe. We emphasize that, even
if our analysis does not cover all possible positions of such curves, nevertheless the
method of proof can be used to study specific situations as well. Full proofs can
be found in [8] in the case that α 6= 0 is constant; they easily adapt to the current
case α(λ) > 0. The case when α(λ) is allowed to vanish, for instance if α(1) = 0,
requires a more detailed analysis; we refer to [7] about this latter case. In the last
section we check that system 1 satisfies both the Shizuta-Kawashima and the strict
entropy-dissipation conditions on the stable regions of pure liquid and pure vapor.
Then, by a result in [11], we deduce the existence of global smooth solutions to the
initial-value problem when the initial datum is close to one of these regions.

2. Traveling waves: existence and uniqueness. A traveling wave is a solution
to 1 of the form w(ξ) = w

(
x−ct
τ

)
satisfying w(±∞) = w± and w′(±∞) = 0. Here

c is the constant speed of propagation of the wave and we may assume that c ≥ 0.
This means that w must be a solution of −cv

′ − u′ = 0 ,
−cu′ + p′ = −Au ,
−cλ′ = (p− pe)λ(λ− 1) ,

(3)
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and must satisfy the conditions{
(v, u, λ)(±∞) = (v±, u±, λ±) ,
(v′, u′, λ′)(±∞) = 0 ,

(4)

for (v±, u±, λ±) ∈ (0,+∞)× R× [0, 1]. We assume that α(λ) is a smooth function
satisfying α(λ) > 0 for every λ ∈ [0, 1]; we denoted A = A(λ) = α(λ)τ .

The end states are equilibrium points of 3 and then must satisfy either u± = 0
or (p± − pe)λ±(λ± − 1) = 0. By considering the first equation in 3 we find another
jump condition, namely c(v+ − v−) = 0. We discard the stationary case c = 0 for
brevity (see however [8]) and then focus on the remaining case

c > 0, v− = v+ =: v̄. (5)

We substitute the second equation of 3 into the first one; then, by denoting

s(v, λ) := c2 + pv, g(v, λ) := Ac(v − v̄) +
1

c
pλ(p− pe)λ(λ− 1),

we re-write 3 as {
sv′ = g,
λ′ = − 1

c (p− pe)λ(λ− 1),
(6)

with the end states, deduced by 4,{
(v, λ)(±∞) = (v̄, λ±),
(v′, λ′)(±∞) = 0.

(7)

The equilibrium points of 6 are (v̄, 0), (v̄, 1) and the points (v̄, λ̄) satisfying p(v̄, λ̄) =
pe; we point out that, by 2, for each v̄ there is at most one λ̄ satisfying the latter
equation. At last, we define the curves

S : s(v, λ) = 0, G : g(v, λ) = 0, P : p(v, λ) = pe.

We notice that the whole curve S is singular for system 6. We denote p± = p(v̄, λ±)
and s± = s(v̄, λ±); in the following, we assume for simplicity that

s(v̄, λ±) 6= 0. (8)

We first give some necessary conditions on the end states in order that 1 has
traveling wave solutions. These conditions are a consequence of the presence of the
equilibrium pressure pe: the stable states for the dynamical system 6 are those with
p > pe and λ = 0 or those with p < pe and λ = 1. Conversely, the states with
p > pe and λ = 1 or those with p < pe and λ = 0 are unstable. The latter states
are also called metastable.

Lemma 2.1. In order that 6-7 has solutions, the end states (v̄, λ±) must satisfy
one of the following conditions,

(i) p± > pe and either λ− = 0 or λ+ = 1;
(ii) p± < pe and either λ− = 1 or λ+ = 0;

(iii) p+ > pe = p− and either λ− < 1 or λ+ = 1;
(iv) p+ < pe = p− and either λ− > 0 or λ+ = 0;
(v) p− = p+ = pe and λ− = λ+.

No other case may occur.

The proof of the lemma follows by considering the directions of the field lines of
the dynamical system 6. To give an idea of the argument, we show that traveling
waves cannot exist if p− < pe < p+. Assume by contradiction that a trajectory
exists. Then, the condition pλ > 0 in 2 implies λ− = 0 and λ+ = 1; therefore,
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the trajectory λ(ξ) would be decreasing in a neighborhood of the end point (v̄, 0),
because of the second equation in 6. This clearly is a contradiction.

The following lemma, where we use the numbering introduced in Lemma 2.1,
provides some general information about the curves S, G and P. In particular, we
study the mutual positions of the curves G and P, where both right-hand sides of
system 6 vanish. We refer to Figure 1 where, as in the following, we plot graphs
in the (λ, v)-plane while we keep the reverse ordering (v, λ) for the arguments of
functions.

-λ

6
v

1

. . . . . . . . . . . . . . . . . . . . .v̄

G(i)P(i)

G(ii) P(ii)

-λ

6
v

1

. . . . . . . . . . . . . . . . . . . . .v̄

.

.

.

.

.

.

.

λ−

G

P

P

(iii)

(iv)

Figure 1. Mutual positions of the curves G and P in cases (i)–(iv).

Lemma 2.2. The following holds true for the curves S, G and P.

(a) The curves S and P define increasing functions of λ.
(b) In cases (i) and (ii) the curves G and P do not intersect. In the former case,

the curve G lies below P and above the line v = v̄; in the latter, conversely.
(c) In cases (iii) and (iv) the curves G and P intersect only at λ−. In the former

case, the curve G lies below P and above the line v = v̄, in [λ−, 1] × R; in the
latter, conversely in [0, λ−]× R.

(d) In case (v) the curves G and P intersect only at λ̄
.
= λ±. The curve G lies above

P and below the line v = v̄ in [0, λ̄]× R and conversely in [λ̄, 1]× R.

The proof follows by simple analytical arguments.
Now, we state our main results about the existence of the traveling wave profiles.

We notice that the sufficient conditions below focus on the mutual positions of the
curves S and G, differently from the conditions in Lemma 2.1. In particular, when
S and G intersect, both sides of the first equation in 6 vanish.

Theorem 2.3. We consider the traveling-wave system 6 with end data 7 and as-
sume 8. Moreover, referring to the cases listed in Lemma 2.1, we assume that:

(i) S and G intersect at most once;
(ii) S and G do not intersect;

(iii) S and G intersect at most once in the strip R× (λ−, 1];
(iv) S and G do not intersect in R× [0, λ−).

Here, the intersection points are of multiplicity one.
Then, traveling waves exist and, for each speed c, they are unique up to a shift

in ξ. Moreover, in case (v) the only solution is the trivial constant solution.

We give a sketch of the proof in one of the most significant cases, namely when
the curves S and G intersect (once, by assumption). Consider, for instance, case (i)
when s− > 0 > s+, when an intersection must occur, see Figure 2. Let (λ0, v0) be
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the intersection point; by Lemma 2.2, we have v0 > v̄ and p(v0, λ0) > pe. It is easy
to check that the field lines drive the trajectory toward (λ0, v0); then, the issue is
how to solve the problem  sv′ = g,

λ′ = − 1
c (p− pe)λ(λ− 1),

(v, λ)(0) = (v0, λ0).
(9)

It can be proved that there are exactly two solutions to 9 locally around ξ = 0 and
both of them cross S transversally. Moreover, the slope of S at (λ0, v0) is larger
than that of G. We denote S± = {(λ, v) : ± s > 0} and

Ω1 = {(λ, v) ∈ R2 : 0 < λ < λ0, v > v̄, p > pe, s > 0},
Ω2 = {(λ, v) ∈ R2 : λ0 < λ < 1, v > v̄, p > pe, s < 0}.

-λ

6
v

1

P

6
?

S

S+ S−
G

��� ���v̄

.

.

.

.

.

.

.

.

.

λ0

Ω2Ω1

�

z

j

Figure 2. Case (i), subcase s− > 0 > s+.

Let
(
v(ξ), λ(ξ)

)
be the C1 solution to 9 that crosses (v0, λ0) from S+ to S−. We

claim that
(
v(ξ), λ(ξ)

)
is a solution to 6.

On the one hand, the trajectory enters Ω2 because of Lemma 2.2. The trajectory
can exit Ω2 neither through the boundary λ = λ0, since λ(ξ) is increasing, nor
through λ = 1 at some v 6= v̄, by the uniqueness of solutions to the initial-value
problem. Moreover, the flow directions at both ∂Ω2 ∩ {v = v̄} and ∂Ω2 ∩ P are
directed inside Ω2, as well as those at points of Ω2 close to S. As a consequence,
the trajectory is driven to the equilibrium point (1, v̄) as ξ → +∞.

On the other hand, for ξ < 0 and close to 0, this trajectory lies in Ω1. Since
λ(ξ) is increasing, the trajectory cannot enter Ω1 through λ = λ0. Moreover, the
flow direction points toward the exterior of Ω1 both at Ω1∩P, because g > 0 there,
and at Ω1 ∩ {v = v̄} or in a neighborhood of Ω1 ∩ S. The uniqueness of the initial
value problem rules out the possibility for the trajectory to enter Ω1 through λ = 0
at v 6= v̄. Thus, the trajectory must connect to the equilibrium point (0, v̄) as
ξ → −∞.

Hence, a traveling wave to 6 exists in this case.

3. The global existence of smooth solutions. In [11], the authors considered
a system of balance laws, in one space dimension, provided with a strictly convex
entropy η. They studied the initial-value problem for an initial datum close to an
equilibrium point of the system and proved that the system had smooth solutions,
defined globally in time, under two assumptions: the Shizuta-Kawashima and the
strict entropy-dissipation condition had to be satisfied at the equilibrium point. We
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prove in this section that, if α(λ) > 0, system 1 satisfies both conditions at the
equilibrium points lying either on the stable-liquid or on the stable-vapor curve.

We denote the flux function and the source term of 1 by F and G, respectively,
i.e., F (w) = (−u, p, 0) and

G(w) =
(

0,−α(λ)u,
(
p(v, λ)− pe

)
λ(λ− 1)

)
.
=
(
0, q(w)

)
,

where we set τ = 1 for simplicity. We introduce the notation γ0 = {(v, 0, 0) : v >
0, p 6= pe}, γ1 = {(v, 0, 1) : v > 0, p 6= pe}, γe = {(v, 0, λ) : v > 0, p = pe, λ 6= 0, 1}.
We also write γs0 = {(v, 0, 0) ∈ γ0 : p(v, 0) > pe} and γs1 = {(v, 0, 1) ∈ γ1 : p(v, 0) <
pe} for the stable-liquid, respectively, stable-vapor equilibrium points.

The Shizuta-Kawashima condition (in the hyperbolic setting [11]) holds for 1 at
an equilibrium point w̄ if

kerDG(w̄) ∩ {eigenspaces of DF (w̄)} = {0} . (10)

The eigenvalues of DF are e1 = −c, e2 = 0, e3 = c, for c = c(v, λ) =
√
−pv, with

eigenvectors

r1 = t(1, c, 0), r2 = t(pλ, 0,−pv), r3 = t(−1, c, 0).

Then we have

(Dg)r1 = −(Dg)r3 = (0,−αc, pvλ(λ− 1)) ,

(Dg)r2 = (0,−α′upv,−λ(λ− 1)pλpv − pv(p− pe)(2λ− 1)) .

Therefore ri /∈ kerDg if i = 1, 2, 3 and w ∈ γ0∪γ1∪γe. As a consequence, condition
10 is satisfied on γ0 ∪ γ1 ∪ γe.

We now recall the conditions on the dissipation of entropy [11]. Let η = η(w)
be a strictly convex entropy for 1 with entropy flux q = q(w); this means that
DηDF = Dq. The system 1 is entropy dissipative in a neighborhood ω of an
equilibrium point w̄ if for every w ∈ ω(

Dη(w)−Dη(w̄)
)
·G(w) ≤ 0. (11)

Since η is strictly convex we can make the change of variables W = Dη(w) and

write W = (U, V ) ∈ R× R2. By denoting Φ = (Dη)
−1

we write 1 as

A0(W )∂tW +A1(W )∂xW = G (Φ(W )) . (12)

Let W̄ = Φ−1(w̄). Then, condition 11 becomes(
V − V̄

)
·Q(W ) ≤ 0, (13)

for every W in a neighborhood Ω = Φ−1(ω) of W̄ . Here Q(W ) = q(Φ(W )).

Definition 3.1. The system 1 is strictly entropy-dissipative in a neighborhood Ω
of W̄ if there exists a positive-definite 2× 2 matrix B

(
W, W̄

)
such that

Q(W ) = −B
(
W, W̄

)
(V − V̄ )

for every W ∈ Ω.

We notice that the condition of strict entropy-dissipation implies 11, by 13.
System 1 admits the entropy-entropy flux pair (η, q) [3] given by

η(w) =
u2

2
− P (v, λ) + φ(λ), q(w) = up. (14)
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Here, P (v, λ) =
∫ v
vo
p(z, λ)dz for some fixed vo > 0 and φ is any smooth function.

Remark that 14 is the canonical entropy pair for the p-system in the case that p is
independent of λ and then φ = 0.

Lemma 3.2. The entropy η in 14 is strictly convex if

φ′′ − Pλλ −
(pλ)2

pv
> 0 . (15)

Proof. We have Dη(w) = (−p, u, φ′ − Pλ) and

D2η(w) =

 −pv 0 −pλ
0 1 0
−pλ 0 φ′′ − Pλλ

 .

Then, D2η(w) is positive definite if both φ′′−Pλλ > 0 and −pv (φ′′ − Pλλ)−(pλ)2 >
0 hold true. Condition 15 implies both inequalities.

For simplicity, we focus on the equilibrium region γs0 ; below, we shall show how
an analogous result can be obtained for γs1 . We choose [3]

φ(λ) =
C

2
λ2, (16)

for a positive constant C and make the assumption

pλ(v, 0) = 0. (17)

If v varies in a bounded interval [vo, v1], then 15 holds for λ close to 0 if C is large
enough to have ∫ v1

v0

pλλ(v, 0) dv < C. (18)

Under the above assumptions, it is easy to see that system 1 is entropy dissipative
on γs0 . In fact, fix w̄ = (v̄, 0, 0) ∈ γs0 and consider w in a neighborhood of w̄.
Condition 11 becomes

−αu2 +
(
φ′(λ)− Pλ(v, λ)

)
(p(v, λ)− pe)λ(λ− 1) ≤ 0.

In the same way, one easily see that, with the choices above, system 1 is neither
entropy dissipative on the unstable branch of γ0 nor on γe.

Lemma 3.3. Let η be defined by 14 and 16; moreover, assume 17 and 18. Then,
system 1 is strictly entropy-dissipative on γs0.

Proof. We compute, for ∆ = 1
δβ−γ2 = −pv (φ′′(λ)− Pλλ)− p2λ,

Φ′(W ) =
1

∆

 φ′′ − Pλλ 0 pλ
0 ∆ 0
pλ 0 −pv

 .
=

 δ 0 γ
0 1 0
γ 0 β

 .

Then, system 1 can be written as 12 with

A1(W ) = Df (Φ(W )) Φ′(W ) =

 0 −1 0
−1 0 0
0 0 0

 ,

G (Φ(W )) =

(
0

Q(W )

)
=

 0
−α (λ(U, V2))V1

h (v(U, V2), λ(U, V2))

 .
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We have Γs0 = Φ−1(γs0) = {(−p(v, 0), 0, 0) : v > 0, p(v, 0) > pe}. Fix any W̄ =
(Ū , 0, 0) ∈ Γs0; with reference to Definition 3.1 we have V̄ = 0. Then we can write

Q(W ) = −
(
α (λ(U, V2)) 0

0 −h(v(U,V2),λ(U,V2))
V2

)(
V1
V2

)
= −B(W, W̄ )

(
V1
V2

)
.

Since α > 0, we only need to prove that −h (v(U, V2), λ(U, V2)) /V2 > 0, which
immediately follows by 18.

An analogous result can be proved for the equilibrium region γs1 . In that case,
replace 16 with φ(λ) = C

2 (λ−1)2, 17 with pλ(v, 1) = 0, 18 with
∫ v
v0
pλλ(v, 1) dv < C.

Acknowledgments. Andrea Corli thanks Debora Amadori for some discussions
on the strict entropy-dissipation condition.

REFERENCES

[1] D. Amadori and A. Corli, A hyperbolic model of multi-phase flow, in “Hyperbolic Problems:

Theory, Numerics, Applications. Proceedings of the 11th Int. Conf. on Hyperbolic Problems”,
(eds. S. Benzoni-Gavage and D. Serre), Springer, (2008), 407–414.

[2] D. Amadori and A. Corli, On a model of multiphase flow, SIAM J. Math. Anal., 40 (2008),

134–166.
[3] D. Amadori and A. Corli, Global existence of BV solutions and relaxation limit for a model

of multiphase reactive flow, Nonlinear Anal., 72 (2010), 2527–2541.
[4] D. Amadori and A. Corli, Solutions for a hyperbolic model of multiphase flow, in “Proceedings

of the Conference: Multiphase Flow in Industrial and Environmental Engineering”, Springer,

(2012), to appear.
[5] F. Asakura and A. Corli, Global existence of solutions by path decomposition for a model of

multiphase flow, Quart. Appl. Math. (2012), to appear.

[6] A. Corli and H. Fan, The Riemann problem for reversible reactive flows with metastability,
SIAM J. Appl. Math., 65 (2004/05), 426–457.

[7] A. Corli and H. Fan, Traveling waves of phase transitions in porous media with phase-

dependent damping, preprint (2013).
[8] A. Corli and H. Fan, Traveling waves of phase transitions in porous media, Appl. Anal.

(2013), to appear.

[9] C. M. Dafermos, A system of hyperbolic conservation laws with frictional damping, Z. Angew.
Math. Phys., 46 (Special Issue) (1995), S294–S307.

[10] H. Fan, On a model of the dynamics of liquid/vapor phase transitions, SIAM J. Appl. Math.,
60 (2000), 1270–1301.

[11] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative

hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 169 (2003), 89–117.
[12] L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system

of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599–605.
[13] L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic

flow through porous media, SIAM J. Math. Anal., 27 (1996), 70–77.

[14] M. Luskin, On the existence of global smooth solutions for a model equation for fluid flow in

a pipe, J. Math. Anal. Appl., 84 (1981), 614–630.
[15] T. Nishida, “Nonlinear hyperbolic equations and related topics in fluid dynamics”, Publica-
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Abstract. We consider the numerical solution of Hamilton-Jacobi-Bellman
equations arising in stochastic control theory. We introduce a class of mono-

tone approximation schemes relying on monotone interpolation. These schemes
converge under very weak assumptions, including the case of arbitrary degen-

erate diffusions. Besides providing a unifying framework that includes several

known first order accurate schemes, stability and convergence results are given,
along with two different robust error estimates. Finally, the method is applied

to a super-replication problem from finance.

1. Introduction. In this paper we consider the numerical solution of partial dif-
ferential equations of Hamilton-Jacobi-Bellman type,

ut − inf
α∈A

{
Lα[u](t, x) + cα(t, x)u+ fα(t, x)

}
= 0 in QT , (1)

u(0, x) = g(x) in RN , (2)

where

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x),

QT := (0, T ]×RN , andA is a complete metric space. The coefficients aα = 1
2σ

ασα>,

bα, cα, fα and the initial data g take values respectively in SN , the space of N ×N
symmetric matrices, RN , R, R, and R. We will only assume that aα is positive semi-
definite, thus the equation is allowed to degenerate and hence not have smooth
solutions in general. By solutions in this paper we will therefore always mean
generalized solutions in the viscosity sense, see e. g. [6, 12]. Then the solution
coincides with the value function of a finite horizon, optimal stochastic control
problem [12].

To ensure comparison and well-posedness of (1)–(2) in the class of bounded x-
Lipschitz functions, we will use the following standard assumptions on its data:

2000 Mathematics Subject Classification. Primary: 65M12, 65M15, 65M06; Secondary: 35K10,

35K55, 35K65, 49L25, 49L20.
Key words and phrases. Monotone approximation schemes, difference-interpolation methods,

stability, convergence, error bound, degenerate parabolic equations, Hamilton-Jacobi-Bellman
equations, viscosity solution.
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(A1) For any α ∈ A, aα = 1
2σ

ασα> for some N ×P matrix σα. Moreover, there is
a constant K independent of α such that

|g|1 + |σα|1 + |bα|1 + |cα|1 + |fα|1 ≤ K,

where |φ|1 = sup(t,x)∈QT
|φ(x, t)|+ sup(x,t)6=(y,s)

|φ(x,t)−φ(y,s)|
|x−y|+|t−s|1/2 is a space-time

Lipschitz/Hölder-norm.

The following result is standard.

Proposition 1. Assume that (A1) holds. Then there exist a unique solution u of
(1)–(2) and a constant C only depending on T and K from (A1) such that

|u|1 ≤ C.
Furthermore, if u1 and u2 are sub- and supersolutions of (1) satisfying u1(0, ·) ≤
u2(0, ·), then u1 ≤ u2.

2. Semi-Lagrangian schemes. Following [8] we propose a class of approximation
schemes for (1)–(2) which we call Semi-Lagrangian or SL schemes. These schemes
converge under very weak assumptions, including the case of arbitrary degenerate
diffusions. In particular, these schemes are L∞-stable and convergent for problems
involving diffusion matrices that are not diagonally dominant. This class includes
(parabolic versions of) the “control schemes” of Menaldi [11] and Camilli and Fal-
cone [4] and some of the monotone schemes of Crandall and Lions [7]. It also
includes SL schemes for first order Bellman equations [5, 9] and some new versions
as discussed in the following section.

The schemes are defined on a possibly unstructured family of grids {G∆t,∆x},
G = G∆t,∆x = {(tn, xi)}n∈N0,i∈N = {tn}n∈N0 ×X∆x,

for ∆t,∆x > 0. Here 0 = t0 < t1 < · · · < tn < tn+1 satisfy

max
n

∆tn ≤ ∆t where ∆tn = tn − tn−1,

and X∆x = {xi}i∈N is the set of vertices or nodes for a non-degenerate polyhedral
subdivision of RN .

We consider the following general finite difference approximations of the differ-
ential operator Lα[φ] in (1):

Lαk [φ](t, x) :=
M∑
i=1

φ(t, x+ yα,+k,i (t, x))− 2φ(t, x) + φ(t, x+ yα,−k,i (t, x))

2k2
, (3)

for k > 0 and some M ≥ 1. For this approximation we will assume

M∑
i=1

[yα,+k,i + yα,−k,i ] = 2k2bα +O(k4),

M∑
i=1

[yα,+k,i y
α,+>
k,i + yα,−k,i y

α,−>
k,i ] = 2k2σασα> +O(k4),

M∑
i=1

[yα,+k,i,j1
yα,+k,i,j2

yα,+k,i,j3
+ yα,−k,i,j1y

α,−
k,i,j2

yα,−k,i,j3 ] = O(k4),

M∑
i=1

[yα,+k,i,j1
yα,+k,i,j2

yα,+k,i,j3
yα,+k,i,j4

+ yα,−k,i,j1y
α,−
k,i,j2

yα,−k,i,j3y
α,−
k,i,j4

] = O(k4),

(Y1)

for all j1, j2, j3, j4 = 1, 2, . . . , N indicating components of the y-vectors.
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Under assumption (Y1), a Taylor expansion shows that Lαk is a second order con-
sistent approximation satisfying

|Lαk [φ]− Lα[φ]| ≤ C(|Dφ|0 + · · ·+ |D4φ|0)k2 (4)

for all smooth functions φ, where |φ|0 = sup(t,x)∈QT
|φ(x, t)|.

To relate this approximation to the spatial grid X∆x, we replace φ by its inter-
polant Iφ, yielding overall a semi-discrete approximation of (1),

Ut − inf
α∈A

{
Lαk [IU ](t, x) + cα(t, x)U + fα(t, x)

}
= 0 in (0, T )×X∆x.

We require the interpolation operator I to fulfill the following two conditions:

(I1) There are K ≥ 0, r ∈ N such that for all smooth functions φ

|(Iφ)− φ|0 ≤ K|Drφ|0∆xr.

(I2) There is a set of non-negative functions {wj(x)}j such that

(Iφ)(x) =
∑
j

φ(xj)wj(x),

and

wj(x) ≥ 0, wi(xj) = δij

for all i, j ∈ N.

(I1) implies together with (4) that Lαk [Iφ] is a consistent approximation of Lα[φ] if
∆xr

k2 → 0. An interpolation satisfying (I2) is said to be positive and is monotone in
the sense that U ≤ V implies that IU ≤ IV . Typically I will be constant, linear,
or multi-linear interpolation (i. e. r ≤ 2 in (I1)), because higher order interpolation
is not monotone in general.

The final scheme can now be found by discretizing in time using a parameter
θ ∈ [0, 1],

δ∆tnU
n
i = inf

α∈A

{
Lαk [IŪθ,n· ]n−1+θ

i + cα,n−1+θ
i Ūθ,ni + fα,n−1+θ

i

}
(5)

in G, where Uni = U(tn, xi), f
α,n−1+θ
i = fα(tn−1 + θ∆tn, xi), . . . for (tn, xi) ∈ G,

δ∆tφ(t, x) =
φ(t, x)− φ(t−∆t, x)

∆t
, and φ̄θ,n· = (1− θ)φn−1

· + θφn· .

As initial conditions we take

U0
i = g(xi) in X∆x. (6)

For the choices θ = 0, 1, and 1/2 the time discretization corresponds to respectively
explicit Euler, implicit Euler, and midpoint rule. For θ = 1/2, the full scheme can
be seen as generalized Crank-Nicolson type discretization.

3. Examples of approximations Lαk .

1. The approximation of Falcone [9] (see also [5]),

bαDφ ≈ Iφ(x+ hbα)− Iφ(x)

h
,

corresponds to our Lαk if k =
√
h, yα,±k = k2bα.
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2. The approximation of Crandall-Lions [7],

1

2
tr[σασα>D2φ] ≈

P∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj and M = P .

3. The corrected version of the approximation of Camilli-Falcone [4] (see also
[11]),

1

2
tr[σασα>D2φ] + bαDφ

≈
P∑
j=1

Iφ(x+
√
hσαj + h

P b
α)− 2Iφ(x) + Iφ(x−

√
hσαj + h

P b
α)

2h
,

corresponds to our Lαk if k =
√
h, yα,±k,j = ±kσαj + k2

P b
α and M = P .

4. The new approximation obtained by combining approximations 1 and 2,

1

2
tr[σασα>D2φ] + bαDφ

≈ Iφ(x+ k2bα)− Iφ(x)

k2
+

P∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj for j ≤ P , yα,±k,P+1 = k2bα and M =
P + 1.

5. Yet another new approximation,

1

2
tr[σασα>D2φ] + bαDφ ≈

P−1∑
j=1

Iφ(x+ kσαj )− 2Iφ(x) + Iφ(x− kσαj )

2k2

+
Iφ(x+ kσαP + k2bα)− 2Iφ(x) + Iφ(x− kσαP + k2bα)

2k2
,

corresponds to our Lαk if yα,±k,j = ±kσαj for j < P , yα,±k,P = ±kσαP + k2bα and
M = P .

When σα does not depend on α but bα does, approximations 4 and 5 are much
more efficient than approximation 3.

4. Linear interpolation SL scheme (LISL). To keep the scheme (5) monotone,
linear or multi-linear interpolation is the most accurate interpolation one can use in
general. In this typical case we call the full scheme (5)–(6) the LISL scheme. In the
following, we denote by cα,+ the positive part of cα. Then we have the following
result by [8]:

Theorem 4.1. Assume that (A1), (I1), (I2), and (Y1) hold.

(a) The LISL scheme is monotone if the following CFL conditions hold:

(1− θ)∆t
[M
k2
− cα,n−1+θ

i

]
≤ 1 and θ∆t cα,n−1+θ

i ≤ 1 for all α, n, i. (7)

(b) The truncation error of the LISL scheme is O(|1− 2θ|∆t+ ∆t2 + k2 + ∆x2

k2 ); it

is first order accurate for k = O(∆x1/2), ∆t = O(∆x) (∆t = O(∆x1/2) if θ = 1
2).
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(c) If 2θ∆t supα |cα,+|0 ≤ 1 and (7) holds, then there exists a unique bounded and
L∞-stable solution U of the LISL scheme converging uniformly to the solution u of
(1)–(2) as ∆t, k, ∆x

k → 0.

From this result it follows that the scheme is at most first order accurate, has
wide and increasing stencil and a good CFL condition. From the truncation error
and the definition of Lαk the stencil is wide since the scheme is consistent only if
∆x/k → 0 as ∆x→ 0 and has stencil length proportional to

l :=

max
t,x,α,i

{|yα,−k,i |, |y
α,+
k,i |}

∆x
∼ k

∆x
→∞ as ∆x→ 0.

Here we have used that if (Y1) holds and σ 6≡ 0, then typically yα,±k,i ∼ k. Note that

if k = ∆x1/2, then l ∼ ∆x−1/2. Finally, in the case θ 6= 1 the CFL condition for
(5) is ∆t ≤ Ck2 ∼ ∆x when k = O(∆x1/2), and it is much less restrictive than the
usual parabolic CFL condition, ∆t = O(∆x2).

Remark 1. The LISL scheme is consistent and monotone for arbitrary degenerating
diffusions, without requiring that aα is diagonally dominant or similar conditions. In
comparison to other schemes applicable in this situation, like the ones of Bonnans-
Zidani [3], it is much easier to analyze and to implement and faster in the sense
that the computational cost for approximating the diffusion matrix is for fixed x, t, α
independent of the stencil size.

5. The error estimate of [8]. To simplify the presentation, in the following
we restrict to a uniform time-grid, G = ∆t {0, 1, . . . , NT } × X∆x. Let Q∆t,T :=
∆t {0, 1, . . . , NT }×RN . To apply the regularization method of Krylov [10] we need
a regularity and continuous dependence result for the scheme that relies on the
following additional (covariance-type) assumptions: Whenever two sets of data σ, b

and σ̃, b̃ are given, the corresponding approximations Lαk , y
α,±
k,i and L̃αk , ỹ

α,±
k,i in (3)

satisfy

M∑
i=1

[yα,+k,i + yα,−k,i ]− [ỹα,+k,i + ỹα,−k,i ] ≤ 2k2(bα − b̃α),

M∑
i=1

[yα,+k,i y
α,+>
k,i + yα,−k,i y

α,−>
k,i ] + [ỹα,+k,i ỹ

α,+>
k,i + ỹα,−k,i ỹ

α,−>
k,i ]

−[yα,+k,i ỹ
α,+>
k,i + ỹα,+k,i y

α,+>
k,i + yα,−k,i ỹ

α,−>
k,i + ỹα,−k,i y

α,−>
k,i ]

≤ 2k2(σα − σ̃α)(σα − σ̃α)> + 2k4(bα − b̃α)(bα − b̃α)>,

(Y2)

when σ, b, y±k are evaluated at (t, x) and σ̃, b̃, ỹ±k are evaluated at (t, y) for all t, x, y.
Then one can prove the following error estimate [8]:

Theorem 5.1 (Error Bound I). Assume that (A1), (I1), (I2), (Y1), and (Y2) hold,
and that ∆t,∆x > 0, k ∈ (0, 1) satisfy the CFL conditions (7). If u solves (1)–(2)
and U solves (5)–(6), then there is c0 > 0 such that for any ∆t ∈ (0, c0)

|u− U | ≤ C(|1− 2θ|∆t1/4 + ∆t1/3 + k1/2 +
∆x

k2
) in G.

This error bound holds also for unstructured grids. For more regular solutions it
is possible to obtain better error estimates, but general and optimal results are not
available. The best estimate in our case is O(∆x1/5) which is achieved when k =
O(∆x2/5) and ∆t = O(k2). Note that the CFL conditions (7) already imply that
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∆t = O(k2) if θ < 1. Also note that the above bound does not show convergence
when k is optimal for the LISL scheme (k = O(∆x1/2)).

6. A new error estimate. In the above error estimate, the lower estimate on
u − U follows if you can prove regularity and continuous dependence results for
the solution of the equation only. The proof of the upper estimate is symmetric
and requires such results for the numerical solution. However, it is possible to avoid
using such properties of the numerical solution by a clever approximation argument,
see e. g. [1]. This allows for error estimates that show convergence for any k such
that the scheme is consistent. We need an extra assumption on the coefficients:

(A2) The coefficients σα , bα, cα, fα are continuous in α for all x, t.

Theorem 6.1 (Error Bound II). Assume that (A1), (A2), (I1) with r = 2 (∼linear
interpolation), (I2), and (Y1) hold, and that ∆t,∆x > 0, k ∈ (0, 1) satisfy the CFL
conditions (7). If u solves (1)–(2) and U solves (5)–(6), then there is c0 > 0 such
that for any ∆t ∈ (0, c0)

u− U ≥ C
(
|1− 2θ|∆t1/4 + ∆t1/3 + k1/2 +

∆x

k

)
in G,

u− U ≤ C
(
|1− 2θ|∆t1/10 + ∆t1/8 + k1/5 +

(∆x

k

)1/2)
in G.

With optimal k for the LISL scheme, ∆t = O(k2) and k = O(∆x1/2), we find
that u− U = O(∆x1/10).

Proof. By a direct computation the local truncation error of the method is bounded
by

|1− 2θ|
2

|φtt|0∆t+ C
(

∆t2
(
|φtt|0 + |φttt|0 + |Dφtt|0 + |D2φtt|0

)
+ |D2φ|0

∆x2

k2
+ (|Dφ|0 + · · ·+ |D4φ|0)k2

)
for smooth φ (cf. Lemma 4.1 in [8]). Moreover if also ∂k1t D

k2
x φ = O(ε1−2k1−k2) for

any k1, k2 ∈ N0, then the truncation error is of order

(1− 2θ)∆tε−3 + ∆t2ε−5 + k2ε−3 +
∆x2

k2
ε−1 =: E(ε).

Since the scheme is monotone (under the CFL condition) and condition (A1) holds,
it now follows from Theorem 3.1 in [1] that

C inf
ε>0

(
ε+ E(ε)

)
≤ u− U ≤ C inf

ε>0

(
ε1/3 + E(ε)

)
,

and we complete the proof optimizing over ε (as e. g. in [1, 8]).

7. Convergence test for a super-replication problem. We consider a test
problem from [2] which was used to test convergence rates for numerical approxi-
mations of a super-replication problem from finance. The corresponding PDE is

inf
α2

1+α2
2=1

{
α2

1ut(t, x)− 1

2
tr
(
σα(t, x)σα>(t, x)D2u(t, x)

)}
= f(t, x) (8)
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with 0 ≤ x1, x2 ≤ 3, σα(t, x) =

(
α1x1

√
x2

α2η(x2)

)
and η(x) = x(3 − x). We take

u(t, x) = 1 + t2 − e−x2
1−x

2
2 as exact solution as in [2], and then f is forced to be

f(t, x) =
1

2

(
ut −

1

2
x2

1x2ux1x1
− 1

2
x2

2(3− x2)2ux2x2

−

√(
−ut +

1

2
x2

1x2ux1x1
− 1

2
x2

2(3− x2)2ux2x2

)2

+
(
x1
√
x2

3
(3− x2)ux1x2

)2

 .

In [2] η(x) = x, while we take η(x) = x(3 − x) to prevent the LISL scheme from
overstepping the boundaries. Note that changing η does not change the solutions
as long as η > 0 in the interior of the domain, see [2], and hence the above equation
is equivalent to the equation used in [2]. The initial values and Dirichlet boundary
values at x1 = 0 and x2 = 0 are taken from the exact solution. As in [2], at
x = 3 and y = 3 homogeneous Neumann boundary conditions are implemented.
To approximate the values of α1, α2, the Howard algorithm is used (see [2]), which

requires an implicit time discretization, so we choose θ = 1. We choose k =
√

∆x
and a regular triangular grid. The numbers of time steps are chosen as 1

∆x .
The results at t = 1 are given in Table 1. The numerical order of convergence is

approximately one.

∆x |u− U |0 rate
1.50e-1 2.01e-1
7.50e-2 9.49e-2 1.08
3.75e-2 4.29e-2 1.15
1.87e-2 1.94e-2 1.15

Table 1. Results for the convergence test for the super-replication
problem at t = 1

Remark 2. Equation (8) can not be written in a form (1) satisfying the assumptions
of this paper, so the results of this paper do not apply to this problem. However, it
seems possible to extend them to cover this problem using comparison results from
[2] along with L∞-bounds on the numerical solution that follow from the maximum
principle.

8. A super-replication problem. We apply our method to solve a problem from
finance, the super-replication problem under gamma constraints considered in [2].
It consists of solving equation (8) with f ≡ 0, Neumann boundary conditions and
σα as in Subsection 7, and initial and Dirichlet conditions given by

u(t, x) = max(0, 1− x1), t = 0 or x1 = 0 or x2 = 0.

The solution obtained with the LISL scheme is given in Figure 1 and coincides with
the solution found in [2]. It gives the price of a put option of strike and maturity
1, and x1 and x2 are respectively the price of the underlying and the price of the
forward variance swap on the underlying.
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0 1 2 3 0 1 2 3
0

0.5

1

x1 x2

U

Figure 1. Numerical solution of super-replication problem at t = 1
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Abstract. The present paper deals with the continuous work of extending

the application of a multidimensional-type solution reconstruction and limiting

procedure into the finite volume (FV) computation of 2D compressible flows.
Based on a MUSCL-type technique, this reconstruction procedure identifies

and cures poor connected grids without suffering from loss of accuracy by

taking into account geometrical characteristics of computational triangular and
hybrid meshes and is independent of the Riemann solver used. Monotonicity

in the solution is enforced by a limiting strategy that implements well-known

edge-type limiters hence avoiding the procedure of solving any minimization
problems. Through several test cases, it is observed that the methodology

provides quite desirable performances in retaining the formal order of accuracy,
controlling numerical oscillations as well as capturing key flow features.

1. Introduction. In multidimensional high-resolution FV schemes, on unstruc-
tured meshes, numerous solution reconstruction and limiting strategies have been
developed to resolve complex flows. Many of these strategies involve the construc-
tion of an appropriate linear representation of the solution variables within each
FV element, which is then limited as to enforce positivity and stability constraints
on the scheme, usually based on the satisfaction of the Maximum Principle [4]. Al-
though current reconstruction and limiting methods have enjoyed success in many
CFD applications, there is no consensuses on a global optimal reconstruction strat-
egy that fulfills a high-level of accuracy, robustness and convergence. As such,
the search for efficient reconstruction and limiting processes, in a multidimensional
context, is still an active field of research, see for example [1, 6, 5, 3] and refer-
ences therein. Recently, in [2] and [3], a cell-centered finite volume (CCFV) scheme
of the Godunov-type with a novel solution reconstruction and limiting procedure
was developed and tested for smooth and non-smooth shallow water flow compu-
tations. This novel alternative procedure was developed in order to apply in the
reconstruction an edge-based limiting strategy that takes into account geometrical
characteristics of the computational mesh. Grids with poor connectivity [4, 1], i.e.

2000 Mathematics Subject Classification. Primary: 65M08, 70M12; Secondary: 35L65.
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those whose flux integration points do not coincide with the location to which re-
constructed values are computed, can be properly treated. The use of edge-type
limiters avoids the procedure of solving any minimization problems or the need to
use any tunable parameters.

In this presentation, the reconstruction and limiting procedure proposed in [2, 3]
is applied to the approximation of the Euler equations and compares its performance
when implementing truly multidimensional limiters. Two well-known approximate
Riemann solvers are implemented, demonstrating the procedure’s independence to
the solver used, as well as its universal applicability, efficiency and robustness to
either conservative or primitive variable reconstructions. Its applicability to some
node-centered (vertex-centered) FV schemes is also briefly sketched.

2. The Euler equations. In their conservative form the 2D Euler equations read
as

∂tU +∇ · H(U) = 0 on Ω× [0, t] ⊂ R2 × R+, (1)

where Ω× [0, t] is the space-time Cartesian domain over which solutions are sought,
U is the vector of the conserved variables and H = [F,G] are the nonlinear flux
vectors defined as

U =


ρ
ρu
ρv
ρeT

 , F(U) =


ρu

ρu2 + p
ρuv

(ρeT + p)u

 , G(U) =


ρv
ρuv

ρv2 + p
(ρeT + p)v

 . (2)

Here, ρ is the flow density, p is the flow pressure, eT is the specific total energy, and
u = [u, v]T are the velocity components. The system is completed by the equation
of state for a perfect gas, p = (γs − 1)

(
ρeT − 1

2ρ‖u‖
2
)
, where γs = 1.4 is the ratio

of the specific heats. Hyperbolic system (1) is supplemented by the initial condition
U(x, y, 0) = U0(x, y), x, y ∈ Ω and by appropriate boundary conditions (periodic,
inflow, outflow, slip) on the boundary ∂Ω of Ω.

3. FV framework and the MUCL-type reconstruction. By considering a
conforming triangulation T hN of Ω, with characteristic length hN , to be a set
of finitely many triangular cells1 Tp ⊂ Ω, p = 1, 2, . . . , N , we construct FV ap-
proximations on each Tp, see Fig. 1. Flow variables are placed at the barycen-
ter of Tp, and we denote the set of indices of the neighboring triangles of Tp by
K(p) := {q ∈ N | ∂Tp ∩ ∂Tq is a face of Tp}. Then the semi-discretized form of (1)
over each Tp can be written as follows

|Tp|
∂Up

∂t
+

∑
q∈K(p)

H?(UL
p ,U

R
q ) · nq = 0, (3)

where |Tp| is the area of Tp, nq is the outward normal vector andH? is the numerical
flux vector at each face’s midpoint M , evaluated using the left and right states
existing at the two sides of M , denoted as UL

p and UR
q . Although a one-point

quadrature rule is used here the ideas presented next can be applied to high-order
integration, e.g. using Gauss quadrature. In general, this numerical flux function
can be calculated as an exact or approximate local solution of the Riemann problem
posed at a cell’s face. In this work, Roe’s approximate Riemann solver and the
HLLC one have been utilized.

1Our discussion is based on the cell-centered FV (CCFV) approach, but it also holds for node-
centered FV when the word “cell” is simply replaced by the “control volume”, CP .
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3.1. Solution reconstruction and limiting procedure. For achieving second-
order spatial accuracy most FV implementations calculate the UL

p and UR
q values

assuming that the solution varies linearly in each cell, starting from given average
solution values of adjacent cells, i.e. MUSCL-type local reconstructions. Three
choices exist for this reconstruction; primitive, conservative and characteristic vari-
ables. Here, reconstruction on primitive and conservative variables has been inves-
tigated. To prevent oscillations from developing in the solution by controling the
total variation of the reconstructed field, slope limiting has to be applied. In the
present work, an alternative approach, compared to these usually implemented in
unstructured CCFV schemes is used following [2, 3] and is briefly repeated next
for completeness. Strict monotonicity in the reconstruction is enforced by the use
of edge-based limiter functions, usually reserved for node-centered FV schemes of
the median-dual type [2]. One such limiter is the modified Van Albada-Van Leer
which is differentiable for linearly varying flow variables. Continuous differentia-
bility helps in achieving smooth transition between discontinuous jumps with first-
order representation and sharp but continuous gradients which require second-order
consistency.

Figure 1. Cell-centered FV (left), centroid-dual FV (middle) and
hybrid mesh (right)

Starting with a constant piecewise approximation of the i−th component of Wp

(representing either primitive or conservative variables) and since we wish to apply
edge-based limiters, one is forced to compute reconstructed values at the intersection
point D of face ∂Tq ∩ ∂Tp and pq, see Fig. 1, as to compare with the reference
gradient value wi,q −wi,p. This choice seems natural also from a geometrical point
of view since it corresponds to the linear interpolation between p and q. Therefore,
we start by computing left and right extrapolated values at D as,

(wi,p)
L
D = wi,p + rpD · ∇wi,p and (wi,q)

R
D = wi,q − rDq · ∇wi,q, (4)

where r is a position vector relative to the centroid of the cell and ∇(·) a gradient
operator. Note that point D does not coincide, in general, with the face’s midpoint
M . Then a limiter function, Φ(·, ·), has to be applied and its arguments have to
be consecutive gradients of the solution defined in an upwind manner around face
∂Tq ∩ ∂Tp. Thus, a virtual value q′ has to be defined as a node upwind of q. The
main difficulty now lies in the need to define this virtual q′ value (similar we can
define a p′ value for p). We first denote the local centered reference gradient as

(∇wi,q)
cnt · rpq = wi,q − wi,p, and we compute the upwind gradient wi,q − wi,q′ by
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expressing the virtual unknown q′ value using known ones by assuming that q′ is
chosen such that it lies along edge pq and that q is at the center of pq′. In this case,

wi,q′ − wi,q = (wi,q′ − wi,p)− (wi,q − wi,p) = (∇wi,q) · rpq′ − (wi,q − wi,p)

= 2 (∇wi,q) · rpq − (∇wi,q)
cnt · rpq.

Then, to invoke monotonicity, limiting is performed and the ratio of the correspond-
ing lengths has to be used, resulting in the left and right states at face ∂Tq ∩ ∂Tp
as

(wi,q)
R
D = wi,q −

||rDq||
||rpq||

Φ
(

(∇wi,q)
upw · rpq, (∇wi,q)

cnt · rpq
)

; (5)

(wi,p)
L
D = wi,p +

||rpD||
||rpq||

Φ
(

(∇wi,p)
upw · rpq, (∇wi,p)

cnt · rpq
)
, (6)

where the upwind limiter arguments are given as

(∇wi,q)
upw

= 2∇wi,q − (∇wi,q)
cnt

and (∇wi,p)
upw

= 2∇wi,p − (∇wi,p)
cnt

.

In an ideal unstructured grid the variables are extrapolated to the center M
of a cell’s face and as such the numerical integration of the exact flux with the
midpoint rule will be exact for linear functions along ∂Tq ∩∂Tp. If the variables are
extrapolated to a different location, e.g. at point D, then the one-point interpolation
is expected to be only first-order accurate, especially for types of grids where the
distance between optimal location M and the extrapolated location D is large [4,
2, 3]. This inconsistency had to be corrected thus, a correction was proposed and
tested for smooth shallow water flow conditions in [2]. Hence, after the reconstructed
values (5) and (6) at D have been computed, a directional correction is applied in
order to compute reconstructed values at M , as follows,

(wi,p)
L
M = (wi,p)

L
D + rDM · ∇wi,p and (wi,q)

R
M = (wi,q)

R
D + rDM · ∇wi,q. (7)

Since the gradient estimates used in the above correction terms are unlimited it was
shown that, accurate gradient computations would result in an accurate correction,
in the sense of retaining second order accuracy for smooth flows, on poor connected
grids where the distance between D and M is large [2], even for highly stretched
meshes. However, further considerations had to be taken into account if shocks
are to be present in the flow field. As such, the correction terms in (7) have to
be properly limited along the direction of DM as proposed in [3], thus enhancing
the multidimensional character of the reconstruction. Achieving this is not trivial
since proper reference values have to be defined, as to calculate limiter arguments
that are physically meaningful. Assuming we want to properly limit the directional

correction added to (wi,p)
L
M in (7), we first identify the set of indices lj , j = 1, 2, 3

of the triangles Tlj that have now a common vertex with Tp in the direction of DM .

We choose as a reference triangle the one for which plj has the smallest angle with

DM , which is Tl2 in Fig. 1, and project its cell center in the direction of DM , with
pk2 being that projection. Now, the extrapolated value at k2 is calculated from the
value at the barycenter l2 as

wi,k2 = wi,l2 + rl2k2 · ∇wi,l2 .

We can now define the local central reference gradient as (∇wi,p)
cnt · rpk2 =

wi,k2−wi,p, and compute the upwind gradient wi,p−wi,k′
2

by expressing the virtual
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unknown k′2 value using known values as detailed before. This leads to the left
reconstructed value (now corrected and limited) at the flux integration point M ,

(wi,p)
L
M = (wi,p)

L
D +

||rDM ||
||rpk2

||
Φ
(

(∇wi,p)
upw · rpk2

, (∇wi,p)
cnt · rpk2

)
, (8)

where now

(∇wi,p)
upw

= 2∇wi,p − (∇wi,p)
cnt

.

With similar reasoning, the right limited reconstructed value at M is computed as

(wi,q)
R
M = (wi,q)

R
D +

||rDM ||
||rqm2

||
Φ
(

(∇wi,q)
upw · rqm2

, (∇wi,q)
cnt · rqm2

)
. (9)

Similar rationale can be followed to correct the inconsistency between points D and
M for node-centered FV schemes of the centroid-dual type, as depicted in Fig. 1.

Finally, it remains to define appropriate gradient operators for the reconstruc-
tion presented above for the CCFV approach. Here, the gradient is computed in the
closed path defined for every Tp by connecting the barycenters of the triangles hav-
ing a common vertex with Tp, taking into account the assumption that the gradient
is constant, i.e. Green-Gauss (GG) linear reconstruction. As it was demonstrated
in [3], when this (wide) stencil is used for gradient computations an almost iden-
tical convergence behavior is achieved on different grid types, with no reduction
on the asymptotic convergence rate while for steady-state calculations convergence
is greatly improved. This is due to the fact that the data points involved in this
gradient computation satisfy the so-called good neighborhood for Van Leer limiting.

4. Numerical Tests and Results. In our scheme, named CCFVw2L, the Van
Albada-Van Leer limiter was implemented on the tests to follow, while a second-
order explicit SSP Runge-Kutta time integration is used under the usual CFL sta-
bility condition for the time step computation. Ghost cells are implemented for
boundary treatment. To test performance and convergence properties regular and
irregular grids, shown in Fig. 2, have been used. These grids exhibit different con-
nectivity behaviors for internal and boundary cells [3]. Comparisons between the
results obtained with the Venkatakrishnan [7] V-limiter and the MLPu2 [6] one are
also presented. It is noted that, these two truly multidimensional limiters have a
tunable parameter2, K, that is problem dependent and needs to be carefully chosen.

Figure 2. Regular and irregular grids: types I-IV from left to right

2If K = 0 the limiter is always active, and strict monotonicity is maintained, while a very large
value of K essentially means no limiting and monotonicity is violated.
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4.1. Isentropic Vortex Problem. This 2D vortex problem is often used as a
benchmark for comparing numerical methods for fluid dynamics. The flow-field is
smooth and the exact solution is known. The mean flow is with ρ∞ = 1, p∞ =
1, and [u∞, v∞]T = [1, 1]T in a domain Ω = [−10, 10] × [−10, 10] with periodic
boundary conditions. An isentropic vortex is added [6, 5] and the exact solution
of the problem is the initial solution shifted by (u∞t, v∞t) thus, numerical phase
(dispersion) and amplitude (dissipation) errors are easy to identify. Roe’s Riemann
solver is implemented for this test case applying reconstruction on the primitive
variables. In Fig. 3 the density contours of computed solutions compared with the
exact solution at time t = 2T are presented for the CCFVw2L scheme and those
using the V and MLPu2 limiters with K = 5 on a type-IV distorted grid. Next
and in Fig 4 we report grid convergence studies on all different grids, having been
consistently refined.

Figure 3. Isentropic vortex at t = 2T : V-limiter (left), MLPu2
(middle) and CCFVw2L (right)

Figure 4. Isentropic vortex: convergence results on all grid types

4.2. Shock tube problems. These (one-dimensional in nature) test cases are cho-
sen as to test the capability of the proposed methodology in resolving various lin-
ear and non-linear waves on unstructured grids. The computational domain is
[0, 1] × [0, 0.1] with a triangulation of N = 16, 000 cells on a type-II mesh. Three
cases are considered, namely, (a) Sod’s problem, (b) Harten-Lax problem and (c)
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Supersonic expansion, with Riemann-type initial conditions given respectively as

(a) (ρL, uL, vL, pL) = (1, 0, 0, 1) and (ρR, uR, vR, pR) = (1, 0, 0, 1),

(b) (ρL, uL, vL, pL) = (0.445, 0.698, 0, 3.528) and

(ρR, uR, vR, pR) = (0.5, 0, 0, 0.571),

(c) (ρL, uL, vL, pL) = (1,−2, 0, 0.4) and (ρR, uR, vR, pR) = (1, 2, 0, 0.4)

and the HLLC approximate Riemann solver is used in all problems applying re-
construction on the conservative variables. Comparisons between the proposed
CCFVw2L scheme and the MLPu2 are shown in Fig. 5.

Figure 5. Shock tube problems: Sod problem (top), Lax problem
(middle) and supersonic expansion problem (bottom)

4.3. Transonic flow around NACA 0012 airfoil. The case of transonic flow
around NACA 0012 airfoil is considered here with Mach number number 0.8 and
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α = 1.25◦ as to obtain a convergent solution. The number of triangular cells used
was N = 6, 492 with 200 surface grid points. The grid and convergence history
obtained using the HLLC solver and reconstruction on the primitive variables are
shown in Fig. 6 while Fig. 7 shows a comparison of the surface pressure coefficient
between the CCFVw2L and MLPu2 schemes.

Figure 6. Grid distribution and convergence history (NACA0012 airfoil)

Figure 7. Mach contours and surface pressure over NACA0012 airfoil
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Abstract. We prove the existence of solutions of a coupled PDE-ODE system
modeling the interaction of a large slow moving vehicle with the surrounding

traffic flow. The model consists in a scalar conservation law with moving

density constraint describing traffic evolution coupled with an ODE for the
slow vehicle trajectory. The constraint location moves due to the surrounding

traffic conditions, which in turn are affected by the presence of the slower

vehicle, thus resulting in a strong non-trivial coupling.

1. Introduction. A slow moving large vehicle, like a bus or a truck, reduces the
road capacity and thus generates a moving bottleneck for the surrounding traffic
flow. From the macroscopic point of view this can be modeled by a PDE-ODE cou-
pled system consisting in a scalar conservation law with moving density constraint
and an ODE describing the slower vehicle motion, i.e.,

∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ αR, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.

(1)

Above, ρ = ρ(t, x) ∈ [0, R] is the scalar conserved quantity representing the mean
traffic density, R is the maximal density allowed on the road and the flux function
f : [0, R]→ R+ is a strictly concave function such that f(0) = f(R) = 0. It is given
by the following flux-density relation

f(ρ) = ρv(ρ),

where v is a smooth decreasing function denoting the mean traffic speed and here
set to be v(ρ) = V (1− ρ

R ), V being the maximal velocity allowed on the road.
The time-dependent variable y denotes the slower vehicle position, which moves

with a traffic density dependent speed of the form

ω(ρ) =

{
Vb if ρ ≤ ρ∗ .= R(1− Vb

V ),
v(ρ) otherwise,

(2)
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that is, it moves with constant speed Vb < V as long as it is not slowed down by
downstream traffic conditions. When this happens, it moves with the mean traffic
speed.

Finally, the constant coefficient α ∈ ]0, 1[ gives the reduction rate of the road
capacity due to the presence of this large vehicle.

For our analytical purposes, it is not restrictive to assume that R = V = 1, so
that the model becomes

∂tρ+ ∂x(ρ(1− ρ)) = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ0(x), x ∈ R,
ρ(t, y(t)) ≤ α, t ∈ R+,
ẏ(t) = ω(ρ(t, y(t)+)), t ∈ R+,
y(0) = y0.

(3)

The above model was introduced in [12] to model the effect of urban transport
systems, such as buses, in a road network. Other macroscopic models for moving
bottlenecks in road traffic were recently proposed by [7, 14]. Compared to those
approaches, the model described by (1) offers a more realistic definition of the slower
vehicle speed and a description of its impact on traffic conditions which is simpler
to handle both from the analytical and the numerical point of view.

From the analytical point of view, model (1) can be viewed as a generalization
to moving constraints of the problem consisting in a scalar conservation law with a
(fixed in space) constraint on the flux, introduced and studied in [1, 8, 9]. In the
present case, the constraint location moves due to the surrounding traffic conditions,
which in turn are modified by the presence of the slower vehicle, thus resulting in
a strong non-trivial coupling between the conservation equation and the trajectory
of the vehicle.

The study of coupled PDE-ODE systems is not new in the conservation laws
framework, we refer the reader to [6, 5, 10, 14]. Nevertheless, the problem posed
here is slightly different. On one side, we deal with a strong coupling with the
PDE and the ODE affecting each other, unlike [5, 10], where the PDE solution does
not depend on the ODE. On the other side, even if the ODE has discontinuous
right-hand side, the particular definition of the model allows us to consider classical
Carathéodory solutions as in [6, 7, 2, 5] instead of the weaker Filippov’s generalized
solutions needed in [10, 14].

This paper presents an existence result for solutions of (1) constructed by wave-
front tracking approximations, as stated by Theorem 3.2 in Section 3. Details on
the proofs can be found in [11].

2. The Riemann problem with moving density constraint. Consider (3)
with the particular choice

y0 = 0 and ρ0(x) =

{
ρL if x < 0,
ρR if x > 0.

(4)

We aim at defining a Riemann solver for the conservation law with moving density
constraint. Therefore we consider the following Riemann problem

∂tρ+ ∂xf(ρ) = 0,

ρ(0, x) =

{
ρL if x < 0,

ρR if x > 0,

(5)
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under the constraint

ρ(t, Vbt) ≤ α. (6)

Let fα : [0, α] → R+ be the function describing the constrained flow at x = y(t),
i.e.,

fα(ρ) = ρ
(

1− ρ

α

)
,

and ρα ∈ ]0, α/2[ such that f ′(ρα) = Vb, i.e.,

ρα =
α

2
(1− Vb) .

Problem (5), (6) can be recasted in the framework of conservation laws with flux
constraint studied in [1, 9]. Rewriting the equations in the bus reference frame
(setting X = x− Vbt), we get

∂tρ+ ∂X (f(ρ)− Vbρ) = 0,

ρ(0, X) =

{
ρL if X < 0,

ρR if X > 0,

(7)

under the constraint

ρ(t, 0) ≤ α. (8)

Remark that solving problem (7), (8) is equivalent to solving (7) under the corre-
sponding constraint on the flux

f(ρ(t, 0))− Vbρ(t, 0) ≤ fα(ρα)− Vbρα
.
= Fα.

We are now ready to define the Riemann solver for (3), (4) following [12, §V].
Denote by R the standard Riemann solver (i.e., without the constraint (6)) for (5),
i.e., the (right continuous) map (t, x) 7→ R(ρL, ρR)(xt ) is the standard weak entropy
solution to (5). Moreover, let ρ̌α and ρ̂α, with ρ̌α ≤ ρ̂α, be the intersections of the
flux function f(ρ) and the line fα(ρα) + Vb(ρ− ρα) (see Figure 1).

ρ̌α

f(ρ)

ρ

Vb

ρ̂α ρ∗

Figure 1. Flux function

Definition 2.1. The constrained Riemann solver Rα for (3), (4) is defined as
follows.
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1. If f(R(ρL, ρR)(Vb)) > Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR)(x) =

{
R(ρL, ρ̂α) if x < Vbt,
R(ρ̌α, ρR) if x ≥ Vbt,

and y(t) = Vbt.

2. If VbR(ρL, ρR)(Vb) ≤ f(R(ρL, ρR)(Vb)) ≤ Fα + VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = Vbt.

3. If f(R(ρL, ρR)(Vb)) < VbR(ρL, ρR)(Vb), then

Rα(ρL, ρR) = R(ρL, ρR) and y(t) = v(ρR)t.

Note that, when the constraint is enforced (point 1. in the above definition), a
nonclassical shock arises, which satisfies the Rankine-Hugoniot condition but vio-
lates the Lax entropy condition.

Remark 1. The above definition is well-posed even if the classical Riemann solution
R(ρL, ρR)(x/t) displays a shock at x = Vbt. In fact, due to Rankine-Hugoniot
equation, we have

f(ρL) = f(ρR) + Vb(ρL − ρR)

and hence

f(ρL) > fα(ρα) + Vb(ρL − ρα) ⇐⇒ f(ρR) > fα(ρα) + Vb(ρR − ρα).

Remark 2. The density constraint ρ(t, y(t)) ≤ α does not appear explicitly in
Definition 2.1, and in the following Definition 3.1. It is handled by the corresponding
condition on the flux

f(ρ(t, y(t)))− ω(ρ(t, y(t)))ρ(t, y(t)) ≤ Fα. (9)

The corresponding density on the reduced roadway at x = y(t) is found taking the
solution to the equation

f(ρy) + ω(ρy)(ρ− ρy) = ρ
(

1− ρ

α

)
,

closer to ρy
.
= ρ(t, y(t))).

3. The Cauchy problem: Existence of solutions. The aim of this section is
to study the existence of the solutions of problem (1), (3). A bus travels along a
road modeled by  ∂tρ+ ∂x(ρ(1− ρ)) = 0,

ρ(0, x) = ρ0(x),
ρ(t, y(t)) ≤ α.

(10)

The bus influences the traffic along the road but it is also influenced by it. The bus
position y = y(t) then solves{

ẏ(t) = ω(ρ(t, y(t)+)),
y(0) = y0.

(11)

Solutions to (11) will be intended in Carathéodory sense, i.e., as absolutely contin-
uous functions which satisfy (11) for a.e. t ≥ 0. In our setting, due to the strong
PDE-ODE coupling, we will prove existence of both solutions to (10) and (11) at
the same time. We start giving our definition of solution.

Definition 3.1. A couple (ρ, y) ∈ C0
(
R+; L1 ∩ BV(R; [0, R])

)
×W1,1(R+;R) is a

solution to (3) if
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1. ρ is a weak solution of the conservation law, i.e., for all ϕ ∈ C1c (R2;R)∫
R+

∫
R

(ρ∂tϕ+ f(ρ)∂xϕ) dx dt+

∫
R
ρ0(x)ϕ(0, x) dx = 0 ; (12a)

moreover, ρ satisfies the Kružhkov entropy conditions [13] on (R+ × R) \
{(t, y(t)) : t ∈ R+}, i.e., for every k ∈ [0, 1] and for all ϕ ∈ C1c (R2;R+) and
ϕ(t, y(t)) = 0, t > 0,∫

R+

∫
R

(|ρ− k|∂tϕ+ sgn(ρ− k) (f(ρ)− f(k)) ∂xϕ) dx dt

+

∫
R
|ρ0 − k|ϕ(0, x) dx ≥ 0 ;

(12b)

2. y is a Carathéodory solution of the ODE, i.e., for a.e. t ∈ R+

y(t) = y0 +

∫ t

0

ω(ρ(s, y(s)+)) ds ; (12c)

3. the constraint is satisfied, in the sense that for a.e. t ∈ R+

lim
x→y(t)±

(f(ρ)− ω(ρ)ρ) (t, x) ≤ Fα. (12d)

Remark that the above traces exist because ρ(t, ·) ∈ BV(R) for all t ∈ R+.

Remark 3. Our choice of a Carathéodory solution of the ODE is motivated by
the particular bus velocity defined by (2). With this choice it is not possible for
a bus to end up trapped in a queue unless its speed is equal to Vb, in which case
ω(ρ(t, y(t)+)) = ω(ρ(t, y(t)−)) = Vb. Therefore Carathéodory solutions are always
well defined.

We are now ready to state the main result of the paper.

Theorem 3.2. Let ρ0 ∈ BV(R; [0, R]), then the problem (1) admits a solution in
the sense of Definition 3.1.

The rest of the section is devoted to the proof of Theorem 3.2. In particular,
we will construct a sequence of approximate solutions via the wave-front tracking
method, and prove its convergence. Finally, we will check that the limit functions
satisfy conditions (12a)-(12d) of Definition 3.1.

3.1. Wave-front tracking. To construct piecewise constant approximate solu-
tions, we adapt the standard wave-front tracking method, see for example [3, §6].

Fix a positive n ∈ N, n > 0 and introduce in [0, 1] the meshMn = {ρni }
2n

i=0 defined
by

Mn =
(
2−nN ∩ [0, 1]

)
∪ {ρ̌α, ρ̂α}.

In order to include the critical points ρ̌α, ρ̂α, we modify the above mesh as follows:

• if mini |ρ̌α − ρni | = 2−n−1, then we simply add the new point to the mesh:

M̃n =Mn ∪ {ρ̌α};

• if |ρ̌α − ρnl | = mini |ρ̌α − ρni | < 2−n−1, then we replace ρnl by ρ̌α:

M̃n =Mn ∪ {ρ̌α} \ {ρnl };

• we perform the same operations for ρ̂α.
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In this way, the distance between two points of the mesh M̃n = {ρ̃ni }
2n

i=0 satisfies

the lower bound
∣∣ρ̃ni − ρ̃nj ∣∣ ≥ 2−n−1.

Let fn be the piecewise linear function which coincides with f on M̃n, and let
ρn0 be a piecewise constant function defined by

ρn0 =
∑
j∈Z

ρn0,j χ]xj−1,xj ]
with ρn0,j ∈ M̃n,

which approximates ρ0 in the sense of the strong L1 topology, that is

lim
n→∞

‖ρn0 − ρ0‖L1(R) = 0,

and such that TV(ρn0 ) ≤ TV(ρ0). Above, we set x0 = y0.
For small times t > 0, a piecewise approximate solution (ρn, yn) to (3) is con-

structed piecing together the solutions to the Riemann problems
∂tρ+ ∂x (fn(ρ)) = 0,

ρ(0, x) =

{
ρ0 if x < y0,
ρ1 if x > y0,

ρ(t, yn(t)) ≤ α,


∂tρ+ ∂x (fn(ρ)) = 0,

ρ(0, x) =

{
ρj if x < xj ,
ρj+1 if x > xj ,

j 6= 0,

(13)

where yn satisfies {
ẏn(t) = ω(ρn(t, yn(t)+)),
yn(0) = y0.

(14)

Note that the solutions to the constrained Riemann problem in (13), left, coupled
with (14), is constructed by means of Rα, see Definition 2.1.

The approximate solution ρn constructed above can be prolonged up to the
first time t > 0, where two discontinuities collide, or a discontinuity hits the bus
trajectory. In both cases, a new Riemann problem arises and its solution, obtained
in the former case with R and in the latter case with the constrained Riemann
solver Rα, allows to extend ρn further in time.

3.2. Bounds on the total variation. Given an approximate solution ρn = ρn(t, ·)
constructed by the wave-front tracking method, we define the Glimm type functional

Υ(t) = Υ(ρn(t, ·)) = TV(ρn) + γ(ρn) =
∑
j

∣∣ρnj+1 − ρnj
∣∣+ γ(ρn), (15)

where γ is given by

γ(ρn) = γ(ρn(t)) =

{
0 if ρn(t, yn(t)−) = ρ̂α, ρn(t, yn(t)+) = ρ̌α

2|ρ̂α − ρ̌α| otherwise.

(16)
The value of γ is chosen to have the following uniform bound on Υ.

Lemma 3.3. For any n ∈ N, the map t 7→ Υ(t) = Υ(ρn(t, ·)) at any interaction
either decreases by at least 2−n, or remains constant and the number of waves does
not increase.

Lemma 3.3 in particular implies that the wave-front tracking procedure can be
prolonged to any time T > 0.
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Proof. In order to obtain a uniform bound on the total variation, we consider differ-
ent types of interactions separately. In particular, we assume that at any interaction
time t = t̄ either two waves interact or a single wave hits the bus trajectory. In each
case an estimation for Υ(t) was found. For details, we refer the reader to [11].

3.3. Convergence of approximate solutions. In this section we prove that the
limit of wave-front tracking approximations provides a solution (ρ, y) of the PDE-
ODE model (1) in the sense of Definition 3.1.

We start showing the convergence of the wave-front tracking approximations.

Lemma 3.4. Let ρn and yn, n ∈ N, be the wave-front tracking approximations to
(1) constructed as detailed in Section 3.1, and assume TV(ρ0) ≤ C be bounded,
0 ≤ ρ0 ≤ 1. Then, up to a subsequence, we have the following convergences

ρn → ρ in L1
loc(R+ × R); (17a)

yn(·)→ y(·) in L∞([0, T ]), for all T > 0; (17b)

ẏn(·)→ ẏ(·) in L1([0, T ]), for all T > 0; (17c)

for some ρ ∈ C0
(
R+; L1 ∩ BV(R)

)
and y ∈W1,1(R+).

Proof. Lemma 3.3 gives a uniform bound on the total variation of approximate
solutions. Thus, we have TV(ρn(t, ·)) ≤ Υ(t) ≤ Υ(0). A standard procedure based
on Helly’s Theorem (see [3, Theorem 2.4]) ensures the existence of a subsequence
converging to some function ρ ∈ C0

(
R+; L1 ∩ BV(R)

)
, proving (17a).

Since |ẏn(t)| ≤ Vb, the sequence {yn} is uniformly bounded and equicontinuous on
any compact interval [0, T ]. By Ascoli-Arzelà Theorem, there exists a subsequence
converging uniformly, giving (17b). In order to prove (17c), we have to show that
TV (ẏn; [0, T ]) is uniformly bounded. In fact, the analysis performed in Section 3.2
shows that ẏn can change only at interactions with waves coming from its right. We
can estimate the speed variation at interactions times t̄ by the size of the interacting
front:

|ẏn(t̄+)− ẏn(t̄−)| = |ω(ρl)− ω(ρr)| ≤ |ρl − ρr|.
In particular, ẏn is non-increasing at interactions with shock fronts and non-de-
creasing at interactions with rarefaction fronts, which must be originated at t = 0.
In fact, the analysis performed in Section 3.2 shows that no new rarefaction front
can arise at interactions. Therefore,

TV (ẏn; [0, T ]) ≤ 2 PV (ẏn; [0, T ]) + ‖ẏn‖L∞([0,T ]) ≤ 2 TV(ρ0) + Vb

is uniformly bounded. Above, PV (ẏn; [0, T ]) denotes the positive variation of ẏn,
i.e., the total amount of positive jumps in the interval [0, T ].

3.3.1. Proof of (12a) and (12b). Since ρn converge strongly to ρ in L1
loc(R+ ×R),

it is straightforward to pass to the limit in the weak formulation of the conservation
law, proving that the limit function ρ satisfies (12a). Kružhkov entropy condition
(12b) can be recovered in the same way.

3.3.2. Proof of (12c). We prove that

lim
n→∞

ρn(t, yn(t)+) = ρ+(t) = ρ(t, y(t)+) for a.e. t ∈ R+. (18)

At this purpose, we use the weak convergence of measure in [4, Lemma 15] and we
proceed like in [4, §4], for the details see [11].

Combining (17c) and (18) we get ẏ(t) = ω(ρ(t, y(t)+)) for a.e. t > 0.
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3.3.3. Proof of (12d). In order to verify that the limit solutions satisfy the con-
straint (12d), we can use directly the convergence result (18).
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Abstract. We analyze the modified equation of a model hyperbolic heat equa-
tion, which can be used as a guide for numerical methods. The main result is

a uniform estimate of accuracy for a particular form of the modified equation.

1. Introduction. Our model problem is the hyperbolic heat equation or Catta-
neo’s equation in dimension one x ∈ R

∂tuε +
1

ε
∂xvε = 0,

∂tvε +
1

ε
∂xuε = − σ

ε2
vε.

(1)

The scaling parameter is 0 < ε ≤ 1 which can takes value arbitrarily in ]0, 1]. The
other coefficient σ > 0 is constant: the case with a non constant σ will be examined
in the last part of this work. Hilbert expansion of all quantities with respect to ε
(that is f = f0 + εf1 +O(ε2)) shows that the limit equation writes

∂tu−
1

σ
∂xxu = 0. (2)

Indeed the second equation in (1) can be rewritten formerly as vε = − ε
σ∂xuε +

O(ε2). Plugged in the first equation it yields ∂tuε− 1
σ∂xxuε = O(ε) which is further

simplified in (2). In other words the diffusion equation (2) is the asymptotic limit
of the system (1).

At the numerical level, Asymptotic Preserving (AP) techniques [1, 2] are useful
to discretize such problems with accuracy uniform with respect to ε. This family of
methods and schemes is particularly appealing for the numerical discretization of
physical problems with very different scales. It has motivated recent contributions
[3, 4], see also [5] in a different context. A general observation is that the numerical
structure of Asymptotic Preserving schemes is not so simple to understand. As a
result comparisons between different methods is also difficult.

That is why we desire to develop, for the model problem (1), an a priori under-
standing of asymptotic preserving techniques. Here a priori means that we do not
want to rely on the standard method, that is a) development of a new numerical
method, and b) analysis of the pros and cons of the method. On the contrary we
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desire to understand a priori what are the mathematical properties that the desired
numerical method should satisfy. Following [2], we use the modified equation which
is a natural and powerful tool to develop such a priori understanding. The main
result of this work is a new estimate of accuracy in theorem 3.1. This estimate is
uniform with respect to ε. It gives insights into the mathematical and numerical
structure of the Gosse-Toscani scheme [1] and the Jin-Levermore scheme [2].

2. The modified equation. The starting point is the modified equation
∂tuε,α +

1

ε
(∂xvε,α − α∂xxuε,α) = 0,

∂tvε,α +
1

ε
(∂xuε,α − α∂xxuε,α) = − σ

ε2
vε,α,

(3)

where α ≈ ∆x
2 is the coefficient of the numerical viscosity characteristic of first order

Finite Volume techniques. See [2, 3] for a justification. Since this system admits
two different small parameters ε and α, the behavior of the the solutions depends on
the competition between these parameters. Hilbert expansion of all quantities with
respect to ε shows that the limit equation, the parameter α being kept constant, is

∂tu0 −
(

1

σ
+
α

ε

)
∂xxu0 = 0 (4)

which is of course non correct in the regime ε << α because the diffusion coefficient
has been modified: 1

σ <<
1
σ + α

ε . Therefore something has to be done in order to
preserve the correct asymptotic limit.

2.1. A modified equation of the first kind. Starting from this consideration a
very natural idea is to modify the first equation and to replace (3) with

∂tuε,α +
M

ε
(∂xvε,α − α∂xxuε,α) = 0,

∂tvε,α +
1

ε
(∂xuε,α − α∂xxvε,α) = − σ

ε2
vε,α,

(5)

where the Magic coefficient is the ratio of the true viscosity over the spurious one

M =
1
σ

1
σ + α

ε

=
ε

ε+ σα
∈]0, 1].

This system is obtained as the modified equation of the Jin-Levermore scheme [2].
The Hilbert expansion, vε,α = v0

α + εv1
ε,α + . . . and so on, yields the limit equation

∂tu
0
α −

1

σ
∂xxu

0
α = O(ε)

which is now correct. Nevertheless modifying (3) into (5) alters the whole mathe-
matical structure of the original system. For example the energy identity attached
to (5) writes

∂t
u2
ε,α +Mv2

ε,α

2
+ ∂x

Muε,αvε,α
ε

− ∂xx
Mα

(
u2
ε,α + v2

ε,α

)
2ε

= −σM
ε2

v2
ε,α −

Mα

ε

(
(∂xuε,α)

2
+ (∂xvε,α)

2
)
≤ 0. (6)

It yields ∫
R

uε,α(t)2 +Mvε,α(t)2

2
dx ≤

∫
R

uε,α(0)2 +Mvε,α(0)2

2
dx. (7)
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This inequality shows the L2 stability of the system. However the L2 control on
the variable v may be quite weak in regimes such that M → 0+ which are precisely
our concern.

2.2. A modified equation of the second kind. With this regard the following
system is much better

∂tûα,ε +
M

ε
(∂xv̂α,ε − α∂xxûα,ε) = 0,

∂tv̂α,ε +
M

ε
(∂xûα,ε − α∂xxv̂α,ε) = −σM

ε2
v̂α,ε.

(8)

This system is obtained as the modified equation of the Gosse-Toscani scheme [1].
The formal asymptotic diffusion equation is still the correct one. Evident manipu-
lations show that the energy identity writes now∫

R

ûα,ε(t)
2 + v̂α,ε(t)

2

2
dx ≤

∫
R

ûα,ε(0)2 + v̂α,ε(0)2

2
dx (9)

which is better balanced than (7) in the sense that both variables have the same
weights.

In other words, the modified equation of the second kind has the correct as-
ymptotic limit and has a correct energy law. The remaining part of this work is
dedicated to a proof of a uniform accuracy estimate for the second kind modified
equation.

3. Main result. To simplify the analysis, we will consider well prepared initial
data for the system (1). Such well prepared data are easy to construct: for example
one first takes a sufficiently smooth data uε(t = 0) = u0 ∈ H3(R). Then one picks
vε(t = 0) = v0 = − ε

σ∂xu0. Since the system (1) satisfies an energy identity similar

to (9), one first has that u(t), v(t), ∂xu(t), ∂xv(t) are uniformly bounded in L2(R).
One also has that ∂tu(t = 0) = − 1

ε∂xv0 = 1
σ∂xxu0 and ∂tv(t = 0) = 0 are bounded

in L2(R): it implies that ∂tu(t), ∂tv(t) are also uniformly bounded in L2(R). More
useful estimates satisfied by well prepared data are the following.

Proposition 1. Assume that u0 ∈ H3(R). Then the solution of (1) satisfies

‖∂txuε‖L∞((0,T ):L2(R)) ≤
1

σ
‖∂xxxu0‖L2(R) (10)

and

‖∂tvε‖L2((0,T )×R) ≤
ε

σ
‖∂xxu0‖L2(R) . (11)

• Set w = ∂txuε and z = ∂txvε. Since the pair (w, z) satisfies the same homoge-
neous system (1) with the initial data (w0, z0)

w0 = (∂txuε) (t = 0) = −∂xxv0

ε
=

1

σ
∂xxxu0,

z0 = (∂txvε) (t = 0) = −∂x
(

1

ε
∂xu0 +

σ

ε2
v0

)
= 0,

the first inequality (10) naturally holds using the L2 stability property (9).
• Now we set w = ∂tuε and z = ∂tvε Since the pair (w, z) satisfies the same
homogeneous system (1) with the initial data (w0, z0)

w0 = (∂tuε) (t = 0) = −∂xv0

ε
=

1

σ
∂xxu0,
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and z0 = (∂tvε) (t = 0) = 0, one obtains after integration∫
R

w(t)2 + z(t)2

2
+
σ

ε2

∫ T

0

∫
R
z(s)2ds =

∫
R

w2
0 + z2

0

2
.

It yields ‖z‖L2((0,T )×R) ≤
ε
σ ‖w0‖L2(R) which ends the proof of (11).

From now on, we use the same initial data for the modified system, that is

ûα,ε(t = 0) = uε(t = 0) = u0 and v̂α,ε(t = 0) = vε(t = 0) = v0 = − ε
σ
∂xu0. (12)

Theorem 3.1. For well prepared data (12), there exists a constant independent of
ε and α such that one has the accuracy inequality independent of ε

‖uε(t)− ûα,ε(t)‖L2(R) + ‖vε(t)− v̂α,ε(t)‖L2(R) ≤ Cα, t ≤ T. (13)

Remark 1. The important fact is that the error is no more spoiled by α
ε terms. Si-

milar behavior is displayed by numerical schemes, such as the Gosse-Toscani scheme
[1], which are compatible with the second kind modified equation, see [3].

Set e = uε − ûα,ε and f = vε − v̂α,ε. By construction
∂te+

M

ε
(∂xf − α∂xxe) = r,

∂tf +
M

ε
(∂xf − α∂xxf) +

σM

ε2
f = s,

(14)

where the truncation errors r and s are defined by
r = ∂tuε +

M

ε
(∂xvε − α∂xxuε) = (1−M)∂tuε − Mα

ε ∂xxuε,

s = ∂tvε +
M

ε
(∂xuε − α∂xxvε) +

σM

ε2
vε = (1−M)∂tvε − Mα

ε ∂xxvε.

The second truncation error, s, is naturally small since

s =

[
∂tvε
ε

]
(1−M)ε+ [M∂txuε]α

Due to proposition 1 each term in square brackets is bounded in L2((0, T )×R), and
ε(1 −M) = ε

ε+σασα = O(α). Therefore ‖s‖L2((0,T )×R) = O(α). The first term r

needs a little more manipulations. Since ∂xuε = −ε∂tuε− σ
ε vε, one has the identity

∂xxuε = −ε∂txuε −
σ

ε
∂xvε = −ε∂txuε + σ∂tuε

from which we deduce that

r = (1−M −Mασ

ε
)∂tuε +Mα∂txuε = [M∂txuε]α

since 1 −M −M ασ
ε = 0 by construction. Once again the term in square brackets

is bounded in L2((0, T )× R). Therefore ‖r‖L2((0,T )×R) = O(α).

Next we multiply the first equation in (14) by e, the second by f . Using the L2

stability, one obtains (using notation such as ‖e, f‖L2(R) =
√
‖e‖2L2(R) + ‖f‖2L2(R))

d

dt

‖e(t), f(t)‖2L2(R)

2
≤ ‖r(t), s(t)‖L2(R) ‖e(t), f(t)‖L2(R)

from which we deduce that

‖e(t), f(t)‖L2(R) ≤
∫ T

0

‖r(τ), s(τ)‖L2(R) dτ
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≤
√
T

(∫ T

0

‖r(τ), s(τ)‖2L2(R) dτ

) 1
2

=
√
T ‖r, s‖L2((0,T )×R) .

Since ‖r, s‖L2((0,T )×R) = O(α) the proof of the claim is finished.

4. Other modified equations. We modify the parameters of the equation or of
the scheme to analyze the potential impact of such modifications.

4.1. Changing the sink. The first one is already considered in the seminal work
[2]. It is intermediate between the first kind and second kind modified equations.
It writes 

∂tû+
M

ε
(∂xv̂ − α∂xxû) = 0,

∂tv̂ +
M

ε
(∂xû− α∂xxv̂) = − σ

ε2
v̂.

(15)

That is the Magic coefficient is everywhere except in the sink. The formal asymp-
totic limit v̂ ≈ − εMσ ∂xû. Plugging in the first equation one gets the limit diffusion
equation

∂tu−
(
M2

σ
+
Mα

ε

)
∂xxu.

The diffusion coefficient is

M2

σ
+
Mα

ε
=

1

σ
+
M(M − 1)

σ
.

The correct coefficient is modified by a factor proportional to M(M−1). This term
vanishes for M ≈ 0 or M ≈ 1, which means that either ε << α or α << ε. If
α
ε = O(1) then the correction is non zero as well.

This is why such modification (15) is not recommended in practice for numerical
methods, see also [2].

4.2. Non constant coefficients. Another case often encountered in practice is
when the coefficients are non constant. Let us assume that σ = σ(x) > 0 is
non constant, positive and smooth. A modified equation that corresponds to this
situation is 

∂tû+ ∂x

(
M(x)

ε
v̂

)
− ∂x

(
M(x)α

ε
∂xû

)
= 0,

∂tv̂ +
M(x)

ε
∂xû− ∂x

(
M(x)α

ε
∂xv̂

)
= −σM(x)

ε2
v̂.

(16)

It is an easy matter to check that this system satisfies an energy identity with the
standard L2 energy. It also rewrites in a more conservative way as

∂tû+ ∂x

(
M(x)

ε
v̂

)
− ∂x

(
M(x)α

ε
∂xû

)
= 0,

∂tv̂ + ∂x

(
M(x)

ε
û

)
− ∂x

(
M(x)α

ε
∂xv̂

)
= −σM(x)

ε2
v̂ +

∂xM(x)

ε
u.

(17)

In theory the previous method method can be used to analyze the limit ε → 0 of
this system.
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4.3. Open problems. We hope, and believe, that this study may provide a basis
for the design and analysis of AP schemes for more complex equations and systems.
For example for larger systems (3 equations and more), it is possible a priori to
study systems of modified equations having in mind that the coefficient M becomes
a matrix, the ultimate goal still being to design astute M such that error estimates
are independent of the stiffness parameter ε. This is largely an open problem in the
general case.
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WAVE-WAVE INTERACTIONS OF A GASDYNAMIC TYPE
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Abstract. Two distinct contexts [isentropic; strictly anisentropic] are consid-

ered for a hyperbolic quasilinear system of a gasdynamic type [Euler]. For
each of these two contexts two genuinely nonlinear, geometrical and analyti-

cal approaches are considered [of a Burnat type and, respectively, of a Martin

type]. Each of these two approaches leads particularly to a pair of classes of
solutions [wave solutions; wave-wave regular interaction solutions]. We finally

parallel the mentioned approaches by using various comparisons between the

mentioned pairs of classes.

1. “Algebraic” approach of a Burnat type. Genuine nonlinearity restric-
tions.

1.1. Introduction. For the multidimensional first order hyperbolic system of a
gasdynamic type n∑

j=1

m∑
k=0

aijk(u)
∂uj
∂xk

= 0, 1 ≤ i ≤ n (1.1)

the “algebraic” approach (Burnat [1]) starts with identifying dual pairs of directions
~β,~κ [we write ~κ ↽⇀ ~β] connecting [via their duality relation] the hodograph [= in
the hodograph space H of the entities u] and physical [= in the physical space E
of the independent variables] characteristic details. The duality relation at u∗∈H
has the form: n∑

j=1

m∑
k=0

aijk(u∗)βkκj = 0, 1 ≤ i ≤ n. (1.2)

Here ~β is an exceptional direction [= normal characteristic direction (orthogonal
in the physical space E to a characteristic character)]. A direction ~κ dual to an

exceptional direction ~β is said to be a hodograph characteristic direction. A real
character of the exceptional / hodograph characteristic directions implied in (1.2)
is concurrent with the hyperbolicity of (1.1).

Example 1 (Lax [7]). For the one-dimensional strictly hyperbolic version of the

system (1.1) a finite number n of dual pairs ~κi↽⇀ ~βi consisting in ~κi = ~Ri and
~βi=Θi(u)[−λi(u), 1], where ~Ri is a right eigenvector of the n × n matrix a and λi
is an eigenvalue of a, are available (i = 1, ..., n). Each dual pair associates in this

case, at each u∗∈R [for a suitable region R⊂H], to a vector ~κ a single dual vector ~β.

2000 Mathematics Subject Classification. 35A30, 35L60, 35L65, 35Q35, 76N15.
Key words and phrases. Burnat type geometrical approach, Martin type geometrical approach,

two-dimensional isentropic solutions, quantifiable “amount” of genuine nonlinearity, multidimen-
sional regular interaction.
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Example 2 (Peradzyński [10]). For the two-dimensional isentropic version of (1.1)
an infinite number of dual pairs are available at each u∗ ∈H. Each dual pair

associates, at the mentioned u∗, to a vector ~κ a single dual vector ~β.

Example 3 (Peradzyński [11]). For the isentropic description corresponding to the
three-dimensional version of (1.1) an infinite number of dual pairs are available at
each u∗∈H. Each dual pair associates, at the mentioned u∗, to a vector ~κ a finite

[constant, 6=1] number of k independent exceptional dual vectors ~βj , 1≤ j≤k; and

therefore has the structure ~κ ↽⇀(~β1,..., ~βk).

Definition 1.1. (Burnat [1]) A curve C ⊂ H is said to be characteristic if it is
tangent at each point of it to a characteristic direction ~κ. A hypersurface S⊂H is
said to be characteristic if it possesses at least a characteristic system of coordinates.

1.2. Genuine nonlinearity. Simple waves solutions.

Remark 1. In case of an one-dimensional strictly hyperbolic version of (1.1) a
hodograph characteristic curve C⊂R⊂H, of index i, is said to be genuinely

nonlinear (gnl) if the dual constructive pair ~κi ↽⇀ ~βi is restricted [the restriction is

on the pair ! ] by ~κi(u)�~βi(u)≡ ~Ri(u) ·graduλi(u) 6= 0 in R; see Example 1. This

condition transcribes the requirement d~β
dα 6= 0 along each hodograph characteristic

curve C.

Definition 1.2. We naturally extend the gnl character of a hodograph character-
istic curve C to the cases corresponding to Examples 2 and 3, by requiring along C:∣∣∣ d~βdα ∣∣∣6=0 and, respectively,

k∑
µ=1

∣∣∣d~βµ

dα

∣∣∣6=0.

Definition 1.3. A solution of (1.1) whose [one-dimensional] hodograph is laid along
a gnl characteristic curve is said to be a simple waves solution (here below also called
wave). The gnl character implies a nondegeneracy [in the sense of a “funning out”]
of such a solution.

Here are three types of simple waves solutions, presented in an implicit form −
respectively associated, in presence of a gnl character, to the Examples 1−3 above
[α(x, t) results from the implicit function theorem; the solution is structured by
(1.2)]

u=U [α(x, t)]; α=θ(ξ), ξ=x−ζi(α)t,

u=U [α(x, t)]; α=θ(ξ), ξ=
∑m
ν=0 βν [U(α)]xν =

∑m
ν=0 βν {U [θ(ξ)]}xν ,

u=U [α(x, t)]; α=θ(ξ1, . . . , ξk), ξj=
∑m
ν=0 βjν [U(α)]xν ; 1≤j≤k


dU

dα
=~κ

along C.

1.3. Genuine nonlinearity: A constructive extension. Riemann−Burnat
invariants. A subclass of the wave-wave regular interaction solutions.

Remark 2. Let R1, . . . , Rp be gnl characteristic coordinates on a given p-dimensio-
nal characteristic region R of a hodograph hypersurface S with the normal ~n.
Solutions of the intermediate system (Peradzyński [10])

∂ul
∂xs

=

p∑
k=1

ηkκkl(u)βks(u), u ∈ R; 1≤ l≤n, 0≤s≤m; ~κk ⊥ ~n, 1≤k≤p (1.3)

appear to concurrently satisfy the system (1.1) [we carry (1.3) into (1.1) and take
into account (1.2)]. This indicates a key importance of the “algebraic” concept of
dual pair.
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Definition 1.4. A solution of (1.1) whose hodograph is laid on a characteristic hy-
persurface is said to correspond to a wave-wave regular interaction if its hodograph
possesses a gnl system of coordinates and there exists a set of Riemann−Burnat
invariants R(x), structuring the dependence on x of the solution u by a regular
interaction representation

ul=ul[R1(x0, ..., xm),...,Rp(x0,...,xm)], 1≤ l≤n. (1.4)

Remark 3. We consider next a subclass of the wave-wave solutions of (1.1). This
subclass results whether (1.1) is replaced by (1.3) in Definition 1.4 [because, the so-
lutions of (1.3) concurrently satisfy (1.1); cf. Remark 2]. To construct this subclass
we have to put together (1.3) and (1.4). We compute from (1.4)

∂ul
∂xs

=

p∑
k=1

∂ul
∂Rk

· ∂Rk
∂xs

=

p∑
k=1

κkl(u)
∂Rk
∂xs

, 1 ≤ l ≤ n; 0 ≤ s ≤ m (1.5)

and compare (1.5) with (1.3), taking into account the independence of the charac-
teristic directions ~κk. It results that for a wave-wave regular interaction solution in
the mentioned subclass, Ri(x) in (1.4) must fulfil a reasonable (overdetermined and
Pfaff) system

∂Rk
∂xs

= ηkβks[u(R)], 1 ≤ k ≤ p, 0 ≤ s ≤ m. (1.6)

Sufficient restrictions for solving (1.6) are proposed in [5], [6], [10], [11].

1.4. Wave-wave regular interaction solutions: Some remarks. Quantifi-
able “amount” of genuine nonlinearity. Four circumstances appear to be sig-
nificant for solutions with a characteristic hodograph: • the case of a characteristic
hodograph surface for which all the coordinate systems are gnl, • the case of a char-
acteristic hodograph surface for which only a part of the coordinate systems are gnl,
• the case of a characteristic hodograph surface for which all the coordinate systems
are linearly degenerate (ldg) (“6= 0” is replaced by “= 0” in Definition 1.2), • the
case of a hodograph surface which is not Burnat characteristic (Definition 1.1); for
such a circumstance a characteristic character of the hodograph surface may persist
in an alternative sense (ex. in a “differential” (Martin type) sense; cf. section 2 bel-
low). • The first two cases above could be exemplified by two significant analytical
and exact self-similar two-dimensional gasdynamic solutions [in usual notations; c
is the sound velocity].

A �rst signi�cant solution

vx=
1

γ
ξ+c, vy=

1

γ
η+c; arbitrary c , c, c2 =

1

2

[(
γ−1

γ
ξ − c

)2
+

(
γ−1

γ
η − c

)2]
,

A second signi�cant solution [for 3−γ
γ+1 < a < 1]

vx = aξ ± η

√
(1− a)

(
a− 3− γ

γ + 1

)
+K
√

1− a, K =
c√

1− a
= ∓ c√

a− 3−γ
γ+1

vy = ±ξ

√
(1− a)

(
a− 3− γ

γ + 1

)
+ η

(
4

γ + 1
− a

)
∓K

√
a− 3− γ

γ + 1

c = ε

√
(3− γ)(γ − 1)

2(γ + 1)

(
ξ
√

1− a∓ η
√
a− 3− γ

γ + 1
−K

)
, ε = ±1 ,
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where we denote
ξ =

x− x0
t− t0

, η =
y − y0
t− t0

.

To the self-similar form of the two-dimensional anisentropic version of (1.1) we
associate the self-similar Mach number ([12]):

M̃ =
1

c

√
(vx − ξ)2 + (vy − η)2.

Remark 4. For the two significant solutions mentioned above we compute M̃≡
√

2>1

and respectively M̃ ≡ constant = 2√
3−γ > 1. This is in contrast with the details of

Zhang and Zheng irregular interaction ([12]) which allows a coexistence of pseudo

supersonic regions (M̃ > 1) and pseudo subsonic regions (M̃ < 1).

Remark 5. Quantifiable “amount” of genuine nonlinearity. The two exemplifying
solutions above are taken from an exhaustive list of solutions with a suggestive suit-
able structure ([2]). • The hodograph of the first of these solutions is structured by
three characteristic genuinely nonlinear fields (two families of conical helices and a
family of horizontal circles) − it appears to be a characteristic surface with three
gnl characteristic systems of coordinates. We are able in this case to present the
first significant solution in three distinct manners as a regular interaction of mul-
tidimensional simple waves solutions. The first mentioned solution appears to be
associated locally to a set of three concurrent and distinct structures [multidimen-
sional wave-wave regular interaction structures; Riemann−Burnat representations]
([2]). • The hodograph of the second of these solutions is structured by three char-
acteristic fields too (three families of straightlined hodograph characteristic fields)
of which two are non-horizontal and appear to be genuinely nonlinear and the third
is horizontal and shows a linearly degenerate character. In this case we dispose of a
single gnl hodograph system of characteristic coordinates. The mentioned solution
appears to be associated locally to a single wave-wave regular interaction structure
[Riemann−Burnat representation] ([2]).

2. “Differential” approach of a Martin type.

2.1. Anisentropic context. Details of a Martin type approach. An anisen-
tropic flow is present in the region behind a shock discontinuity which propagates
with a non-uniform velocity [unsteady one-dimensional; curved shock path; cf. the
theory of the compressive piston] or in the region behind a curved shock [steady
two-dimensional; rotational]. Because, the jump of the entropy through the shock
depends on the velocity of the shock [one-dimensional] or on the inclination of the
shock line [two-dimensional; rotational].

The Burnat type approach 1.1−1.3, leading to a wave-wave regular interaction
structure, is valid for both isentropic and anisentropic versions of (1.1). In particular
for the case of two independent variables. This approach provides a pair of classes
of solutions of this mentioned system [Burnat type wave and wave-wave regular
interaction solutions]. • In a strictly anisentropic context the Burnat type pair of
classes will be parallelled here below [sections 2.2−2.4] by a Martin type pair of
classes.

In a Martin type approach ([8]) we interchange the pairs of independent variables

x, t [or x, y] with ψ, p [usual notations] on the [natural] assumptions ∂p
∂t

∂ψ
∂x−

∂p
∂x

∂ψ
∂t 6=0

[or, respectively, ∂p∂x
∂ψ
∂y−

∂p
∂y

∂ψ
∂x 6=0]. A Martin type approach represents the solution



WAVE-WAVE INTERACTIONS OF A GASDYNAMIC TYPE 519

of the system (1.1) in two independent variables through an entity ξ [unsteady one-
dimensional] or through a couple of entities ξ, η [steady two-dimensional; rotational]
fulfilling each a Monge−Ampère type equation in the independent variablesψ, p ([4]).

Unsteady one-dimensional representation

vx=
∂ξ

∂ψ
, t=

∂ξ

∂p
, x=

∫ (
∂ξ

∂ψ

∂2ξ

∂p∂ψ
+

1

ρ

)
dψ+

(
∂ξ

∂ψ

∂2ξ

∂p2

)
dp. (2.1)

where ξ fulfils the Monge−Ampère type equation ([8])

∂2ξ

∂p2
∂2ξ

∂ψ2
−
(
∂2ξ

∂p∂ψ

)2

=−ζ2(p, ψ)≡ ∂

∂p

(
1

ρ

)
≡− 1

ρ2c2
(2.2)

with ρ=ρ(p, ψ) and c(p, ψ)=

√(
∂ρ
∂p

)
−1
S an ad hoc sound speed.

Steady two-dimensional rotational supersonic representation

x=
∂η

∂p
, y=−∂ξ

∂p
, vx=

∂ξ

∂ψ
, vy=

∂η

∂ψ
, (2.3)

where ξ and η fulfil the same Monge−Ampère type equation ([4])

4F

[(
∂2ξ

∂p∂ψ

)2
− ∂

2ξ

∂p2
∂2ξ

∂ψ2

]
−4
(
∂ξ

∂ψ

∂F

∂p

)
∂2ξ

∂p∂ψ
+2

(
∂ξ

∂ψ

∂F

∂ψ

)
∂2ξ

∂p2
+

{(
∂F

∂p

)2
−2

[
F−
(
∂ξ

∂ψ

)2]
∂2F

∂p2

}
=0.

(2.4)

The entities η and ξ are connected yet: a given solution ξ of (2.4) is paired by a
computed [in terms of ξ] solution η of (2.4).

Remark 6. The representations (2.1)−(2.4) result in presence of a conservation
laws form of the gasdynamic system: a restriction, in contrast with the Burnat
constructive availability. • The steady two-dimensional rotational and supersonic
representation corresponds to a natural adaptation of the Martin’s unsteady one-
dimensional details ([4]).

The hyperbolicity of (1.1) results in the hyperbolicity of the Monge−Ampère
type equation associated. In the steady two-dimensional rotational case we have to
add, to provide hyperbolicity, the restriction of a supersonic character of the flow.

Remark 7. The anisentropic description has a pseudo isentropic character. Pre-
cisely: in each of the two mentioned cases [unsteady one-dimensional; steady two-
dimensional, rotational] the degenerate fields [particle lines; streamlines] are not
characteristic ([4]).

Remark 8. We are left [cf. Remark 7], for each of the mentioned cases, with
two genuinely nonlinear characteristic fields − which are in correspondence with
the two characteristic fields of a Monge−Ampère type equation ([4]). For example,
in the steady two-dimensional, rotational and supersonic (V 2− c2 > 0) case the
characteristic directions for (2.4) in the plane p, ψ are given by(

dp

dψ

)
±

=
2F ∂2ξ

∂p∂ψ −
∂F
∂p

∂ξ
∂ψ ±

√
∆

−2F ∂
2ξ
∂p2

, ∆=
4

ρ2c2
v2y
(
V 2−c2

)
, V 2 =v2x+v2y . (2.5)

We have

−V 2dy +
1

ρc

[
cvx ± vy

√
V 2 − c2

]
dψ = 0

vy

[
vydvx − vxdvy ∓

1

ρc

√
V 2 − c2dp

]
= 0

along the characteristics C±

of (2.4).
. (2.6)
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The Mach lines C± of the gasdynamic system in the physical plane and the charac-
teristics C± [(2.5)] of the Monge−Ampère type equation (2.4) are in correspondence.
In fact, we get from (2.6)1 and dψ = −(ρvy)dx+ (ρvx)dy

−V 2dy +
1

ρc

[
cvx±vy

√
V 2−c2

]
(vxdy + vydx) = 0

along the characteristics C±

of (2.4)

which results in

dy

dx
= −cvx ± vy

√
V 2−c2

cvy ∓ vx
√
V 2−c2

=
vxvy ± c

√
V 2−c2

v2x − c2
= λ±

along the characteristics C±
of (2.4)

where λ+ and λ− are the Mach eigenvalues of the gasdynamic system.

2.2. Martin type linearization. • Finding a solution to a Monge−Ampère type
equation [(2.2) or (2.4)] is a hard task generally. Incidentally, such a solution can
be constructed in presence of a geometrical Martin type linearization. • A Martin
type linearization appears to be an intermediate constructive element [parallel to
(1.3)]. • A linearization of a Martin type is available whether there exists for (2.2)
or (2.4) at least a pair of linear in ξ intermediate integrals [I+, I−] − constant along
a characteristic of the Monge−Ampère type equation considered

I+=R+=constant+(along C+), I−=R−=constant−(along C−). (2.7)

2.3. Nature of a Martin type linearization. Unsteady one-dimensional
gas dynamics. Burnat type approach vs. Martin type approach. • In
the unsteady one-dimensional isentropic gas dynamics a pair of intermediate inte-
grals of (2.2) F± ≡ ∂ξ

∂ψ ±
∫
ζ(p)dp can be identified directly, for ζ=ζ(p) in (2.2),

by using details of the Monge−Ampère representation (2.1) [vx = ∂ξ
∂ψ ] to tran-

scribe the well known Riemann invariance relations: vx ±
∫
ζ(p)dp = R∓. Two

approaches [Burnat type (associated to the Riemann invariance relations), Mar-
tin type (associated to the pair of intermediate integrals of (2.2) which transcribe
the isentropic Riemann invariance relations)] appear to be coincident in an isen-
tropic context. • Next, the two halves of this coincidence [Burnat half, Martin
half] are extended separately: cf. section 1 [Burnat half: a dimensional (possi-
bly anisentropic) extension] or cf. section 2 [Martin linearized half: an anisen-
tropic extension]. • In order to construct an anisentropic extension of the Mar-
tin linearization approach we have to identify some anisentropic pairs of linear
in ξ intermediate integrals of the Monge−Ampère equation associated to (1.1).
• There are few (six) cases of Martin linearization (see [9] for the one-dimensional
case, and [4] for the steady, rotational and supersonic two-dimensional case); in
contrast with the availability of a Burnat type construction. • Finally, we have
to compare the two parallel separate anisentropic extensions [Burnat type, Mar-
tin type] which are still initiated by an isentropic coincidence: to identify some
significant consonances and, concurrently, some nontrivial contrasts.

2.4. Details of a Martin type linearization. Pseudo simple waves solution.
Pseudo interaction solution. Riemann−Martin invariants. • If in (2.7)
R+, R− depend on the characteristic [C+, C−] we construct a pseudo interaction

solution by considering R+, R− as new independent variables to show (Martin
[9]) that in these independent variables the entities of the flow fulfil some linear
Euler−Poisson−Darboux equations [for which the solutions are well known]; we
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present these representations by

p=p(R+,R−), ψ=ψ(R+,R−), vx=vx(R+,R−), t= t(R+, R−), x=x(R+, R−) (2.8)

where x(R+,R−) results by quadratures. Reversing (2.8)4,5 into R±=R±(x, t) will
induce a form of solution (2.8), parallel to (1.4) [as R± have a characteristic nature].
We call R±(x, t) Riemann−Martin invariants.
• If in (2.7) R+ or R− are overall constants then a solution of the linear in ξ equation
I+≡R+ [or I−≡R−] appears to be automatically a solution of the mentioned
Monge−Ampère type equation. We use this solution to get a solution of (1.1) and
call the computed solution a pseudo simple waves solution.

Remark 9. We prove that the pseudo interaction hodograph (2.8) is not a Burnat
characteristic surface. Still, incidentally and essentially for the linearized approach,
this hodograph appears to be associated with an example of surface for which a char-
acteristic character persists − in a Martin sense. In the unsteady one-dimensional
case this results from the following relation between the Burnat type (~κ) and the
Martin type (~µ) hodograph characteristic directions

~µ±=

(
∂p

∂R±
,
∂vx
∂R±

,
∂S

∂R±

)t
=η∓~κ∓+η̃∓~κ0

with

S(R+,R−)≡F [ψ(R+,R−)], η∓=
1

Λ∓

∂vx
∂R±

, η̃∓=
∂S

∂R±
.

In the isentropic context the two approaches are coincident as η̃∓ ≡ 0.

Remark 10. In contrast with the Burnat type construction, a pseudo simple waves
solution has a two-dimensional hodograph and for it none of the characteristic fields
C± in the physical plane is made of straightlines generally.

Example 4. To ζ= ψν−1

pν+1

(
ν=−γ−12γ , integral ν, ν 6=0,1

)
in (2.2) two intermediate

integrals I±≡p ∂ξ∂p+ψ
∂ξ
∂ψ−ξ±

1
ν

(
ψ
p

)ν
correspond. We satisfy I+≡R+=0 by ξ= 1

ν

(
ψ
p

)ν
,

and calculate from (2.1)

p = −
(
ν + 1

2ν + 1

)ν
t2ν−1

(−x)ν
, vx =

2ν + 1

ν + 1

x

t
, ψ = −

(
ν + 1

2ν + 1

)ν+1
t2ν+1

(−x)ν+1
. (2.9)

This is a [local] pseudo simple waves solution of the gasdynamic system correspond-
ing to a certain region D⊂E (for example, a region of t>0, x<0). For this solution
we compute

|x|=Kα|t|kα, Kα=log
|x∗|
|t∗|kα

, α=−, 0,+, along Cα3(x∗, t∗) (2.10)

where for 1<γ<5
3 we have

k−=
2ν

ν+1
=−2

γ−1

γ+1
, k0 =

2ν+1

ν+1
=

2

γ+1
, k+ =2 .

Remark 11. The hodograph of a formal regular interaction of pseudo simple waves
solutions will be then made by glueing, along suitable M- characteristics [induced
on the hodograph surface by the characteristics of the Monge−Ampère type equa-
tion considered], a hodograph of a pseudo interaction solution with some suitable
hodographs of pseudo simple waves solutions.
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3. Final remarks.

Consonances of the two approaches [Burnat type; Martin type]. • The two ap-
proaches depend on the constructive presence of an intermediate element: the sys-
tem (1.3) for the Burnat type and, respectively, the possibility of a geometrical
linearization for the Martin type. • A Martin type approach may provide a hodo-
graph characteristic character in absence of a Burnat type characteristic character
[Remarks 5,9]. • Each of the two approaches result in a representation structured by
Riemann invariants [Riemann−Burnat or Riemann−Martin]. Cf. (1.4) or section
2.4.

Contrasts of the two approaches. • The Martin approach has a fragile character.
It requires dimensional restrictions [two independent variables], it is based on few
cases of geometrical linearization, it is initiated from a conservation laws form of the
system of equations (Remark 6). • The structure of a pseudo simple waves solution
is in contrast with the structure of a Burnat type simple waves solution [two-
dimensional hodograph (Remark 10) vs. one-dimensional hodograph (Definition 1.3)].

Other remarks. • Our analysis in section 1 suggests that a regular character reflects a
multidimensional and skew interaction construction generally. In Zhang and Zheng
irregular interaction structure ([12]) the contributing waves are one-dimensional
and orthogonal. • In two independent variables a simple waves solution appears
to be constant along linear characteristics. This behaviour appears to be lost in a
Burnat−Peradzyński dimensional hierarchy [see Examples 1−3 and section 1.2] or
in a Martin anisentropic hierarchy [cf. Remark 10].

REFERENCES

[1] M. Burnat, The method of characteristics and Riemann’s invariants for multidimensional

hyperbolic systems, Sibirsk. Math. J., 11 (1970), 279−309.

[2] L.F. Dinu, Multidimensional wave-wave regular interactions and genuine nonlinearity,
Preprint Series of Newton Institute for Math. Sci., Cambridge UK, No. 29, 2006. This work

has been essentially considered in the classifying paper J. Li and Y. Zheng, Interaction
of four rarefaction waves in the bi-symmetric class of the two-dimensional Euler equations,

Commun. Math. Phys., 296 (2010), 303−321

[3] L.F. Dinu and M.I. Dinu, Nondegeneracy, from the prospect of wave-wave regular interac-
tions of a gasdynamic type, Proceedings of the International Conference on Mathematical
and Numerical Aspects of Waves, University of Reading UK, p.461, 2007.

[4] L.F. Dinu and M.I. Dinu, Martin’s “differential” approach, Preprint Series of Newton Insti-
tute for Math. Sci., Cambridge UK, No. 21, 2009.

[5] E.V. Ferapontov and K.R. Khusnutdinova, On integrability of (2+1)-dimensional quasi-

linear systems, Commun. Math. Phys., 248 (2004), 187−206, .
[6] E.V. Ferapontov and K.R. Khusnutdinova, The Haahtjes tensor and double waves in

multidimensional systems of hydrodynamic type: a necessary condition for integrability, Proc.

Roy. Soc., A 462 (2006), 1197-1219,
[7] P.D. Lax, Hyperbolic systems of conservation laws (II), Comm. Pure and Appl. Math., 10

(1957), 537−566.
[8] M.H. Martin, A new approach to problems in two dimensional flow, Quarterly Appl. Math.,

8 (1950), 137−150.
[9] M.H. Martin, The Monge−Ampère partial differential equation rt− s2 + λ2 = 0, Pacific J.

Math., 3 (1953), 165−187.
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Sjögreen, Bjorn 1047

Soares, Ana Jacinta 407

Spinolo, Laura V. 957

Spirito, Stefano 967

Strani, Marta 975

Suzuki, Masahiro 817

Terracina, Andrea 983

Thein, Ferdinand 651

Tkachev, Dmitry 991
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