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Preface

This volume contains the Proceedings of the XVII International Conference
(HYP2018) on “Hyperbolic Problems: Theory, Numerics, Applications”, which
was held at the Pennsylvania State University, University Park, on June 25–29,
2018. This conference was the 17-th in a series started in 1986 in St. Etienne
(France). Since then, these meetings have become established as the foremost
international forums in their discipline, bringing together researchers, students
and practitioners, with interest in the theoretical, computational and applied
aspects of hyperbolic problems.

The HYP2018 conference was attended by over 230 participants. It featured
7 plenary and 16 invited lectures, while 170 contributed talks were given within
special sessions. In addition, a poster session was organized, with prizes given to
the best posters among junior participants.

The meeting highlighted a number of topics which have seen vigorous activity
and significant progress in recent years. In particular: the theory of complex
fluids and multi-phase flow, with applications to biological and engineering prob-
lems, the Einstein equations of general relativity, transport equations with rough
coefficients, models of traffic flow on a network of roads, and collective dynamics
of many-body systems.

Hyperbolic conservation laws are a classical subject that goes back to L. Eu-
ler (1755), and has seen contributions by some of the greatest mathematicians.
Yet, the mathematical theory is far from complete and many fundamental ques-
tions remain unsolved. The depth and complexity of the problems make this a
very challenging field, requiring a constant stream of new ideas and methods.
Moreover, the ever increasing number of applications provides a strong stimu-
lus to search for more efficient computational methods. For all these reasons,
hyperbolic problems remain an extremely active research area.

The contributions collected in this volume cover a wide range of topics. Some of
these represent the latest developments on classical multi-dimensional problems,
dealing with shock reflections and with the stability of vortices and boundary
layers. Other contributions provide sharp results on the structure and regularity
of solutions to conservation laws, or discuss the fine line between well-posedness
and ill-posedness for transport equations with rough coefficients, and for the
equations of inviscid fluid flow. Further progress is reported at the interface
between hyperbolic and kinetic models, including the hydrodynamic limit of the
Boltzmann equation. Kinetic and macroscopic models for collective dynamics
of many-body systems have attracted much interest in the past few years, and
are also covered in this volume. Finally, a large number of papers are devoted to
advances in computational methods, with diverse applications such as: submarine
avalanches, tsunami waves, chemically reacting flows, solitary waves, gas flow on
a network of pipelines, traffic flow with multiple types of vehicles, etc. . .
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We believe that the present volume will provide a timely survey of the state
of the art, paving the way for further progress in this exciting field.

We take this opportunity to thank all the members of the HYP2018 Scien-
tific Committee (listed as https://www.hyp2018.psu.edu/scientific-committee/)
for their expertise in selecting an outstanding group of plenary and invited speak-
ers. We are also extremely thankful to all other members of the Organizing Com-
mittee and to the support staff (listed as
https://www.hyp2018.psu.edu/organizers/), who contributed in an essential way
to the success of the event.

Finally, we gratefully acknowledge the support from the following Institutions:

• National Science Foundation,
• Office of Naval Research,
• Eberly College of Science,
• Penn State University,
• Institute for Mathematics and its Applications, Minneapolis,
• Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh,
• Department of Mathematics at Penn State University,
• Department of Mathematics, University of Pittsburgh,
• Institute for CyberScience at Penn State,
• Fluid Dynamics Research Consortium at Penn State,
• Center for Interdisciplinary Mathematics at Penn State.

State College, July 2019

Alberto Bressan
Marta Lewicka
Dehua Wang
Yuxi Zheng
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UNIQUENESS AND STABILITY

FOR THE SHOCK REFLECTION-DIFFRACTION PROBLEM

FOR POTENTIAL FLOW

Gui-Qiang G. Chen

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK

Mikhail Feldman

Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA

Wei Xiang

City University of Hong Kong, Kowloon Tong, Hong Kong, China

Abstract. When a plane shock hits a two-dimensional wedge head on, it ex-
periences a reflection-diffraction process, and then a self-similar reflected shock

moves outward as the original shock moves forward in time. The experimen-

tal, computational, and asymptotic analysis has indicated that various patterns
occur, including regular reflection and Mach reflection. The von Neumann con-

jectures on the transition from regular to Mach reflection involve the existence,
uniqueness, and stability of regular shock reflection-diffraction configurations,

generated by concave cornered wedges for compressible flow. In this paper, we

discuss some recent developments in the study of the von Neumann conjec-
tures. More specifically, we present our recent results of the uniqueness and

stability of regular shock reflection-diffraction configurations governed by the

potential flow equation in an appropriate class of solutions. We first show that
the transonic shocks in the global solutions obtained in Chen-Feldman [19] are

convex. Then we establish the uniqueness of global shock reflection-diffraction

configurations with convex transonic shocks for any wedge angle larger than the
detachment angle or the critical angle. Moreover, the stability of the solutions

with respect to the wedge angle is also shown. Our approach also provides an

alternative way of proving the existence of the admissible solutions established
first in [19].

2000 Mathematics Subject Classification. Primary: 35M12, 35C06, 35R35, 35L65, 35L70,

35L67, 35J70, 76H05, 35B45, 35B35, 35B40, 35B36, 35B38; Secondary: 35L20, 35J67, 76N10,

76L05, 76J20, 76N20, 76G25.
Key words and phrases. Compressible flow, conservation laws, potential flow equation, tran-

sonic shock, nonlinear elliptic equations, mixed-type equation, regular reflection, Mach reflection,

shock reflection-diffraction, admissible solutions, free boundary, convexity, uniqueness, stability.
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GUI-QIANG G. CHEN, MIKHAIL FELDMAN AND WEI XIANG

1. Introduction. We survey some recent developments in the mathematical anal-
ysis of the shock reflection-diffraction problem for potential flow and the correspond-
ing von Neumann conjectures on the existence, uniqueness, and stability of regular
shock reflection-diffraction configurations for the transition from regular to Mach
reflection. The shock reflection-diffraction problem is a lateral Riemann problem
and has been not only longstanding open in fluid mechanics but also fundamental
in the mathematical theory of multidimensional conservation laws.

When a planar shock hits a concave cornered wedge, the incident shock in-
teracts with the wedge, leading to the occurrence of shock reflection-diffraction
(cf. [12, 53]). Beginning from the work of E. Mach [45] in 1878, various patterns of
shock reflection-diffraction configurations have been observed experimentally and
later numerically, including regular reflection and Mach reflection. The existence
of the regular reflection solutions for potential flow has been now fully understood
mathematically (see [17, 19]), by reducing the shock reflection-diffraction problem
to a free boundary problem, where the unknown reflected shock is regarded as a free
boundary. Then a natural followup fundamental question is to study the uniqueness
and stability of the solutions we have obtained.

For the uniqueness problem, it is necessary to restrict to a class of solutions.
Recent results [24,25,33,46] show the non-uniqueness of solutions with planar shocks
in the class of entropy solutions with shocks of the Cauchy problem (initial value
problem) for the multidimensional compressible Euler equations (isentropic and
full). Our setup is different – the problem for solutions with shocks for potential
flow is on the domain with boundaries, so these non-uniqueness results do not apply
directly. However, these results indicate that it is natural to study the uniqueness
and stability problems in a more restricted class of solutions. In this paper, we
show the uniqueness in the class of self-similar solutions of regular shock reflection-
diffraction configurations with convex transonic shocks, which are called admissible
solutions; see the detailed definition in §3. Technically, restricting to the class of
admissible solutions allows us to reduce the uniqueness problem for shock reflection-
diffraction to a corresponding uniqueness problem for solutions of a free boundary
problem for a nonlinear elliptic equation, which is degenerate for the supersonic
case (see Fig. 2.1 below).

A key property of admissible solutions which we employ in the uniqueness proof
is that the admissible solutions converge to the unique normal reflection solution
as the wedge angle tends to π

2 . Then the outline of the uniqueness argument is the
following: If there are two different admissible solutions, defined by the potential
functions ϕ and ϕ∗, for some wedge angle θ∗w < π

2 , then it suffices to:

(i) construct continuous families of solutions parametrized by the wedge angle
θw ∈ [θ∗w,

π
2 ], starting from ϕ and ϕ∗, respectively, in an appropriate norm;

(ii) prove local uniqueness: If two admissible solutions for the same wedge angle
are close in the norm mentioned above, then they must be equal.

Combining this with the fact that both families converge to the unique normal
reflection as θw → π

2−, we conclude a contradiction.
Therefore, it remains to perform the two steps described above. Both steps can

be achieved if we linearize the free boundary problem around an admissible solution,
and then show that the linearization is sufficiently regular so that the solutions for
close wedge angles can be constructed by the implicit function theorem. Indeed,

3



THE SHOCK REFLECTION-DIFFRACTION PROBLEM

this approach works for one regular shock reflection-diffraction case – the subsonic-
away-from-sonic case (see §5 for more details).

However, it turns out that the linearization does not have such properties for the
other case – the supersonic case, owing to the elliptic degeneracy near the sonic arc
and relatively lower regularity of admissible solutions near the corner point between
the shock and the sonic arc. For this case, instead, we develop a nonlinear approach:
We prove directly the local uniqueness property and employ it to perturb any given
admissible solution ϕ for the wedge angle θw, that is, to construct an admissible
solution close to ϕ for all wedge angles that are sufficiently close to θw by using
the Leray-Schauder degree argument in a small iteration set. We note that, in [19],
the solutions have also been constructed by the Leray-Schauder degree argument,
but in a large iteration set, i.e. a subset in a space determined by some weighted
and scaled Ck,α norms, with bounds by the constants sufficiently large so that the
apriori estimates of the admissible solutions assure that a fixed point of the iteration
map does not occur at the boundary of the iteration set. In the present case of small
iteration set, the similar property is shown by using the local uniqueness.

Our proof of the local uniqueness is based on the convexity of the reflected-
diffracted transonic shock, established in Chen-Feldman-Xiang [21]. We note that
the convexity of the shocks is consistent with physical experiments and numerical
simulations; see e.g. [4,12,26,28,34–39,42,47,50,52,54], and the references therein.
Also see [10, 11, 41, 43, 44, 48, 50] for the convexity of transonic shocks in numerical
Riemann solutions of the Euler equations for compressible fluids. Mathematically,
the Rankine-Hugoniot conditions on the shock whose location is unknown, together
with the nonlinear equation in the elliptic and hyperbolic regions, enforce a re-
striction to possible geometric shapes of the transonic shock. Moreover, one of our
observations is that the convexity of transonic shocks is not a local property. In
fact, the uniform convexity is a result of the interaction of the cornered wedge and
the incident shock, since the reflected shock remains flat when the wedge is a flat
wall for the normal shock reflection. In addition, for this problem, it seems to be
difficult to apply the methods directly as in [5–7,29,49], owing to the difference and
the more complicated structure of the boundary conditions.

In [21], we have developed an approach in which the global properties of solutions
are incorporated in the proof of the convexity of transonic shocks. In particular,
we have introduced a general set of conditions and employed the approach to prove
the convexity of transonic shocks under these conditions. As a direct corollary,
we have proved the uniform convexity of transonic shocks in the two longstanding
fundamental shock problems – the shock reflection-diffraction problem by wedges
and the reflection problem for supersonic flows past solid ramps.

Moreover, as a byproduct of our uniqueness proof, we have developed a new way
of establishing the existence of global solutions of the shock reflection-diffraction
problem up to the detachment angle or the critical angle, based on the fine convexity
structure. Our approach is also helpful for other related mathematical problems
including free boundary problems with degeneracy.

The previous works on unsteady flows with shocks in self-similar coordinates
include the following: The problem of shock reflection-diffraction by a concave cor-
nered wedges for potential flow has been systematically analyzed in Chen-Feldman
[17, 19] and Bae-Chen-Feldman [1], where the existence of regular shock reflection-
diffraction configurations has been established up to the detachment wedge an-
gle or the critical angle for potential flow. For the Mach reflection, S. Chen [23]
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proved the local stability of flat Mach configuration in self-similar coordinates. Also
see [8, 9, 16, 27, 40] for the unsteady transonic small disturbance equation and the
nonlinear wave system, [51] for the Chaplygin gas, and [56] for the pressure-gradient
system. Meanwhile, other problems have been tackled. For the shock diffraction
problem, Chen-Feldman-Hu-Xiang [20] showed that regular shock configurations
cannot exist for potential flow. For supersonic flow past a solid ramp, Elling-
Liu [30] obtained a first rigorous unsteady result under certain assumptions for
potential flow. Then Bae-Chen-Feldman [2,3] succeeded to remove the assumptions
in [30] and established the existence theorem for global shock reflection configura-
tions so that the steady supersonic weak shock solution as the long-time behavior
of an unsteady flow for all physical parameters, via new mathematical techniques
developed first in Chen-Feldman [19]. See also [13–15, 31, 32] and the references
therein for the steady transonic shocks over two-dimensional wedges.

The organization of this paper is the following: In §2, we introduce the free
boundary problem for the shock reflection-diffraction problem. Then the existence
and regularity results obtained in [19] are given in §3. In §4, we describe the result
and present the main steps in the proof of the convexity of the regular reflected-
diffracted transonic shock based on [21]. In §5, we discuss our recent result and out-
line the proof on the uniqueness and stability of regular shock reflection-diffraction
configurations.

2. The Potential Flow Equation and the Shock Reflection-Diffraction
Problem. In this section we formulate the shock reflection-diffraction problem as a
free boundary problem for the potential flow equation in the self-similar coordinates.

2.1. The potential flow equation. The Euler equations for potential flow consist
of the conservation law of mass and Bernoulli’s law:

∂tρ+∇x · (ρv) = 0, (1)

∂tΦ +
1

2
|∇xΦ|2 + i(ρ) = B0, (2)

where ρ is the density, Φ is the velocity potential so that v = ∇xΦ, B0 is the
Bernoulli constant determined by the incoming flow and/or boundary conditions,

x = (x1, x2) ∈ R2, and i(ρ) =
∫ ρ

1
p′(s)
s ds for the pressure function p = p(ρ). For

polytropic gas, by scaling,

p(ρ) =
ργ

γ
, c2(ρ) = ργ−1, i(ρ) =

ργ−1 − 1

γ − 1
, γ > 1,

where c(ρ) is the sound speed.
The system is invariant under the self-similar scaling:

(x, t)→ (αx, αt), (ρ, u, v,Φ)→ (ρ, u, v,
Φ

α
) for α 6= 0.

Thus, we can seek self-similar solutions of the form:

(ρ, u, v)(x, t) = (ρ, u, v)(ξ), Φ(x, t) = t
(
ϕ(ξ) +

1

2
|ξ|2
)

for ξ = (ξ1, ξ2) = x
t ,

where ϕ is called a pseudo–velocity potential that satisfies ∇ξϕ = (u− ξ1, v− ξ2) =
(U, V ) which is called a pseudo-velocity. Then the pseudo–potential function ϕ
satisfies the following equation for self–similar solutions:

div(ρDϕ) + 2ρ = 0, (3)

5
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where the density function ρ = ρ(|Dϕ|2, ϕ) is determined by

ρ(|Dϕ|2, ϕ) =
(
ργ−1

0 − (γ − 1)(ϕ+
1

2
|Dϕ|2)

) 1
γ−1 , (4)

and the divergence div and gradient D are with respect to the self–similar variables
ξ, and ρ0 is a positive constant (to be given in Problem 2.1 below) so that ργ−1

0 =
(γ − 1)B0 + 1. Therefore, the potential function ϕ is governed by the following
second-order potential flow equation:

div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0. (5)

Equation (5) is a second-order equation of mixed elliptic-hyperbolic type: It is
elliptic if and only if |Dϕ| < c(|Dϕ|2, ϕ), which is equivalent to

|Dϕ| < c?(ϕ, γ) :=

√
2

γ + 1

(
ργ−1

0 − (γ − 1)ϕ
)
. (6)

If ρ is a constant, then (3)–(4) imply that the corresponding pseudo-velocity
potential ϕ is of the form:

ϕ(ξ) = −1

2
|ξ|2 + (u, v) · ξ + k

for constants u, v, and k. Such a solution is called a uniform or constant state.

2.2. Weak solutions and the Rankine-Hugoniot conditions. Since shocks are
involved in the problem under consideration, we define the notion of weak solutions
of equation (5), which admits the shocks.

Definition 2.1. A function ϕ ∈W 1,1
loc (Ω) is called a weak solution of (5) if

(i) ργ−1
0 − ϕ− 1

2 |Dϕ|2 ≥ 0 a.e. in Ω,

(ii) (ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1
loc(Ω))2,

(iii) For every ζ ∈ C∞c (Ω),
∫

Ω

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0.

For a piecewise smooth solution ϕ divided by a shock, it is easy to verify that ϕ
satisfies the conditions in Definition 2.1 if and only if ϕ is a classic solution of (5)
in each smooth subregion and satisfies the following Rankine-Hugoniot conditions
across the shock:

[ρ(|Dϕ|2, ϕ)Dϕ · ν]S = 0, (7)

[ϕ]S = 0, (8)

where ν is a unit normal to S. Condition (7) is due to the conservation of mass,
while condition (8) is due to the irrotationality.

There are fairly many weak solutions to the given conservation laws. The physi-
cally relevant solutions must satisfy the entropy condition. For potential flow, the
discontinuity of Dϕ satisfying the Rankine-Hugoniot conditions (7)–(8) is called a
shock if it satisfies the following entropy condition: The density ρ increases across a
shock in the pseudo–flow direction. From (7), the entropy condition indicates that
the normal derivative function ϕν = Dϕ · ν on a shock always decreases across the
shock in the pseudo–flow direction.

6
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2.3. Shock reflection-diffraction problem. The incident shock separates two
constant states: state (0) with density ρ0 and velocity v0 = (0, 0) ahead of the
shock, and state (1) with density ρ1 and velocity v1 = (u1, 0) behind the shock,
where the entropy condition holds: ρ1 > ρ0 on the shock. The incident shock moves
from the left to the right and hits the vertex of wedge:

W := {x : |x2| < x1 tan θw, x1 > 0}
at the initial time. The slip boundary condition v · ν = 0 is prescribed on the solid
wedge boundary.

Then the shock reflection-diffraction problem can be formulated as follows:

Problem 2.1 (Initial-boundary value problem). Seek a solution of system (1)–(2)

for B0 =
ργ−1
0 −1
γ−1 with the initial condition at t = 0:

(ρ,Φ)|t=0 =





(ρ0, 0) for |x2| > x1 tan θw, x1 > 0,

(ρ1, u1x1) for x1 < 0,
(9)

and the slip boundary condition along the wedge boundary ∂W :

∇xΦ · ν|∂W×R+ = 0, (10)

where ν is the exterior unit normal to ∂W .

The initial-boundary value problem, Problem 2.1, is a lateral Riemann prob-
lem with boundary ∂W × R+ in the (x, t)–coordinates. Since state (1) does not
satisfy the slip boundary condition, the solution must differ from state (1) behind
the shock so that the shock reflection-diffraction configurations occur. These con-
figurations are self-similar, so the problem can be reformulated in the self-similar
coordinates ξ = (ξ1, ξ2). Depending on the data, there may be various patterns
of shock reflection-diffraction configurations, including regular reflection and Mach
reflection.

By the symmetry of the problem with respect to the ξ1–axis, we consider only
the upper half-plane {ξ2 > 0} and prescribe the condition ϕν = 0 on the symmetry
line {ξ2 > 0}. Note that state (1) satisfies this condition.

We study self-similar solutions of Problem 2.1. Thus we give a formulation for
the solution of Problem 2.1 in the self-similar coordinates ξ = (ξ1, ξ2). Let

Λ = R2
+ \ {ξ : ξ1 > 0, 0 < ξ2 < ξ1 tan θw},

where R2
+ = R2 ∩ {ξ1 > 0}. Then, following Definition 2.1, we have

Definition 2.2. ϕ ∈ C0,1(Λ) is a weak solution of the shock reflection-diffraction
problem if ϕ satisfies equation (5) in Λ in the weak sense, the boundary condition:

∂νϕ = 0 on ∂Λ, (11)

and the asymptotic condition:

lim
R→∞

‖ϕ− ϕ‖0,Λ\BR(0) = 0, (12)

where

ϕ̄ =

{
ϕ0 for ξ1 > ξ0

1 , ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 , ξ2 > 0,

and ξ0
1 > 0 is the location of the incident shock.

7
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2.4. Solutions of regular reflection structure. We will show that, for certain
values of parameters, there exist self-similar solutions of the regular reflection struc-
ture for the shock reflection-diffraction problem and, moreover, these solutions are
unique in the class of self-similar solutions of such a structure.

Figs. 2.1–2.2 show two different regular shock reflection-diffraction configurations
in the self-similar coordinates. The regular reflection solutions are piecewise smooth;
more precisely, they are smooth away from the incident and reflected-diffracted
shocks, as well as the sonic circle (which is a weak discontinuity) for the supersonic
case as shown in Fig. 2.1.

Figure 2.1. Supersonic
regular shock reflection-
diffraction configuration

Figure 2.2. Subsonic
regular shock reflection-
diffraction configuration

A necessary condition for the existence of piecewise-smooth regular shock
reflection-diffraction configurations is the existence of the constant state (2) with the
pseudo-potential ϕ2 that satisfies both the slip boundary condition on the wedge
and the Rankine-Hugoniot conditions with state (1) across the flat shock S1 =
{ϕ1 = ϕ2}, which passes through point P0 where the incident shock meets the
wedge boundary. Therefore, it requires the following three conditions at P0:

Dϕ2 · νw = 0,

ϕ2 = ϕ1,

ρ(|Dϕ2|2, ϕ2)Dϕ2 · νS1
= ρ1Dϕ1 · νS1

,

(13)

where νw is the outward normal to the wedge boundary, and νS1
= D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| .

It is well-known (see e.g. [19]) that, for given parameters (ρ0, ρ1) of states (0) and
(1), there exists a detachment angle θd

w ∈ (0, π2 ) such that the algebraic equations

(13) have two solutions for each wedge angle θw ∈ (θd
w,

π
2 ), which become equal

when θw = θd
w. Then two two-shock configurations occur at P0 when θw ∈ (θd

w,
π
2 ).

For each θw, state (2) with the smaller density is called a weak state (2). In this
paper, state (2) always refers to the weak one, since the strong state (2) is ruled out
by the stability/continuity criterion as introduced first by Chen-Feldman in [17];
see also [19]. Depending on the wedge angle, state (2) can be either supersonic
or subsonic at P0. Moreover, for θw near π

2 (resp. for θw near θd
w), state (2) is

supersonic (resp. subsonic) at P0. The type of state (2) at P0 determines the type
of reflection, i.e. supersonic or subsonic, as shown in Figs. 2.1–2.2.

8
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We consider solutions of the structure shown in Figs. 2.1–2.2. Outside of region
Ω, the flow consists of the uniform states (0), (1), and (2) as indicated on the pic-
tures, separated by the straight shocks. In particular, the incident shock separating
states (0) and (1) within Λ is the half-line S+

0 = {(ξ1, ξ2) : ξ1 = ξ1,P0
, ξ2 > ξ2,P0

}.
The flow is non-uniform and pseudo-subsonic in Ω. Here Ω is an open bounded con-
nected domain, and ∂Ω = Γshock ∪ Γsonic ∪ Γwedge ∪ Γsym, where curve Γshock with
endpoints P1 and P2 ∈ {ξ2 = 0} in the supersonic case (resp. P0 and P2 ∈ {ξ2 = 0}
in the subsonic case) is a transonic shock which separates a constant state (1) outside
Ω from a pseudo-subsonic (non-constant) state inside Ω, and Γsonic ∪ Γwedge ∪ Γsym

is the fixed boundary with arc Γsonic between points P1 and P4 of the pseudo-sonic
circle of state (2) (we also use notation Γsonic = {P0} for the subsonic reflection case
as shown in Fig. 2.2), the line segment Γwedge is the part of ∂Ω on the wedge bound-
ary, i.e. Γwedge = P3P4 in the supersonic case and Γwedge = P0P3 in the subsonic
case, and Γsym = P2P3 is the part of ∂Ω on the symmetry line {ξ2 = 0, ξ1 < 0}.

3. Existence and Regularity of Regular Shock Reflection-Diffraction Con-
figurations. We first notice that a key obstacle to the existence of regular shock
reflection-diffraction configurations is an additional possibility that, at the critical
wedge angle θc

w ∈ (θd
w,

π
2 ), the reflected shock P0P2 may attach to the wedge vertex

P3, i.e. P2 = P3. We can rule out such a solution if u1 ≤ c1. In the opposite case
u1 > c1, there would be a possibility that the reflected shock is attached to the
wedge vertex, as the experiments show (e.g. [53, Fig. 238]). We note that the con-
dition on (u1, c1) can be explicitly expressed through parameters (ρ0, ρ1) of states
(0) and (1), besides γ ≥ 1, by using (4) and the Rankine-Hugoniot conditions on
the incident shock. Recall that ρ1 > ρ0. It can be shown that there exists ρc > ρ0

such that

u1 ≤ c1 iff ρ1 ∈ [ρ0, ρ
c], u1 > c1 iff ρ1 ∈ [ρc,∞).

Now we state the existence and regularity results for the solutions of shock
reflection-diffraction problem which have the regular reflection structure as on Fig.
2.1–2.2, established in Chen-Feldman [19]. We prove these results in the class of
admissible solutions of the regular reflection problem, defined as follows:

Definition 3.1. Let θw ∈ (θd
w,

π
2 ). A function ϕ ∈ C0,1(Λ) is an admissible solution

of the regular reflection problem (5) and (11)–(12) if ϕ is a solution in the sense of
Definition 2.2 and satisfies the following properties:

(i) The structure of solutions is as follows:

• If |Dϕ2(P0)| > c2, then ϕ is of the supersonic regular shock reflection-
diffraction configuration described in §2.4 and shown on Fig. 2.1 and
satisfies:
The reflected-diffracted shock Γshock is C2 in its relative interior. Curves
Γshock, Γsonic, Γwedge, and Γsymm do not have common points except their
endpoints.
ϕ satisfies the following properties:

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ (S+
0 ∪ P0P1P2)),

ϕ ∈ C1(Ω) ∩ C3(Ω \ (Γsonic ∪ {P2, P3})),

9
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ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P1P2,

ϕ2 in region P0P1P4.

(14)

• If |Dϕ2(P0)| ≤ c2, then ϕ is of the subsonic regular shock reflection-
diffraction configuration described in §2.4 and shown on Fig. 2.2 and
satisfies:
The reflected-diffracted shock Γshock is C2 in its relative interior. Curves
Γshock, Γwedge, and Γsymm do not have common points except their end-
points.
ϕ satisfies the following properties:

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ (S+
0 ∪ Γshock)),

ϕ ∈ C1(Ω) ∩ C3(Ω \ {P0, P3}),

ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P2,

ϕ2(P0) at P0,

(15)

Dϕ|Ω(P0) = Dϕ2(P0).

Moreover, in both supersonic and subsonic cases, denote Γext
shock = Γshock ∪

{P0} ∪ Γ−shock, where Γ−shock is the reflection of Γshock with respect to the ξ1-
axis. Then curve Γext

shock is C1 in its relative interior.

(ii) Equation (5) is strictly elliptic in Ω \ Γsonic, i.e.

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic,

where, for the subsonic and sonic cases, we use notation Γsonic = {P0}.
(iii) ∂νϕ1 > ∂νϕ > 0 on Γshock, where ν is the normal to Γshock, pointing to the

interior of Ω.

(iv) ϕ2 ≤ ϕ ≤ ϕ1 in Ω.

(v) Let eS1
be the unit vector parallel to S1 := {ϕ1 = ϕ2}, oriented so that

eS1
·Dϕ2(P0) > 0:

eS1 = − (v2, u1 − u2)√
(u1 − u2)2 + v2

2

. (16)

Let eξ2 = (0, 1). Then

∂eS1 (ϕ1 − ϕ) ≤ 0, ∂ξ2(ϕ1 − ϕ) ≤ 0 on Γshock. (17)

Remark 3.1. It can be shown that Definition 3.1 is equivalent to the definition
of admissible solutions in [19]; see Definitions 15.1.1–15.1.2 there. Thus, all the
estimates and properties of admissible solutions shown in [19] hold for the admissible
solutions defined above. In particular, the admissible solutions converge (in an
appropriate sense) to the normal reflection solution as θw → π

2−.

Remark 3.2. For the supersonic case, eS1
defined by (16) has the expression:

eS1
=

P1 − P0

|P1 − P0|
.

10
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Moreover, in the supersonic (resp. subsonic/sonic) case, eS1 is tangential to Γshock

in its upper endpoint P1 (resp. P0), because (ϕ,Dϕ)|Ω = (ϕ2, Dϕ2) at that point,
and its orientation at that endpoint of Γshock is towards the relative interior of
Γshock.

Remark 3.3. Since the admissible solution ϕ is a weak solution in the sense of
Definition 2.2 and is of regularity as in (i) of Definition 3.1, it satisfies (5) classically
in Ω with the Rankine-Hugoniot conditions:

ϕ = ϕ1, ρ(|Dϕ|2, ϕ)Dϕ · ν = ρ1Dϕ1 · ν on Γshock, (18)

and the boundary condition:

∂νϕ = 0 on Γwedge ∪ Γsym. (19)

Remark 3.4. The admissible solution ϕ is not a constant state in Ω. Indeed, if
ϕ is a constant state in Ω, then ϕ = ϕ2 in Ω: This follows from both (14) for the
supersonic case (since ϕ is C1 across Γsonic) and property (ϕ,Dϕ) = (ϕ2, Dϕ2) at
P0 for the subsonic case. However, ϕ2 does not satisfy (19) on Γsym since v2 =
(u2, v2) = (u2, u2 tan θw) with u2 > 0 and θw ∈ (0, π2 ).

The following theorem shows that the admissible solution has additional regu-
larity and monotonicity properties.

Theorem 3.1 (Properties of admissible solutions). There exits a constant α =
α(ρ0, ρ1, γ) ∈ (0, 1

2 ) such that any admissible solution in the sense of Definition 3.1

with wedge angle θw ∈ (θd
w,

π
2 ) has the following properties:

(i) Additional regularity:

• If |Dϕ2(P0)| > c2, i.e. when ϕ is of the supersonic regular shock reflection-
diffraction configuration as in Fig. 2.1, it satisfies ϕ ∈ C1,α(Ω)∩C∞(Ω \
(Γsonic ∪ {P3})), and ϕ is C1,1 across Γsonic, including endpoints P1 and
P4. The reflected-diffracted shock P0P1P2 is C2,β up to its endpoints for
any β ∈ [0, 1

2 ), and C∞ except P1.

• If |Dϕ2(P0)| ≤ c2, i.e. when ϕ is of the subsonic regular shock reflection-
diffraction configuration as in Fig. 2.2, it satisfies

ϕ ∈ C1,β(Ω) ∩ C1,α(Ω \ {P0}) ∩ C∞(Ω \ {P0, P3})
for some β = β(ρ0, ρ1, γ, θw) ∈ (0, α] where β is non-decreasing with
respect to θw, and the reflected-diffracted shock Γshock is C1,β up to its
endpoints and C∞ except P0.

(ii) For each e ∈ Con(eS1
, eξ2),

∂e(ϕ1 − ϕ) < 0 in Ω, (20)

where the vectors eS1
and eξ2 are defined in Definition 3.1(v), and

Con(eS1
, eξ2) := {aeS1

+ beξ2 : a, b > 0}. (21)

(iii) Denote by νw the unit interior normal on Γwedge (with respect to Ω), i.e.

νw = (− sin θw, cos θw). Then ∂νw
(ϕ− ϕ2) ≤ 0 in Ω.

Remark 3.5. Con(eS1
, eη) = {aeS1

+beη : a, b > 0} is an open set; that is, it does
not include the directions of eS1

and eξ2 .

Now we state the results on the existence of admissible solutions.
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Theorem 3.2 (Global solutions up to the detachment angle for the case: u1 ≤ c1).
Let the initial data (ρ0, ρ1, γ) satisfy that u1 ≤ c1. Then, for each θw ∈ (θd

w,
π
2 ),

there exists an admissible solution of the regular reflection problem in the sense of
Definition 3.1. Note that these solutions satisfy the properties stated in Theorem
3.1.

Theorem 3.3 (Global solutions up to the detachment angle for the case: u1 > c1).
Let the initial data (ρ0, ρ1, γ) satisfy that u1 > c1. Then there is θc

w ∈ [θd
w,

π
2 )

such that, for each θw ∈ (θc
w,

π
2 ), there exists an admissible solution of the regular

reflection problem in the sense of Definition 3.1. Note that these solutions satisfy
the properties stated in Theorem 3.1.

If θc
w > θd

w, then, for the wedge angle θw = θc
w, there exists an attached shock

solution ϕ with all the properties listed in Definition 3.1 and Theorem 3.1(ii)–(iii)
except that P2 = P3. In addition, for the regularity of solution ϕ, we have

• For the supersonic case with θw = θc
w,

ϕ ∈ C∞(Ω\(Γsonic ∪ {P3})) ∩ C1,1(Ω\{P3}) ∩ C0,1(Ω),

and the reflected shock P1P2P3 is Lipschitz up to the endpoints, C2,β with any
β ∈ [0, 1

2 ) except point P3, and C∞ except points P1 and P3.

• For the subsonic case with θw = θc
w,

ϕ ∈ C∞(Ω\{P1, P3}) ∩ C1,β(Ω\{P3}) ∩ C0,1(Ω)

for β as in Theorem 3.1, and the reflected shock P1P2P3 is Lipschitz up to the
endpoints, C1,β except point P3, and C∞ except points P1 and P3.

In the next two sections, §4–§5, we show how the convexity of the transonic
shocks and the uniqueness of the admissible solutions can be achieved.

4. Convexity of Transonic Shocks in the Shock Reflection-Diffraction
Configurations. We first note that, for an admissible solution, Γshock is a graph
in any direction e ∈ Con := Con(eS1

, eη), where Con(eS1
, eη) is defined in (21).

For the subsonic/sonic reflections case, we denote P1 := P0 so that Γshock has end-
points P1 and P2 in all cases. More precisely, the following was shown in [19], as a
consequence of Theorem 3.1(ii):

Lemma 4.1. Let ϕ be an admissible solution. Denote φ := ϕ − ϕ1. Let τP1

be a unit tangent vector to Γshock at P1, directed into the interior of Γshock. Let
e ∈ Con, and let e⊥ be the orthogonal unit vector to e with e⊥ ·τP1

> 0. Let (S, T )
be the coordinates with respect to basis {e, e⊥} so that TP2

> TP1
. Then there exists

fe ∈ C1(R) such that

(a) Γshock = {S = fe(T ) : TP1
< T < TP2

}, Ω ⊂ {S < fe(T ) : T ∈ R},
P1 = (fe(TP1

), TP1
), P2 = (fe(TP2

), TP2
), and fe ∈ C∞(TP1

, TP2
);

(b) The directions of the tangent lines to Γshock lie between τP1 and τP2 ; that is,
in the (S, T )–coordinates,

−∞ <
τP2
· e

τP2
· e⊥ = f ′e(TP2

) ≤ f ′e(T ) ≤ f ′e(TP1
) =

τP1 · e
τP1
· e⊥ <∞

for any T ∈ (TP1
, TP2

);
(c) ν(P ) · e < 0 for any P ∈ Γshock;

(d) φe > 0 on Γshock;

12
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(e) For any T ∈ (TP1 , TP2),

φττ (fe(T ), T ) < 0 ⇐⇒ f ′′e (T ) > 0,

and

φττ (fe(T ), T ) > 0 ⇐⇒ f ′′e (T ) < 0.

In [21], we provide a framework for the convexity of transonic shocks in the self-
similar coordinates. Specifically, for the transonic shocks in the shock reflection-
diffraction configurations, we have the following theorem.

Theorem 4.1 (Convexity of transonic shocks). If a solution of the shock reflection-
diffraction problem is admissible in the sense of Definition 3.1, then its shock curve
Γshock is strictly convex in the following sense: For any e ∈ Con, fe from Lemma
4.1 is concave on (TP1 , TP2), and f ′′e (T ) < 0 for all T ∈ (TP1 , TP2). That is, Γshock

is uniformly convex on closed subsets of its relative interior. Moreover, for a regular
reflection solution in the sense of Definition 2.2 with pseudo-potential ϕ ∈ C0,1(Λ)
satisfying Definition 3.1(i)–(iv), the shock is strictly convex if and only if Definition
3.1(v) holds.

Now we discuss the techniques developed in [21] by giving the main steps in the
proof of Theorem 4.1. While the argument in [21] is for a general domain Ω, we
focus here on the regular shock reflection-diffraction configurations, in which both
the solution domain Ω and the solution structure are somewhat simpler.

Outline of the Proof of Theorem 4.1: The proof consists of eight steps, while the first
three steps are general properties of shock reflection-diffraction solutions; see [19].
Below we use notation φ := ϕ− ϕ1.

1. We establish a relation between the extrema of the solution and the geometric
shape of the transonic shock. For a fixed unit vector e ∈ R2, denote w := ∂eφ in Ω.
We show that, if a local minimum (resp. maximum) of w is attained at P ∈ Γ0

shock

and ν(P ) · e < 0, then φττ > 0 (resp. φττ < 0) at P , where ν denotes the interior
unit normal on Γshock towards Ω.

2. We establish a nonlocal relation between the values of φe and the positions
where these values are taken. Let φ be a solution as in Theorem 4.1, and let
e ∈ Con. We use the coordinates from Lemma 4.1. Assume that, for two different
points P = (T, fe(T )) and P1 = (T1, fe(T1)) on Γshock,

fe(T ) > fe(T1) + f ′e(T )(T − T1), f ′e(T ) = f ′e(T1).

Then

(i) d(P ) := dist(O0, LP ) > dist(O0, LP1
) =: d(P1), where O0 is the center of sonic

circle of state (0), and LP and LP1
are the tangent lines of Γshock at P and

P1, respectively.

(ii) If the unit vector e ∈ Con, then

φe(P ) > φe(P1).

3. We show that the shock graph is real analytic.

4. We now develop a minimal/maximal chain argument. Let φ be an admissible
solution, and let e ∈ R2. Note that φe satisfies the strong maximum principle in Ω.
Then we can introduce the minimal (or maximal) chain as follows:

13
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Let E1, E2 ∈ ∂Ω. We say that points E1 and E2 are connected by a minimal
(resp. maximal) chain with radius r if and only if there exist r > 0, integer k1 ≥ 1,

and a chain of balls {Br(Ci)}k1i=0 such that

(i) C0 = E1, Ck1 = E2, and Ci ∈ Ω for i = 0, . . . , k1;

(ii) Ci+1 ∈ Br(Ci) ∩ Ω for i = 0, . . . , k1 − 1;

(iii) φe(Ci+1) = min
Br(Ci)∩Ω

φe < φe(Ci) (resp. φe(Ci+1) = max
Br(Ci)∩Ω

φe >

φe(Ci)) for i = 0, . . . , k1 − 1;

(iv) φe(Ck1) = min
Br(Ck1 )∩Ω

φe (resp. φe(Ck1) = max
Br(Ck1 )∩Ω

φe).

For such a chain {Ci}k1i=0, we also use the following terminology: The chain starts
at E1 and ends at E2, or the chain is from E1 to E2.

This definition does not rule out the possibility that Br(C
i) ∩ ∂Ω 6= ∅, or even

Ci ∈ ∂Ω, for some or all i = 0, . . . , k1 − 1. The radius r is a parameter in the
definition of minimal or maximal chains. We do not fix r at this point. In fact, the
radii are determined for various chains, respectively.

Then we prove the following results:

(a) The chains with sufficiently small radius are connected sets. More precisely,
there exists r∗ depending only on (ρ0, ρ1, γ) such that, for any minimal or

maximal chain {Ci}k1i=0 with r ∈ (0, r∗], ∪k1i=0Br(C
i) ∩ Ω is connected.

(b) The existence of the minimal or maximal chain of radius r < r∗. More precisely,
if E1 ∈ ∂Ω, and E1 is not a local minimum point (resp. maximum point) of
φe with respect to Ω, then, for any r ∈ (0, r∗), there exists a minimal (resp.

maximal) chain {Gi}k1i=0 for φe of radius r, starting at E1, i.e. G0 = E1.
Moreover, Gk1 ∈ ∂Ω is a local minimum (resp. maximum) point of φe with
respect to Ω, and φe(Gk1) < φe(E1) (resp. φe(Gk1) > φe(E1)).

(c) The minimal and maximal chains do not intersect. Specifically, for any δ > 0,
there exists r∗1 ∈ (0, r∗] such that the following holds: Let C ⊂ ∂Ω be connected,

let E1 and E2 be the endpoints of C, and let there be a minimal chain {Ei}k1i=0

of radius r1 ∈ (0, r∗1 ], which starts at E1 and ends at E2. If there exists H1 ∈
C0 = C \ {E1, E2} such that

φe(H1) ≥ φe(E1) + δ,

then, for any r2 ∈ (0, r1], any maximal chain {Hj}k2j=0 of radius r2 starting

from H1 satisfies Hk2 ∈ C0, where C0 denotes the relative interior of curve C as
before.

Note that, if H1 is not a local maximum point of φe with respect to Ω,
then the existence of the maximal chain {Hj}k2j=0 of radius r2 starting from H1

follows from result (b).

(d) Result (c) also holds if the roles of minimal and maximal chains are inter-
changed. For any δ > 0, there exists r∗1 ∈ (0, r∗] such that the following holds:
Let C ⊂ ∂Ω be connected, and let E1 and E2 be the endpoints of C. Assume
that there exists a maximal chain {Ei}k1i=0 of radius r1 ∈ (0, r∗1 ], which starts
at E1 and ends at E2. If there exists H1 ∈ C0 such that

φe(H1) ≤ φe(E1)− δ,
then, for any r2 ∈ (0, r1], any minimal chain {Hj}k2j=0 of radius r2, starting

from H1, satisfies that Hk2 ∈ C0.
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(e) Two minimal chains do not intersect: For any r1 ∈ (0, r∗], there exists r∗2 =
r∗2(r1) ∈ (0, r∗] such that the following holds: Let C ⊂ ∂Ω be connected, and
let E1 and E2 be the endpoints of C. Assume that there exists a minimal chain
{Ei}k1i=0 of radius r1 ∈ (0, r∗], which starts at E1 and ends at E2. If there exists
H1 ∈ C0 such that

φe(H1) < φe(E2),

then, for any r2 ∈ (0, r∗2 ], any minimal chain {Hj}k2j=0 of radius r2, starting

from H1, satisfies that Hk2 ∈ C0.

5. Denote by νw the unit normal on Γwedge pointing into Ω. By [19, Lemma
8.2.11], νw ∈ Con(eS1 , eξ2) for any wedge angle θw ∈ (θd

w,
π
2 ). We use e = νw for

the following four steps below. We work in the corresponding (S, T )–coordinates
defined in Lemma 4.1, so it suffices to prove that the graph is concave:

f ′′e (T ) ≤ 0 for all T ∈ (TP1 , TP2).

If there exists P̂ ∈ Γ0
shock with f ′′e (TP̂ ) > 0, we prove the existence of a point

C ∈ Γ0
shock such that f ′′e (TC) ≥ 0, and C is a point of strict local minimum of φe

along Γshock but is not a local minimum point of φe relative to Ω.

6. Then we prove that there exists C1 ∈ Γ0
shock such that there is a minimal

chain with radius r1 from C to C1.

7. We show that the existence of points C and C1 described above yields a
contradiction (which implies that there is no P̂ ∈ Γ0

shock with f ′′e (TP̂ ) > 0). This is
proved by showing the following facts:

• Let A2 be a maximum point of φe along Γshock lying between points C and
C1. Then A2 is a local maximum point of φe relative to Ω, and there is no
point between C and C1 such that the tangent line at this point is parallel to
the one at A2.

• Between C and A2, or between C1 and A2, there exists a local minimum point
C2 of φe along Γshock such that C2 6= C1, or C2 6= C, and C2 is not a local
minimum point of φe relative to domain Ω.

• Then, following an argument similar to the one used above and going through
several steps, we arrive at the situation that the endpoint of the minimal chain
cannot lie anywhere on ∂Ω, which is a contradiction.

This indicates that f ′′e ≤ 0 on Γshock; that is, Γshock is convex. In the rest of the
argument, we prove that f ′′e < 0 on Γ0

shock.

8. Using the fact that the shock graph is real analytic, we show that, for every
P ∈ Γ0

shock, either f ′′e (TP ) < 0 or there exists an even integer k > 2 such that

f
(i)
e (TP ) = 0 for all i = 2, . . . , k − 1, and f

(k)
e (TP ) < 0. This shows the strict

convexity of the shock, which implies that the shock does not contain any straight
segment. The above property is equivalent to the facts that ∂iτφ(P ) = 0 for all
i = 2, . . . , k − 1, and ∂kτφ(P ) > 0.

9. We show the uniform convexity of Γ0
shock in the sense that f ′′e (TP ) < 0 for

every P ∈ Γ0
shock, or equivalently, f ′′e (T ) < 0 on (TP1

, TP2
), for some (and thus any)

e ∈ Con. In fact, if it is not true, i.e. if φττ = 0 at some Pd, then we can obtain
a contradiction by proving that there exists a unit vector e ∈ R2 such that Pd is a
local minimum point of φe along Γ0

shock, but Pd is not a local minimum point of φe
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in Ω. Then we can construct a minimal chain for φe connecting Pd to Ck1 ∈ ∂Ω.
We show that

• Ck1 /∈ Γsonic,

• Ck1 /∈ Γwedge ∪ Γsym,

• Ck1 /∈ Γshock.

This implies that φττ > 0 on Γ0
shock so that f ′′e (T ) < 0 on (TP1 , TP2); see Lemma

4.1.

5. Uniqueness and Stability of Regular Shock Reflection-Diffraction Con-
figurations. In this section, we discuss the uniqueness and stability of global reg-
ular shock reflection-diffraction configurations. More specifically, we describe the
results in Chen-Feldman-Xiang [22].

As indicated earlier, recent results [24,25,33,46] have shown the non-uniqueness
of solutions with planar shocks in the class of entropy solutions with shocks of the
Cauchy problem for the multidimensional compressible Euler system. Moreover,
the uniqueness problem for general self-similar solutions of the Euler system is still
open (cf. [24]). While these results do not apply directly to our case, they indicate
that it be natural to study the uniqueness of solutions in some more restrictive class,
instead of general time-dependent solutions (i.e. solutions of Problem 2.1), or even
general self-similar solutions as in Definition 2.2.

In [22], we have established the uniqueness of regular reflection solutions for each
wedge angle in the class of admissible solutions introduced in Definition 3.1.

Theorem 5.1 (Uniqueness). For any wedge angle θw ∈ (θd
w,

π
2 ) when u1 ≤ c1

and θw ∈ (θc
w,

π
2 ) when u1 > c1, any solution, satisfying all properties (i)–(iv) in

Definition 3.1 and one of the following properties:

(a) the transonic shock Γshock is convex, i.e. domain Ω is a convex set,

(b) condition (17) holds,

is unique in the class of admissible solutions. Moreover, such solutions are con-
tinuous with respect to the wedge angle θw in the C1–norm (more precisely, the
continuity with respect to the norm described in Remark 5.1 below).

Remark 5.1. For an admissible solution ϕ with a wedge angle θw, we define its
norm based on its restriction to Ω. Since region Ω depends on the solution, we map
a unit square Qiter = (0, 1)2 to Ω and use this mapping to define a function u on
Qiter, which corresponds to ϕ|Ω. Furthermore, the sides of square Qiter are mapped
to the boundary parts Γsonic, Γwedge, Γsym, and Γshock. The mapping depends
on (ϕ, θw) and is invertible; that is, given a function u on Qiter and θw, we can
recover ϕ and Ω. Moreover, this mapping and its inverse have appropriate continuity
properties. See [19, §12.2 and §17.2] for the details. Then we define function
spaces for admissible solutions and “approximate admissible solutions” in terms
of the function spaces for the corresponding functions u on Qiter. The convergence
of admissible solutions ϕ(i) → ϕ(∞) in the C1–norm as the corresponding wedge

angles θ
(i)
w → θ

(∞)
w , defined in terms of convergence in an appropriate norm for the

functions on Qiter, implies

‖ϕ(i)‖C1(Ω(i)) ≤ C for all i,

‖ϕ(i) − ϕ(∞)‖
C1(Ω(i)∩Ω(∞))

+ dH(Ω(i),Ω(∞))→ 0 as θ
(i)
w → θ

(∞)
w ,

(22)

where dH denotes the Hausdorff distance between the sets.

16



GUI-QIANG G. CHEN, MIKHAIL FELDMAN AND WEI XIANG

Remark 5.2. By Theorem 4.1, conditions (a) and (b) in Theorem 5.1 for the
solutions satisfying properties (i)–(iv) in Definition 3.1 are equivalent.

Remark 5.3. We note that, under either one of conditions (a) and (b) in Theorem
5.1, the solution is an admissible solution. Indeed, in both cases, the solution
satisfies properties (i)–(iv) in Definition 3.1. If, in addition, condition (b) holds,
then the solution is admissible, directly from Definition 3.1. Remark 5.2 shows the
same for the case when condition (a) holds.

The proof of Theorem 5.1 is obtained by showing the following proposition on
the existence and uniqueness of a family of admissible solutions that are continuous
with respect to θw, containing a given admissible solution.

Proposition 5.1. Fix (ρ0, ρ1, γ). Define interval I := (θd
w,

π
2 ] when u1 ≤ c1 and

I := (θc
w,

π
2 ] when u1 > c1. For every admissible solution ϕ∗ with a wedge angle

θ∗w ∈ I, there exists a family

S = {(ϕ, θw) : θw ∈ I, ϕ ∈ C0,1(Λ(θw))}
such that

(ϕ∗, θ∗w) ∈ S, (23)

and S satisfies the following properties:

(a) For each θw ∈ I, there exists one and only one pair (ϕ, θw) ∈ S. Then we can
define ϕ(θw) := ϕ if (ϕ, θw) ∈ S.

(b) Each ϕ(θw) is an admissible solution corresponding to the wedge angle θw.

(c) ϕ(π2 ) is the normal shock reflection solution (see §3.1 in [17] for the definition).
(d) ϕ(θw) is continuous with respect to the wedge angle θw ∈ I in the C1–norm as

in Remark 5.1.

Moreover, a family S satisfying properties (a)–(d) listed above (but without requiring
(23)) is unique. That is, if there are two families S1 and S2 satisfying properties
(a)–(d), then S1 = S2. Thus, the family S contains all the admissible solutions
for all θw ∈ I.

Proposition 5.1 directly implies Theorem 5.1.

Proposition 5.1 is proved by showing the local uniqueness and existence of ad-
missible solutions.

As we have discussed in the introduction, the outline of the uniqueness proof
(i.e. Proposition 5.1) is the following: If there are two different admissible solutions,
defined by the potential functions ϕ and ϕ̂, for some wedge angle θ∗w ∈ I \ {π2 }, it
suffices to:

(i) construct continuous families of solutions parametrized by the wedge angle
θw ∈ [θ∗w,

π
2 ], starting from ϕ and ϕ̂, respectively, in the norm discussed in

Remark 5.1;

(ii) prove local uniqueness: If two admissible solutions with the same wedge angle
are close in the norm given in the second line of (22), then they are equal.

Combining this with the fact that, by Remark 3.1, both families converge to the
normal reflection as θw → π

2− , we obtain a contradiction; see more details in §5.3
below. Furthermore, the continuous family defined above can be extended to all
θw ∈ I, hence determining the family S in Proposition 5.1.

In order to construct the continuous family of solutions S described in Propo-
sition 5.1, starting from the given solution ϕ = ϕ(θ∗w), it suffices to show that any
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given admissible solution can be perturbed, that is, an admissible solution can be
constructed to be close to ϕ for all wedge angles that are sufficiently close to θ∗w.
More precisely, using the mapping of admissible solutions to the functions on the
unit square discussed in Remark 5.1, we work in an appropriately weighted and
scaled C2,α space on Qiter. We choose this function space according to the norms
and the other quantities in the a priori estimates for admissible solutions in [19],
mapped to Qiter. Denote the norm in this space by ‖ · ‖∗. Thus, we consider space

C∗(Qiter), which is completion of C∞(Qiter) with respect to norm ‖ · ‖∗. This space
satisfies

C∗(Q
iter) ⊂ C1,α(Qiter) ∩ C2,α(Qiter).

For any admissible solution ϕ, the corresponding function u on Qiter satisfies u ∈
C∗(Qiter). Now we state the local existence assertion.

Proposition 5.2 (Local existence). Fix any admissible solution (ϕ̂, θ̂w) with θ̂w ∈
I. Then, for every sufficiently small ε > 0, there is δ > 0 with the following property:

For each θw ∈ [θ̂w − δ, θ̂w + δ)] ∩ I, there exists an admissible solution ϕ such that
u and û on Qiter corresponding to ϕ and ϕ̂, respectively, satisfy

‖u− û‖∗ < ε.

Note that, if ε is sufficiently small, the solutions obtained in Proposition 5.2 are
unique for each wedge angle, by the local uniqueness.

Thus, to prove Proposition 5.1, it suffices to prove the local uniqueness, as well
as the local existence in the sense of Proposition 5.2. See §5.3 below for more
details in the proof of Proposition 5.2 from these properties. In fact, from Remark
3.3, we study these questions for the free boundary problem (5) and (18)–(19),
where the unknowns are ϕ in Ω and Γshock. Moreover, the admissible solutions
satisfy property (ii) in Definition 3.1, from which equation (5) is strictly elliptic in
Ω \ Γsonic in the supersonic and sonic cases |Dϕ2(P0)| ≥ c2 and uniformly elliptic
in Ω in the subsonic case |Dϕ2(P0)| < c2.

The proofs of the local existence and uniqueness are different for the following
two cases:

(a) Supersonic and subsonic-near-sonic case: |Dϕ2(P0)| > (1− σ)c2,

(b) Subsonic-away-from-sonic case: |Dϕ2(P0)| ≤ (1− σ)c2,

where σ > 0 depends on (ρ0, ρ1, γ) and is such that, for the wedge angles satisfying
(1− σ)c2 ≤ |Dϕ2(P0)| ≤ 1 (which are the subsonic-near-sonic and sonic cases), the
admissible solutions are C2,α up to P0 according to [19].

The reason for the different proofs for cases (a) and (b) is that, in the supersonic
and sonic case, the degenerate ellipticity of equation (5) near Γsonic or P0 makes
it difficult to use the linearization of problem (5) and (18)–(19) for the application
of the implicit function theorem which would imply both the local existence and
uniqueness. On the other hand, under the conditions stated in case (a), ϕ is C1,1 up
to Γsonic in the supersonic case (by Theorem 3.2(i)), and C2 up to P0 in the subsonic-
near-sonic and sonic cases; this higher regularity allows us to use the different
methods described below. In the subsonic-away-from-sonic case (b), the known
regularity up to P0 is C1,α, i.e. lower than that in case (a), but equation (5) is
uniformly elliptic in Ω; this allows to analyze the linearization of problem (5) and
(18)–(19) at ϕ, and thus obtain the local uniqueness and existence by the implicit
function theorem.
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It remains to discuss the proof of the local uniqueness and existence in the su-
personic and subsonic-near-sonic case (a). The outline of this proof is in §5.1–§5.2
below.

5.1. Local uniqueness in the supersonic and subsonic-near-sonic case (a).
Assume that ϕ and ϕ∗ are regular shock reflection solutions for the same wedge angle
θw, which are C1,1 up to Γsonic (where we denote Γsonic = {P0} in the subsonic and
sonic cases) and satisfy the properties listed in Theorem 5.1. Let Ω and Ω∗ be
respectively their elliptic regions, and let Γshock and Γ∗shock be respectively their
reflected shocks. We recall that ϕ and ϕ∗ satisfy (5) and (18)–(19) in Ω and Ω∗,
respectively.

Let Ω̂ := Ω ∩ Ω∗, and let Γ̂shock := ∂Ω̂ ∩ (Γ∗shock ∪ Γshock). We now show that,
under the following assumption:

‖ϕ− ϕ∗‖C1(Ω̂) + ‖ϕ− ϕ1‖C0((Ω∪Ω∗)\Ω̂) + ‖ϕ∗ − ϕ1‖C0((Ω∪Ω∗)\Ω̂) ≤ δ2, (24)

the function, δϕ := ϕ− ϕ∗, satisfies the boundary condition:

M(δϕ) = βν(δϕ)ν + βτ (δϕ)τ + ϑδϕ = 0 on the inner shock Γ̂shock, (25)

with

βν > 0, ϑ < 0, (26)

where ν is the unit inner normal and τ is the unit tangent on Γ̂shock. We note that
the property that ϑ < 0 in (26) is obtained by using the convexity of Γ∗shock and
Γshock.

Also, it follows from [18] that δϕ satisfies a homogeneous linear elliptic equation

in Ω̂ for which the comparison principles hold. Properties (26), combined with

methods of [18], show that Hopf’s lemma holds for δϕ on Γ̂shock. Finally, δϕ satisfies

the homogeneous Neumann condition on (∂Ω̂ ∩ ∂Λ) \ {P3}, and δϕ = 0 on Γsonic.

These facts ensure that δϕ ≡ 0 in Ω̂. From this, we can show

Ω∗ = Ω, ϕ = ϕ∗ in Ω. (27)

This completes the proof of the local uniqueness.

Remark 5.4. We remark that, due to the issue that the regularity of ϕ at the reflec-
tion point P0 is only C1,α for the subsonic-away-sonic reflection case |Dϕ2(P0)| ≤
(1 − σ)c2, we cannot apply this argument. However, as we discussed earlier, the
implicit function theorem can be applied in that case.

5.2. Local existence in the supersonic and subsonic-near-sonic case (a).
Now we discuss the proof of the local existence, Proposition 5.2. The existence of
a solution is obtained by the application of the Leray-Schauder degree theory [55,
§13.6(A4∗)]; see also [19, §3.4].

In order to apply the degree theory, the iteration set should be bounded and
open in an appropriate function space (in fact, in its product with the parameter

space, i.e. interval [θ̂w−δ, θ̂w +δ]∩I of the wedge angles), the iteration map should
be defined and continuous on the closure of the iteration set, and any fixed point of
the iteration map should not occur on the boundary of the iteration set. We choose
this function space according to the norms and the other quantities in the a priori
estimates. Moreover, since we have to use the same function space for all values of
the parameters, and the functions require to have the same domain, we define the
iteration set in terms of the functions on the unit square Qiter, which are related
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to the admissible solutions by the mapping described in Remark 5.1. The function
space is C∗(Qiter), introduced above. Let û be the function on Qiter corresponding

to the admissible solution ϕ̂ for the wedge angle θ̂w in Proposition 5.2. In order
to prove the existence result in Proposition 5.2 for given ε and δ, we define the
iteration set by

K(û,θ̂w)
ε,δ := {(u, θw) ∈ C∗(Qiter)× ([θ̂w − δ, θ̂w + δ] ∩ I) : ‖u− û‖∗ < ε}. (28)

From its definition, the iteration set is non-empty, open (in the subspace topology)

and bounded in C∗(Qiter)× ([θ̂w − δ, θ̂w + δ] ∩ I).

We also define the iteration set for each wedge angle θw ∈ [θ̂w − δ, θ̂w + δ]∩ I by

K(û,θ̂w)
ε (θw) := {u ∈ C∗(Qiter) : (u, θw) ∈ K(û,θ̂w)

ε,δ }. (29)

To prove Proposition 5.2, we need to show the existence of an admissible solution

in K(û,θ̂w)
ε,θw

for each θw ∈ [θ̂w−δ, θ̂w +δ]∩I if ε is small, depending on (ρ0, ρ1, γ, θ̂w),

and δ is small, depending on ε and (ρ0, ρ1, γ, θ̂w).
The iteration map F is defined as follows:

Given (u, θw) ∈ K(û,θ̂w)
ε,δ , define the corresponding elliptic domain Ω = Ω(u, θw)

by mapping from the unit square Qiter to the physical plane, as discussed in Remark
5.1. This determines iteration Γshock and function ϕ in Ω, depending on (u, θw). We
set up a boundary value problem in Ω for a new iteration potential ϕ̃ by modifying
problem (5) and (18)–(19), by partially substituting ϕ into the coefficients of (5),
and making other modifications including the ellipticity cutoff in the equation.

In the supersonic and sonic cases, the modified equation is elliptic in Ω \ Γsonic,
degenerate near Γsonic (or P0 in the sonic case), and nonlinear near Γsonic. In the
subsonic case, the modified equation is linear and uniformly elliptic in Ω.

In all the supersonic, sonic, and subsonic cases, we prescribe one condition on
Γshock, which is an oblique derivative condition, by combining the two conditions
in (18) and partially substituting ϕ into the coefficients of the main terms.

Let ϕ̃ be the solution of the boundary value problem in Ω. We show that ϕ̃
gains the regularity in comparison with ϕ. Then we define ũ on Qiter by mapping ϕ̃
back in such a way that the gain-in-regularity of the solution is preserved, which is
needed in order to have the compactness of the iteration map. This requires some
care, since the original mapping between Qiter and the physical domain is defined
by u and hence has a lower regularity. Then the iteration map is defined by

F(u, θw) = ũ.

The boundary value problem in the definition of F is defined so that, at the fixed
point u = ũ, its solution satisfies the potential flow equation (5) with the ellipticity
cutoff in a small neighborhood of Γsonic in the supersonic case, both the Rankine-
Hugoniot conditions (18) on Γshock, and the boundary condition (19) on Γwedge ∪
Γsym. On the sonic arc Γsonic in the supersonic case and at P0 in the subsonic
and sonic cases, we need two conditions: ϕ̃ = ϕ2 and Dϕ̃ = Dϕ2. However, we
can prescribe only one condition on the fixed boundary. We choose the Dirichlet
condition ϕ̃ = ϕ2 on Γsonic in the supersonic case and at P0 in the subsonic and
sonic cases, and prove that Dϕ̃ = Dϕ2 on Γsonic or at P0 holds for the solution of
the iteration problem for the fixed point.

Then we prove the following facts:
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(i) Any fixed point u = F(u, θw), mapped to the physical plane, is an admissible
solution ϕ. For that, we remove the ellipticity cutoff and prove the inequalities and
monotonicity properties in the definition of the admissible solutions for the regions
and the wedge angles where they are not readily known from the definition of the
iteration set.

(ii) The iteration map is continuous on K(û,θ̂w)
ε,δ and compact. We prove this by

using the gain-in-regularity of the solution of the iteration boundary value problem.

(iii) Any fixed point of the iteration map cannot occur on the boundary of the
iteration set if δ is small depending on ε and (ρ0, ρ1, γ). Now we discuss this step
in more details:

The small iteration set (29) is the first key difference between this proof of the
local existence and the proof of the existence of admissible solutions in [19], which
is also obtained by the Leray-Schauder degree argument. In [19], the continuity
of admissible solutions with respect to θw was not studied; for this reason, the it-
eration set is chosen to be large for the wedge angles away from π

2 . That is, the
iteration set for such a wedge angle is defined by the bounds in the appropriate
norms related to the a priori estimates and by the lower bounds of certain direc-
tional derivatives, corresponding to the strict monotonicity properties so that the
actual solution cannot be on the boundary of the iteration set according to the a
priori estimates. In the present case of small iteration set (29), a different approach
is developed, based on the local uniqueness and compactness of admissible solutions
shown in [19]. That is, fixing small ε > 0, and assuming that, for any δ > 0, there

exists an admissible solution ϕ̃ for the wedge angle θ̃w such that |θ̃w − θ̂w| ≤ δ and
‖ũ− û‖∗ = ε, we obtain a sequence of admissible solutions and their wedge angles

(ϕ(i), θ
(i)
w ) with θ

(i)
w → θ̂w and ‖u(i) − û‖∗ = ε. Then, using the compactness of

admissible solutions, we can send to a limit for a subsequence so that an admis-

sible solution ϕ̄ is obtained for the wedge angle θ̂w such that ‖ū − û‖∗ = ε. This
contradicts the local uniqueness if ε is small.

Now the Leray-Schauder degree theory guarantees that the fixed point index:

Ind(F(·, θw), K(û,θ̂w)
ε (θw)) (30)

of the iteration map on the iteration set (for given θw) is independent of the wedge

angle θw ∈ [θ̂w − δ, θ̂w + δ] ∩ I.
It remains to show that, at some wedge angle, index (30) is non-zero. We show

that, for the wedge angle θ̂w,

Ind(F(·, θ̂w), K(û,θ̂w)
ε (θ̂w)) = 1.

We prove this by showing that

F(v, θ̂w) = û for each v ∈ K(û,θ̂w)
ε (θ̂w). (31)

This means that the iteration boundary value problem in domain Ω(v, θ̂w) defined

by every v ∈ K(û,θ̂w)
ε (θ̂w) has the unique solution ϕ̂ (in fact, its carefully defined

extension from Ω(û, θ̂w)). This step is another key difference from the existence
proof of admissible solutions in [19]. In [19], the iteration set includes the normal
reflection ϕnormal for θw = π

2 , and property (31) is shown for θw = π
2 and unormal

on the right-hand side. Since ϕnormal is an explicitly known uniform state, globally
defined, showing (31) is straightforward for the normal reflection, and does not
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require defining its extension, or any special properties of the coefficients of the
iteration problem. In the present case, when ϕ̂ is an arbitrary admissible solution,
this step is much more involved, and requires an extension of ϕ̂ from Ω to a larger
region (so that the extension satisfies certain properties) and some careful definition
of the coefficients of the iteration equation and the boundary condition on Γshock,
for which we need at least the C1,1–regularity of ϕ near Γsonic. Thus, our method
works for the supersonic and subsonic-near-sonic case; however, it does not readily
work for the subsonic-away-from-sonic case (for this reason, in this case, we use a
different approach as we discussed above).

This completes the proof of the local existence of supersonic and subsonic-near-
sonic reflection solutions.

5.3. Proof of Proposition 5.1. Based on the local uniqueness and existence, we
employ the compactness of admissible solutions proved in [19] to conclude that, for
every admissible solution ϕ∗ with the wedge angle θ∗w ∈ I, a family S with the
properties listed in Proposition 5.1 exists.

It remains to prove the uniqueness of admissible solutions for each wedge angle.
For a given wedge angle θw as in Theorem 5.1, assume that there are two admis-

sible solutions ϕ and ϕ̃ corresponding to the wedge angle θ∗w. Let S and S̃ be the

continuous families with (ϕ, θ∗w) ∈ S and (ϕ̃, θ∗w) ∈ S̃ in Proposition 5.1. Let A be
the set of all θw ∈ [θ∗w,

π
2 ] such that ϕθw = ϕ̃θw . Since π

2 ∈ A by (c) of Proposition

5.1, it follows that A 6= ∅. The continuity of both families S and S̃ with respect
to θw implies that A is closed. Also, by the assumption above, θ∗w /∈ A. Denote

θinf
w := inf A, then θinf

w ∈ (θ∗w,
π
2 ]. Now, using the continuity of families S and S̃,

we can show that, choosing θw ∈ (θ∗w, θ
inf
w ) to be sufficiently close to θinf

w , we obtain
that ϕ(θw) = ϕ̃(θw) by the local uniqueness property. This contradicts the definition
of θinf

w .
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Abstract. We develop a second-order central-upwind scheme for the non-
hydrostatic version of the Saint-Venant system recently proposed in [M.-O.

Bristeau and J. Sainte-Marie, Discrete Contin. Dyn. Syst. Ser. B, 10

(2008), pp. 733–759]. The designed scheme is both well-balanced (capable of
exactly preserving the “lake-at-rest” steady state) and positivity preserving.

We then use the central-upwind scheme to study ability of the non-hydrostatic

Saint-Venant system to model long-time propagation and on-shore arrival of
the tsunami-type waves. We discover that for a certain range of the dispersive

coefficients, both the shape and amplitude of the waves are preserved even

when the computational grid is relatively coarse. We also demonstrate the
importance of the dispersive terms in the description of on-shore arrival.

1. Introduction. Tsunami waves are characterized by having a relatively low am-
plitude, large wavelength, and large characteristic wave speed, see, e.g., [7, 27, 31].
In fact, the amplitude of a tsunami wave can be so small that it may not even be
noticed by a ship traveling through it in deep water. Because of their speed and
wavelength, however, these waves contain a tremendous amount of energy. When
the depth of the water decreases (in the beginning of the on-shore arrival stage of
tsunami wave propagation), tsunamis undergo a process called wave shoaling, in
which the wave slows down and the wavelength decreases. In order to conserve
energy, it is transformed from kinetic to potential energy and the wave amplitude
increases. This potential energy can then be released in disastrous fashion when
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the wave comes to shore. It is therefore very important to have accurate models
and corresponding numerical methods for tsunami waves in order to mitigate any
catastrophe that may result.

One model used for shallow water waves is the classical Saint-Venant system
[12], which is a depth-averaged system that can be derived from the Navier-Stokes
equations (see, e.g., [14]). The Saint-Venant system is a very good simplification
for lakes, rivers, and coastal areas in which the typical time and space scales of
interest are relatively short. Tsunami waves form in deep water and travel very
long distances (thousands of kilometers) before coming to the shore. Over long
time, solutions of the Saint-Venant system break down, dissipate in an unphysical
manner, shock waves develop, and the system fails to capture small, trailing waves
that are seen in nature and laboratory experiments [29]. Thus, it is necessary to
use a more sophisticated model in order to preserve the wave characteristics over
long time simulations.

Non-hydrostatic models (the celebrated Green-Naghdi equation [17] and several
others, see, e.g., [1,3,4] and references therein) work well for long-time propagation
of tsunami-like waves because they allow the wave to travel for long distances with-
out decaying in amplitude. In addition, since these systems are dispersive, they
give rise to trailing waves that are observed to follow tsunamis in nature. However,
it is necessary to achieve some balance between dispersion observed with a non-
hydrostatic model and the dissipation seen in the classical Saint-Venant system.

The non-hydrostatic Saint-Venant system presented in [5, 6] is given by




ht + (hu)x = 0,

(hu)t +Mt +
(
hu2 +

g

2
h2
)
x

+N

= −ghBx + pawx − 4(νux)x − κ(h, hu)u,

(1)

where h(x, t) is the water depth measured vertically from the bottom topography,
described by function B(x, t), u(x, t) is the vertically averaged velocity, hu is the
horizontal momentum or discharge, pa = pa(x, t) is the atmospheric pressure func-
tion, w := h + B is the free surface, ν is the viscosity coefficient, κ is the friction
function, and M and N are defined as

M(h, hu,B) =

(
−1

3
h3ux +

1

2
h2Bxu

)

x

+Bx

(
−1

2
h2ux +Bxhu

)
, (2)

and

N(h, hu,B) =
(
(h2)t(hux −Bxu)

)
x

+ 2Bxht(hux −Bxu)−Bxt
(
−1

2
h2ux +Bxhu

)
.

(3)

Here, M and N are terms that arise when the system is derived from the Euler
equations and include non-hydrostatic pressure terms [6].

One of the goals of the current work is to numerically study the effects of the
dispersion terms present in the non-hydrostatic model (1)–(3). To this end, we
introduce the new scaling parameters αM and αN as coefficients to M and N in (1).
For the purpose of this work we will neglect fluid viscosity and friction by setting
ν and κ(h, hu) to be identically zero and also assume that the bottom topography
function is independent of time, i.e., B = B(x). In addition, we follow the approach
in [20, 24] and rewrite our system in terms of the equilibrium variables w = h + B
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and q := hu:




wt + qx = 0,

qt + αMMt +

(
q2

w −B +
g

2
(w −B)2

)

x

+ αNN = −g(w −B)Bx + pawx.
(4)

When αM = αN = pa ≡ 0, (4) reduces to the classical Saint-Venant system, and as
we increase these parameters, the amount of dispersion in our model increases and
the effects of the lack of the hydrostatic pressure assumption should be apparent.

To study the non-hydrostatic effects, we design a highly accurate and robust nu-
merical method for (4). A good scheme for this model should be well-balanced (it
should exactly preserve “lake-at-rest” steady-state solutions at the discrete level), it
should preserve positivity of h, and it should be able to properly handle discontinu-
ous/nonsmooth solutions. The system (4) presents challenges in the approximation
and treatment of the higher-order mixed derivatives in the non-hydrostatic terms
whose semi-discretization leads to stiff terms that require an efficient numerical
solver for the resulting system of ODEs. In this paper, we develop a central-upwind
scheme for (4) which possesses all of the aforementioned features and use it to ex-
amine the effects of the non-hydrostatic pressure terms on the propagation of waves
over long times and on their on-shore arrival.

Central-upwind schemes (first introduced in [26] and further developed in [21,23])
are Godunov-type finite volume methods. They belong to the class of Riemann-
problem-solver-free central schemes and thus can be applied to a variety of hyper-
bolic systems of conservation laws as a “black-box” solver. When central-upwind
schemes are applied to systems of balance laws, a special treatment of the source
terms appearing in the system at hand must be developed. This was done for single-
and two-layer shallow water models in [2, 9–11,19,20, 24,25]. In order to apply the
central-upwind scheme to (4), one needs to specify the way the terms on the right-
hand side (RHS) of (4) are discretized. As it was mentioned above, this should
be done in such a way that physically relevant steady-state solutions are exactly
preserved and h is guaranteed to be nonnegative.

The physically relevant steady-state solution for (4) is the “lake-at-rest” solution,
corresponding to the water surface being perfectly flat and stationary:

w = h+B ≡ Const, hu ≡ 0. (5)

Preserving this particular steady state would guarantee that no artificial surface
waves are generated, and also ensure that small perturbations of the water surface
will not lead to a “numerical storm”. This is achieved by using a special discretiza-
tion of the geometric source term on the RHS of (4) which is presented in Section
2.1.3.

Preserving positivity of h is essential since solutions containing negative h would
not only be unphysical, but will cause the numerical computations to fail. To ensure
positivity of h, we follow the idea from [24]. We first replace the bottom topography
with its continuous piecewise linear approximation and then adjust the piecewise
linear reconstruction of the water heights, ensuring that through each computational
cell the depth of each layer is nonnegative. This is presented in Section 2.1.1.

With the numerical method in place, we examine the effect of the non-hydrostatic
pressure terms in Section 3, where we try to strike a balance between dissipation
and dispersion inherent in the system.
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2. Numerical Method.

2.1. Central-Upwind Scheme. We develop a new well-balanced positivity pre-
serving scheme for (4), which is based on the semi-discrete central-upwind scheme
from [23] (see also [24, 25]). For simplicity, we introduce a uniform grid xj = j∆x
where ∆x is a small spatial scale, and denote the computational cells centered at
xj by Ij := [xj− 1

2
, xj+ 1

2
].

We rewrite the system (4) in the following form:

Ut +M(U, B)t + F(U, B)x +N (U, B) = S(U, B), U := (w, q)> (6)

where

F(U, B) =
(
q,

q2

w −B +
g

2
(w −B)2

)T
, S(U, B) = (0,−g(w −B)Bx + pawx)>,

M(U, B) = (0, αMM(U, B))T , N (U, B) = (0, αNN(U, B))T .

Using the above notations, a semi-discrete central-upwind scheme for (6) takes
the form of the following system of time-dependent ODEs:

d

dt

(
Uj(t) +Mj(t)

)
= −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t)−N j(t), (7)

where (·)j(t) is used to denote the approximated cell averages over the corresponding
cells:

Uj(t) ≈
1

∆x

∫

Ij

U(x, t) dx, Sj(t) ≈
1

∆x

∫

Ij

S(U(x, t), B(x)) dx,

M j(t) ≈
1

∆x

∫

Ij

M(U(x, t), B(x)) dx, N j(t) ≈
1

∆x

∫

Ij

N(U(x, t), B(x)) dx,

and Hj+ 1
2
(t) are the central-upwind numerical fluxes Hj+ 1

2
proposed in [24] (see

also [21,23]):

Hj+ 1
2
(t) =

a+
j+ 1

2

F
(
U−
j+ 1

2

, Bj+ 1
2

)
− a−

j+ 1
2

F
(
U+
j+ 1

2

, Bj+ 1
2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
.

(8)

Here, the values U±
j+ 1

2

are the right/left point values at x = xj+ 1
2

of the conservative

piecewise linear reconstruction Ũ,

Ũ(x) := Uj + (Ux)j (x− xj) , xj− 1
2
< x < xj+ 1

2
, (9)

which is used to approximate U at time t, that is,

U±
j+ 1

2

:= Ũ
(
xj+ 1

2
± 0
)

= Uj+ 1
2± 1

2
∓ ∆x

2
(Ux)j+ 1

2± 1
2
. (10)

The numerical derivatives (Ux)j are at least first-order accurate component-wise

approximations of Ux(xj , t), computed using a nonlinear limiter needed to ensure
the non-oscillatory nature of the reconstruction (9). The right- and left-sided local
speeds a±

j+ 1
2

in (8) are obtained from the smallest and largest eigenvalues of the
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Jacobian ∂F
∂U (see Section 2.1.1 for details). Notice that the terms U±

j+ 1
2

, Uj , a
±
j+ 1

2

,

Ũ(x) and (Ux)j all depend on t, but we suppress this dependence for simplicity.

We also follow the work of [24, 25] and replace B(x) in (8) with its continuous
piecewise linear approximation by defining

Bj+ 1
2

:= B(xj+ 1
2
) and Bj :=

1

2
(Bj+ 1

2
+Bj− 1

2
). (11)

This will help to ensure the positivity preserving nature of the proposed scheme, as
we show below.

2.1.1. Positivity-Preserving Reconstruction. The use of a piecewise linear recon-
struction (9) requires the computation of slopes (Ux)j to obtain the right/left point
values defined in (10). It is well-known that in order to ensure the non-oscillatory
nature of the reconstruction, the use of a nonlinear limiter is required. We choose
to use the generalized minmod limiter:

(Ux)j = minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj+1 −Uj

∆x

)
, (12)

where θ ∈ [1, 2] and the minmod function defined as

minmod(z1, z2, . . . ) :=





min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used the control the
amount of numerical viscosity present in the resulting scheme (see, e.g., [28, 30, 33]
for more details concerning the generalized minmod and other nonlinear limiters).

Even when all of the cell averages hj are nonnegative, the reconstructed right/left
point values at the cell interface h±

j+ 1
2

may be negative. To guarantee positivity of

h throughout the entire computational domain, we follow the procedure from [24]
and amend the reconstruction (9), (10), (12) in the following conservative way:

if w−
j+ 1

2

< Bj+ 1
2
, then take (wx)j := − wj

∆x/2

=⇒ w−
j+ 1

2

= Bj+ 1
2
, w+

j− 1
2

= 2wj ,

if w+
j− 1

2

< Bj− 1
2
, then take (wx)j :=

wj
∆x/2

=⇒ w−
j+ 1

2

= 2wj , w
+
j− 1

2

= Bj− 1
2
.

(13)

It is necessary to compute the nonconservative quantity u = q/h for the compu-
tation of numerical fluxes and local propagation speeds. We follow the desingular-
ization procedure outlined in [24, 25] to avoid possible division by small values of
h:

u :=

√
2(w −B) · q√

(w −B)4 + max ((w −B)4, ε)
, (14)

where ε is a small desingularization parameter (in our numerical experiments, we
have taken ε = min((∆x)3, 10−4)). Notice that this procedure will only affect the
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velocity computations when h4 < ε. It is also important to recalculate the values
of q at the points where the velocity was desingularized by setting

q := h · u.

Since the flux term F in (6) is equivalent to that of the classical Saint-Venant
system, the local propagation speeds a±

j+ 1
2

are computed the same way using the

eigenvalues of ∂F
∂U :

a+
j+ 1

2

:= max
{
u+
j+ 1

2

+
√
gh+

j+ 1
2

, u−
j+ 1

2

+
√
gh−

j+ 1
2

, 0
}
,

a−
j+ 1

2

:= min
{
u+
j+ 1

2

−
√
gh+

j+ 1
2

, u−
j+ 1

2

−
√
gh−

j+ 1
2

, 0
}
.

Remark 1. Proof of the positivity preserving property of this reconstruction is
available in [20,24].

2.1.2. Discretization of the Non-hydrostatic Pressure Terms. The dispersive terms
M j and N j are computed using the second-order midpoint rule. We first follow [5]
and discretize the terms of M at xj in the following ways:

(
1

3
h3ux

)

x

(xj) ≈
1

3∆x

[
uj+1 − uj

∆x

(
hj+ 1

2

)3 − uj − uj−1
∆x

(
hj− 1

2

)3
]

=
1

3(∆x)2



(
hj+ 1

2

)3

hj+1

qj+1 −
(
hj+ 1

2

)3
+
(
hj− 1

2

)3

hj
qj +

(
hj− 1

2

)3

hj−1
qj−1


 ,

(15)

(
1

2
h2Bxu

)

x

(xj) =

(
1

2
hBxq

)

x

(xj)

≈ 1

2∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+ 1

2
− hj− 1

2
(Bx)j− 1

2
qj− 1

2

]

=
1

4∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+1

+
(
hj+ 1

2
(Bx)j+ 1

2
− hj− 1

2
(Bx)j− 1

2

)
qj − hj− 1

2
(Bx)j− 1

2
qj−1

]
,

(16)

(
1

2
Bxh

2ux

)
(xj) ≈

1

2
(Bx)jh

2

j (ux)j ≈
1

2
(Bx)jh

2

j

[
1

hj
(qx)j −

(hx)j

h
2

j

qj

]

=
1

4∆x
(Bx)j

[
hjqj+1 − 2∆x(hx)jqj − hjqj−1

]
(17)

(B2
xhu)(xj) ≈ (Bx)2jqj , (18)

where uj := qj/hj and

uj+ 1
2

:=
1

2
(uj+1 + uj), hj+ 1

2
:=

1

2
(hj+1 + hj), qj+ 1

2
:=

1

2
(qj+1 + qj),

(Bx)j :=
Bj+ 1

2
−Bj− 1

2

∆x
, (Bx)j+ 1

2
:=

1

2
((Bx)j+1 + (Bx)j),

(qx)j :=
qj+1 − qj−1

2∆x
.

(19)
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We then replace the time derivatives ht by its space equivalent −qx and use (19) to
obtain the following discretization of N :

Nj =− 2

∆x

[
hj+ 1

2
· qj+1 − qj

∆x

(
hj+ 1

2

uj+1 − uj
∆x

− (Bx)j+ 1
2
uj+ 1

2

)

−hj− 1
2
· qj − qj−1

∆x

(
hj− 1

2

uj − uj−1
∆x

− (Bx)j− 1
2
uj− 1

2

)]

− 2(Bx)j(qx)j

{
(qx)j − [(hx)j + (Bx)j ]uj

}
(20)

Remark 2. In equations (15)–(18), (hx)j are obtained using the limiter as it is
described in Section 2.1.1, while (qx)j are calculated using the centered differences
(see (19)). The latter is done to avoid the need to solve a nonlinear system of
algebraic equations as we explain in Section 2.2.

Remark 3. We would like point out that all of the terms in (15)–(18) will be taken
at either tn or tn+1 depending on a particular choice of the time evolution method
for the numerical integration of the system (7). The manner in which these terms
are combined and treated is presented in Section 2.2.

2.1.3. Well-Balanced Source Discretization. Our goal is to design a numerical scheme
for (4) that exactly preserves the “lake-at-rest” steady-state solution (5). This is

achieved by selecting a proper discretization of the geometric source term S
(2)

j . Such
a discretization was derived for the classical Saint-Venant system in [20], and since
both Mj and Nj as defined in Section 2.1.2 vanish at this steady state, we use this
discretization along with an additional atmospheric pressure term for our scheme:

S
(2)

j =− g
(
w−
j+ 1

2

−Bj+ 1
2

)
+
(
w+
j− 1

2

−Bj− 1
2

)

2
·

(Bj+ 1
2
−Bj− 1

2
)

∆x

+ pa
w−
j+ 1

2

− w+
j− 1

2

∆x
.

2.2. Time Evolution. We solve the semi-discrete system (7) by applying the
third-order strong stability preserving Runge-Kutta (SSP-RK) method from [15,16],
which can be written as a convex combination of three forward Euler steps. For
the purpose of demonstration, we proceed by fully discretizing (7) according to the
forward Euler method, and all results obtained from doing so also apply to the
SSP-RK method used in all of our numerical experiments.

When fully discretized by the forward Euler method, the first component of (7)
becomes

wn+1
j = wnj − λ

(
H

(1)

j+ 1
2

−H(1)

j− 1
2

)
, (21)

where λ = ∆t/∆x. Notice that (21) has no contribution from M, N or S and
therefore we may advance the first component independently of the second one to

obtain the cell averages of w at the new time level, {wn+1
j }Nj=1 (and thus {hn+1

j }Nj=1

since h
n+1

j := wn+1
j −Bj , where Bj is given by (11)). The fully discretized version

of the second component of (7) then becomes

qn+1
j + αMM

n+1
j = qnj + αMM

n
j − λ

(
H

(2)

j+ 1
2

−H(2)

j− 1
2

)
+ ∆tS

(2)

j −∆tαNN
n
j , (22)

where all of the terms on the RHS of (22) are taken at t = tn.
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Combining (15)–(18) for the discretization of M at time level tn+1 and inserting
this into the left-hand side (LHS) of (22) leads to the tridiagonal system T =
(τn+1
i,j ), j = 1, . . . , N, i = j − 1, j, j + 1 for {qn+1

j }:

qn+1
j + αMM

n+1
j = τn+1

j−1,jq
n+1
j−1 + τn+1

j,j qn+1
j + τn+1

j+1,jq
n+1
j+1 , (23)

where

τn+1
j−1,j = αM



h
n+1

j (Bx)j − hn+1
j− 1

2

(Bx)j− 1
2

4∆x
−

(
hn+1
j− 1

2

)3

3h
n+1

j−1 (∆x)2


 ,

τn+1
j,j = 1 + αM

[
hn+1
j+ 1

2

(Bx)j+ 1
2
− hn+1

j− 1
2

(Bx)j− 1
2

4∆x
+

(
hn+1
j+ 1

2

)3
+
(
hn+1
j− 1

2

)3

3h
n+1

j (∆x)2

+
(Bx)j(hx)n+1

j

2
+ (Bx)2j

]
,

τn+1
j,j+1 = αM



hn+1
j+ 1

2

(Bx)j+hf − h
n+1

j (Bx)j

4∆x
−

(
hn+1
j+ 1

2

)3

3h
n+1

j+1 (∆x)2


 .

Notice that the term qnj +αMM
n
j on the RHS of (22) is discretized in the same way,

but at time level t = tn.

Remark 4. The addition of the dispersive terms M and N does not affect the well-
balanced property of the scheme because these terms vanish at the “lake-at-rest”
steady state (5). The positivity-preserving property of the scheme is also unaffected
because these terms do not appear in the first equation of (1).

Remark 5. We may write the LHS of (22) as described by (23) as T qn+1, where
qn+1 is the vector of the unknown cell averages {qn+1

j }Nj=1. When using free bound-
ary conditions, T will be strictly tridiagonal, and it is well-known that in this case,
the linear algebraic system (22) can be efficiently solved using the LU decomposition;
see, e.g., [8, 34] for details. In the case of periodic boundary conditions, the matrix
T becomes circulant and one may still take advantage of the banded structure of
the matrix by implementing the Sherman-Morrison algorithm proposed in [32].

3. Numerical Experiments. In the following experiments, we will examine the
role that the non-hydrostatic pressure terms play in the long-time propagation of
water waves. We will use the classical Saint-Venant system for comparison, which
is simply (4) with αM = αN = pa ≡ 0. In all of the experiments, we take pa ≡ 0,
take the minmod parameter θ = 1.3, and consider free boundary conditions.

Example 1 — Solitary Wave Propagation. In the first example (taken from [5]), we
study propagation of the wave given by the following initial data:

h(x, 0) = 1 +
1

10
sech2

(√ 3

40
(x− 70)

)
, u(x, 0) =

√
g

10
sech2

(√ 3

40
(x− 70)

)
,

over a flat bottom topography with B(x) ≡ −0.1. We take g = 9.81 and divide
the computational domain [0, 400] into 3200 finite-volume cells. According to [5],
in the case when αM = αN = 1, these data correspond to a solitary wave, which
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is a single elevation of water surface above an undisturbed surrounding, which is
neither preceded nor followed by any free surface disturbances.

In our numerical experiments below, we compute the solutions until the final
time t = 50 and demonstrate how the speed, magnitude and shape of the wave is
affected by the choice of αM and αN . We begin with the classical Saint-Venant
system (αM = αN = 0) and then start adding the non-hydrostatic pressure terms
by gradually increasing αM and αN . We first observe that for a very small value
of αM = αN = 0.01, the solutions of hydrostatic and non-hydrostatic systems are
almost the same except for a small change of the shape of the wave at the top; see
Figure 1. We then further increase αM and αN to 0.02–0.05 and observe that up
to the intermediate times (around t = 20) the solution magnitude increases before
decreasing at later times. One can also observe a substantial change in the shape of
the wave as a dispersive wave structure clearly develops for αM = αN = 0.04 and
0.05; see Figure 2. When αM and αN are increased up to 0.01, the magnitude of the
wave seem to increase up to about t = 30 and then it stabilizes; for even larger values
of αM = αN = 0.25 and 0.5, the dispersive wave structure starts disappearing and
the amplitude growth becomes less pronounced; and for αM = αN = 1 the expected
solitary wave structure is numerically recovered; see Figure 3. Finally, in Figure 4,
we show the solution obtained for larger dispersive coefficients αM = αN = 2 and
5. As one can see, in these two cases the magnitude of the wave decreases and a
wave train is clearly formed.

Figure 1. Example 1: Time evolution of the water surface for αM =
αN = 0 (left) and 0.01 (right).

We also perform an experimental convergence study of the proposed method.
To this end, we take the solution computed with αM = αN = 1 at time t = 0.1
on different grids and compare them with the reference solution obtained with
51200 finite-volume cells. The results are reported in Tables 1 and 2 for w and
q, respectively. as One can observe, the expected second order of convergence is
achieved in both L∞-, L1- and L2-norms.

Example 2 — Large-Scale Tsunami-Like Wave Propagation. In the second example,
we consider a wave that was created using a Savage-Hutter type model of submarine
landslides and generated tsunami waves. This model is governed by a two-layer
system in which the lower layer is considered to be a fluid-granular mixture that
has a larger density than the upper layer, which is water. The lower layer slides
down the slope of the solid bottom, and the through momentum exchange causes
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Figure 2. Example 1: Time evolution of the water surface for αM =
αN = 0.02 (top left), 0.03 (top right), 0.04 (bottom left) and 0.05
(bottom right).

Number of cells L∞-error Rate L1-error Rate L2-error Rate
400 2.94e-04 – 1.97e-04 – 1.47e-04 –
800 9.23e-05 1.67 4.46e-05 2.14 3.54e-05 2.06
1600 1.51e-05 2.61 8.99e-06 2.31 5.53e-06 2.68
3200 2.55e-06 2.56 2.04e-06 2.14 1.01e-06 2.45
6400 6.63e-07 1.94 5.13e-07 1.99 2.31e-07 2.13
12800 1.75e-07 1.92 1.49e-07 1.79 5.88e-08 1.97

Table 1. L∞-, L1- and L2-errors in w and the corresponding exper-
imental rates of convergence.

waves to form at the water surface. For more details of this system and associated
numerical methods, see [13,18,22].

The initial data are obtained from [22, Section 4.5], where a submarine landslide
on the ocean floor creates surface waves traveling to the left and right. We choose
the right-moving wave at t = 0.3 as the initial condition for the non-hydrostatic
system (4) and the following bottom topography function:

B(x) =





− 5, x < 0,

− 5 +
5∑

i=1

Ci sin(π(x− Si)/Li), x ≥ 0,
(24)
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Figure 3. Example 1: Time evolution of the water surface for αM =
αN = 0.1 (top left), 0.25 (top right), 0.5 (bottom left) and 1 (bottom
right).

Figure 4. Example 1: Time evolution of the water surface for αM =
αN = 2 (left) and 5 (right).

where the parameters Ci, Si and Li are given in Table 3. The initial water sur-
face w(x, 0) and velocity u(x, 0) are plotted in Figure 5 and a nonflat part of the
bottom topography is shown in Figure 6. In this example, the length scale is kilo-
meters and the time scale is hours, so we take the corresponding gravity to be
g = 271008 km/h2. The computational domain, [−150, 2200], is divided into 18800
finite-volume cells.
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Number of cells L∞-error Rate L1-error Rate L2-error Rate
400 2.28e-04 – 4.12e-04 – 1.90e-04 –
800 5.48e-05 2.06 1.03e-04 2.00 4.62e-05 2.04
1600 1.34e-05 2.04 2.56e-05 2.01 1.12e-05 2.05
3200 2.89e-06 2.21 6.49e-06 1.98 2.78e-06 2.01
6400 7.31e-07 1.98 1.65e-06 1.98 6.94e-07 2.00
12800 1.70e-07 2.10 4.14e-07 1.99 1.71e-07 2.02

Table 2. L∞-, L1- and L2-errors in q and the corresponding exper-
imental rates of convergence.

i 1 2 3 4 5
Ci 0.1 0.3 0.5 0.1 1
Si 0 2 3 0 80
Li 40 70 100 10 2500

Table 3. Parameters used in for the bottom topography functions
(24) and (25).

Figure 5. Example 2: Initial water surface (left) and discharge (right).

We compute the solutions until the final time t = 2 and as in Example 1 study the
dependence of the computed solutions on the choice of the dispersion parameters
αM and αN . We begin with the classical Saint-Venant system (αM = αN = 0) and
plot the obtained results in Figure 7. As one can see, there are many small waves
created behind the large wave as a result of the nonflat bottom topography, but the
structure of the larger waves does not seem to be significantly affected. Figure 8
shows time snapshots of the numerical solutions of the non-hydrostatic system (4)
with αM = αN = 0.05, 0.1, 0.15 and 0.2. As expected, dispersive wave trains start
appearing and become more pronounced for larger values of αM and αN .

Example 3 — On-Shore Dynamics of the Large Wave. In order to further empha-
size the difference between hydrostatic and non-hydrostatic solutions, we let the
computed waves to approach the shore. We take the solutions at time t = 2 shown
in Figure 7 for αM = αN = 0 and Figure 8 for αM = αN = 0.2 as initial data in
the domain [1000, 3000] (divided into 16000 finite-volume cells) along with following
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Figure 6. Example 2: The bottom topography function (24).

Figure 7. Example 2: Time evolution of the water surface for the
classical Saint-Venant system (αM = αN = 0).

bottom topography function:

B(x) =





− 5 +
5∑

i=1

Ci sin(π(x− Si)/Li), x < 2200,

− 4.86 + 2.75 exp
[
−300

(
1− x

2600

)]
, 2200 < x ≤ 2600,

10−10 − 2.11 exp
[
−300

( x

2600
− 1
)]
, x > 2600,

(25)

where the coefficients Ci, Si, and Li are given in Table 3. We notice that near the
shore, the function B is simply a smooth curve that increases from −4.86 to almost
zero; see Figure 9.

In order to accurately capture the on-shore arrival of the waves, we have im-
plemented a special well-balanced reconstruction of wet/dry fronts from [2] and
computed both the hydrostatic and non-hydrostatic solutions until the final time
t = 3. We present several time snapshots of the computed water surface in Fig-
ure 10. As one can see, both dispersive and non-dispersive waves go through the
shoaling process where they slow down and increase in height, and eventually ar-
rive on shore. If we look closer (Figure 11), we see that the trailing waves actually
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Figure 8. Example 2: Time evolution of the water surface for αM =
αN = 0.05 (top left), 0.1 (top right), 0.15 (bottom left) and 0.2
(bottom right).

Figure 9. Example 3: The bottom topography function (25).

impact how the wave comes to shore: The front of the non-hydrostatic solution is
about 10–20 km behind the hydrostatic one. This suggests that the non-hydrostatic
terms must be included in a tsunami model if one wants to accurately represent the
ultimate outcome of the tsunami waves.
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Figure 10. Example 3: On-shore arrival of the tsunami-like waves
in the hydrostatic (αM = αN = 0) and non-hydrostatic with αM =
αN = 0.2 regimes.
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Figure 11. Example 3: Same as Figure 10, but zoomed in.
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Abstract. The mathematical theory of hydrodynamic stability started in the

middle of the 19th century with the study of model examples, such as parallel
flows, vortex rings, and surfaces of discontinuity. We focus here on the equally

interesting case of columnar vortices, which are axisymmetric stationary flows

where the velocity field only depends on the distance to the symmetry axis
and has no component in the axial direction. The stability of such flows was

first investigated by Kelvin in 1880 for some particular velocity profiles, and the

problem benefited from important contributions by Rayleigh in 1880 and 1917.
Despite further progress in the 20th century, notably by Howard and Gupta

(1962), the only rigorous results so far are necessary conditions for instability
under either two-dimensional or axisymmetric perturbations. This note is a

non-technical introduction to a recent work in collaboration with D. Smets,

where we prove under mild assumptions that columnar vortices are spectrally
stable with respect to general three-dimensional perturbations, and that the

linearized evolution group has a subexponential growth as |t| → ∞.

1. Introduction. Hydrodynamic stability is the subdomain of fluid dynamics which
studies the stability and the onset of instability in fluid flows. These fundamental
questions were first addressed in the 19th century, with pioneering contributions by
G. Stokes, H. von Helmholtz, W. Thomson (Lord Kelvin), and J. W. Strutt (Lord
Rayleigh) on the theoretical side, and by O. Reynolds on the experimental side [9].
In early times the notion of stability still lacked a precise mathematical definition,
but its physical meaning was already perfectly understood, as can be seen from the
following quote by J. C. Maxwell [19], which dates back to 1873 :

“When the state of things is such that an infinitely small variation of
the present state will alter only by an infinitely small quantity the state
at some future time, the condition of the system, whether at rest or in
motion, is said to be stable; but when an infinitely small variation in
the present state may bring about a finite difference in the state of the
system in a finite time, the system is said to be unstable.”

What is exactly meant by “infinitely small” in this definition is rigorously spec-
ified, for instance, in the subsequent memoir by A. M. Lyapunov [26], which was
published in 1892. The relevance of stability questions in fluid mechanics cannot
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be overestimated. As an example, in the idealized situation where the fluid is as-
sumed to be incompressible and inviscid, a plethora of explicit stationary solutions
are known which describe shear flows, vortices, or flows past obstacles. However,
depending on circumstances, these solutions may or may not be observed in real
life, where experimental uncertainties, viscosity effects, and boundary conditions
play an important role. To determine the relevance of a given flow, the stability
analysis is certainly the first step to perform, but even in an idealized framework
this often leads to difficult mathematical problems, a complete solution of which
was largely out of reach in the 19th century and is still a serious challenge today.

To make the previous considerations more concrete, we analyze in this introduc-
tion three relatively simple cases, of increasing complexity, where stability can be
discussed using the techniques introduced by Rayleigh [30]. These examples are
classical and thoroughly studied in many textbooks [7, 8, 11, 23, 33], as well as in
the excellent review article [10]. The results obtained for these model problems will
serve as a guideline for the stability analysis of columnar vortices, which will be
presented in Sections 2 and 3.

1.1. The Rayleigh-Taylor Instability. We consider the motion of an incom-
pressible and inviscid fluid in the infinite strip D = R × [0, L] with coordinates
(x, z), where x ∈ R is the horizontal variable and z ∈ [0, L] the vertical vari-
able. The state of the fluid at time t ∈ R is defined by the density distribution
ρ(x, z, t) > 0, the velocity field u(x, z, t) ∈ R2, and the pressure p(x, z, t) ∈ R. The
evolution is determined by the density-dependent incompressible Euler equations

∂tρ+ u · ∇ρ = 0 , ρ
(
∂tu+ (u · ∇)u

)
= −∇p− ρgez , div u = 0 , (1)

where g denotes the acceleration due to gravity and ez is the unit vector in the
(upward) vertical direction. Setting u = (ux, uz), we impose the impermeability
condition uz(x, z, t) = 0 at the bottom and the top of the domain D, namely for
z = 0 and z = L.

The PDE system (1) has a family of stationary solutions of the form ρ = ρ̄(z), u =
0, p = p̄(z), where the density ρ̄ is an arbitrary function of the vertical coordinate z,
and the associated pressure is determined (up to an irrelevant additive constant) by
the hydrostatic balance p̄′(z) = −ρ̄(z)g. To study the stability of the equilibrium
(ρ̄, 0, p̄), we consider perturbed solutions of the form

ρ(x, z, t) = ρ̄(z)+ ρ̃(x, z, t) , u(x, z, t) = ũ(x, z, t) , p(x, z, t) = p̄(z)+ p̃(x, z, t) .

Inserting this Ansatz into (1) and neglecting all quadratic terms in (ρ̃, ũ), we obtain
the linearized equations for the perturbations (ρ̃, ũ, p̃) :

ρ̄(z)∂tũx = −∂xp̃ ,
ρ̄(z)∂tũz = −∂z p̃− ρ̃g ,

∂tρ̃+ ρ̄′(z)ũz = 0 ,

∂xũx + ∂zũz = 0 .
(2)

Remark 1.1. It is not obvious at all that considering the linearized perturbation
equations (2) is sufficient, or even appropriate, to determine the stability of station-
ary solutions to (1). In fact the validity of Lyapunov’s linearization method in the
context of fluid mechanics is a difficult question [39], which is the object of ongoing
research. In particular, for ideal fluids, there is no general result asserting that a
linearly stable equilibrium is actually stable in the sense of Lyapunov. However,
if the linearized system is exponentially unstable, for instance due to the existence
of an eigenvalue with nonzero real part, it is often possible to conclude that the
equilibrium under consideration is unstable, see [5, 16, 25, 38] for a few results in
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this direction. To summarize, the linearization approach may be useful to detect
exponential instabilities, but stability results have to be established by a different
approach, for instance (in two space dimensions) using variational techniques [2, 3]

The linearized equations (2) are invariant under translations in the horizontal
direction, so that we can use a Fourier transform to reduce the number of inde-
pendent variables. A further simplification is made by restricting our attention to
eigenfunctions of the linearized operator. In other words, we consider solutions of
(2) of the particular form

ρ̃(x, z, t) = ρ(z) eikx est , ũ(x, z, t) = u(z) eikx est , p̃(x, z, t) = p(z) eikx est ,
(3)

where k ∈ R is the horizontal wave number and s ∈ C is the spectral parameter.
The representation (3) transforms the linearized equations (2) into an ODE system :

ρ̄(z)sux = −ikp ,
ρ̄(z)suz = −∂zp− ρg ,

sρ+ ρ̄′(z)uz = 0 ,

ikux + ∂zuz = 0 ,
(4)

which (if s 6= 0) can in turn be reduced to a single equation for the vertical velocity
profile uz :

− ∂z
(
ρ̄(z)∂zuz

)
+ k2ρ̄(z)uz −

k2g

s2
ρ̄′(z)uz = 0 , z ∈ [0, L] . (5)

By construction, the values of the spectral parameter s ∈ C\{0} for which the ODE
(5) has a nontrivial solution uz satisfying the boundary conditions uz(0) = uz(L) =
0 are eigenvalues of the linearized operator (2) in the Fourier subspace indexed by
the horizontal wavenumber k ∈ R. Spectral stability is obtained if all eigenvalues
are purely imaginary, whereas the existence of an eigenvalue s ∈ C with Re(s) 6= 0
implies exponential instability of the linearized system in positive or negative times.

Remarks 1.2.
1. The Fourier transform reduces the linearized equations to a one-dimensional
PDE system in the bounded domain [0, L], but this does not immediately imply
that the spectrum of the full linearized operator is the union of the point spectra
obtained for all values of the horizontal wavenumber k ∈ R. So, even if one can
prove that the eigenvalues are purely imaginary for all k ∈ R, an additional argu-
ment is needed to verify that the full linearized operator has indeed no spectrum
outside the imaginary axis. This rather technical issue will not be discussed further
in this introduction, but we shall come back to it in Section 3.

2. In the literature, the Rayleigh-Taylor equation (5) is often derived in the Boussi-
nesq approximation, which consists in neglecting the variations of the density profile
ρ̄(z) everywhere except in the buoyancy term. This gives the simplified eigenvalue
equation

− ∂2zuz + k2
(

1 +
N(z)2

s2

)
uz = 0 , where N(z)2 = −gρ̄

′(z)
ρ̄(z)

. (6)

When ρ̄′(z) < 0, the real number N(z) is called the Brunt-Väisälä frequency. This
is the (maximal) oscillation frequency of internal waves inside a stably stratified
fluid.

Assume that, for some k ∈ R and some s ∈ C\{0}, the ODE (5) has a nontrivial
solution uz satisfying the boundary conditions uz(0) = uz(L) = 0. Multiplying
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both sides of (5) by the complex conjugate ūz and integrating over the vertical
domain [0, L], we obtain the integral identity

∫ L

0

ρ̄(z)|∂zuz|2 dz + k2
∫ L

0

ρ̄(z)|uz|2 dz − k2g

s2

∫ L

0

ρ̄′(z)|uz|2 dz = 0 . (7)

The first two terms in (7) being real and positive, equality can hold only if the third
term is real and negative. Thus we must have k 6= 0 and Im(s2) = 0, namely s ∈ R
or s ∈ iR. Now, if we assume that the fluid is stably stratified, in the sense that
ρ̄′(z) ≤ 0 for all z ∈ [0, L], the last term in (7) is negative only if s2 < 0, which
means that s ∈ iR. Under this assumption, we conclude that all eigenfunctions
of the form (3) with k ∈ R correspond to eigenvalues s on the imaginary axis, so
that the equilibrium (ρ̄, 0, p̄) of (1) is spectrally stable, up to the technical issue
mentioned in Remark 1.2.1.

On the other hand, if ρ̄′(z) > 0 for some z ∈ [0, L], a nice argument due to Synge
[36] shows that, for any k 6= 0, the Rayleigh equation has a nontrivial solution uz
(satisfying the boundary conditions) for a sequence of real eigenvalues sn → 0. The
equilibrium (ρ̄, 0, p̄) of (1) is thus spectrally unstable. Summarizing, the stability of
the rest state u = 0 in stratified ideal fluids is reasonably understood, in the sense
that Rayleigh’s approach provides a necessary and sufficient condition for spectral
stability in that case.

1.2. Shear Flows in Homogeneous Fluids. For the same equations (1) in the
domain D, we now consider a different family of equilibria, namely shear flows of
the form ρ = 1, u = U(z)ex, p = 0, where the horizontal velocity profile U is an
arbitrary function. For the moment, we assume that the fluid is homogeneous and
only allow for perturbations of the velocity field. The perturbed solutions thus take
the form

ρ(x, z, t) = 1 , u(x, z, t) = U(z)ex + ũ(x, z, t) , p(x, z, t) = p̃(x, z, t) ,

and the linearized equations become

∂tũx + U(z)∂xũx + U ′(z)ũz = −∂xp̃ ,
∂tũz + U(z)∂xũz = −∂z p̃ ,

∂xũx + ∂zũz = 0 . (8)

As before, we suppose that ũ(x, z, t) = u(z) eikx est and p̃(x, z, t) = p(z) eikx est for
some k ∈ R and some s ∈ C. The functions u, p are solutions of the ODE system

γ(z)ux + U ′(z)uz = −ikp , γ(z)uz = −∂zp , ikux + ∂zuz = 0 , (9)

where γ(z) = s+ ikU(z) is the symbol of the material derivative ∂t +U(z)∂x. This
function plays an important role in the stability analysis, as it incorporates the
spectral parameter s.

Since we are interested in detecting potential instabilities, we assume in what
follows that Re(s) 6= 0, which implies in particular that γ(z) 6= 0 for all z ∈ [0, L].
Under this hypothesis, we can reduce the ODE system (9) to the following scalar
equation for the vertical velocity :

− ∂2zuz + k2uz +
ikU ′′(z)
γ(z)

uz = 0 , z ∈ [0, L] . (10)

This equation looks simpler than (5), but is in fact substantially harder to analyze.
If uz is a nontrivial solution satisfying the boundary conditions, we have Rayleigh’s
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identity
∫ L

0

|∂zuz|2 dz + k2
∫ L

0

|uz|2 dz + ik

∫ L

0

U ′′(z)
γ(z)

|uz|2 dz = 0 , (11)

which can be satisfied only if k 6= 0 and if U ′′(z) is not identically zero. Under these
assumptions, the imaginary part of (11) gives the useful relation

Re(s)

∫ L

0

U ′′(z)
|γ(z)|2 |uz|

2 dz = 0 . (12)

If U ′′(z) does not change sign on [0, L], the integral in (12) is nonzero, which con-
tradicts our assumption that Re(s) 6= 0. This gives Rayleigh’s inflection point
criterion [30] : a necessary condition for the shear flow with velocity profile U(z) to
be (spectrally) unstable is that the function z 7→ U ′′(z) changes sign on the interval
[0, L].

Rayleigh’s inflection point criterion is not sharp, and can be improved somehow
by exploiting both the real and imaginary parts of identity (11), see [15]. However,
surprisingly enough, it seems difficult to formulate a necessary and sufficient stabil-
ity condition for shear flows, even in the ideal case considered here. An instructive
example is Kolmogorov’s flow U(z) = sin(z − L/2), which is known to be stable if
and only if L ≤ π [10, 24], although both Rayleigh’s and Fjørtoft’s criteria allow
for a possible instability for any L > 0. In fact, the origin of inertial instabilities in
shear flows seems only partially understood from a physical point of view, see [4].

1.3. Shear Flows in Stratified Fluids. Following the same approach as in the
previous paragraphs, we now analyze the stability of shear flows in (stably) stratified
fluids. We consider the Euler equations (1) in the vicinity of a stationary solution
of the form ρ = ρ̄(z), u = U(z)ex, p = p̄(z), where p̄′(z) = −ρ̄(z)g (hydrostatic
balance). The perturbed solutions are written in the form

ρ(x, z, t) = ρ̄(z) + ρ̃(x, z, t) ,

u(x, z, t) = U(z)ex + ũ(x, z, t) ,

p(x, z, t) = p̄(z) + p̃(x, z, t) ,

so that the linearized equations become

ρ̄(z)
(
∂tũx + U(z)∂xũx + U ′(z)ũz

)
= −∂xp̃ ,

ρ̄(z)
(
∂tũz + U(z)∂xũz

)
= −∂z p̃− ρ̃g ,

∂tρ̃+ U(z)∂xρ̃+ ρ̄′(z)ũz = 0 ,

∂xũx + ∂zũz = 0 .
(13)

For perturbations of the form (3), we arrive at the ODE system

ρ̄(z)
(
γ(z)ux + U ′(z)uz

)
= −ikp ,

ρ̄(z)γ(z)uz = −∂zp− ρg ,
γ(z)ρ+ ρ̄′(z)uz = 0 ,

ikux + ∂zuz = 0 ,
(14)

where γ(z) = s + ikU(z) is the spectral function. If we assume that Re(s) 6= 0, so
that γ(z) 6= 0, we can reduce the system (14) to the Taylor-Goldstein equation

− ∂z
(
ρ̄(z)∂zuz

)
+ k2ρ̄(z)uz +

ik

γ(z)

(
ρ̄U ′

)′
(z)uz −

k2g

γ(z)2
ρ̄′(z)uz = 0 , (15)

where z ∈ [0, L]. Note that we recover the Rayleigh-Taylor equation (5) by setting
U = 0, hence γ(z) = s, in (15). Similarly, (15) reduces to the Rayleigh stability
equation (10) when ρ̄ = 1.
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The original approach of Rayleigh does not give much information on the solu-
tions of (15). If uz is a nontrivial solution satisfying the boundary conditions, it is
difficult to exploit the integral identity
∫ L

0

{
ρ̄(z)|∂zuz|2+k2ρ̄(z)|uz|2+ik

(ρ̄U ′)′(z)
γ(z)

|uz|2−
k2g

γ(z)2
ρ̄′(z)|uz|2

}
dz = 0 , (16)

because the real or imaginary parts of the last two terms in the integrand have no
obvious sign. A solution to this problem was found by Miles [27] and Howard [20]
in the early 60’s. Following the elegant approach of [20], we perform the change of
variables

uz(z) = γ(z)1/2vz(z) , where γ(z) = s+ ikU(z) .

The new function vz satisfies the modified ODE

− ∂z
(
ρ̄(z)γ(z)∂zvz

)
+ k2ρ̄(z)γ(z)vz +

ik

2
(ρ̄U ′)′(z) vz +

( ρ̄γ′2
4γ
− k2gρ̄′

γ

)
(z) vz = 0 .

(17)
If vz is a nontrivial solution satisfying the boundary conditions vz(0) = vz(L) = 0,
we multiply both sides of (17) by the complex conjugate v̄z and integrate over the
domain [0, L]. After taking the real part, we obtain the useful identity

Re(s)

∫ L

0

{
ρ̄(z)

(
|∂zvz|2+k2|vz|2

)
+
k2ρ̄(z)U ′(z)2

|γ(z)|2
(

Ri(z)− 1

4

)
|vz|2

}
dz = 0 , (18)

where Ri(z) is the (local) Richardson number defined by

Ri(z) =
−ρ̄′(z) g
ρ̄(z)

1

U ′(z)2
=

(
N(z)

U ′(z)

)2

.

We assume here that ρ̄′(z) ≤ 0 (stable stratification), so that Ri(z) ≥ 0, and we
denote by N(z) the Brunt-Väisälä frequency (6).

The Richardson number compares the stabilizing effect of the stratification, mea-
sured by the frequency N of the internal waves, to the potentially destabilizing
effect of the shear flow, which may be proportional to the velocity gradient U ′ [10].
Clearly, equality (18) cannot hold if Ri(z) ≥ 1/4 for all z ∈ [0, L], because the inte-
grand is then positive while we assumed that Re(s) 6= 0. This gives the celebrated
Miles-Howard criterion : a shear flow in a stratified fluid is spectrally stable if the
Richardson number is greater than or equal to 1/4 everywhere in the fluid. The
threshold value 1/4 is known to be sharp, in the sense that it cannot be replaced
by any smaller real number. However, the Miles-Howard criterion itself is by no
means sharp : if ρ̄ = 1, any shear flow without inflection point is spectrally stable
by Rayleigh’s criterion, although Ri(z) ≡ 0 in that case.

Remark 1.3. So far we concentrated on the two-dimensional case, but it is also in-
structive to investigate the stability of shear flows with respect to three-dimensional
perturbations. In that case, we work in the domain D′ = R2 × [0, L] with coor-
dinates (x, y, z), and consider perturbations that are plane waves with horizontal
wave vector k = (k1, k2) ∈ R2. For instance, the three-dimensional velocity field
takes the form

u(x, y, z, t) = U(z)ex + u(z) ei(k1x+k2y) eσt ,

where σ ∈ C is the spectral parameter. Using a similar Ansatz for the density and
the pressure, it is easy to derive the 3D perturbation equations which generalize
(14). Now, in the homogeneous case where ρ ≡ 1, a well-know result due to Squire
[35] shows that, if the 3D perturbation equations have a nontrivial solution for some
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k1, k2 6= 0 and some σ ∈ C with Re(σ) 6= 0, then the 2D perturbation equations (9)
also have a nontrivial solution with k = (k21 + k22)1/2 and s = (k/k1)σ. Note that
|Re(s)| > |Re(σ)|, so that the most unstable modes are always two-dimensional; in
other words, it is sufficient to consider the 2D case to detect potential instabilities.
A similar result holds in the general situation where the fluid is stratified [10], but
in that case Squire’s transformation also affects the acceleration due to gravity,
replacing g by the larger quantity (k2/k21)g. This means that, to any unstable 3D
mode, there corresponds a more unstable 2D mode in a stronger gravitational field.
Therefore, unless the fluid is stably stratified, this result does not imply that the
most unstable modes are necessarily two-dimensional.

2. Classical Stability Results for Vortices in Ideal Fluids. We now discuss
our main topic, namely the stability of a family of axisymmetric stationary solutions
to the three-dimensional Euler equations which describe steady vortex columns. For
symmetry reasons, it is convenient to introduce cylindrical coordinates (r, θ, z), and
to decompose the velocity of the fluid as u = urer + uθeθ + uzez, where er, eθ,
ez are unit vectors in the radial, azimuthal, and vertical directions, respectively.
Assuming that the fluid density is constant and equal to one, the Euler equations
become

∂tur + (u · ∇)ur −
u2θ
r

= −∂rp ,

∂tuθ + (u · ∇)uθ +
uruθ
r

= −1

r
∂θp ,

∂tuz + (u · ∇)uz = −∂zp ,

(19)

where u · ∇ = ur∂r + 1
ruθ∂θ + uz∂z. In addition, we have the incompressibility

condition

div u ≡ 1

r
∂r(rur) +

1

r
∂θuθ + ∂zuz = 0 . (20)

Columnar vortices are stationary solutions of (19), (20) of the form

u = V (r) eθ , p = P (r) , (21)

where V : R+ → R is an arbitrary velocity profile, and the associated pressure
P : R+ → R is determined, up to an irrelevant additive constant, by the centrifugal
balance rP ′(r) = V (r)2. For the moment, we only assume that V is a piecewise
differentiable function, and that the vortex (21) is localized in the sense that V (r)→
0 as r → ∞, but more restrictive assumptions will be added later. We introduce
the angular velocity Ω and the vorticity W , which are defined as follows :

Ω(r) =
V (r)

r
, W (r) =

1

r

d

dr

(
rV (r)

)
= rΩ′(r) + 2Ω(r) . (22)

Without loss of generality, we normalize the vortex so that Ω(0) = 1, hence W (0) =
2. Typical examples we have in mind are

• The Rankine vortex : Ω(r) =

{
1 if r ≤ 1 ,

r−2 if r ≥ 1 ,
W (r) =

{
2 if r < 1 ,

0 if r > 1 .

• the Lamb-Oseen vortex : Ω(r) =
1

r2

(
1− e−r2

)
, W (r) = 2 e−r

2

.

• the Kaufmann-Scully vortex : Ω(r) =
1

1 + r2
, W (r) =

2

(1 + r2)2
.

48



THIERRY GALLAY

To study the stability of the vortex (21), we consider perturbed solutions of the
form

u(r, θ, z, t) = V (r) eθ + ũ(r, θ, z, t) , p(r, θ, z, t) = P (r) + p̃(r, θ, z, t) .

This leads to the linearized evolution equations

∂tũr + Ω(r)∂θũr − 2Ω(r)ũθ = −∂rp̃ ,

∂tũθ + Ω(r)∂θũθ +W (r)ũr = −1

r
∂θp̃ ,

∂tũz + Ω(r)∂θũz = −∂z p̃ ,
(23)

where the pressure is determined so that the velocity perturbation remains
divergence-free. Taking the divergence of both sides in (23), we obtain for p̃ the
second order elliptic equation

− ∂∗r∂rp̃−
1

r2
∂2θ p̃− ∂2z p̃ = 2

(
∂∗rΩ

)
∂θũr − 2∂∗r

(
Ω ũθ

)
, (24)

where we introduced the shorthand notation ∂∗r = ∂r + 1
r .

System (23) was first studied by Kelvin [37] for some particular velocity profiles.
In [31], Rayleigh drew an interesting analogy between columnar vortices and shear
flows in stratified fluids, on the basis of which he obtained a sufficient condition for
stability with respect to axisymmetric perturbations. Further progress was made
in the 20th century, notably by Howard and Gupta [21], and the state of the art is
reviewed in textbooks on vortex dynamics [1, 29] or hydrodynamic stability [7, 11].
In this section we give a brief account of these classical developments, and we
postpone the presentation of our own results to Section 3.

2.1. Normal Mode Analysis. As the coefficients in (23) only depend on the
distance r to the symmetry axis, we can reduce the number of independent variables
by using a Fourier series decomposition in the angular variable θ and a Fourier
transform in the vertical coordinate z. Moreover, as in Sections 1.1–1.3, we focus our
attention to the eigenvalues of the linearized operator. We thus consider velocities
and pressures of the following form

ũ(r, θ, z, t) = u(r) ei(mθ+kz) est , p(r, θ, z, t) = p(r) ei(mθ+kz) est , (25)

where m ∈ Z is the angular Fourier mode, k ∈ R is the vertical wave number, and
s ∈ C is the spectral parameter. The velocity u = (ur, uθ, uz) and the pressure p in
(25) satisfy the ODE system

γ(r)ur−2Ω(r)uθ = −∂rp , γ(r)uθ +W (r)ur = − im
r
p , γ(r)uz = −ikp , (26)

where γ(r) = s + imΩ(r) is the spectral function. The incompressibility condition
becomes

1

r
∂r(rur) +

im

r
uθ + ikuz = 0 . (27)

If (m, k) 6= (0, 0) it is possible to reduce the system (26), (27) to a scalar equation
for the radial velocity ur, by eliminating the pressure p and the velocity components
uθ, uz, see [11, Section 15] or [17, Section 2]. After straightforward calculations, we
obtain the second order ODE

−∂r
(

r2∂∗rur
m2 + k2r2

)
+

{
1 +

imr

γ(r)
∂r

( W (r)

m2 + k2r2

)
+

1

γ(r)2
k2r2Φ(r)

m2 + k2r2

}
ur = 0 , (28)
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where ∂∗r = ∂r + 1
r and Φ(r) = 2Ω(r)W (r) is the Rayleigh function. This equation

is well defined if γ(r) 6= 0 for all r > 0, which is the case if Re(s) 6= 0 or, more
generally, if s 6= −imb for all b in the range of the angular velocity Ω. Eigenvalues
of the linearized operator correspond to those values of the spectral parameter s for
which equation (28) has a nontrivial solution ur that is regular at the origin and
decays to zero as r →∞.

It is instructive to notice that the stability equation (28) has a very similar
structure as the Taylor-Goldstein equation (15). Both are second order Schrödinger
equations involving a complex-valued potential which is a polynomial of degree two
in the inverse spectral function 1/γ. The coefficient of 1/γ(r)2 in (28) is proportional
to the Rayleigh function Φ, and corresponds to the buoyancy term involving −k2gρ̄′
in (15). Similarly, the coefficient of 1/γ(r) in (28) is proportional to the vorticity
W and its derivative, and corresponds to the inertial term involving ik(ρ̄U ′)′ in
(15). This analogy is grounded in deep physical reasons, which are explained in the
pioneering work of Rayleigh [31]. It gives hope that the stability equation (28) can
be analyzed using the techniques that were developed for shear flows, but we shall
see that additional difficulties arise in the case of columnar vortices.

2.2. Kelvin’s Vibration Modes. When the spectral parameter s is purely imag-
inary, the stability equation (28) has real-valued coefficients and can be studied
using classical methods such as Sturm-Liouville theory. If m 6= 0, it is convenient
to set s = −imb for some b ∈ R, so that γ(r) = im(Ω(r) − b). In that case, the
equation satisfied by the radial velocity ur becomes

−∂r
(

r2∂∗rur
m2 + k2r2

)
+

{
1+

r

Ω(r)−b∂r
( W (r)

m2 + k2r2

)
− 1/m2

(Ω(r)−b)2
k2r2Φ(r)

m2 + k2r2

}
ur = 0 .

(29)
This equation is well-posed if the spectral parameter b does not belong to the range
of the angular velocity Ω, so that Ω(r)− b 6= 0 for all r > 0.

In the particular case of Rankine’s vortex, for which the vorticity distribution
W is piecewise constant, Kelvin [37] observed that the stability equation can be
explicitly solved in terms of modified Bessel functions in both regions r < 1 and
r > 1. In the generic case where k 6= 0, matching conditions at r = 1 lead to the
“dispersion relation”

I ′m(β)

βIm(β)
+

2

(1− b)β2
=

K ′m(k)

kKm(k)
, where β2 = k2

(
1− 4

m2(1− b)2
)
. (30)

Here Im,Km are modified Bessel functions of order m of the first and second kind,
respectively. Those values of b 6= 1 for which (30) holds give purely imaginary
eigenvalues of the linearized operator, which correspond to periodic oscillations of
the columnar vortex. A careful analysis [37] reveals that the relation (30) is satisfied
for a decreasing sequence bn → 1, and also for an increasing sequence b′n → 1, all
solutions being contained in the interval |b − 1| ≤ 2/|m|. So, for any m 6= 0 and
k 6= 0, Kelvin established the existence of an infinite sequence of purely imaginary
eigenvalues for the linearized operator at Rankine’s vortex. He was confident that
the whole spectrum could be obtained in that way [37] :

“All possible simple harmonic vibrations are thus found : and summa-
tion, after the manner of Fourier, for different values of [m, k], with
different amplitudes and different epochs, gives every possible motion,
deviating infinitely little from the undisturbed motion in circular orbits.”
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Unfortunately, the above claim is not substantiated by any argument in Kelvin’s
paper. Nevertheless, in the case of Rankine’s vortex, one can show that the lin-
earized operator has no eigenvalue outside the imaginary axis, so that the whole
spectrum can indeed be obtained as demonstrated by Kelvin, see [17, Section 6.2].

The situation is different for a vortex with smooth angular velocity profile, as
is the case for the Lamb-Oseen or the Kaufmann-Scully vortex. Assuming that
Ω(0) = 1 and Ω′(r) < 0 for r > 0, it can be proved that, if m 6= 0 and k 6= 0,
there exists a decreasing sequence bn → 1 of values of the spectral parameter for
which the eigenvalue equation (29) has a nontrivial solution satisfying the boundary
conditions. Moreover, (29) may have a solution for a finite number of negative
values of b [17, Section 3.2]. So we still have an infinite number of purely imaginary
eigenvalues, but in addition to these Kelvin waves there is also continuous spectrum
filling the interval where 0 ≤ b ≤ 1. Note that, if 0 < b < 1, the eigenvalue equation
(29) has a singularity at r = r̄ := Ω−1(b), which is referred to as a “critical layer”
in the physical literature. The interested reader is referred to [6, 14, 22, 32] for a
few recent contributions to the study of Kelvin waves.

2.3. Axisymmetric or Two-Dimensional Perturbations. From now on we
concentrate on the spectrum of the linearized operator outside the imaginary axis.
The stability equation (28) is difficult to analyze in general, but important insight
can be obtained by considering some particular cases.

To begin with, we restrict our attention to axisymmetric perturbations for which
m = 0. In that case, we have γ(r) = s for all r > 0, so that (28) reduces to the
simpler equation

− ∂r∂∗rur + k2
(

1 +
Φ(r)

s2

)
ur = 0 , r > 0 . (31)

The analogy with the Rayleigh-Taylor equation (6) is striking, and we see that the
Rayleigh function Φ in (31) plays the exact role of the buoyancy term N2 = −gρ̄′/ρ̄
in (6). Following the same approach as in Section 1.1, we conclude that, if Φ
is everywhere nonnegative, equation (31) has no nontrivial solution satisfying the
boundary conditions when Re(s) 6= 0. Moreover, if Φ(r) < 0 for some r > 0,
Synge’s argument [17, 36] shows that equation (31) has a nontrivial solution for a
sequence of real eigenvalues sn → 0, so that the positivity of the Rayleigh function
is a necessary and sufficient condition for stability in the axisymmetric case.

Remark 2.1. The analogy between columnar vortices and shear flows in stratified
fluids was already noticed by Rayleigh [31], and can be roughly explained as follows.
In a stratified fluid, exchanging the positions of two fluid particles located on the
same vertical line results in a gain or a loss of potential energy, depending on
whether the fluid density is decreasing or increasing upwards. The first situation
is thus stable, and the second unstable. A similar effect occurs in vortices, even
if the fluid is homogeneous, because the centrifugal force (which plays the role of
gravity) varies as a function of the distance to the vortex center. It turns out
that exchanging two fluid particles on the same radial line results in a gain or a
loss of energy depending on the sign of the Rayleigh function Φ, and that a stable
“stratification” corresponds to Φ ≥ 0.
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We next consider two-dimensional perturbations, which correspond to k = 0. In
that case, the stability equation (28) reduces to

− ∂r(r2∂∗rur) +m2ur +
imrW ′(r)
γ(r)

ur = 0 , r > 0 . (32)

Here we can make a comparison with the Rayleigh stability equation (10), and we see
that the vorticity derivative W ′ in (32) plays the role of the second order derivative
U ′′ in (10). Thus, proceeding as in Section 1.2, we conclude that, if W ′ does
not change sign, equation (32) has no nontrivial solution satisfying the boundary
condition if Re(s) 6= 0. The monotonicity of the vorticity profile W is thus a
sufficient condition for stability with respect to two-dimensional perturbations, but
as in the case of shear flows this condition is not necessary in general (and no sharp
stability criterion is known).

Remarks 2.2.
1. For any localized vortex, the monotonicity of the vorticity distribution W implies
the positivity of the Rayleigh function Φ. Indeed, if W is monotone, then W (r)→ 0
as r →∞ (otherwise the vortex would not be localized), hence W does not change
sign, and the reconstruction formula

Ω(r) =
1

r2

∫ r

0

W (s)sds , r > 0 , (33)

shows that Ω has the same sign as W . Thus Φ = 2ΩW ≥ 0.

2. In view of the previous remark, if we extrapolate the conclusions obtained in
the particular cases considered above, one may be tempted to conjecture that a
columnar vortex with monotone vorticity distribution W is (spectrally) stable for
all values of the Fourier parameters m, k. That daring claim has not been proved or
disproved so far, and it is good to keep in mind that, in the present state of affairs,
there is no analog of Squire’s theorem for columnar vortices. In other words, there
is no argument indicating that the most unstable modes (if any) should always
correspond to axisymmetric or two-dimensional perturbations.

2.4. Howard Identities. We assume henceforth that Φ(r) > 0 and W ′(r) < 0 for
all r > 0, so that the vortex under consideration is stable with respect to axisym-
metric or two-dimensional perturbations. Our goal is now to study the eigenvalue
equation (28) in the general case where m 6= 0 and k 6= 0. It is convenient to write
the spectral parameter as s = m(a− ib), where a, b ∈ R, so that

γ(r) = s+ imΩ(r) = imγ?(r) , where γ?(r) = Ω(r)− b− ia . (34)

When a 6= 0, we have γ?(r) 6= 0 for all r > 0, and equation (28) can be written in
the condensed form

− ∂r
(
A(r)∂∗rur

)
+ B(r)ur = 0 , r > 0 , (35)

where ∂∗r = ∂r + 1
r and

A(r) =
r2

m2 + k2r2
, B(r) = 1+

r

γ?(r)
∂r

(
W (r)

m2 + k2r2

)
− k2

m2

A(r)Φ(r)

γ?(r)2
. (36)

If we assume that (35) has a nontrivial solution that is regular at the origin and
decays to zero at infinity, we can multiply both sides of by rūr and integrate over
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R+ to arrive at the identity
∫ ∞

0

(
A(r)|∂∗rur|2 + B(r)|ur|2

)
r dr = 0 . (37)

As |γ?(r)| ≥ |a| > 0 for all r > 0, we deduce from (36) that

|1− B(r)| ≤ C

m2

( 1

|a| +
1

|a|2
)
, r > 0 ,

for some constant C > 0 depending only on the vorticity profile W . In particular,
if we suppose that |a| > M := max(1, 2C), then ReB(r) > 0 for all r > 0, and
taking the real part of (37) we obtain a contradiction. Thus equation (35) has no
nontrivial solution if |a| > M . Similarly, if we take the imaginary part of (37) and
use the definitions (34), (36), we obtain the relation

a

∫ ∞

0

{
r

a2 + (Ω−b)2 ∂r
( W (r)

m2 + k2r2

)
+

2(b− Ω(r))

(a2 + (Ω−b)2)2
k2

m2
A(r)Φ(r)

}
|ur|2r dr = 0 .

(38)
If a 6= 0, the integral in (38) must vanish. But the first term in the integrand is
negative since W ′(r) < 0, and the second one is negative too if we suppose that
b ≤ 0, because Ω(r) > 0 for all r > 0. Thus we conclude from (38) that (35) has no
nontrivial solution if a 6= 0 and b ≤ 0, see Figure 1.

To obtain further information on the spectrum outside the imaginary axis, we
proceed as in the case of the Taylor-Goldstein equation (15), which was analyzed in
Section 1.3. Following Howard’s approach [20, 21], we first consider the differential
equation satisfied by the new function wr = ur/γ?(r). Straightforward calculations
that are reproduced in [17, Section 3.4] show that wr satisfies

− ∂r
(
γ?(r)

2A(r)∂∗rwr
)

+D(r)wr = 0 , r > 0 , (39)

where

D(r) = γ?(r)
2 + 2rγ?(r)∂r

( Ω(r)

m2 + k2r2

)
− k2

m2
A(r)Φ(r) .

In particular, if we multiply (39) by rw̄r, integrate the result over R+, and take the
imaginary part, we obtain the relation

2a

∫ ∞

0

{
(b−Ω(r))

(
A(r)|∂∗rwr|2 + |wr|2

)
− r∂r

( Ω(r)

m2 + k2r2

)
|wr|2

}
r dr = 0 . (40)

The second term in the integrand is positive, because Ω′(r) < 0, and the first one
is positive too if we assume that b ≥ 1, so that b− Ω(r) > 0 for all r > 0. We thus
conclude from (40) that equation (39), hence also equation (35), has no nontrivial
solution satisfying the boundary conditions if a 6= 0 and b ≥ 1, see Figure 1.

Finally, we consider the function vr = ur/γ?(r)
1/2 which satisfies

− ∂r
(
γ?(r)A(r)∂∗rvr

)
+ E(r)vr = 0 , r > 0 , (41)

where

E(r) = γ?(r) +
r

2
∂r

(W (r) + 2Ω(r)

m2 + k2r2

)
+

1

4

Ω′(r)2

γ?(r)
A(r)− k2

m2

A(r)Φ(r)

γ?(r)
.
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Figure 1. The information obtained so far on the spectrum of the
linearized operator, in terms of the spectral parametrization s =
m(a− ib). Kelvin modes are located on the imaginary axis a = 0,
and accumulate only at the upper edge of the essential spectrum,
which fills the segment a = 0, b ∈ [0, 1]. The rest of the spectrum,
if any, consists of isolated eigenvalues which are contained in the
region |a| ≤M , b ∈ [0, 1], and can possibly accumulate only on the
essential spectrum.

If we multiply (41) by rv̄r, integrate the result over R+, and take the imaginary
part, we obtain the relation

− a
∫ ∞

0

{
A(r)|∂∗rvr|2 + |vr|2 +

A(r)

a2 + (Ω− b)2
(k2Φ(r)

m2
− Ω′(r)2

4

)
|vr|2

}
r dr = 0 ,

(42)
which is analogous to identity (18). Introducing the “Richardson number”

Ri(r) =
k2

m2

Φ(r)

Ω′(r)2
, (43)

we deduce from (42) that equation (41), hence also equation (35), has no nontrivial
solution satisfying the boundary conditions if a 6= 0 and Ri(r) ≥ 1/4 for all r > 0.
Unfortunately, unlike for the Taylor-Goldstein equation, the Richardson number
(43) depends on the Fourier parameters m, k, and it is obvious that the inequality
Ri(r) ≥ 1/4 cannot hold for all values of m and k. So the above approach fails
to give any stability criterion that would hold for arbitrary perturbations. The
situation is plainly summarized by Howard and Gupta in [21] :

“The overall conclusion of this consideration of the non-axisymmetric
case is thus essentially negative : the methods used to derive the Richard-
son number and semicircle results in the axisymmetric case reproduce
the known results of Rayleigh for two-dimensional perturbations and
pure axial flow, but seem to give very little more. In fact the present
situation with regard to non-axisymmetric perturbations seems to be
very unsatisfactory from a theoretical point of view.”
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Remark 2.3. In the spirit of Howard’s semi-circle law for shear flows [10], it is
possible in the case of columnar vortices to locate the (hypothetical) unstable modes
in a slightly more precise way than what is depicted in Fig. 1, see e.g. [12]. We do
not comment further on that, because in the next section we give conditions on the
vorticity profile which entirely preclude the existence of unstable eigenvalues.

3. Spectral Stability of Inviscid Columnar Vortices. In this section, we
present the main results that were obtained recently in collaboration with D. Smets
[17, 18]. We first state our precise assumptions on the unperturbed columnar vortex.

Assumption H1: The vorticity profile W : R+ → R+ is a C2 function satisfying
W ′(0) = 0, W ′(r) < 0 for all r > 0, rW ′(r)→ 0 as r →∞, and

Γ :=

∫ ∞

0

W (r)r dr < ∞ . (44)

The crucial point here is the monotonicity of the vorticity distribution W , which
implies stability with respect to two-dimensional perturbations, see Section 2.3.
We also suppose that W (r)→ 0 as r →∞ fast enough so that the integral in (44)
converges; in other words, the total circulation of the vortex is finite. It follows
in particular that W (r) > 0 for all r > 0, and the expression (33) of the angular
velocity shows that Ω(r) > 0 and Ω′(r) < 0 for all r > 0. As a consequence, the
Rayleigh function Φ = 2ΩW is positive everywhere, which implies stability with
respect to axisymmetric perturbations too.

Assumption H2: The “Richardson function” J : R+ → R+ defined by

J(r) =
Φ(r)

Ω′(r)2
, r > 0 , (45)

satisfies J ′(r) < 0 for all r > 0 and rJ ′(r)→ 0 as r →∞.

This second assumption is less natural, and probably only technical in nature.
The quantity J(r) appears in the definition of the “Richardson number” (43), which
plays an important role in the stability analysis of columnar vortices. If, for some
given value of the ratio k2/m2 > 0, the Richardson number (43) is not everywhere
larger than 1/4, assumption H2 implies the existence of a unique r∗ > 0 such that
Ri(r) > 1/4 if r < r∗ (stable region) and Ri(r) < 1/4 if r > r∗ (possibly unstable
region). If we do not suppose that the function J is monotone, more regions have
to be considered, which greatly complicates the analysis. The monotonicity of J
is also essential to construct simple subsolutions of equation (29) for large r, see
[17, Section 4.6]. On the positive side, we emphasize that assumptions H1 and
H2 are satisfied in all classical examples, such as the Lamb-Oseen vortex or the
Kaufmann-Scully vortex.

The following statement is our first main result.

Theorem 3.1. [17] Under assumptions H1, H2, the columnar vortex with vorticity
profile W is spectrally stable in the following sense. Given any m ∈ Z and any
k ∈ R with (m, k) 6= (0, 0), the stability equation (28) has no nontrivial solution
ur ∈ L2(R+, r dr) if the spectral parameter s has a nonzero real part.

Theorem 3.1 asserts that, under assumptions H1, H2, the linearized opera-
tor in (23) has no unstable eigenmode of the form (25) with Re(s) 6= 0 and
u ∈ L2(R+, r dr)3. In some sense, this answers a long-standing question dating
back to the pioneering contributions of Kelvin and Rayleigh. This rather optimistic
view has to be tempered for at least two reasons : first, the status of assumption H2
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is unclear, and it is conceivable that the conclusion of Theorem 3.1 holds under the
sole hypothesis that the vorticity profile is monotone, although we do not know how
to prove that. Next, the proof of Theorem 3.1 given in [17] is very indirect, and does
not give much insight into the physical mechanisms leading to stability. Therefore,
it is not clear if our approach can be applied to more complicated problems, such
as the stability analysis of columnar vortices with nonzero axial flow.

As is explained in Section 2.4, if the angular Fourier mode m and the vertical
wavenumber k are both nonzero, the historical approach to hydrodynamic stability
based on integral identities such as (37) does not seem sufficient to preclude the
existence of unstable eigenvalues in all regions of the complex plane, see Fig. 1.
However, it is easy to verify that all unstable eigenvalues (if any) are simple, isolated,
and depend continuously on the vortex profile W , which can be considered as an
infinite-dimensional parameter in the differential equation (28). In addition, for the
rescaled Kaufmann-Scully vortex

Wε(r) =
2

(1 + ε r2)2
, where 0 < ε ≤ 4k2

m2
, (46)

a direct calculation shows that the Richardson number (43) satisfies Riε(r) ≥ 1/4
for all r > 0. By Howard and Gupta’s result [21], it follows that the associated
linearized operator has no unstable eigenvalue in the Fourier subspace indexed by
m, k.

These observations suggest the following contradiction argument to prove Theo-
rem 3.1. Assume that, for some vorticity profile W satisfying assumptions H1 and
H2, the linearized operator in (23) has an unstable eigenmode of the form (25) for
some s ∈ C \ iR and some Fourier parameters m ∈ N, k ∈ R. We know from the
results of Section 2.3 that both m and k are necessarily nonzero. The idea is now
to perform a continuous homotopy (Wt)t∈[0,1] between the original profile W0 := W
and the reference profile W1 := Wε, where Wε is defined in (46). For small t, the
linearized operator associated with Wt has an unstable eigenvalue s(t) which de-
pends continuously on t and satisfies s(0) = s. But we also know that, for t = 1, the
linearized operator associated with the reference profile Wε has no unstable eigen-
value at all. Thus we logically conclude that there exists some t∗ ∈ (0, 1] such that
the unstable eigenvalue s(t) merges into the continuous spectrum on the imaginary
axis at t = t∗. The core of our contradiction argument is the claim that, under
assumptions H1 and H2, such a merger is actually impossible.

The way we actually arrive at a contradiction is not easily described in a few
lines, and the interested reader is referred to [17, Section 4] for full details. If tn is
an increasing sequence converging to t∗, we denote sn = s(tn) = m(an − ibn), so
that an → 0 as n → ∞ by construction. Also, extracting a subsequence if needed,
we can assume that bn → b̄ ∈ [0, 1] as n→∞, see Fig. 1. For simplicity, we suppose
here that 0 < b̄ < 1, but of course the limiting cases b̄ = 0 and b̄ = 1 are also
treated in [17]. If unr denotes the (suitably normalized) eigenfunction associated
with the eigenvalue sn and the vorticity profile Wtn , it is straightforward to verify
that unr converges as n → ∞ to a solution ur of the limiting equation (29), where
b = b̄ and Ω,W,Φ denote the angular velocity, vorticity, and Rayleigh function of
the vortex profile at the bifurcation point t = t∗. That equation has a singularity
at the point r̄ := Ω−1(b̄), and it is crucial to study the behavior of ur in the vicinity
of r̄ (this is what is referred to as a critical layer analysis in the physical literature).
If Ri(r̄) > 1/4, it is relatively easy to obtain a contradiction from identity (42),
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because all main terms in the integrand are positive in that case. If Ri(r̄) < 1/4, a
contradiction can be obtained by a careful study of the solutions of (29) near the
singularity, and by the construction of appropriate subsolutions in the region where
r > r̄, see [17].

Remark 3.2. The argument we have just sketched requires that assumption H2
be satisfied by the interpolated profile Wt for all t ∈ [0, t∗]. For that reason, we
cannot use a linear interpolation of the form Wt = (1 − t)W + tWε, because the
class of vorticity profiles satisfying H2 is not a linear space nor even a convex set.
Thus an additional technical difficulty in our proof is the necessity of constructing
ad hoc interpolation and approximation schemes in the nonlinear class of profiles
satisfying assumption H2, see [17, Section 6.4].

To state our second main result, we return to the linearized system (23) which
we write in condensed form ∂tũ = Lũ. The linearized operator L is given by

Lũ =



−Ω∂θũr + 2Ωũθ − ∂rP [ũ]

−Ω∂θũθ −Wũr − 1
r∂θP [ũ]

−Ω∂θũz − ∂zP [ũ]


 , (47)

where P [ũ] denotes the solution p̃ of elliptic equation (24). Our goal is to solve the
linearized system in the Hilbert space

X =
{
u = (ur, uθ, uz) ∈ L2(R3)3

∣∣∣ ∂∗rur +
1

r
∂θuθ + ∂zuz = 0

}
,

equipped with the standard L2 norm.

Theorem 3.3. [18] Assume that the vorticity profile W satisfies assumptions H1,
H2. Then the linear operator L defined in (47) is the generator of a strongly contin-
uous group (etL)t∈R of bounded linear operators in the energy space X. Moreover,
for any ε > 0, there exists a constant Cε ≥ 1 such that

‖etL‖X→X ≤ Cε e
ε|t| , for all t ∈ R . (48)

Estimate (48) exactly means that the spectrum of the evolution operator etL in
X is contained in the unit circle of the complex plane for all t ∈ R. In that sense,
Theorem 3.3 is arguably the strongest way of asserting that the columnar vortex
with vorticity profile W is spectrally stable. In view of the Hille-Yosida theorem [13],
it follows the spectrum of the generator L is entirely contained in the imaginary
axis of the complex plane, and we have the following resolvent bound for any a > 0 :

sup
{
‖(z − L)−1‖X→X

∣∣∣ z ∈ C , |Re(z)| ≥ a
}
< ∞ . (49)

In fact, since X is a Hilbert space, the Gearhart-Prüss theorem [13, Section V.1]
asserts that the resolvent bound (49) is equivalent to the group estimate (48).

Let Lm,k denote the restriction of the linearized operator L to the Fourier sub-
space indexed by the angular mode m ∈ Z and the vertical wave number k ∈ R.
To prove Theorem 3.3, we fix some spectral parameter s ∈ C with Re(s) = a 6= 0
and we consider the resolvent equation (s− Lm,k)u = f , which is equivalent to the
system

γ(r)ur − 2Ω(r)uθ = −∂rp+ fr ,

γ(r)uθ +W (r)ur = − imr p+ fθ ,

γ(r)uz = −ikp+ fz ,

(50)
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where γ(r) = s + imΩ(r) and the pressure p = Pm,k[u] is chosen so as to preserve
the incompressibility condition (27). Our goal is to show that the solution of (50)
satisfies ‖u‖ ≤ C(a)‖f‖, where C(a) is a positive constant depending only on the
spectral abscissa a; in particular, the resolvent estimate is uniform in the Fourier
parameters m, k and in the spectral parameter s on the vertical line Re(s) = a.
Such a uniform bound is essentially equivalent to (49), hence also to (48) by the
Gearhart-Prüss theorem.

If (m, k) 6= (0, 0), the resolvent system (50) can be reduced to a scalar equation
for the radial velocity ur, which can then be studied using the same techniques
as in Section 2.4. This provides resolvent estimates with explicit constant C(a)
is some regions of the parameter space, but that approach fails in other regions
where we have to invoke a contradiction argument that relies on the conclusion of
Theorem 3.1. Thus our proof is again non-constructive, and does not provide any
explicit expression for the constant C(a) in general. In particular, we do not know
if C(a) = O(|a|−N ) as a → 0 for some N ∈ N. Such an improved estimate would
indicate that the norm of the group etL grows at most polynomially as |t| → ∞.

4. Conclusion and Perspectives. The results of the previous section apply to a
large family of columnar vortices, including all classical models in atmospheric flows
and engineering applications [1, 34]. They provide the first rigorous proof of spectral
stability allowing for general perturbations, without any particular symmetry. In
this sense, they solve an important problem that was formulated as early as 1880
by Lord Kelvin in the pioneering work [37]. However, many interesting questions
remain open :

• Is assumption H2 really necessary for the conclusion of Theorem 3.1 to hold ?
Can one find a different proof, that does not rely on a non-constructive con-
tradiction argument ?

• Can one strengthen the conclusion of Theorem 3.3 and show that the group
norm ‖etL‖ grows at most polynomially as |t| → ∞ ?

• Is it possible to prove some spectral stability results for more general equilibria
of the form u = V (r)eθ +W (r)ez, which include a nonzero axial flow ?

• Do our results give any useful information on the stability of columnar vortices
in the slightly viscous case ?
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applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966), 319–361.

[4] P. G. Baines and H. Mitsudera, On the mechanism of shear flow instabilities, J. Fluid Me-
chanics 276 (1994), 327–342.

[5] C. Bardos, Y. Guo, and W. Strauss, Stable and unstable ideal plane flows, Chin. Ann. Math.
Ser. B 23, (2002), 149–164.

[6] P. Billant and F. Gallaire, Generalized Rayleigh criterion for non-axisymmetric centrifugal

instabilities, J. Fluid Mech. 542 (2005), 365–379.
[7] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford,

1961.

[8] F. Charru, Hydrodynamic Instabilities, Cambridge University Press, 2011.
[9] O. Darrigol, Stability and instability in nineteenth-century fluid mechanics, Revue d’histoire
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ON THE EULER-POISSON SYSTEM
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Abstract. The Euler-Poisson system is a classical example of hyperbolic bal-

ance laws arising in either the two-fluid theory in plasma physics, or in the

study of a self-gravitating gaseous star. This paper surveys recent mathemati-
cal progresses in the PDE study of such an Euler-Poisson system with physical

importance.

The Euler-Poisson system describes compressible fluid(s) interacting with a self-
consistent potential. In the classical “two-fluid” model describing plasma dynamics
for ion and electron fluids, their self-consistent electrostatic potential satisfies a Pois-
son equation according to the repulsive Coulomb interaction. On the other hand,
in the classical model describing a self-gravitating gaseous star, its self-consistent
gravitational potential also satisfies a Poisson equation according to the attractive
gravitational force via Newton’s law.

Even though there is no general well-posedness PDE theory for hyperbolic bal-
ance laws in 3D due to possible formation of shocks, there have been important
progress in the PDE study of the Euler-Poisson system for both plasma and stellar
models in recent years. In the case of Euler-Poisson system for a plasma, global in
time smooth solutions have been constructed without shock formation, thanks to
enhanced dispersive effects induced by the repulsive electrostatic interaction. This
is in stark contrast to the pure Euler equations for a compressible neutral gas. For
the Euler-Poisson system for describing a self-gravitating star, mathematical ad-
vances have been made in local well-posedness of free boundary of the edge of the
star, stability and instability of the celebrated Lane-Emden stars, global in time
dynamics of an expanding star, as well as examples of gravitational collapse of a
star. In particular, global in time dynamics of an expanding gas ball for the pure
Euler equations can also be constructed as a consequence. These exciting new de-
velopments and mathematical techniques have opened up new lines of research in
the PDE study of hyperbolic balance laws in higher dimensions.

1. Euler-Poisson System for Plasma. A plasma is a collection of fast-moving
charged particles. It is believed that more than 90% of the matter in the universe
is in the form of plasma, from sparse intergalactic plasma, to the interior of stars
to neon signs. In addition, understanding of the instability formation in plasma
is one of the main challenges for nuclear fusion, in which charged particles are
accelerated at high speed to create energy. At high temperature and velocity, ions
and electrons in a plasma tend to become two separate fluids due to their different

Yan Guo is supported by NSF grant DMS-1810868.
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physical properties (inertia, charge). One of the basic fluid models for describing
plasma dynamics is the so-called ”two-fluid” model, the Euler-Maxwell system in
which two compressible ion and electron fluids interact with their own self-consistent
electromagnetic field. Similar to the classical water wave problem in fluids, such a
two-fluid theory is another origin of many dispersive equations such as KdV, KP,
NLS and Zaharov equations. The Euler-Poisson system is the simplified model from
the Euler-Maxwell system as the speed of light c→∞:

∂tne +∇ · (neue) = 0,

neme[∂tue + ue · ∇ue] +∇pe = nee∇φ,
∂tni +∇ · (niui) = 0, (1)

niMi[∂tui + vi · ∇ui] +∇pi = −Znie∇φ,
−∆φ = 4πe(Zni − ne).

This system describes a plasma composed of a compressible electron gas and a
compressible ion gas. The electrons has charge −e, density ne, mass me, velocity
ve and pressure pe(ne), and the ions have change Ze, density ni, mass Mi, velocity
vi, and pressure pi(ni). These two fluids interact through the self-consistent electric
flied E = −∇φ through the Poisson equation. For notational simplicity, we set the
integer Z = 1.

1.1. Electron Fluid with Constant Ion Background. The two-fluid Euler-
Poisson system (1) has a rich and complex dynamics with several distinct physical
parameters. In particular, it is well-known that the ratio of the electron mass and
the ion mass,

me

Mi
v 1

2000
� 1,

which can be regarded as a small parameter in a plasma. Perhaps the most sim-
plified model of (1) is to describe an electron fluid dynamics in an ion background
(Langmuir waves):

∂tne +∇ · (neue) = 0,

neme[∂tue + ue · ∇ue] +∇pe = nee∇φ, (2)

−∆φ = 4πe(n0 − ne).
Thanks to the fact of meMi

� 1, the much heavier ions are treated as motionless with

a constant density ni(t, x) ≡ n0, and only form a fixed charged background en0.
Such a simplified system (2) is used for describing Langmuir waves (electron waves)
in the two-fluid theory. Thanks to the quasi-linear hyperbolic nature, as expected,
shock waves do develop for ‘large’ perturbations of the constant state equilibrium
of ne ≡ n0, ve ≡ 0 (see [23] ) in (2). On the other hand, in [17], the following result
is established

Theorem 1.1. [17] Assume ρ0(x) ∈ C∞c (R3,R) and v0(x) ∈ C∞c (R3,R3) such
that

∇× v0(x) ≡ 0 (irrotationality),

∫

R3

ρ0 = 0 (neutrality).

Then there exists ε0 > 0, such that for 0 < ε < ε0, there exists a unique global
smooth solution (nε(t, x), vε(t, x)) with initial condition (n0 + ερ0, εv0). Moreover,
nε(t, x)− n0 and vε(t, x) decay uniformly at any rate of t−q for 1 < q < 3

2 .

61



EULER-POISSON SYSTEM

There is a distinct feature of solutions to hyperbolic conservation laws in 3D:
The linearized acoustic (wave) equations for irrotational compressible Euler flows
are given by

∂ttn−
p′(n0)

me
∆n = 0, (3)

∂ttu−
p′(n0)

me
∆u = 0

whose solutions enjoy a 1
t decay rate due to dispersion. Intuitively, such a decay

rate of 1
t just barely fails to be integrable in time, which can be viewed as the

obstruction for persistence of smooth solutions with small amplitude. Indeed, in a
remarkable classical result [44], it is shown that shock formation for compressible
Euler flows as small perturbation of the equilibrium n(t, x) ≡ n0 and u(t, x) ≡ 0.

In a stark contrast, Theorem 1.1 asserts absence of shock formation for irrota-
tional electron flows with small amplitude to the Euler-Poisson system (2). The
assumption of irrotationality is necessary to ensure time decay of the flows. This
is in stark contrast to the classical result for a neutral compressible gas [44]. The
key difference lies in the linearization of (2) around n(t, x) ≡ n0 and u(t, x) ≡ 0 for
irrotational flows:

∂ttn−
p′(n0)

me
∆n+

4πe2n0

me
n = 0, (4)

∂ttu−
p′(n0)

me
∆u+

4πe2n0

me
u = 0.

In comparison with the pure Euler equations for a neutral gas (3), new zeroth order

terms of (n, u) arises due to electrostatic interaction, and 4πe2n0

me
= ω2

p is the plasma

frequency. Such plasma oscillations create a new ‘Klein-Gordon’ effect in (4), which

enhances linear decay rate to t−
3
2 (integrable) from the non-integrable decay rate

of t−1 for (3).
To illustrate the mathematical background, consider a semi-linear Klein-Gordon

equation

(∂tt −∆ + 1)α = f(α). (5)

Recall the linear decay L∞ − L1 estimate in 3D:

||α(t, ·)||∞ . 1

t3/2
||α(0, ·)||W 4,1 (6)

for solution to the linear homogeneous Klein-Gordon equation

(∂tt −∆ + 1)α = 0

with αt|t=0 = 0. The goal is to show the high energy norm E(t)≡||αt||2Hk+||∇α||2Hk+

||α||2Hk (k � 1) is bounded uniformly in time for small α for the full nonlinear Klein-
Gordon equation (5). Classical energy estimate yields

E(t) . good +

∫ t

0

||∂f(α)||2 × ||∂αt||2

. good +

∫ t

0

||α||Wk/2,∞ ||∂αt||22.
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Clearly, sup0≤t≤∞ E(t) is bounded for small α if
∫ t

0

||α(τ, ·)||Wk/2,∞dτ .
√
E . (7)

Despite a strong linear decay of t−3/2 in (6), we remark that (7) is far from obvious,
due to the mismatch between L1 based W k,1 norm in (6) and L2 based energy norm
E(t). In fact, bootstrap of the linear decay estimate (6) with Duhamel principle leads
to the nonlinear decay estimate:

||α(t, ·)||Wk/2,∞ . good +

∫ t

0

1

1 + [t− τ ]3/2
||f(α(τ))||Wk/2+4,1dτ.

If f(α) = α3, then for k � 1,

||α3||Wk/2+4,1 . ||α||Wk/2,∞ ||α2||Wk,1 . ||α||Wk/2,∞E . (8)

Hence (7) is valid and global smooth solutions can be constructed.
If f(α) = α2, then

||α2||Wk/2+4,1 . ||α||Wk/2,∞ ||α||Wk,1 v E
since ||α||Wk,1 can not relate directly to ||α||Wk,2 in E .

We remark a quadratic nonlinearity is generic for small data problems. Fortu-
nately, such a fundamental difficulty for quadratic nonlinearity can be overcome by
either Klainerman’s vector-field method or Shatah’s normal form method, intro-
duced in two seminal papers [34] and [43] respectively.

It is necessary to apply Shatah’s normal form method in [43] to control non-
local Poisson operator ∆−1 to construct global smooth solutions to (2). Theorem
1.1 demonstrates that even though there is no dissipation or relaxation effects in
(2), stronger dispersive effects from the repulsive electrostatic interaction can still
prevent shock formations.

There have been recent extensions of Theorem 1.1. In [25], [28], [29] and [38],
global smooth irrotational flows with are constructed in 2D independently for (2).

Furthermore, In [19], despite a meager t−
1
2 linear decay rate, global smooth flows are

constructed in 1D for (2), where nonlinear solution tends to a linear solution with
phase shift. We note that for 1D compressible flows have been studied extensively by
researchers working in hyperbolic conservation/balance laws. However, it remains
an outstanding question to construct global unique BV solutions to (2).

1.2. Ion Fluid with Boltzmann Statistics. Assume pe(ne) = Tene in (2) with
a constant temperature Te. By formally taking me

Me
→ 0, we deduce ∇pe = Te∇ne =

nee∇φ, or the celebrated Boltzmann statistics (relation) for the electron density
(with constant n0):

ne = n0 exp(
eφ

Te
).

We then obtain the reduced Euler-Poisson system for ion dynamics

∂tni +∇ · (niui) = 0,

niMi[∂tui + vi · ∇ui] +∇pi = −nie∇φ, (9)

−∆φ = 4πe(ni − n0 exp(
eφ

Te
)).

The nonlinear Poisson equation for the electric potential φ presents a new mathe-
matical challenge to prevent shock formation near ni(t, x) ≡ n0, and vi(t, x) ≡ 0.
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Theorem 1.2. [21] Assume ρ0(x) ∈ C∞c (R3,R) and v0(x) ∈ C∞c (R3,R3) such
that

∇× v0(x) ≡ 0 (irrotationality).

Then there exists ε0 > 0, such that for 0 < ε < ε0, there exists a unique global
smooth solution (nε(t, x), vε(t, x)) with initial condition (n0 + ερ0, εv0). Moreover,

nε(t, x)− n0 and vε(t, x) decay uniformly at the rate of t−
16
15 .

It is convenient to rewrite the system (9) as a nonlinear equation for a complex-
valued scalar unknown Ui(t, x) for the perturbation as

{∂t + iΛi}Ui = Q(Ui, Ui)

where Q is a quadratic nonlinearity (higher order perturbations are being ignored).
Here the pseudo-differential operator Λi is defined as

Λi(|ξ|) = |ξ|
√

2 + |ξ|2
1 + |ξ|2 . (10)

The key is to study [16] the profile in the phase space

Vi = eiΛitÛi

which satisfies

Vi(t, ξ) =

∫ t

0

∫

R3

eisΦ(ξ,η)m(ξ, η)Vi(s, ξ − η)Vj(s, η)dηds, (11)

where m(ξ, η) represents the multiplier from the quadratic nonlinearity Q via a
convolution in the Fourier space, and the important interacting phase function is

Φ(ξ, η) = Λi(ξ)± Λi(ξ − η)± Λi(η).

We remark that if the nonlinear dynamics behaves like the linear one, then the

profile Vi should remain more or less stationary in time. The control of
∫ t

0
in

(11) therefore must come from oscillatory behavior of the interacting phase Φ(ξ, η)
with its interaction with nonlinearity presented as multiplier m(ξ, η). For the Klein-

Gordon equation (5) with Λ(ξ) =
√

1 + |ξ|2, Φ & 1, an integration by part in s
yields

Vi(t, ξ) v −
∫ t

0

∫
eisΦ(ξ,η)

iΦ(ξ, η)
m(ξ, η)Vi(s, ξ − η)∂sVi(s, η)dηds

= −
∫ t

0

∫
eisΦ(ξ,η)

iΦ(ξ, η)
m(ξ, η)m(η, ζ)Vi(s, ξ − η)Vi(s, η − ζ)Vi(s, ζ)dηdζds

by plugging ∂sVi again from (11). This transform the original quadratic nonlinearity
to a cubic nonlinearity as in (8), precisely Shatah’s normal form transformation [43]
to construct global solutions.

For (9), (10) leads to slower decay rate of t−
4
3 for the linearized flows, and Φ(ξ, η)

may vanish at |ξ| = 0 and |η| = 0 as well:

Φ(ξ, η) & |ξ||ξ − η||η|,
A careful study of the multiplier of m(ξ, η)m(η, ζ) v |ξ||η| is needed to control
m(ξ,η)m(η,ζ)

Φ(ξ,η) and to construct global smooth solutions.

It remains an outstanding question to determine if shock waves can develop for
(9) in 2D.
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1.3. Full Euler-Poisson System. Finally, a recent work considers the full Euler-
Poisson system (1) in [18] and [20]:

Theorem 1.3. Assume ρe(x), ρi(x) ∈ C∞c (R3,R) and ve(x), vi(x) ∈ C∞c (R3,R3)
such that

∇× ve(x) ≡ ∇× vi(x) ≡ 0 (irrotationality).

Assume that
me

Me
≤ 10−3 and 1 ≤ p′e(n0)

p′i(n0)
≤ 100

Then there exists ε0 > 0, such that for 0 < ε < ε0, there exists a unique global smooth
solution (nεe(t, x), nεi (t, x), vεe(t, x), vεi (t, x)) with initial condition (n0 + ερe, n0 +
ερi, εve, εvi). Moreover, nεe(t, x)− n0, nεi (t, x)− n0, vεe(t, x) and vεi (t, x) decay uni-

formly at any rate of t−1− 1
200 .

Together with a similar result for the Euler-Maxwell system in [18], Theorem
1.3 entails a distinct dispersive feature of the two-fluid model: thanks to the self-
consistent electromagnetic interaction, smooth irrotational flows with small ampli-
tude will persist forever, without any possible shock formation.

To illustrate the method of the construction, it is convenient to rewrite (1) in
terms of two complex-valued functions Ue and Ui as

{∂t + iΛe}Ue = Qe(Ue, Ui)

{∂t + iΛi}Ui = Qi(Ue, Ui)

(cubic nonlinearity being ignored). Here with r :≡ me
Me

and T :≡ p′e(n0)
p′i(n0) ,

Λe = r−1/2

√
(1 + r)− (T + r)∆ +

√
((1− r)− (T − r)∆)2 + 4r

2
,

Λi = r−1/2

√
(1 + r)− (T + r)∆−

√
((1− r)− (T − r)∆)2 + 4r

2
.

Schematically, as in (11), we may express part of Vi as

Vi(t, ξ) v
∫ t

0

∫

R3

eisΦ(ξ,η)m(ξ, η)Vi(s, ξ − η)Ve(s, η)dηds, (12)

with

Φ = Λe(ξ)± Λi(ξ − η)± Λe(η).

As in (11), if Φ 6= 0, then an integration by part in s will produce third order
nonlinearity which is manageable as in (8). While if ∂ηΦ 6= 0, it is possible to
perform a different integration by parts in η via

eisΦ(ξ,η) =
1

is∂ηΦ
∂ηe

isΦ(ξ,η),

which produces decay of s to better control the time integral
∫ t

0
. Correspondingly,

the most difficult set to control is when both Φ = ∂ηΦ = 0. Such a singular set

S = {(ξ, η) : Φ = ∂ηΦ = 0}
is called the space-time resonance set. Unfortunately, for (1), its space-resonance
set S is not only non-empty, but actually contains a 2D sphere. Based on techniques
introduced in [26], a systematic and robust method is developed in [18] to analyze
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and control such a singular 2D sphere, which leads to the construction of global
smooth irrotational flows with small amplitude for (1).
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(2012), 737-759.
[42] X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM
J. Math. Anal. 45 (2013), 834-878.
[43] J. Shatah, Normal forms and quadratic non-linear Klein-Gordon equations,
Comm. Pure Appl. Math. 38 (1985), 685-696.
[44] T. C. Sideris, Formation of singularities in three-dimensional compressible flu-
ids, Comm. Math. Phys. 101 (1985), 475-485.
[45] J. C. H. Simon, A wave operator for a non-linear Klein-Gordon equation, Lett.
Math. Phys. 7 (1983), 387-398.
[46] B. Texier, Derivation of the Zakharov equations, Arch. Ration. Mech. Anal.
184 (2007), 121-183.

2. Gravitational Euler-Poisson. The Euler-Poisson system for describing a self-
gravitating star takes the form of

∂tρ+∇ · (ρu) = 0, (13)

ρ[∂tu+ u · ∇u] +∇p = −ρ∇φ, ∆φ = 4πρ.

Here ρ, u, p(ρ) and φ denote the density, velocity, pressure and the gravitational
respectively. In contrast to (1), there is an opposite sign in the Poisson equation for
φ, thanks to the attractive Newtonian gravitational force instead of the previous
repulsive Coulomb interaction in a plasma. We assume the pressure law (γ > 1):

p(ρ) = ργ

It is important to note that, for a star with compact support, the density ρ, as well
as the pressure p(ρ), is usually positive inside, and vanish outside as well as at the
surface of the star.

It is convenient to formulate such a free-boundary value problem by an alternative
Lagrangian formulation, following the framework developed in [33]. Given a velocity
field u, define the flow map η, from the reference domain of a unit ball Ω → Ω(s),
to be the characteristic ODE for particle paths:

∂sη(s, y) = u(s, η(s, y)) (14)

η(0, y) = η0(y)

Define the Jacobian matrix of η as

J :≡ det∇η.

The Abel Lemma implies that

∂sJ = J∇ · u
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along the characteristic curve (14). It then follows from the continuity equation for
density ρ that along the particle path (14),

d

ds
(ρJ) ≡ 0,

ρJ |(t,η(t,y)) = ρJ |(0,η(0,y) ≡: w
1

γ−1

for γ > 1. It is clear that the continuity equation, or ρ can be eliminated from (13),
and it suffices to solve for the flow map η from the rest of (13).

We further assume radial symmetry with

η(s, y) = χ(s, |y|)y,
where χ(s, |y|) is a scalar function. It follows in this case, the crucial quantity
Jacobian J takes the form of

J [χ] ≡ det∇η = χ2(χ+ r∂rχ), r = |y|. (15)

We note that if χ ≡ 1 then the flow map η ≡ y, the identity map. Hence, χ − 1
is the deviation from the identity map. In [33], (13) can be reduced to a scalar
equation for χ

χtt +
G(r)

χ2
+ P [χ] = 0, (16)

Here, by (15), the pressure operator P [χ] is given by

P [χ] ≡:
χ2

w
1

γ−1 r2
(r∂r)(w

γ
γ−1 J [χ]−γ),

while the gravitational force is given by G(r)
χ2 , where

G(r) ≡:
1

r3

∫ r

0

4πw
1

γ−1 (s)s2ds (17)

and
∫ r

0
4πw

1
γ−1 (s)s2ds is the total ‘mass’ of the ‘initial density’ w

1
γ−1 within a ball

of radius r. We note that a typical profile of w(r) satisfies

w > 0 and w|r=1 = 0,

with r = 1 being the boundary of the star, giving rise to the free boundary motion
via the flow map χ(t, |y|)y. Physically, w(r) v 1 − r near r = 1, it is not smooth
across r = 1.

We remark that (16) is a quasi-linear wave equations for χ with a degenerate
weight w(r) which vanishes at r = 1.

2.1. Stability of Lane-Emden Stars. The celebrated Lane-Emden star config-
urations are solutions w(r) to the steady Euler-Poisson system (16) with χ ≡ 1
(identity map):

4π

r3

∫ r

0

w
1

γ−1 (s)s2ds+
1

r
∂r(w

γ
γ−1 ) = 0,

or equivalently, the following Lane-Emden equation

wrr +
2

r
wr +

4π(γ − 1)

γ
w

γ
γ−1 = 0. (18)

We note that wrr + 2
rwr = ∆w for 3D radial functions. It is well-known that for

6
5 < γ < 2, there exists solution w(r), or Lane-Emden stars, such that w > 0 for
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0 ≤ r ≤ 1 and w(1) = 0. While for γ = 6
5 , there is w(r) > 0 for 0 ≤ r < ∞ with a

finite mass.
One of the important question is the dynamical stability of these Lane-Emden

stars. It has been long conjectured, via a scaling argument, that they are stable
for γ > 4

3 , while unstable for 6
5 ≤ γ < 4

3 . In [47], stability for γ > 4
3 is established

via a variational method for global weak solutions. In [32], nonlinear instability is
established for the case γ = 6

5 .
In a recent work [33], the following result is established:

Theorem 2.1. [33] Assume 6
5 < γ < 4

3 for the Lane-Emden star in (18). Then
there exits a θ > 0, for any δ � 1, there exist Tδ > 0 and initial perturbations

{χδ − 1}|t=0 = O(δ), ∂tχ
δ|t=0 = O(δ),

but

sup
0≤t≤T δ

||[χδ − 1, ∂tχ
δ]||Zα0 ≥ θ,

where the norm Zα0 consists of a weighted H1 norm of χδ − 1 and a weighted L2

norm for ∂tχ
δ.

The proof of this theorem is based on cumulative efforts and machineries de-
veloped in [35],[36] to study of a body of compressible Euler flows surrounded by
vacuum. A general PDE framework with high-order weighted Sobolev estimates
via Hardy’s inequality near r = 1 is developed in [33] to study of dynamics for a
self-gravitation star described by (13).

2.2. Global Expanding Stars. For constants δ ∈ [δ∗,∞] with some δ∗ < 0, let
w = wδ be the solution to the following generalized Lane-Emden equation:

wrr +
2

r
wr +

4π(γ − 1)

γ
w

γ
γ−1 = −3

4
δ

For γ = 4
3 , in [23], [24] and [42], the following two families of expanding homogeneous

solutions to (13) are discovered:
1) 2

3 Expanding Solutions: For δ∗ ≤ δ < 0 :

χ 2
3
(t) = (λ

3
2
0 +

3

2
λ

1
2
0 λ1t)

2
3 ,

where (λ0,λ1) satisfying (λ1 > 0):

(λ2
1 +

2δ

λ0
)

∫ 1

0

2πw3s4ds = 0.

2. Linear Expanding Solutions: For δ > 0,

χ1 = λ(t)

λ2λtt = δ, lim
t→∞

λt = constant.

Theorem 2.2. [28] Assume γ = 4
3 , χ1 is asymptotically stable; χ 2

3
is asymptotically

stable for perturbations with zero total energy.

Due to the attractive nature of the gravitational interaction in (13), it is expected
that the Euler-Poisson system for a gaseous star is even more difficult than the pure
Euler equations for a neutral gas. Therefore, construction of any global in time
solutions to (13) should be even more challenging.
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It is striking that such an asymptotic stability result in fact leads to global well-
posedness in high Sobolev norms for (13). A subtle and surprising damping effect
due to these background expanding solutions χ 2

3
and χ1 is carefully captured and

capitalized in a re-scaled equation, which ensures the global control of the high
Sobolev norms.

Such an observation and new mathematical techniques have led to constructions
of more general global expanding solutions, based on the work of [53], for Euler-
Poisson system for both plasmas (2) and a gaseous star (13) in [30]. More impor-
tantly, they have led to the ground breaking construction of expanding solutions to
the Euler equations in 3D [29].

2.3. Gravitational Collapse. The gravitational collapse of a star is one of the
important and fascinating problems in astrophysics. When γ = 4

3 , self-similar
blowup solutions have been constructed in [21], [24] and [42], and absence of blowup
solutions is proven in [20] for γ > 4

3 .

Recall η(t, y) = χ(t, r)y, ρ(t, χ(t, r)y) ≡ w 1
γ−1 (r)J−1(s, r) so that

lim ρ(t, χ(s, r)y) =∞
if and only if the Jacobian

lim J [χ] = limχ2(χ+ ∂rχ) = 0.

In case χ+ ∂rχ > 0, then density ρ blow up if and only if χ = 0 (shell focusing) for
which the particle goes to the origin r = 0.

In [26], gravitational collapse is constructed based on the following dust (pres-
sureless) model. Set P [χ] ≡ 0 in (16) to obtain ODE for χ with given G in (17)

χtt +
G(r)

χ2
= 0. (19)

A typical solution collapsing solution takes the form of

χdust = [1− g(r)t]
2
3 , (20)

g(r) ≡ 3

√
G(r)

2
= 3

√
mean density

2
.

We assume w(r) is decreasing (w′ < 0), which implies that g(r) is also decreasing.
Clearly χdust ≡ 0 along space-time blowup curve:

Γ := {(t, r)| t =
1

g(r)
}

which is increasing in r with the first blowup time tmin :

tmin =
1

g(0)
for r = 0, tmax =

1

g(1)
for r = 1.

We note that J [χdust] = 0 iff 1− g(r)t = 0 for g′ ≤ 0 :

J [χdust ] = (1− g(r)t)2

(
1− 2

3

trg′(r)
1− g(r)t

)
.

From ρdust(t, χdust(t, r)y) = w
1

γ−1 (r)J [χdust ]−1, we deduce that

lim
t→ 1

g(r)

χdust(t, r) = 0, (21)

lim
t→ 1

g(r)

ρdust(t, χdust(t, r)y) =∞ (22)
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Moreover, the remaining mass M(t) of the star decreases continuously to zero for
t ∈ [tmin, tmax] = [ 1

g(0) ,
1
g(1) ] :

M(t) = 4π

∫ 1

g−1◦( 1
t )

w
1

γ−1 (r̄)r̄2dr̄ =

∫ χdust(t,1)

0

4πρdust (tZ)Z2dZ,

M(tmax) = 0 (final collapse time). (23)

In [26], it is shown that such a pressureless collapse χdust ‘persists’ even in the
presence of the pressure for γ < 4

3 :

Theorem 2.3. [26] Let γ < 4
3 . Assume w smooth in [0, 1), decreasing, and w(r) =

w(0)−O(1)rn for r << 1, for some n = n(γ) sufficiently large. Then there exists a
collapsing solution χ to (16) which behaves as a scaled dust solution of χdust with
the same properties (21), (22) and (23).

Setting s = ε̄−3/2t, y = ε̄−1x, thanks to γ < 4
3 , ε ≡: ε̄4−3γ , we may rewrite (16)

as

χss +
G(r)

χ2
+ εP [χ] = 0,

where the pressure εP [χ] is treated as a (unbounded!) small perturbation to the
dust problem (19). To maintain the zero of J [χdust], it is important to seek a formal
expansion

φ = φ0 + εφ1 + ε2φ2 + ...

as a series solution to (16). Equating coefficient of εj , φj can be solved via the
linearized ODE of (19), with

φ0 = χdust

as expected. The key observation is that, for γ < 4
3 , there is a repeated gain of

power of χdust as

|φj | .j |χdust|1+jδ

for some δ > 0. It thus follows that for ε � 1, any finite order approximation
behaves like χdust

φapp = φ0 + εφ1 + ε2φ2 + ..+ εjφj v χdust

J [φapp] v J [χdust].

Furthermore, thanks δ > 0, for j � 1, it is reasonable to seek a true solution

χ = φapp +
χmdust

r
H.

Here the high order remainder H should satisfy a nonlinear PDE from (16), which
can be controlled via energy estimates for m� 1.
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THE HYDRODYNAMIC LIMIT OF THE BOLTZMANN

EQUATION FOR RIEMANN SOLUTIONS
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Abstract. In this note, I will survey my recent works [16] on the hydydro-
dynamic limit of the Boltzmann equation in the setting of Riemann solution

that contains the generic superposition of shock, rarefaction wave and contact

discontinuity to the Euler equations..

The Boltzmann equation, as the fundamental equation in statistical mechanics,
reads

ft + ξ · ∇Xf =
1

ε
Q(f, f),

where f(t,X, ξ) is the density distribution of particles at time t with location X
and velocity ξ. The Knudsen number ε > 0 is proportional to the mean free path
of the interacting particles.

It is well-known that the Boltzmann equation is closely related to the systems of
fluid dynamics, in particular, the systems of Euler and Navier-Stokes equations. In
fact, the first derivation of the fluid dynamical components and systems from the ki-
netic equations can be traced back to the dates of Maxwell and Boltzmann. Hilbert
proposed a systematic expansion in 1912, and Enskog and Chapman independently
proposed another expansion in 1916 and 1917 respectively.

Either the Hilbert expansion or Chapman-Enskog expansion yields the compress-
ible Euler equations in the leading order with respect to the Knudsen number ε,
and the compressible Navier-Stokes equations, Burnett equations in the subsequent
orders. To justify these formal approximations in rigorous mathematics, that is,
hydrodynamic limits, has been proved to be extremely challenging and most re-
mains open, in part because the basic well-posedness and regularity questions are
still mostly unsolved for these fluid equations. The justification of the fluid limits
of the Boltzmann equation is also related to the Hilbert’s sixth problem.

In this note, I will outline my recent works [16] on the limiting process of the
Boltzmann equation to the system of the compressible Euler equations in the setting
of Riemann solutions. The Riemann problem was first formulated and studied
by Riemann in 1860s when he studied the one space dimensional isentropic gas
dynamics with initial data being two constant states. The solution to this problem
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turns out to be fundamental in the theory of hyperbolic conservation laws because it
not only captures the local and global behavior of solutions, but also fully represents
the effect of the nonlinearity in the structure of the solutions. It is now well known
that for the system of Euler equations, there are three basic wave patterns, that is,
shock wave, rarefaction wave and contact discontinuity. These three types of waves
have essential differences, that is, shock is compressive, rarefaction is expansive,
and contact discontinuity has some diffusive structure. Therefore, how to study
the hydrodynamic limit of Boltzmann equation for the full Riemann solution that
consists of the superposition of these three typical waves is still very challenging in
mathematics.

By coping with the essential properties of individual wave pattern, the hydro-
dynamic limit for a single wave was justified in the previous works, see Yu [38]
for shock wave, Xin-Zeng [37] for rarefaction wave and Huang-Wang-Yang [17] for
contact discontinuity. However, up to now, how to deal with the general Riemann
solution that consists of all three basic waves is still a challenging open problem.
This is mainly due to the difficulty in handling the wave interactions and also uni-
fying the different approaches in the analysis used for each single wave pattern.
In order to overcome these difficulties in justifying the limit, two families of hy-
perbolic waves, called hyperbolic wave I and II, are introduced in [16] to capture
the propagation of the extra mass created by the approximate hyperbolic rarefac-
tion wave profile in the viscous setting and the diffusion approximation of contact
discontinuity.

We now briefly explain why the two families of hyperbolic waves we introduced
are essential for the proof. The approximate rarefaction wave is constructed as a
hyperbolic wave profile. Therefore, we need to precisely capture the error in the sec-
ond order of the approximation for the Boltzmann equation in term of the Knudsen
number, that is, in the Navier-Stokes level. For this, we introduce the hyperbolic
wave I as a solution to the linearized system around the approximate rarefaction
wave profile with source terms given by the viscosity and heat conductivity induced
by the rarefaction wave profile to recover the viscous terms. We can show that
the hyperbolic wave I decays like the first-order derivative of the rarefaction wave
profile so that the decay properties given in Lemma 1.2 are good enough to carry
out the analysis.

The main difficulty comes from the approximation of the contact discontinuity.
First of all, such an approximation, that is, 2-viscous contact wave, behaves like a
diffusion wave profile as for the Navier-Stokes equations. Due to the lack of sufficient
decay in ε and the non-conservative error terms when taking the anti-derivative of
the perturbation, we need to remove the leading error terms and non-conservative
terms in such approximation before taking the anti-derivative. The hyperbolic wave
II is then constructed around the superposition of the approximate 1-rarefaction
wave, the hyperbolic wave I, the 2-viscous contact wave and the 3-shock profile as
a whole. Some wave interaction terms can be absorbed in the hyperbolic wave II
and the other wave interaction terms can be handled by some subtle and careful
calculations.

With the help of these two hyperbolic waves and the corresponding new esti-
mates, we can justify the limiting process in [16] from the Boltzmann equation to
compressible Euler equations for the generic Riemann problems by elaborate anal-
ysis after a hyperbolic scaling. Furthermore, a convergence rate is obtained in term
of the Knudsen number.
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We now formulate the problem. Consider the Boltzmann equation with slab
symmetry

ft + ξ1fx =
1

ε
Q(f, f), (1)

where ξ = (ξ1, ξ2, ξ3) ∈ R3 and x ∈ R1. Here, the collision operator takes the form
of

Q(f, g)(ξ) ≡ 1
2

∫
R3

∫
S2

+

(
f(ξ′)g(ξ′∗) + f(ξ′∗)g(ξ′)− f(ξ)g(ξ∗)− f(ξ∗)g(ξ)

)
B(|ξ − ξ∗|, θ̂) dξ∗dΩ,

where ξ′, ξ′∗ are the velocities after an elastic collision of two particles with velocities

ξ, ξ∗ before the collision. Here, θ̂ is the angle between the relative velocity ξ − ξ∗
and the unit vector Ω in S2

+ = {Ω ∈ S2 : (ξ − ξ∗) · Ω ≥ 0}. The conservations of
momentum and energy yield the following relations between the velocities before
and after collision:

ξ′ = ξ − [(ξ − ξ∗) · Ω] Ω, ξ′∗ = ξ∗ + [(ξ − ξ∗) · Ω] Ω.

We will concentrate on the hard sphere model where the cross-section is

B(|ξ − ξ∗|, θ̂) = |(ξ − ξ∗,Ω)| = |ξ − ξ∗| cos θ̂.

On the other hand, it is noted that the analysis can be applied to at least hard
potential.

Formally when the Knudsen number ε tends to zero, the limit of the Boltzmann
equation (1) is the system of compressible Euler equations that consists of conser-
vations of mass, momentum and energy:





ρt + (ρu1)x = 0,
(ρu1)t + (ρu2

1 + p)x = 0,
(ρui)t + (ρu1ui)x = 0, i = 2, 3,

[ρ(e+
|u|2
2

)]t + [ρu1(E +
|u|2
2

) + pu1]x = 0,

(2)

where 



ρ(t, x) =

∫

R3

ϕ0(ξ)f(t, x, ξ)dξ,

ρui(t, x) =

∫

R3

ϕi(ξ)f(t, x, ξ)dξ, i = 1, 2, 3,

ρ(e+
|u|2
2

)(t, x) =

∫

R3

ϕ4(ξ)f(t, x, ξ)dξ.

(3)

Here, ρ is the density, u = (u1, u2, u3) is the macroscopic velocity, e is the internal
energy, and p = Rρθ with R being the gas constant is the pressure. The temperature
θ is related to the internal energy by e = 3

2Rθ, and ϕi(ξ)(i = 0, 1, 2, 3, 4) are the
collision invariants given by

ϕ0(ξ) = 1, ϕi(ξ) = ξi (i = 1, 2, 3), ϕ4(ξ) =
1

2
|ξ|2, (4)

that satisfy ∫

R3

ϕi(ξ)Q(g1, g2)dξ = 0, for i = 0, 1, 2, 3, 4.

Instead of using either Hilbert expansion or Chapman-Enskog expansion, we will
apply the macro-micro decomposition introduced in [26]. For a solution f(t, x, ξ) of
(1), set

f(t, x, ξ) = M(t, x, ξ) + G(t, x, ξ),
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where the local Maxwellian M(t, x, ξ) = M[ρ,u,θ](ξ) represents the macroscopic
component of the solution defined by the five conserved quantities, i.e., the mass
density ρ(t, x), the momentum ρu(t, x), and the total energy ρ(e+ 1

2 |u|2)(t, x) given
in (3), through

M = M[ρ,u,θ](t, x, ξ) =
ρ(t, x)√

(2πRθ(t, x))3
e−
|ξ−u(t,x)|2
2Rθ(t,x) . (5)

And G(t, x, ξ) represents the microscopic component.

The inner product of g1 and g2 in L2
ξ(R

3) with respect to a given Maxwellian M̃
is denoted by:

〈g1, g2〉M̃ ≡
∫

R3

1

M̃
g1(ξ)g2(ξ)dξ. (6)

If M̃ is the local Maxwellian M defined in (5), the macroscopic space is spanned by




χ0(ξ) ≡ 1√
ρ
M,

χi(ξ) ≡
ξi − ui√
Rθρ

M for i = 1, 2, 3,

χ4(ξ) ≡ 1√
6ρ

(
|ξ − u|2
Rθ

− 3)M,

〈χi, χj〉 = δij , i, j = 0, 1, 2, 3, 4.

(7)

By using the above base, the macroscopic projection P0 and microscopic projection
P1 can be defined as

P0g =

4∑

j=0

〈g, χj〉χj , P1g = g −P0g.

Note that a function g(ξ) is called microscopic if
∫
g(ξ)ϕi(ξ)dξ = 0, i = 0, 1, 2, 3, 4.

Notice that the solution f(t, x, ξ) to the Boltzmann equation (1) satisfies

P0f = M, P1f = G,

and the Boltzmann equation (1) becomes

(M + G)t + ξ1(M + G)x =
1

ε
[2Q(M,G) +Q(G,G)]. (8)

Applying the projection operator P1 to (8), we have

Gt + P1(ξ1Mx) + P1(ξ1Gx) =
1

ε
[LMG +Q(G,G)] . (9)

Here LM is the linearized collision operator of Q(f, f) with respect to the local
Maxwellian M given by

LMg = 2Q(M, g) = Q(M, g) +Q(g,M).

Note that the null space N of LM is spanned by the macroscopic variables χj(ξ), j =
0, 1, 2, 3, 4. Furthermore, there exists a positive constant σ̃ > 0 such that for any
function g(ξ) ∈ N⊥, cf. [14],

〈g,LMg〉 ≤ −σ̃〈ν(|ξ|)g, g〉,
where ν(|ξ|) = O(1)(1 + |ξ|) is the collision frequency for the hard sphere model.
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Consequently, the linearized collision operator LM is a dissipative operator on
L2(R3), and its inverse L−1

M is a bounded operator on N⊥. It follows from (9) that

G = εL−1
M [P1(ξ1Mx)] + Π, (10)

with

Π = L−1
M [ε(Gt + P1(ξ1Gx))−Q(G,G)]. (11)

By integrating the product of the equation (8) and the collision invariants ϕi(ξ)(i =
0, 1, 2, 3, 4) with respect to ξ over R3, and using (10), we have




ρt + (ρu1)x = 0,

(ρu1)t + (ρu2
1 + p)x =

4ε

3
(µ(θ)u1x)x −

∫
ξ2
1Πxdξ,

(ρui)t + (ρu1ui)x = ε(µ(θ)uix)x −
∫
ξ1ξiΠxdξ, i = 2, 3,

[ρ(θ +
|u|2
2

)]t + [ρu1(θ +
|u|2
2

) + pu1]x = ε(κ(θ)θx)x +
4ε

3
(µ(θ)u1u1x)x

+ε

3∑

i=2

(µ(θ)uiuix)x −
∫

1

2
ξ1|ξ|2Πxdξ,

(12)

where the viscosity coefficient µ(θ) > 0 and the heat conductivity coefficient κ(θ) >
0 are smooth functions of the temperature θ. Here, we normalize the gas constant
R to be 2

3 so that e = θ and p = 2
3ρθ.

Since the problem considered is one dimensional in the space variable x ∈ R, it
is more convenient to rewrite the equation (1) in the Lagrangian coordinates. Set
the coordinate transformation:

(t, x)⇒
(
t,

∫ (t,x)

(0,0)

ρ(τ, y)dy − (ρu1)(τ, y)dτ
)
. (13)

We will still denote the Lagrangian coordinates by (t, x) for the simplicity of
notations. Then (1) and (2) in the Lagrangian coordinates becomes, respectively,

ft −
u1

v
fx +

ξ1
v
fx =

1

ε
Q(f, f), (14)

and 



vt − u1x = 0,
u1t + px = 0,
uit = 0, i = 2, 3,

(θ +
|u|2
2

)
t

+ (pu1)x = 0.

(15)

Moreover,

Gt −
u1

v
Gx +

1

v
P1(ξ1Mx) +

1

v
P1(ξ1Gx) =

1

ε
(LMG +Q(G,G)), (16)

with

G = εL−1
M (

1

v
P1(ξ1Mx)) + Π1, (17)

Π1 = L−1
M [ε(Gt −

u1

v
Gx +

1

v
P1(ξ1Gx))−Q(G,G)], (18)
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and 



vt − u1x = 0,

u1t + px =
4ε

3
(
µ(θ)

v
u1x)x −

∫
ξ2
1Π1xdξ,

uit = ε(
µ(θ)

v
uix)x −

∫
ξ1ξiΠ1xdξ, i = 2, 3,

(
θ +
|u|2
2

)
t

+ (pu1)x = ε(
κ(θ)

v
θx)x +

4ε

3
(
µ(θ)

v
u1u1x)x

+ε

3∑

i=2

(
µ(θ)

v
uiuix)x −

∫
1

2
ξ1|ξ|2Π1xdξ.

(19)

The Riemann problem for the Euler system (15) is an initial value problem with
initial data

(v, u, θ)(t = 0, x) =

{
(v−, u−, θ−), x < 0,
(v+, u+, θ+), x > 0,

where u = (u1, u2, u3), u± = (u1±, 0, 0) and v± > 0, u1±, θ± > 0 are constants.
It is known that the generic solution to the Riemann problem consists of three
waves that propagates at different speeds, that is, shock, rarefaction wave and

contact discontinuity, cf. [10, 25]. We denote this solution by (Ṽ , Ũ , Θ̃)(t, x) with

Ũ = (Ũ1, 0, 0). Given the right end state (v+, u1+, θ+), the following wave curves
for the left end state (v, u1, θ) in the phase space are defined with v and θ for the
Euler equations (15).
• Contact discontinuity curve:

CD(v+, u1+, θ+) = {(v, u1, θ)|u1 = u1+, p = p+, v 6≡ v+}. (20)

• i-Rarefaction wave curve (i = 1, 3):

Ri(v+, u1+, θ+) :=

{
(v, u1, θ)

∣∣∣∣∣v < v+, u1 = u1+ −
∫ v

v+

λi(η, s+) dη, s(v, θ) = s+

}
,

(21)
where s+ = s(v+, θ+) and λi = λi(v, s) is the i-th characteristic speed of (15).
• i-Shock wave curve (i = 1, 3):

Si(v+, u1+, θ+)

:=

{
(v, u1, θ)

∣∣∣∣∣
−si(v+ − v)− (u1+ − u1) = 0,
−si(u1+ − u1) + (p+ − p) = 0,
−si(E+ − E) + (p+u1+ − pu1) = 0,

and λi+ < si < λi−

}
,

(22)

where E = θ + |u|2
2 , p = 2θ

3v , E+ = θ+ + |u+|2
2 , p+ = 2θ+

3v+
, λi± = λi(v±, θ±) and si is

the i−shock speed.
For definiteness, we consider the case when the solution to the Riemann problem

is a superposition of a 1-rarefaction and a 3-shock wave with a contact discontinu-
ity in between, that is, (v−, u1−, θ−) ∈ R1-CD-S3(v+, u1+, θ+). Then there exist
uniquely two intermediate states (v∗, u1∗, θ∗) and (v∗, u∗1, θ

∗) such that (v−, u1−, θ−)
∈ R1(v∗, u1∗, θ∗), (v∗, u1∗, θ∗) ∈ CD(v∗, u∗1, θ

∗) and (v∗, u∗1, θ
∗) ∈ S3(v+, u1+, θ+).

Hence, the wave pattern (Ṽ , Ũ , Ẽ)(t, x) can be written as



Ṽ

Ũ1

Ẽ


 (t, x) =




vr1 + vcd + vs3

ur11 + ucd1 + us31

Er1 + Ecd + Es3


 (t, x)−




v∗ + v∗

u1∗ + u∗1
E∗ + E∗


 , Ũ2 = Ũ3 = 0,

(23)
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where (vr1 , ur11 , θ
r1)(t, x) is the 1-rarefaction wave defined in (21) with the right state

(v+, u1+, θ+) given by (v∗, u1∗, θ∗), (vcd, ucd1 , θ
cd)(t, x) is the contact discontinuity

defined in (20) with the states (v−, u1−, θ−) and (v+, u1+, θ+) given by (v∗, u1∗, θ∗)
and (v∗, u∗1, θ

∗) respectively, and (vs3 , us31 , θ
s3)(t, x) is the 3-shock wave defined in

(22) with the left state (v−, u1−, θ−) given by (v∗, u∗1, θ
∗).

Consequently, we can define

Θ̃(t, x) = (Ẽ(t, x)− Ũ(t, x)2

2
). (24)

Due to the singularity of the rarefaction wave at t = 0, in this note, we consider
the problem in the time interval [h, T ] for any small fixed h > 0 up to any arbitrarily
fixed time T > 0. To investigate the interaction between the waves and the initial
layer is another interesting topic that will not be discussed here. With the above
preparation, the main result can be stated as follows.

Theorem 0.1. ([16]) Let (Ṽ , Ũ , Θ̃)(t, x) be a Riemann solution to the Euler equa-
tions which is a superposition of a 1-rarefaction wave, a 2-contact discontinuity
and a 3-shock wave, and δ = |(v+ − v−, u+ − u−, θ+ − θ−)| be the wave strength.
There exist a small positive constant δ0, and a global Maxwellian M? = M[v?,u?,θ?]

such that if the wave strength satisfies δ ≤ δ0, then in any time interval [h, T ] with
0 < h < T , there exists a positive constant ε0 = ε0(δ, h, T ), such that if the Knudsen
number ε ≤ ε0, then the Boltzmann equation admits a family of smooth solutions
fε,h(t, x, ξ) satisfying

sup
(t,x)∈Σh,T

‖fε,h(t, x, ξ)−M[Ṽ ,Ũ ,Θ̃](t, x, ξ)‖L2
ξ(

1√
M?

) ≤ Ch,T ε
1
5 | ln ε|,

where Σh,T = {(t, x)|h ≤ t ≤ T, |x| ≥ h, |x − s3t| ≥ h}, the norm ‖ · ‖L2
ξ(

1√
M?

) is

‖ ·√
M?
‖L2

ξ(R
3) and the positive constant Ch,T depends on h and T but is independent

of ε.

Remark 1. Note that this superposition of waves is the most generic case for the
Riemann problem. Similar results hold for any other superpositions of waves by
using the same analysis.

Remark 2. The analysis can also be applied to the vanishing viscosity limit of the
one dimensional compressible Navier-Stokes equations.

Let us now review some previous works on the hydrodynamic limits to the Boltz-
mann equation. For the case when the Euler equations have smooth solutions, the
vanishing Knudsen number limit of the Boltzmann equation has been studied even
in the case with an initial layer, cf. Caflisch [6], Lachowicz [24], Nishida [31] and
Ukai-Asona [34] etc. However, as well-known, solutions of the Euler equations
in general develop singularities, such as shock waves and contact discontinuities.
Therefore, how to verify the hydrodynamic limit from the Boltzmann equation to
the Euler equations with basic wave patterns becomes a natural problem in the
process to the general setting. In this direction, with slab symmetry, as mentioned
earlier, there were studies on each individual wave pattern. For superposition of
different types of waves, to our knowledge, there is only one result given in [18]
about the superposition of two rarefaction waves and one contact discontinuity.

On the other hand, for the incompressible equations, there are works which
studied direct derivations of the incompressible Navier-Stokes equations in the long
time scaling, see [2, 4, 3, 13, 23, 33] and the references therein. In particular,
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Golse and Saint-Raymond showed that the limits of suitably rescaled sequences of
the DiPerna-Lions renormalized solutions to the Boltzmann equation are the Leray
solutions to the incompressible Navier-Stokes equations. However, even in this
aspect, the uniqueness and regularity of the solution are still big issues. Since we
will concentrate on the compressible Euler limit, we will not go into details about
the incompressible limits.

Notations: Throughout this paper, the positive generic constants which are in-
dependent of ε, T, h are denoted by c, C,Ci(i = 1, 2, 3, · · · ), while Ch,T represents
a generic positive constant depending on h and T but independent of ε. And we
will use ‖ · ‖ to denote the standard L2(R; dy) norm, and ‖ · ‖Hi (i = 1, 2, 3, · · · )
to denote the Sobolev Hi(R; dy) norm. Sometimes, we also use O(1) to denote a
uniform bounded constant which is independent of ε, T, h.

1. Approximate Wave Patterns.

1.1. Rarefaction Wave. For the rarefaction wave, since there is no exact rarefac-
tion wave profile for either the Navier-Stokes equations or the Boltzmann equation,
the following approximate rarefaction wave profile satisfying the Euler equations
was introduced in [30, 36]. If (v−, u1−, θ−) ∈ R1(v+, u1+, θ+), then there exists a
1-rarefaction wave (vr1 , ur11 , E

r1)(x/t). As in [36], the approximate rarefaction wave
(V R1 , UR1 ,ΘR1)(t, x) can be constructed by the solution of the Burgers equation

{
wt + wwx = 0,

w(0, x) = wσ(x) = w(
x

σ
) =

w+ + w−
2

+
w+ − w−

2
tanh

x

σ
,

(25)

where σ > 0 is a small parameter to be determined later to be ε
1
5 . Note that the

solution wrσ(t, x) of the problem (25) is given by

wrσ(t, x) = wσ(x0(t, x)), x = x0(t, x) + wσ(x0(t, x))t.

The smooth approximate rarefaction wave profile denoted by (V R1 , UR1 ,ΘR1)(t, x)
can be defined by





SR1(t, x) = s(V R1(t, x),ΘR1(t, x)) = s+,
w± = λ1± := λ1(v±, θ±),

wrσ(t, x) = λ1(V R1(t, x), s+),

UR1
1 (t, x) = u1+ −

∫ V R1 (t,x)

v+

λ1(v, s+)dv,

UR1
i (t, x) ≡ 0, i = 2, 3.

(26)

And (V R1 , UR1 ,ΘR1)(t, x) satisfies




V R1
t − UR1

1x = 0,

UR1
1t + PR1

x = 0,

UR1
it = 0, i = 2, 3,

ER1
t + (PR1UR1

1 )x = 0,

(27)

where PR1 = p(V R1 ,ΘR1) = 2ΘR1

3V R1
and ER1 = ΘR1 + |UR1 |2

2 . The properties of the
rarefaction wave profile can be summarized as follows.

Lemma 1.1. ([36]) The approximate rarefaction waves (V R1 , UR1 ,ΘR1)(t, x) con-
structed in (26) have the following properties:
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(1) UR1
1x (t, x) > 0 for x ∈ R, t > 0;

(2) For any 1 ≤ p ≤ +∞, the following estimates holds,

‖(V R1 , UR1
1 ,ΘR1)x‖Lp(dx) ≤ C min

{
δR1σ−1+1/p, (δR1)1/pt−1+1/p

}
,

‖(V R1 , UR1
1 ,ΘR1)xx‖Lp(dx) ≤ C min

{
δR1σ−2+1/p, σ−1+1/pt−1

}
,

where the positive constant C depends only on p and the wave strength;
(3) If x ≥ λR1

1+t, then

|(V R1 , UR1 ,ΘR1)(t, x)− (v+, u+, θ+)| ≤ Ce−
2|x−λ1+t|

σ ,

|∂kx(V R1 , UR1 ,ΘR1)(t, x)| ≤ C
σk
e−

2|x−λ1+t|
σ , k = 1, 2;

(4) There exist positive constants C and σ0 such that for σ ∈ (0, σ0) and t > 0,

sup
x∈R
|(V R1 , UR1 , ER1)(t, x)− (vr1 , ur1 , Er1)(

x

t
)| ≤ C

t
[σ ln(1 + t) + σ| lnσ|].

1.2. Hyperbolic Wave I. Since the whole wave profile consisits of a shock wave
whose rate of change in the shock region is of the order of ε−1, we have to con-
sider the anti-derivative of the perturbation in order to cope with the correct sign
as in the stability analysis. From (27), we know that the approximate rarefaction
wave (V R1 , UR1 ,ΘR1)(t, x) satisfies the compressible Euler equations exactly with-
out viscous terms. Thus if we carry out the energy estimates to the anti-derivative
variables, the error terms due to the viscous terms from the approximate rarefaction
wave are not good enough to get the desired estimates. In order to overcome this
difficulty, we introduce the hyperbolic wave I to recover these viscous terms.

This hyperbolic wave denoted by (d1, d2, d3)(t, x) can be defined as follows. Con-
sider a linear system





d1t − d2x = 0,

d2t + (pR1
v d1 + pR1

u1
d2 + pR1

E d3)x =
4

3
ε(
µ(ΘR1)UR1

1x

V R1
)x,

d3t + [(pu1)R1
v d1 + (pu1)R1

u1
d2 + (pu1)R1

E d3]x

= ε(
κ(ΘR1)ΘR1

x

V R1
)x +

4

3
ε(
µ(ΘR1)UR1

1 UR1
1x

V R1
)x,

(28)

where p = Rθ
v = p(v, u,E) = 2E−u2

3v and pR1
v = pv(V

R1 , UR1 , ER1) etc. Note
that the left hand side of the above system is the linearization of the Euler equation
around the rarefaction wave approximation. We want to solve this linear hyperbolic
system (28) on the time interval [h, T ]. For this, we diagonalize the above system
by rewriting it as




d1

d2

d3



t

+


AR1




d1

d2

d3





x

=




0

HR1
1

HR1
2


 , (29)

where HR1
1 = ε(

µ(ΘR1 )U
R1
1x

V R1
)x, H

R1
2 = ε(

κ(ΘR1 )ΘR1
x

V R1
)x + ε(

µ(ΘR1 )U
R1
1 U

R1
1x

V R1
)x. Here, the

matrix

AR1 =




0 −1 0

pR1
v pR1

u1
pR1

E

(pu1)R1
v (pu1)R1

u1
(pu1)R1

E




has three distinct eigenvalues λR1
1 := λ1(V R1 , s±) < 0 ≡ λR1

2 < λ3(V R1 , s±) := λR1
3

and the corresponding left and right eigenvectors denoted lR1
j , rR1

j (j = 1, 2, 3)
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respectively, satisfy

LR1AR1RR1 = diag(λR1
1 , 0, λR1

3 ) ≡ ΛR1 , LR1RR1 = Id.,

Here LR1 = (lR1
1 , lR1

2 , lR1
3 )t, RR1 = (rR1

1 , rR1
2 , rR1

3 ) with lR1
i = li(V

R1 , UR1
1 , s+) and

rR1
i = ri(V

R1 , UR1
1 , s+) (i = 1, 2, 3) and Id. is the 3×3 identity matrix. Now we set

(D1, D2, D3)t = LR1(d1, d2, d3)t. (30)

Then

(d1, d2, d3)t = RR1(D1, D2, D3)t, (31)

and (D1, D2, D3) satisfies the system



D1

D2

D3



t

+


ΛR1




D1

D2

D3





x

= LR1




0

HR1
1

HR1
2


+ LR1

t RR1




D1

D2

D3


+ LR1

x RR1ΛR1




D1

D2

D3


 .

(32)
Now we impose the following boundary condition to the above linear hyperbolic

system in the domain (t, x) ∈ [h, T ]×R:

D1(t = h, x) = 0, D2(t = T, x) = D3(t = T, x) = 0. (33)

With this boundary condition, we can solve the linear diagonalized hyperbolic sys-
tem under the conditions (33). Moreover, we have the following estimates on the
solution.

Lemma 1.2. ([16]) There exists a positive constant Ch,T independent of ε such
that

(1)

‖ ∂
k

∂xk
di(t, ·)‖2L2(dx) ≤ Ch,T

ε2

σ2k+1
, i = 1, 2, 3, k = 0, 1, 2, 3.

(2) If x > λ1+t, then we have

|di(x, t)| ≤ Ch,T
1

σ
e−
|x−λ1+t|

σ , |dix(x, t)| ≤ Ch,T
1

σ2
e−
|x−λ1+t|

σ , i = 1, 2, 3.

1.3. Viscous Contact Wave. In this subsection, we construct the contact wave
(V CD, UCD,ΘCD)(t, x) for the Boltzmann equation motivated by [21]. It is known
(cf. [32]) that the Euler system (15) admits a contact discontinuity

(vcd, ucd, θcd)(t, x) =

{
(v−, u−, θ−), x < 0,
(v+, u+, θ+), x > 0,

(34)

provided that (v−, u1−, θ−) ∈ CD(v+, u1+, θ+), that is,

u1+ = u1−, p− :=
2θ−
3v−

= p+ :=
2θ+

3v+
. (35)

Then for the Navier-Stokes equations, by the energy equation (19)4 and the mass
equation (19)1 with v ≈ 2θ

3p+
, cf. [18], we can obtain the following nonlinear diffusion

equation

θt = ε(a(θ)θx)x, a(θ) =
9p+κ(θ)

10θ
. (36)
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From [1], we know that the diffusion equation (36) admits a self-similar solution

Θ̂(η), η = x√
ε(1+t)

satisfying the boundary conditions Θ̂(±∞, t) = θ±. Let δCD =

|θ+ − θ−|, then Θ̂(t, x) has the property that

Θ̂x(t, x) =
O(1)δCD√
ε(1 + t)

e−
cx2

ε(1+t) , (37)

with some positive constant c depending only on θ±. We can define the Navier-
Stokes profile by

V̂ =
2

3p+
Θ̂, Û1 = u1+ +

2εa(Θ̂)

3p+
Θ̂x, Ûi = 0, i = 2, 3. (38)

For the Boltzmann equation, if we still use the above Navier-Stokes profile (V̂ , Û , Θ̂),
we can not get any decay with respect to the Knudsen number ε due to the non-fluid
component. Hence, we construct a Boltzmann contact wave as follows. Set

GCD(t, x, ξ) =
3ε

2vθ
L−1
M

{
P1[ξ1(

|ξ − u|2
2θ

ΘCD
x + ξ · UCDx )M]

}
, (39)

and

ΠCD
11 = L−1

M

[
ε(−u1

v
GCD
x +

1

v
P1(ξ1G

CD
x ))−Q(GCD,GCD)

]
, (40)

where (V CD, UCD,ΘCD)(t, x) is the viscous contact wave for the Boltzmann equa-
tion to be constructed later.

Note that for the Boltzmann equation, the leading terms in the energy equation
(19)4 is

θt = ε(a(θ)θx)x +
3

5
∆11x, (41)

where a(θ) is defined in (36) and

∆11 = ε2
[
g11θxΘCD

x + g12vxΘCD
x + g13(ΘCD

x )2 + g14ΘCD
xx

]
, (42)

with g1i = g1i(v, u, θ), (i = 1, 2, 3, 4) being smooth functions of (v, u, θ). To repre-
sent the microscopic effect on the wave profile, we want to define ΘCD to be close to
Θ̂( x√

ε(1+t)
) + Θ̂nf (t, x) with Θ̂ being determined by (36), (37) and Θ̂nf represents

the part of the nonlinear diffusion wave coming from the non-fluid component not
appearing in the Navier-Stokes level. To construct Θ̂nf , we linearize the equation
(41) around the Navier-Stokes profile Θ̂ and drop all the higher order terms. This

leads to a linear diffusion equation for Θ̂nf

Θ̂nf
t = ε(a(Θ̂)Θ̂nf

x )x + ε(a′(Θ̂)Θ̂xΘ̂nf )x +
3

5
∆̃11x, (43)

where ∆̃11 = ε2(g̃11 + 2
3p+

g̃12 + g̃13)(Θ̂x)2 + ε2g̃14Θ̂xx with g̃1i = g̃1i(V̂ , Û , Θ̂) (i =

1, 2, 3, 4). Integrating (43) with respect to x yields that

Ξ1t = εa(Θ̂)Ξ1xx + εa′(Θ̂)Θ̂xΞ1x +
3

5
∆̃11, (44)

where

Ξ1(t, x) =

∫ x

−∞
Θ̂nf (t, x)dx. (45)
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Note that ∆̃11 takes the form of ε
1+tA

1( x√
ε(1+t)

) and satisfies that

|∆̃11| = O(δCD)ε(1 + t)−1e
− x2

4a(θ±)ε(1+t) , as x→ ±∞.

We can check that there exists a self-similar solution Ξ1( x√
ε(1+t)

) for (43) with

the boundary conditions Ξ1(−∞) = 0,Ξ1(+∞) = Ξ1+. Here Ξ1+ can be any
given constant satisfying |Ξ1+| < δCD. It is worthy to point out that even though

the function Ξ1(t, x) depends on the constant Ξ1+, Θ̂nf (t, x) = Ξ1x(t, x) → 0 as
x → ±∞. That is, the choice of the constant Ξ1+ has no influence on the ansantz
as long as |Ξ1+| < δCD. From now on, we fix Ξ1+ so that the function Ξ1(t, x) is

uniquely determined and its derivative Ξ1x = Θ̂nf has the property

|Θ̂nf | = |Ξ1x| = O(δCD)ε
1
2 (1 + t)−

1
2 e
− x2

4a(θ±)ε(1+t) , as x→ ±∞. (46)

Then we apply the similar procedure to construct the second and the third com-
ponents of the velocity of the contact wave denoted by UCDi (i = 2, 3), see [16] for
details.

In summary, the viscous contact wave (V CD, UCD,ΘCD)(t, x) can be defined by

V CD =
2

3p+
(Θ̂ + Θ̂nf ),

UCD1 = u1+ +
2

3p+

[
εa(Θ̂)Θ̂x + ε(a(Θ̂)Θ̂nf )x +

3

5
∆̃11

]
,

ΘCD = Θ̂ + Θ̂nf +H,

(47)

where

H = O(δCD)ε(1 + t)−2e−
cx2

ε(1+t) , as x→ ±∞, (48)

is a higher order correction.
Now the contact wave (V CD, UCD,ΘCD)(t, x) defined in (47) satisfies the fol-

lowing system





V CDt − UCD1x = 0,

UCD1t + PCDx =
4ε

3
(
µ(ΘCD)

V CD
UCD1x )x −

∫
ξ2
1ΠCD

11xdξ +QCD1 ,

UCDit = ε(
µ(ΘCD)

V CD
UCDix )x −

∫
ξ1ξiΠ

CD
11xdξ +QCDi , i = 2, 3,

ECDt + (PCDUCD1 )x = ε(
κ(ΘCD)

V CD
ΘCD
x )x +

4ε

3
(
µ(ΘCD)UCD1 UCD1x

V CD
)x

+
3∑

i=2

ε(
µ(ΘCD)UCDi UCDix

V CD
)x −

∫
ξ1
|ξ|2
2

ΠCD
11xdξ +QCD4 ,

(49)

where

QCDi = O(1)δCDε(1 + t)−2e−
cx2

ε(1+t) , as x→ ±∞, i = 1, 2, 3, 4 (50)

with some positive constant c > 0 depending only on θ±. Note that from (37), we
have

|(V CD, UCD,ΘCD)(t, x)− (vcd, ucd, θcd)(t, x)| = O(1)δCDe−
cx2

2ε(1+t) . (51)
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1.4. Shock Profile. In this subsection, we will recall the shock profile FS3(x −
s̄3t, ξ) of the Boltzmann equation (1) in Eulerian coordinates with its existence and
properties given in the papers by Caflisch-Nicolaenko [7] and Liu-Yu [28], [29]. Then
we will state the corresponding properties in the Lagrangian coordinates.

First of all, FS3(x− s̄3t, ξ) satisfies




−s̄3(FS3)′ + ξ1(FS3)′ =
1

ε
Q(FS3 , FS3),

FS3(±∞, ξ) = M±(ξ) := M[ρ±,u±,θ±](ξ),

(52)

where ′ = d
dϑ , ϑ = x − s̄3t, u± = (u1±, 0, 0) and (ρ±, u±, θ±) satisfy Rankine-

Hugoniot condition



−s̄3(ρ+ − ρ−) + (ρ+u1+ − ρ−u1−) = 0,
−s̄3(ρ+u1+ − ρ−u1−) + (ρ+u

2
1+ + p+ − ρ−u2

1− − p−) = 0,
−s̄3(ρ+E+ − ρ−E−) + (ρ+u1+E+ + p+u1+ − ρ−u1−E− − p−u1−) = 0,

(53)

and Lax entropy condition

λE3+ < s̄3 < λE3−, (54)

with s̄3 being 3-shock wave speed and λE3 = u1 +
√

10θ
3 being the third characteristic

eigenvalue of the Euler equations in the Eulerian coordinate and λE3± = u1±+

√
10θ±
3 .

By the macro-micro decomposition around the local Maxwellian MS3 , set

FS3(x, t, ξ) = MS3(x, t, ξ) + GS3(x, t, ξ),

where

MS3(x, t, ξ) = M[ρS3 ,uS3 ,θS3 ](x, t, ξ) =
ρS3(x, t)√

(2πRθS3(x, t))3
e
− |ξ−u

S3 (x,t)|2
2RθS3 (x,t) .

Now we rewrite this shock profile in Lagrangian coordinate by using the trans-
formation (13) and use (t̃, x̃) for the Lagrangian coordinate to distingish it from the
Eulerian coordinate (t, x) at this moment. Then the shock profile in Lagrangian

coordinate can be written as F̃S3(x̃−s3t̃, ξ) with s3 determined by the 3-shock wave
curve given in (22), that is,

s3 = ρ±(s̄3 − u1±). (55)

This shows that under the Lagrangian transformation (13), the shock profile FS3(x−
s̄3t, ξ) in Eulerian coordinate can be exactly transformed to the shock profile F̃S3(x̃−
s3t̃, ξ) in Lagrangian coordinate. Moreover, we have

F̃S3
η (η, ξ) = ρS3FS3

ϑ (ϑ, ξ)

with η = x̃− s3t̃.
For simplicity of the notations, from now on, we use (t, x) to denote the La-

grangian coordinate and FS3(η, ξ) with η = x− s3t to denote the 3-shock profile of
Boltzmann equation in Lagrangian coordinate. And in the Lagrangian coordinate,
we have the following Lemma.

Lemma 1.3. ([16]) Assume that (v−, u−, θ−) ∈ S3(v+, u+, θ+), then there exists
a unique shock profile FS3(η, ξ) with η = x − s3t up to a shift, to the Boltzmann
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equation (14) in Lagrangian coordinate. Moreover, there are positive constants c±
and C such that for η ∈ R,





s3V
S3
η = −US3

1η > 0,

US3
i ≡ 0,

∫
ξ1ξiΠ

S3
1 dξ ≡ 0, i = 2, 3,

(|V S3 − v±|, |US3
1 − u1±|, |ΘS3 − θ±|) ≤ CδS3e−

c±δS3 |η|
ε , as η → ±∞,

( ∫ ν(|ξ|)|GS3 |2
M0

dξ
) 1

2 ≤ C(δS3)2e−c±
δS3 |η|
ε , as η → ±∞.

Furthermore, we have

V S3
η ∼ US3

1η ∼ ΘS3
η ∼

1

ε

( ∫ ν(|ξ|)|GS3 |2
M0

dξ
) 1

2 ,

and

|∂kη (V S3 , US3
1 ,ΘS3)| ≤ C (δS3)k−1

εk−1
|(V S3

η , US3
1η ,Θ

S3
η )|, k ≥ 2,

( ∫ ν(|ξ|)|∂kηGS3 |2
M0

dξ
) 1

2 ≤ C (δS3)k

εk
( ∫ ν(|ξ|)|GS3 |2

M0
dξ
) 1

2 , k ≥ 1,

and

|
∫
ξ1ϕi(ξ)Π

S3
1ηdξ| ≤ CδS3 |US3

1η |, i = 1, 2, 3, 4,

with ϕi(ξ) being the collision invariants.

Furthermore, we have





V S3
t − US3

1x = 0,

US3
1t + PS3

x =
4

3
ε(
µ(ΘS3)US3

1x

V S3
)x −

∫
ξ2
1ΠS3

1xdξ,

US3
it = ε(

µ(ΘS3)US3
ix

V S3
)x −

∫
ξ1ξiΠ

S3
1xdξ, i = 2, 3,

ES3
t + (PS3US3

1 )x = ε(
κ(ΘS3)ΘS3

x

V S3
)x +

4

3
ε(
µ(ΘS3)US3

1 US3
1x

V S3
)x

+ε

3∑

i=2

(
µ(ΘS3)US3

i US3
ix

V S3
)x −

∫
ξ1
|ξ|2
2

ΠS3
1xdξ,

(56)

where ES3 = ΘS3 + |U
S3 |2
2 and (v±, u±, θ±) satisfy Rankine-Hugoniot condition and

Lax entropy condition and s3 is 3-shock wave speed.
Correspondingly, we have the following equation for the non-fluid part of 3-shock

profile.

GS3
t − U

S3
1

V S3
GS3
x + 1

V S3
PS3

1 (ξ1M
S3
x ) + 1

V S3
PS3

1 (ξ1G
S3
x ) = 1

ε

[
LMS3 GS3 +Q(GS3 ,GS3)

]
.

Here, LMS3 is the linearized collision operator of Q(FS3 , FS3) with respect to the
local Maxwellian MS3 :

LMS3 g = 2Q(MS3 , g) = Q(MS3 , g) +Q(g,MS3).
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Thus

GS3 = εL−1
MS3

[ 1

V S3
PS3

1 (ξ1M
S3
x )
]

+ ΠS3
1 ,

ΠS3
1 = L−1

MS3

[
ε
(
GS3
t −

US3
1

V S3
GS3
x +

1

V S3
PS3

1 (ξ1G
S3
x )
)
−Q(GS3 ,GS3)

]
.

(57)

1.5. Hyperbolic Wave II. The purpose of this subsection is to construct the sec-
ond hyperbolic wave. Up to now, we can define the following approximate composite
wave profile (V̄ , Ū , Ē)(t, x)




V̄
Ū1

Ē


 (t, x) =




V R1 + d1 + V CD + V S3

UR1
1 + d2 + UCD1 + US3

1

ER1 + d3 + ECD + ES3


 (t, x)−




v∗ + v∗

u1∗ + u∗1
E∗ + E∗


 ,

Ūi = UCDi , i = 2, 3,

(58)

where Ē = Θ̄ + |Ū |2
2 , (V R1 , UR1

1 , ER1)(t, x) is the 1-rarefaction wave defined in (26)

with the right state (v+, u1+, E+) replaced by (v∗, u1∗, E∗), (V CD, UCD1 , ECD)(t, x)
is the viscous contact wave defined in (47) with the states (v−, u1−, E−) and
(v+, u1+, E+) replaced by (v∗, u1∗, E∗) and (v∗, u∗1, E

∗) respectively, and

(V S3 , US3
1 , ES3)(t, x) is the fluid part of 3-shock profile of Boltzmann equation de-

fined in (56) with the left state (v−, u1−, E−) replaced by (v∗, u∗1, E
∗).

Moreover, we can check that this profile satisfies




V̄t − Ū1x = 0,

Ū1t + P̄x =
4

3
ε(
µ(Θ̄)Ū1x

V̄
)x −

∫
ξ2
1ΠCD

11xdξ −
∫
ξ2
1ΠS3

1xdξ + Q̄1x +QCD1 ,

Ūit = ε(
µ(Θ̄)Ū1x

V̄
)x −

∫
ξ1ξiΠ

CD
11xdξ −

∫
ξ1ξiΠ

S3
1xdξ + Q̄ix +QCDi , i = 2, 3,

Ēt + (P̄ Ū1)x = ε(
κ(Θ̄)Θ̄x

V̄
)x +

4

3
ε(
µ(Θ̄)Ū1Ū1x

V̄
)x +

3∑

i=2

ε(
µ(Θ̄)ŪiŪix

V̄
)x

−
∫
ξ1
|ξ|2
2

ΠCD
11xdξ −

∫
ξ1
|ξ|2
2

ΠS3
1xdξ + Q̄4x +QCD4 ,

(59)
where P̄ = p(V̄ , Θ̄), QCDi (i = 1, 2, 3, 4) are defined in (50), and Q̄i (i = 1, 2, 3, 4)
represent the interaction of waves in different families, and the error terms coming
from the approximate rarefaction wave and the hyperbolic wave I, which can be
estimated in the stability analysis.

In order to remove the non-conservative error terms QCDi , (i = 1, 2, 3, 4) coming
from the definition of the viscous contact wave, we now introduce the following

hyperbolic wave ~b = (b1, b21, b22, b23, b3):




b1t − b21x = 0,
b21t + [P̄vb1 + P̄u1b21 + P̄u2b22 + P̄u3b23 + P̄Eb3]x = −QCD1 ,
b22t = −QCD2 ,
b23t = −QCD3 ,
b3t + [(P̄ Ū1)vb1 + (P̄ Ū1)u1

b21 + (P̄ Ū1)u2
b22 + (P̄ Ū1)u3

b23 + (P̄ Ū1)Eb3]x = −QCD4 ,

(60)
where P = 2Θ

3V = P (V,U, E) and P̄v = Pv(V̄ , Ū , Ē), etc. Now we impose the
following boundary condition to the linear hyperbolic system (60) on the domain
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(t, x) ∈ [h, T ]×R:

(B1, B21, B22, B23, B3)(t = T, x) = 0. (61)

As for the hyperbolic wave I, We can solve the linear hyperbolic system under the
condition (61) to have the following lemma.

Lemma 1.4. There exists a positive constant δ0 such that if the wave strength
δ ≤ δ0, then there exists a positive constant Ch,T which is independent of ε, such
that

∥∥∥ ∂
k

∂xk
(b1, b21, b22, b23, b3)(t, ·)

∥∥∥
2

L2(dx)

+

∫ T

h

∥∥∥
√
|US3

1x |
∂k

∂xk
(b1, b21, b22, b23, b3)(t, ·)

∥∥∥
2

L2(dx)
dt

≤ Ch,T ε
5
2−2k, k = 0, 1, 2, 3. (62)

1.6. Superposition of Waves. With the above preparation, finally, the approxi-
mate superposition wave (V,U, E)(t, x) can be defined by




V
Ui
E


 (t, x) =




V̄ + b1
Ūi + b2i
Ē + b3


 (t, x), i = 1, 2, 3, (63)

where E = Θ + |U |2
2 . Thus, we have

Θ = Θ̄−
3∑

i=1

Ūib2i + b3 −
|b2|2

2
, (64)

where b2 = (b21, b22, b23)t and |b2|2 =
∑3
i=1 b

2
2i.

From the construction of the contact wave and Lemma 1.1 and by noting that
σ = ε

1
5 , we have the following relation between the approximate wave pattern

(V,U, E ,Θ)(t, x) of the Boltzmann equation and the inviscid superposition wave

pattern (Ṽ , Ũ , Ẽ , Θ̃)(t, x) to the Euler equations

|(V,U, E ,Θ)(t, x)− (Ṽ , Ũ , Ẽ , Θ̃)(t, x)|
≤ Ch,T

[
ε

1
5 | ln ε|+ δCDe−

cx2

ε(1+t) + δS3e−c
δS3 |x−s3t|

ε

]
.

(65)

Moreover, the approximate wave pattern (V,U, E ,Θ)(t, x) satisfies





Vt − U1x = 0,

U1t + Px =
4

3
ε(
µ(Θ)U1x

V
)x −

∫
ξ2
1ΠCD

11xdξ −
∫
ξ2
1ΠS3

1xdξ + Q̄1x +Q1x,

Uit = ε(
µ(Θ)Uix

V
)x −

∫
ξ1ξiΠ

CD
11xdξ −

∫
ξ1ξiΠ

S3
1xdξ + Q̄ix +Qix, i = 2, 3,

Et + (PU1)x = ε(
κ(Θ)Θx

V
)x +

4

3
ε(
µ(Θ)U1U1x

V
)x +

3∑

i=2

ε(
µ(Θ)UiUix

V
)x

−
∫
ξ1
|ξ|2
2

ΠCD
11xdξ −

∫
ξ1
|ξ|2
2

ΠS3
1xdξ + Q̄4x +Q4x,

(66)
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where P = p(V,Θ) and

Q1 =
[
P − P̄ − (P̄vb1 + P̄u · b2 + P̄Eb3)

]
− 4

3
ε
[µ(Θ)U1x

V
− µ(Θ̄)Ū1x

V̄

]
,

Qi = −ε
[µ(Θ)Uix

V
− µ(Θ̄)Ūix

V̄

]
, i = 2, 3,

Q4 =
[
PU1 − P̄ Ū1 −

(
(P̄ Ū1)vb1 + (P̄ Ū1)u · b2 + (P̄ Ū1)Eb3

) ]

−ε
[
(
κ(Θ)Θx

V
− κ(Θ̄)Θ̄x

V̄
) +

4

3
(
µ(Θ)U1U1x

V
− µ(Θ̄)Ū1Ū1x

V̄
)

+
3∑

i=2

(
µ(Θ)UiUix

V
− µ(Θ̄)ŪiŪix

V̄
)
]
.

(67)

2. Main Result.

2.1. Reformulation of the Problem. We now reformulate the system by intro-
ducing a scaling for the independent variables. Set

y =
x

ε
, τ =

t

ε
. (68)

In the following, we will also use the notations (v, u, θ)(τ, y),G(τ, y, ξ),Π1(τ, y, ξ)
and (V,U,Θ)(τ, y), etc., in the scaled independent variables. Set the perturbation
around the superposition wave (V,U,Θ)(τ, y) by

(φ, ψ, ω, ζ)(τ, y) = (v − V, u− U,E − E , θ −Θ)(τ, y),

G̃(τ, y, ξ) = G(τ, y, ξ)−GS3(τ, y, ξ),

f̃(τ, y, ξ) = f(τ, y, ξ)− FS3(τ, y, ξ).

(69)

Under this scaling, the hydrodynamic limit problem is reduced to a time asymptotic
stability problem for the Boltzmann equation.

In particular, we can choose the initial value as

(φ, ψ, ω)(τ =
h

ε
, y) = (0, 0, 0), G̃(τ =

h

ε
, y, ξ) = 0. (70)

Introduce the anti-derivative variables

(Φ,Ψ, W̄ )(τ, y) =

∫ y

−∞
(φ, ψ, ω)(τ, y′)dy′.

Then (Φ,Ψ, W̄ )(τ, y) satisfies that




Φτ −Ψ1y = 0,

Ψ1τ + (p− P ) =
4

3

(µ(θ)u1y

v
− µ(Θ)U1y

V

)
−
∫
ξ2
1(Π1 −ΠCD

11 −ΠS3
1 )dξ − Q̄1 −Q1,

Ψiτ =
(µ(θ)uiy

v
− µ(Θ)Uiy

V

)
−
∫
ξ1ξi(Π1 −ΠCD

11 −ΠS3
1 )dξ − Q̄i −Qi, i = 2, 3,

W̄τ + (pu1 − PU1) =
(κ(θ)θy

v
− κ(Θ)Θy

V

)
+

4

3

(µ(θ)u1u1y

v
− µ(Θ)U1U1y

V

)

+

3∑

i=2

(µ(θ)uiuiy
v

− µ(Θ)UiUiy
V

)
−
∫
ξ1
|ξ|2
2

(Π1 −ΠCD
11 −ΠS3

1 )dξ − Q̄4 −Q4.

(71)
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To precisely capture the dissiaption of heat conduction, we introduce another
variable related to the absolute temperature

W = W̄ − U ·Ψ = W̄ −
3∑

i=1

UiΨi,

then

ζ = Wy − (
|Ψy|2

2
− Uy ·Ψ). (72)

Linearizing the system (71) around the approximate wave pattern (V,U,Θ)(τ, y)
implies that




Φτ −Ψ1y = 0,

Ψ1τ −
Z

V
Φy +

2

3V
Wy +

2

3V
Uy ·Ψ−

4

3

µ′(Θ)

V
(Wy + Uy ·Ψ)U1y =

4

3

µ(Θ)

V
Ψ1yy

−
∫
ξ2
1(Π1 −ΠCD

11 −ΠS3
1 )dξ +N1 − Q̄1 −Q1,

Ψiτ +
µ(Θ)Uiy
V 2

Φy −
µ′(Θ)

V
(Wy + Uy ·Ψ)Uiy =

µ(Θ)

V
Ψiyy

−
∫
ξ1ξi(Π1 −ΠCD

11 −ΠS3
1 )dξ +Ni − Q̄i −Qi, i = 2, 3,

Wτ + ZΨ1y −
3∑

i=2

µ(Θ)Uiy
V

Ψiy + Uτ ·Ψ−
κ(Θ)

V
(Uy ·Ψ)y +

κ(Θ)

V 2
ΘyΦy

−κ
′(Θ)

V
(Wy + Uy ·Ψ)Θy =

κ(Θ)

V
Wyy −

∫
ξ1
|ξ|2
2

(Π1 −ΠCD
11 −ΠS3

1 )dξ

+
3∑

i=1

Ui

∫
ξ1ξi(Π1 −ΠCD

11 −ΠS3
1 )dξ +N4 − Q̄4 +

3∑

i=1

UiQ̄i −Q4 +
3∑

i=1

UiQi,

(73)
where

Z = P − 4

3

µ(Θ)U1y

V
, (74)

Ni = O(1)
[
|Φy|2 + |Ψy|2 + |ζ|2 + |Ψyy|2 + |ζy|2

]
, i = 1, 2, 3, 4. (75)

We now derive the equation for the non-fluid component G̃(τ, y, ξ) in the scaled
independent variables. From (16), we have

G̃τ − LMG̃ =
u1

v
G̃y −

1

v
P1(ξ1G̃y)−

[1

v
P1(ξ1My)− 1

V S3
PS3

1 (ξ1M
S3
y )
]

+2Q(G̃,GS3) +Q(G̃, G̃) + J1,

(76)

where

J1 =
(
LM−LMS3

)
GS3 +

(u
v
− U

S3
1

V S3

)
GS3
y −

[1

v
P1(ξ1G

S3
y )− 1

V S3
PS3

1 (ξ1G
S3
y )
]
. (77)

Let

GR1(τ, y, ξ) =
3

2vθ
L−1
M {P1[ξ1(

|ξ − u|2
2θ

ΘR1
y + ξ · UR1

y )M]}, (78)

and

G̃1(τ, y, ξ) = G̃(τ, y, ξ)−GR1(τ, y, ξ)−GCD(τ, y, ξ), (79)
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where GCD(τ, y, ξ) is defined in (39). Then G1(τ, y, ξ) satisfies

G̃1τ−LMG̃1 =
u1

v
G̃y−

1

v
P1(ξ1G̃y)+2Q(G̃,GS3)+Q(G̃, G̃)+J1+J2−GR1

τ −GCD
τ .

(80)
with

J2 = −
[1

v
P1(ξ1My)− 1

V S3
PS3

1 (ξ1M
S3
y )

− 3

2vθ
P1

(
ξ1(
|ξ − u|2

2θ
(ΘR1

y + ΘCD
y ) + ξ · (UR1

y + UCDy ))M
)]
.

(81)

From (14) and the scaling transformation (68), we have

fτ −
u1

v
fy +

ξ1
v
fy = Q(f, f). (82)

Thus, we have the equation for f̃ defined in (69)

f̃τ −
u1

v
f̃y +

ξ1
v
f̃y = LMG̃ +Q(G̃, G̃) + JF , (83)

with

JF = (
u1

v
− U

S3
1

V S3
)FS3
y −(

1

v
− 1

V S3
)ξ1F

S3
y +2Q(M−MS3 ,GS3)+2Q(G̃,GS3). (84)

Note that to prove the main theorem, it is sufficient to prove the following theo-
rem on the Boltzmann equation (82) in the scaled independent variables based on
the construction of the approximate wave pattern.

Theorem 2.1. There exist a small positive constants δ1 and a global Maxwellian
M? = M[v?,u?,θ?] such that if the wave strength δ satisfies δ ≤ δ1, then on the time

interval [hε ,
T
ε ] for any 0 < h < T , there is a positive constant ε1(δ, h, T ). If the

Knudsen number ε ≤ ε1, then the problem (82) admits a family of smooth solution
fε,h(τ, y, ξ) satisfying

sup
τ∈[hε ,

T
ε ]

sup
y∈R
‖fε,h(τ, y, ξ)−M[V,U,Θ](τ, y, ξ)‖L2

ξ(
1√
M?

) ≤ Cε
1
5 . (85)

Consider the reformulated system (73) and (80). Since the local existence of
solution to (73) and (80) is known, cf. [15] and [35], to prove the existence on the
time interval [hε ,

T
ε ], we only need to close the following a priori estimate by the

continuity argument. Set

N (τ) = sup
h
ε≤τ ′≤τ

{
‖(Φ,Ψ,W )(τ ′, ·)‖2 + ‖(φ, ψ, ζ)(τ ′, ·)‖21 +

∫ ∫ |G̃1|2
M?

dξdy

+
∑

|α′|=1

∫ ∫ |∂α′G̃|2
M?

dξdy +
∑

|α|=2

∫ ∫ |∂αf̃ |2
M?

dξdy

}
≤ χ2 = ε

1
10 , ∀τ ∈ [

h

ε
,
T

ε
],

(86)

where ∂α, ∂α
′

denote the derivatives with respect to y and τ , and M? is a global
Maxwellian to be chosen.

2.2. Energy Estimates. To close the a priori estimate (86) and to prove Theorem
2.1, we need the following energy estimates given in Propositions 1 and Proposition
2. First, the lower order estimates to the system (73) and (80) are given in the
following Proposition.
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Proposition 1. Under the assumptions of Theorem 2.1, there exist positive con-
stants C and Ch,T independent of ε such that

sup
h
ε≤τ1≤τ

[
‖(Φ,Ψ,W,Φy)(τ1, ·)‖2 +

∫ ∫ |G̃1|2
M?

(τ1, y, ξ)dξdy
]

+

∫ τ

h
ε

[
‖
√
|US3

1y |(Ψ,W )‖2 + ‖(Φy,Ψy,Wy, ζ,Ψτ ,Wτ )‖2
]
dτ +

∫ τ

h
ε

∫ ∫
ν(|ξ|)
M?

|G̃1|2dξdydτ

≤ Ch,T ε

∫ τ

h
ε

‖(Ψ,W )‖2dτ + C
∑

|α′|=1

∫ τ

h
ε

‖∂α′(φ, ψ, ζ)‖2dτ

+C
∑

|α′|=1

∫ τ

h
ε

∫ ∫
ν(|ξ|)
M?

|∂α′G̃|2dξdydτ + Ch,T ε
2
5 .

The higher order estimates are given as follows,

Proposition 2. Under the assumptions of Theorem 2.1, there exist positive con-
stants C and Ch,T independent of ε such that

sup
h
ε≤τ1≤τ

[
‖(φ, ψ, ζ, φy, ψy, ζy)(τ1, ·)‖2 +

∑

|α′|=1

∫ ∫ |∂α′G̃|2
M?

(τ1, y, ξ)dξdy

+
∑

|α|=2

∫ ∫ |∂αf̃ |2
2M?

(τ1, y, ξ)dξdy
]

+

∫ τ

h
ε

∑

1≤|α|≤2

‖∂α(φ, ψ, ζ)‖2dτ +
∑

1≤|α|≤2

∫ τ

h
ε

∫ ∫
ν(|ξ|)
M?

|∂αG̃|2dξdydτ

≤ C(δ + Ch,Tχ)

∫ τ

h
ε

∫ ∫
ν(|ξ|)
M?

|G̃1|2dξdydτ

+C(δ + Ch,Tχ)

∫ τ

h
ε

‖(φ, ψ, ζ)‖2dτ + Ch,T ε
1
2 .

By combining the above lower and higher order estimates given in Propositions 1
and 2 and choosing the wave strength δ, and the Knudsen number ε to be suitably
small, we obtain

N (τ) +

∫ τ

h
ε

[ ∑

0≤|α|≤2

‖∂α(φ, ψ, ζ)‖2 + ‖
√
|US3

1y |(Ψ,W )‖2
]
dτ

+

∫ τ

h
ε

∫ ∫
ν(|ξ|)|G̃1|2

M?
dξdydτ +

∑

1≤|α|≤2

∫ τ

h
ε

∫ ∫
ν(|ξ|)|∂αG̃|2

M?
(τ, y, ξ)dξdydτ

≤ Ch,T ε
2
5 .

Therefore, we close the a priori assumption (86) and then complete the proof of
Theorem 2.1.
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[34] S. Ukai and K. Asano, The Euler limit and the initial layer of the nonlinear Boltzmann

equation, Hokkaido Math. J., 12 (1983), 303–324.

[35] S. Ukai, T. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external
forces, Analysis and Applications, 3 (2005), 157–193.

[36] Z. P. Xin, Zero dissipation limit to rarefaction waves for the one-dimentional Navier-Stokes
equations of compressible isentropic gases, Commun. Pure Appl. Math, XLVI (1993), 621–

665.

[37] Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann
equation and compressible Navier-Stokes equations, J. Differential Equations., 249 (2010),

827–871.

[38] S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations, Commun. Pure
Appl. Math. 58 (2005), 409–443.

E-mail address: fhuang@amt.ac.cn

97



WELL-POSEDNESS OF BOUNDARY LAYER PROBLEM IN

WIND-DRIVEN OCEANIC CIRCULATION

Xiang Wang

School of Mathematical Sciences, Shanghai Jiao Tong University,
Shanghai, P. R. China

Ya-Guang Wang∗

School of Mathematical Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University,
Shanghai, P. R. China

Abstract. In this note we review our recent study on the boundary layer prob-

lem for the homogeneous model of the wind-driven oceanic circulation near the

western coast when both of the Coriolis parameter and the Reynolds number
go to infinity. When the Coriolis parameter is the square root of the Reynolds

number, the inertial force, the Coriolis force and friction force have the same

order near the boundary. By multi-scale analysis, we derive the boundary
layer equation near the western coast, which has an additional nonlocal term

arising from the Coriolis force, in contrast with the classical Prandtl equation.

Under the monotonicity assumption of the tangential velocity in the normal
variable, we obtain a local classical solution to this boundary layer equation

by using the Crocco transformation. When this monotonicity condition is vi-

olated, a well-posedness result of this boundary layer equation is obtained by
using the Littlewood-Paley theory when the velocity is analytic in the tangen-

tial variable. Finally, we show that the classical solution of the boundary layer

equation blows up in a finite time in general, when the data does not satisfy
the monotonic assumption, this implies that the analytic solution exists only

locally in time.

1. Introduction. The motion of the oceanic circulation in the presence of wind in
plane can be described by the following equations, cf. [6, 21, 22],

{
∂tu+ u · ∇u− (ηB + βx)u⊥ + r0

2 u+∇Π−Re−1∆u = βτ,

div u = 0,
(1)

in (0, T ) × Ω, where Ω = {x ∈ R, 0 < y < 1} and the Cartesian-like coordinates
(x, y) represent latitude and longitude respectively. Here u = (u1, u2)T , Π, ηB , Re,
β and r0 represent the velocity, pressure of the fluid, the bottom topography, the
Reynolds number, the beta-plane parameter and Ekman pumping parameter due
to friction on the bottom respectively, τ = (τ1, τ2)T is the shear tensor created by
wind, and −xu⊥ represents the effect of the Coriolis force created by rotation with
u⊥ = (−u2, u1)T .

2000 Mathematics Subject Classification. Primary: 35Q30,76D10; Secondary: 74H35.

Key words and phrases. Wind-driven oceanic circulation, boundary layers, stability.
∗ Corresponding author: Ya-Guang Wang.
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The property of flow in the oceanic circulation depends on the boundary condition
sensitively. We consider the equations (1) with the classical non-slip boundary
condition:

u
∣∣
∂Ω

= 0. (2)

In certain geophysical regime, the parameters β−1, r0 and Re−1 are very small,
and it is important and interesting to understand the asymptotic behavior of flow
when the parameters go to zero. Formally, setting β−1 = Re−1 = r0 = 0 in (1), the
limit equations read as {

−x(u0)⊥ +∇Π0 = τ,

div u0 = 0,
(3)

which implies that
{
u0

1(t, x, y) = −curlτ(t, x, y),

u0
2(t, x, y) = u0

2(t, x, 0)−
∫ y

0
∂xcurlτ(t, x, y′)dy′,

(4)

which is neither compatible with the initial data nor the boundary condition at
y = 0 and y = 1 for the equations (1), in general. Therefore, there may exist initial
layers and boundary layers in these limits. Especially, near the western coast,
y = 0, the western intensification of boundary currents has been widely concerned
by mathematicians and physicists, cf.[6, 21, 22, 11] and references therein. As there
are different scale relations among these parameters from the different physical
background, certain different kinds of boundary layers have been introduced, such
as the inertial boundary layer, the Stommel boundary layer and the Munk boundary
layer, cf.[6, 4, 5, 2, 21, 22].

We are interested in the study of the asymptotic behavior of solutions to the
problem of the equations (1) with the non-slip boundary condition (2) in the large
Reynolds number and large beta-plane parameter limit when omitting the friction
on the bottom, i.e. ηB = r0 = 0. In order to avoid the strong gap for the normal
velocity between the viscous flow and the outer flow given in (1) and (3) respectively,
in the following discussion, we shall assume that the vorticity generated by the shear
tensor of wind satisfies

∂

∂x

(∫ 1

0

curlτ(t, x, y′)dy′
)
≡ 0 (5)

for all t ≥ 0 and x ∈ R. From (4), this assumption implies that the normal velocity
field u0

2 determined by (3) satisfies the impermeable boundary condition on {y = 1},
if it holds on {y = 0}.

To balance the inertial force, the Coriolis force and viscous friction of (1) in
boundary layers near {y = 0} and {y = 1}, we consider the case that

β = (Re)
1
2 ,

in (1), from which we shall know that the boundary layer thickness is

ε = β−1 = Re−
1
2 , (6)

which is the same as in the classical Prandtl boundary layer ([23]) as well as the
Stewartson layer (see [11, Chapter 9]), which is the vertical shear layer in the ro-
tating flow.
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In the next section, by using multi-scale analysis we shall see under the assump-
tion (5), that near the physical boundary {y = 0}, the flow given by (1) shall behave
as {

uε1(t, x, y) = u(t, x, yε ) + o(1)

uε2(t, x, y) = εv(t, x, yε ) + o(ε)
(7)

as ε→ 0, where the boundary layer profiles (u(t, x, η), v(t, x, η)) satisfy the following
problem





∂tu+ u∂xu+ v∂ηu− ∂2
ηu = ∂tU + U∂xU +

∫ η
∞(U − u)dη′,

∂xu+ ∂ηv = 0,

(u, v)|η=0 = (0, 0), lim
η→+∞

u(t, x, η) = U(t, x)

(8)

where U(t, x) = u0
1(t, x, 0) is the the tangential velocity on the boundary {y = 0}

of the outer flow given by (3). The boundary layer of the flow near {y = 1} has the
same behavior as above.

It is worthy to note that there is an additional integral term on the right side of
the first equation given in (8), in contrast with the classical Prandtl boundary layer
equation given in [23].

Till now, there are many interesting results on the well-posedness and stabil-
ity of the two-dimensional classical Prandtl boundary layer equation, i.e. without
the integral term in (8). Under the monotonicity assumption of the tangential ve-
locity with respect to the normal variable, i.e., uy > 0, the first well-posedness
locally in time in the Hörder spaces was obtained by Oleinik et al. [19, 20] by
using the Crocco transformation, this well-posedness has been re-studied recently
by developing an energy method in the Sobolev spaces in [1, 18]. In addition to
this monotonicity assumption, in the case of a favorite pressure gradient for the
outer flow, Xin and Zhang obtained a global weak solution of the classical Prandtl
equation in [26]. When the monotonicity condition of the velocity field was failed,
there are interesting works on the well-posedness of the classical Prandtl equation
in the space of analytic functions and Gevery functions, cf. [3, 17, 14, 16, 7, 27]
and references therein, or the blow-up and instability of solutions in a finite time,
cf. [8, 13, 9, 10, 15] etc.

As there is an additional integral term in the equation of the boundary layer
problem (8), one needs to introduce certain weighted spaces to study the well-
posedness of the problem (8). The main goal of this note is to study the well-
posedness and blowup of the solution to the boundary layer problem (8). A related
stationary boundary layer problem was considered recently by Dalibard and Paddick
in [5] when the parameters satisfy the relation β = Re2 and ηB = r0 = 0 in (1).

The remainder of this note is arranged as follows. In Section 2, we shall derive
the boundary layer equation by using multi-scale analysis under the assumption (5)
of the shear tensor of the wind. In Section 3, we study the existence and uniqueness
of the classical solution in the class of the monotonicity velocity, and the existence
of a solution being analytic in the tangential variable and finite order regular in
the normal variable, when the monotonicity condition is failed. Finally, in Section
4, we present a blowup result under certain condition on a transversal plane for
the initial velocity and outer flow, which shows that the analytic solution obtained
exists locally in time in general.
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2. Asymptotic analysis. As in (6), to balance the inertial force, the Coriolis force
and viscous friction of (1) in boundary layers as both of the beta-plane parameter
and the Reynolds number go to infinite, we consider the case that

β = Re
1
2 .

Setting ε = β−1 = Re−
1
2 in (1) with ηB = r0 = 0, consider the following problem

in (0, T )× Ω with Ω = {x ∈ R, 0 < y < 1},




ε∂tu
ε + εuε · ∇uε − x(uε)⊥ +∇Πε − ε3∆uε = τ,

div uε = 0,

uε|y=0 = uε|y=1 = 0,

uε|t=0 = uε0(x, y).

(9)

When ε→ 0, the problem (9) formally goes to (3), with velocity u0 being given in
(4). On the other hand, as in the classical Prandtl boundary layer theory for the
small viscosity limit of the incompressible viscous flow ([23, 20]), from the nonslip
boundary condition given in (9), a natural condition on the velocity field u0 given
in (4) is the following impermeable condition,

u0
2|y=0 = u0

2|y=1 = 0. (10)

Thus, we know that the shear tensor τ from wind should satisfy the constraint,

∂

∂x

(∫ 1

0

curlτ(t, x, y′)dy′
)
≡ 0, ∀0 ≤ t < T, x ∈ R. (11)

From now on, we assume that the condition (11) holds for τ in the following dis-
cussion.

By comparing the leading scale of the inertial force, the Coriolis force and friction
in the boundary layer, it infers that the thickness of the boundary layer is of the
order ε, therefore we assume that the solution of the problem (9) has the following
ansatz




uε(t, x, y) =
∑
i≥0

εi(uI,i(t, x, y) + uB,i,0(t, x, yε ) + uB,i,1(t, x, 1−y
ε ))

Πε(t, x, y) =
∑
i≥0

εi(ΠI,i(t, x, y) + ΠB,i,0(t, x, yε ) + ΠB,i,1(t, x, 1−y
ε ))

(12)

where uB,i,0(t, x, η), ΠB,i,0(t, x, η) and uB,i,1(t, x, ξ), ΠB,i,1(t, x, ξ) are fast decay
when η → +∞ and ξ → +∞ respectively.

In the following calculation, we denote by u(t, x) = u(t, x, 0) and ũ(t, x) =
u(t, x, 1) the traces of u(t, x, y) at boundaries {y = 0} and {y = 1} respectively.

From the nonslip boundary condition given in (9), one has

uB,k,0(t, x, 0) + uI,k = 0, uB,k,1(t, x, 0) + ũI,k = 0, for k ≥ 0. (13)

Plugging (12) into the divergence-free condition given in (9), we immediately get
that

∂ηu
B,0,0
2 (t, x, η) ≡ 0, ∂ξu

B,0,1
2 (t, x, ξ) ≡ 0

which implies

uB,0,02 (t, x, η) ≡ 0, uB,0,12 (t, x, ξ) ≡ 0 (14)

by using lim
η→+∞

uB,0,0(t, x, η) = lim
ξ→+∞

uB,0,1(t, x, ξ) = 0. Therefore, from (13) we

have
uI,02 (t, x, 0) = uI,02 (t, x, 1) ≡ 0. (15)
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On other hand hand, by plugging (12) into the equations given in (9), in the
interior of Ω, we deduce that (uI,0,ΠI,0) satisfies the equations

{
−x(uI,0)⊥ +∇ΠI,0 = τ,
div uI,0 = 0,

which implies 


uI,01 (t, x, y) = −curlτ(t, x, y),

uI,02 (t, x, y) = −
∫ y

0
∂xcurlτ(t, x, y′)dy′

(16)

by using the boundary condition given in (15).
It is important to note from the constraint of τ given in (11) that, the solu-

tion uI,02 (t, x, y) of (16) satisfies the boundary condition given in (15) at {y = 1},
which is consistent with the phenomenon that the leading boundary layer profile

uB,0,12 (t, x, 1−y
ε ) near {y = 1} of the normal velocity is identically equal to zero.

Successively, we can obtain that for all k ≥ 0, uI,k+1 can be represented as



uI,k+1

1 (t, x, y) = curl(∂tu
I,k +

∑k
j=0 u

I,j · ∇uI,k−j −∆uI,k−2),

uI,k+1
2 (t, x, y) = uI,k+1

2 (t, x, 0)−
∫ y

0
∂xu

I,k+1
1 (t, x, z)dz, k ≥ 0,

(17)

where uI,−2 = uI,−1 ≡ 0.
Near the boundary y = 0, by matching the orders O(ε−1) and O(ε0) respectively

in the second component of the first equation in (9), in view of (15), one has

∂ηΠB,0,0 = 0

implying

ΠB,0,0(t, x, η) ≡ 0, (18)

and

− xuB,0,01 + ∂ηΠB,1,0 = 0. (19)

From the order of O(ε1) in the first component of the first equation in (9), we
get that

∂t(u
I,0
1 + uB,0,01 ) + (uI,01 + uB,0,01 )∂x(uI,01 + uB,0,01 )

+ (η∂yu
I,0
2 + uI,12 + uB,1,02 )∂ηu

B,0,0
1

+ x(uB,1,02 + uI,12 ) + ∂x(ΠI,1 + ΠB,1,0))− ∂2
ηu

B,0,0
1 = 0.

(20)

On the other hand, from the equation (19), one has

∂xΠB,1,0 =

∫ η

+∞
uB,0,01 dη′ − xuB,1,02 . (21)

Denote by



u(t, x, η) = uI,01 (t, x, 0) + uB,0,01 (t, x, η),

v(t, x, η) = η∂yu
I,0
2 (t, x, 0) + uI,12 (t, x, 0) + uB,1,02 (t, x, η),
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by using (20), (21) and the boundary condition given in (13), we obtain that the
boundary layer profile (u, v) satisfies the following problem





∂tu+ u∂xu+ v∂ηu− ∂2
ηu = ∂tU + U∂xU +

∫ η
∞(U − u)dη′,

∂xu+ ∂ηv = 0,

(u, v)|η=0 = (0, 0), lim
η→+∞

u(t, x, η) = U(t, x)

(22)

where U(t, x) = uI,01 (t, x, 0).
Similarly, one derives that near y = 0, the proceeding boundary layer profiles

(uB,k,01 , uB,k+1,0
2 ) statisfy





∂tu
B,k,0
1 + (∂xu

I,0
1 + ∂xu

B,0,0
1 )uB,k,01 + (uI,01 + uB,0,01 )∂xu

B,k,0
1

+(uI,k+1
2 + uB,k+1,0

2 )∂ηu
B,0,0
1 + (η∂yu

I,0
2 + uI,12 + uB,1,02 )∂ηu

B,k,0
1

+
∫ η
∞ uB,k,01 dη − ∂2

ηu
B,k,0
1 = f0k,

∂xu
B,k,0
1 + ∂ηu

B,k+1,0
2 = 0,

(23)

for k ≥ 1, where f0k depends on uB,i,01 (0 ≤ i ≤ k − 1), uB,i,02 (0 ≤ i ≤ k),

uI,i1 (0 ≤ i ≤ k) and uI,i2 (0 ≤ i ≤ k).
In the same way as above, near y = 1, one can derive that for all k ≥ 0, the

boundary layer profiles (uB,k,11 , uB,k+1,1
2 ) satisfy the similar problems as given in

(22) and (23).

Remark 2.1. As explained in (4)-(5), if the constraint

∫ 1

0

∂xcurlτ(t, x, y′)dy′ ≡ 0, ∀0 ≤ t < T, x ∈ R

does not hold for the shear tensor of wind, then the ansatz (12) for the solution of
(9) yields that the leading order profile uI,0(t, x, y) does not satisfy the boundary
condition

uI,02 |y=0 = 0, uI,02 |y=1 = 0.

To deal with this discrepancy, one could revise the ansatz (12) to be

uε(t, x, y) =
∑

i≥0

εiuI,i(t, x, y) +
∑

i≥−1

εi(uB,i,0(t, x,
y

ε
) + uB,i,1(t, x,

1− y
ε

)) (24)

including O(ε−1)−order boundary layer, much stronger than the Prandtl one. The
study of this boundary layer is a challenging problem, one may refer to [21] for some
discussion.

3. Local well-posedness of the boundary layer problem. The first impor-
tant issue is to study the well-posedness of the problem (22) for the leading order
boundary layer profile. Comparing with the classical Prandtl equation studied in
[20, 19, 1, 18], the additional non-local integral term in the first equation of (22)
requires us to overcome certain new difficulties.
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3.1. Well-posedness under the monotonicity condition. In this subsection,
we develop the idea given in [20] to obtain the well-posedness of the problem (22)
in the monotonic class.

Consider the following problem for the boundary layer equation (22) in the do-
main DT = {0 < t < T, 0 < x < X, y > 0},





∂tu+ u∂xu+ v∂yu− ∂2
yu = ∂tU + U∂xU +

∫ y
∞(U − u)dy′,

∂xu+ ∂yv = 0,

u|t=0 = u0(x, y), u|x=0 = u1(t, y),

(u, v)|y=0 = (0, 0), lim
y→+∞

u(t, x, y) = U(t, x).

(25)

First, we impose a monotonicity assumption on the initial and boundary data of
the problem (25). Assume that there exist some positive constants C1 and C2 such
that the initial data u0(x, y), the incoming flow u1(t, y) and the outer flow U(t, x)
satisfy

C1(1− u0

U(0, x)
) ≤ u0y

U(0, x)
≤ C2(1− u0

U(0, x)
) (26)

and

C1(1− u1

U(t, 0)
) ≤ u1y

U(t, 0)
≤ C2(1− u1

U(t, 0)
). (27)

for any 0 ≤ t ≤ T and 0 ≤ x ≤ X.
Obviously, from (25) we know that the convection term can be written as

v∂yu = −∂yu
∫ y

0

∂xu(t, x, y′)dy′

which can not be controlled if one uses the usual energy method for the problem
(25). To remove this term with a loss of regularity in x, as in [20], we introduce the
following Crocco transformation

τ = t, ξ = x, η =
u

U
, ω =

uy
U
, (28)

then we know that in the class of u satisfying ∂yu > 0, the transformation from
(t, x, y) to (τ, ξ, η) given in (28) is invertible, and from (25), ω(τ, ξ, η) satisfies the
following problem for a scalar degenerated parabolic equation in QT = {0 < τ <
T, 0 < ξ < X, 0 < η < 1}





ωτ + ηUωξ + Ãωη +Bω − ω2ωηη = 1− η,
ω|τ=0 = ω0, ω|ξ=0 = ω1,

ω|η=1 = 0,
(
ωωη −

∫ 1

0
1−η′
ω dη′ + C

)
|η=0 = 0,

(29)

where

ω0(ξ, η) =
u0y(x, y)

U(0, x)
, ω1(τ, η) =

u1y(t, y)

U(t, 0)
,

and

Ã = A−
∫ 1

η

1− η′
ω

dη′, B =
Ut
U

+ ηUx, C = Ux +
Ut
U
,

with A = (1− η)UtU + (1− η2)Ux.
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Due to the degeneracy and nonlinearity structure of (29), we construct the ap-
proximation solution sequence of (29) via the following iteration scheme





∂τω
n + ηU∂ξω

n + Ãn−1∂ηω
n +Bωn − (ωn−1)2∂2

ηω
n = 1− η,

ωn|τ=0 = ω0, ωn|ξ=0 = ω1,

ωn|η=1 = 0,
(
ωn−1∂ηω

n −
∫ 1

0
1−η′
ωn−1 dη

′ + C
)
|η=0 = 0,

(30)

where Ãn−1 = A−
∫ 1

η
1−η′
ωn−1 dη

′.

The existence of a solution ωn ∈ C2(QT ) to (30) can be proved as long as Ãn−1

1−η ,

B and their second derivatives are bounded, the detail calculation can be found in
[20]. In order to proceed the above iteration scheme, it needs to estimate ωn

1−η and

its derivatives up to the second order. This is different from the case of the classical
Prandtl equation studied in [20], in which one only need to study the norm of ωn

in C2(QT ).
To control the first and second derivatives of ωn, we introduce that V n = ωneαη

with α being a positive constant, and the quantities

Φn = (
V nτ

1− η )2 + (
V nξ

1− η )2 + (V nη )2 +Kn
1 η +K0

and

Ψn =
∑

|β|≤2

(∂βtan
V n

1− η )2 + |∇V nη |2 +Nn
1 η +N0,

with ∂tan = ∂τ or ∂ξ, where K0, Kn
1 , N0 and Nn

1 are positive constants. By
studying the quantities Φn and Ψn carefully as given in [20], and choosing the
above parameters properly, one can obtain the following result:

Theorem 3.1. For any given X > 0, assume that u0, u1 and U are smooth, and
satisfy compatibility conditions for the problem (25) up to order two. In addition,
the monotonicity conditions given in (26) and (27) hold. Then there exists T > 0

such that the solution ωn of (30) in QT , ωn

1−η and derivatives up to the order two

are bounded uniformly in n.

Based on Theorem 3.1, by estimating the error ωn+1−ωn
1−η , one can deduce that

there is a C2 function ω(τ, ξ, η) defined in QT , such that

ωn → ω as n→ +∞
uniformly in C1(QT ). Meanwhile, it follows from the equation (30) that ωnηη also
converges to ωηη for any η < 1 . Hence, ω is a classical solution to (29). Moreover,
by noticing the invertibility of the Crocco transformation, it arrives at the following
well-posedness result:

Theorem 3.2. Under the same assumption as given in Theorem 3.1, the problem
(25) admits a unique classical solution (u, v) in DT = {0 ≤ t ≤ T, 0 ≤ x ≤ X, y ≥ 0}
for some T > 0. Furthermore, the inequality

M1(1− u

U
) ≤ uy

U
≤M2(1− u

U
) (31)

holds for some M2 ≥M1 > 0 and (t, x, y) ∈ DT .

More details of the proofs of Theorems 3.1 and 3.2 are given in [12].
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3.2. Well-posedness in the space of analytic functions. The proposal of this
subsection is to study the well-posedness of the problem (25) when the datum do
not satisfy the monotonicity assumptions (26) and (27) anymore, but are analytic
with respect to the variable x. We shall adapt the approach given in [27] to study
this problem.

Consider the problem (25) in the domain QT = {0 < t < T, x ∈ R, y > 0},




∂tu+ u∂xu+ v∂yu+
∫ y
∞(u− U)dy′ − ∂2

yu = ∂tU + U∂xU,

∂xu+ ∂yv = 0,

u|t=0 = u0(x, y),

(u, v)|y=0 = (0, 0), lim
y→+∞

u(t, x, y) = U(t, x),

(32)

To study the well-posedness of this problem in the energy spaces for the y-variable,
we introduce

φ(t, y) = Erf

(
y√

4(t+ 1)

)
with Erf(y) =

2√
π

∫ y

0

e−z
2

dz,

to homogenize the condition of u at infinity given in (32). Obviously, φ(t, y) is a
solution to the problem





∂tφ− ∂2
yφ = 0,

φ
∣∣
y=0

= 0, lim
y→+∞

φ(t, y) = 1,

φ
∣∣
t=0

= Erf(y2 ).

Denote by us = Uφ and w = u − us. From (32), we know that w satisfies the
following problem




∂tw + (w + us)∂xw + w∂xu
s −

∫ y
0
∂x(w + us)dy′∂y(w + us)− ∂2

yw

+
∫ y

+∞ wdy′ = (1− φ)(∂tU + (1 + φ)U∂xU)−
∫ +∞
y

U(1− φ)dy′,

w
∣∣
y=0

= 0, lim
y→+∞

w = 1,

w
∣∣
t=0

= w0(x, y) = u0(x, y)− U(0, x)Erf(y2 ).

(33)

To study the well-posedness of the problem (33), we recall some facts of the
Littlewood-Paley theory and certain function spaces from [27, 25].

Let (ϕ, χ) be smooth functions such that

supp ϕ ⊂
{
τ ∈ R

∣∣3
4
≤ |τ | ≤ 8

3

}
, supp χ ⊂

{
τ ∈ R

∣∣|τ | ≤ 4

3

}

satisfying
∑

k∈N
ϕ(2−kτ) = 1 (∀τ 6= 0), χ(τ) +

∑

k≥0

ϕ(2−kτ) = 1 (∀τ ∈ R).

Denote by Skf = F−1[χ(2−k|ξ|)F [f ]], and

∆kf =





F−1[ϕ(2−k|ξ|)F [f ]], k ≥ 0,

F−1[χ(|ξ|)F [f ]], k = −1,

0, k ≤ −2,

where F and F−1 denote the Fourier transform and Fourier inverse transform in
the x−variable.
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Introduce the following function spaces for the problem with the parameters
s > 0, l ∈ N+ and p ∈ [1,+∞].

Definition 3.1. (i) The space Bs is the set of functions u ∈ S ′(R) such that

‖u‖Bs :=
∑

k∈Z
2ks‖∆ku‖L2(R) < +∞.

(ii) The space Bs,lψ , with a positive function ψ(y), is the space of functions u ∈
S ′(R2

+) such that

‖u‖Bs,lψ :=
l∑

j=0

∑

k∈Z
2ks‖eψ(y)∆k∂

j
yu‖L2(R×R+) < +∞.

(iii) The space L̃pt (B
s) is defined as the completion of C([0, t];S(R)) with the norm

‖u‖L̃pt (Bs) :=
∑

k∈Z
2ks
( ∫ t

0

‖∆ku(t′, ·)‖pL2(R)dt
′) 1
p .

(iv) For any positive function ψ(t′, y) and nonnegative f(t′) ∈ L1
loc(R+), the space

L̃pt,f (Bs,lψ ) is defined as the completion of C([0, t];S(R2
+)) with the norm

‖u‖L̃pt,f (Bs,lψ ) :=

l∑

j=0

∑

k∈Z
2ks
( ∫ t

0

f(t′)‖eψ(t′,y)∆k∂
j
yu(t′, ·)‖pL2(R×R+)dt

′) 1
p .

Denote L̃pt,1(Bs,lψ ) by L̃pt (B
s,l
ψ ) for simplicity when f(t′) ≡ 1. The above notations

can be properly changed when p = +∞.

Similar to that given in [27], to obtain energy estimates of the solution of (33)
in the normal variable, we introduce the weights

ψ(t, y) =
1 + y2

16(1 + t)γ
and ψ0(y) =

1 + y2

16
, (34)

with γ ≥ 2.
Denote by ŵ(t, ξ, y) the Fourier transform of w(t, x, y) in the x-variable, and

wΦ(t, x, y) = F−1
ξ→x[eΦ(t,ξ)ŵ(t, ξ, y)]

for a given locally bounded function Φ(t, ξ). From (33), we know that wΦ satisfies
the following equation

∂twΦ + λθ̇〈D〉wΦ + [(w + us)∂xw]Φ + [w∂xu
s]Φ

+

[
(−
∫ y

0

∂x(w + us)dy′)∂y(w + ws)

]

Φ

+

[∫ y

+∞
wdy′

]

Φ

=∂2
ywΦ + (1− φ) [∂tU + (1 + φ)U∂xU ]Φ −

∫ +∞

y

UΦ(1− φ)dy′.

(35)

To control derivatives of the solution in the x-variable for the equation (35), we
take

Φ(t, ξ) = (1− λθ(t))〈ξ〉 (36)

with 〈ξ〉 = 1 + |ξ| and a parameter λ, in which θ(t) is mainly used to deal with
energy estimates for the nonlinear terms and will be determined by the following
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problem




θ̇ = 〈t〉
γ
4 ‖∂ywΦ‖

B
1
2
,0

ψ

+ 〈t〉
γ
4 ‖UΦ‖

B
1
2

+ 〈t〉
γ
2 ‖wΦ‖2B1,0

ψ

+ ‖wΦ‖2
B

1
2
,0

ψ

+〈t〉 12 ‖UΦ‖2
B

1
2

+ 〈t〉 12 ‖UΦ‖2B1 + 〈t〉γ ,
θ
∣∣
t=0

= 0.

(37)

By acting the dyadic operator ∆k on (35) and taking L2(QT ) inner product with
e2ψ∆kwΦ, in virtue of the Bony decomposition and the Littlewood-Paley theory,
we get the following estimate for the solution of (33) by choosing parameters γ and
λ properly, more details can be found in [24].

Theorem 3.3. Suppose that w(t, x, y) is a classical solution of the problem (33),
then there exist T1 > 0 and a positive constant G such that there holds

‖wΦ‖
L̃∞T (B

1
2
,0

ψ )
+ ‖
√
−(ψt + 2ψ2

y)wΦ‖
L̃2
T (B

1
2
,0

ψ )
+ ‖∂ywΦ‖

L̃2
T (B

1
2
,0

ψ )

+
√
λ
(
‖wΦ‖

L̃2
T,θ̇

(B
1
2
,0

ψ )
+ ‖wΦ‖L̃2

T,θ̇
(B1,0
ψ )

)

≤G
[
‖e〈D〉w0‖

B
1
2
,0

ψ0

+ T
1
2 (‖e〈D〉U‖

L̃∞T (B
1
2 )

+ ‖e〈D〉U‖L̃∞T (B1))

+ (〈T 〉 32 − 1)
1
2 ‖e〈D〉[∂tU ]‖

L∞T B
1
2

+ (〈T 〉 52 − 1)
1
2 ‖e〈D〉U‖

L∞T (B
1
2 )

+σT
1
2 ‖e〈D〉U‖

L̃∞T (B
1
2 )
‖e〈D〉U‖

L̃∞T (B
3
2 )

]

(38)

for any 0 < T ≤ T1, provided that the weight Φ(t, ξ) is positive in [0, T1].

In fact, in view of (37) and (38), there exist a generic constant C1 and a constant
C(w0, U, t) depending on w0, U and t such that

θ =

∫ t

0

θ̇dt′ =

∫ t

0

[〈t′〉
γ
4 ‖∂ywΦ‖

B
1
2
,0

ψ

+ 〈t′〉
γ
4 ‖UΦ‖

B
1
2

+ 〈t′〉
γ
2 ‖wΦ‖2B1,0

ψ

+ ‖wΦ‖2
B

1
2
,0

ψ

+ 〈t′〉
1
2 ‖UΦ‖2

B
1
2

+ 〈t′〉
1
2 ‖UΦ‖2B1 + 〈t′〉γ ]dt′

≤C1[(〈t〉
γ
2 +1 − 1)

1
2 ‖∂ywΦ‖

L̃2
t (B

1
2
,0

ψ )
+ (〈t〉

γ
4 +1 − 1)‖e〈D〉U‖

L̃∞t (B
1
2 )

+ 〈t〉
γ
2 ‖wΦ‖L̃2

t (B
1,0
ψ ) + ‖wΦ‖

L̃2
t (B

1
2
,0

ψ )
+ (〈t〉 32 − 1)(‖e〈D〉U‖2

L̃∞t (B
1
2 )

+ ‖e〈D〉U‖2
L̃∞t (B1)

) + (〈t〉γ+1 − 1)]

≤C(w0, U, t).

Therefore one can choose T1 properly small such that

0 < T1 ≤ sup
t>0

{
θ(t) <

1

λ

}
, (39)

which guarantees the weight Φ(t, ξ) defined in (36) is positive on [0, T1]. Thereby
we obtain the a priori estimate (38) for 0 < T ≤ T1.

By using the above energy estimate, we obtain the following well-posedness result
in the weighted Chemin-Lerner spaces, more details of the proof refer to [24].
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Theorem 3.4. For a given T0 > 0, assume that the initial velocity w0(x, y) and
the outflow velocity U(t, x) are analytic in x ∈ R, and

e〈D〉w0 ∈ B
1
2 ,0

ψ0

and

e〈D〉U ∈ L̃∞T0
(B

1
2 ) ∩ L̃∞T0

(B1) ∩ L̃∞T0
(B

3
2 ), e〈D〉Ut ∈ L̃∞T0

(B
1
2 ).

Then there exists 0 < T ∗ ≤ T0 such that the problem (33) has a unique solution

satisfying eΦ(t,D)w ∈ L̃∞T∗(B
1
2 ,0

ψ ), where D is the Fourier multiplier with respect to
the x-variable.

The uniqueness of the solution to the problem (33) can be obtained by using an
energy estimate similar to that one given in (38).

4. Blowup of smooth solutions. It is interesting to study whether the smooth
solution obtained in the previous section exists globally in time for the problem
(32). Consider the problem (32) under the assumption that the initial data and
outer flow satisfy

{
u0(0, y) = U(0, 0) = 0, u0x(0, y) ≤ Ux(0, 0),

Ux(t, 0) ≥ 0, for 0 ≤ t ≤ T. (40)

Denote by Ht′ = {(t, y)| t ∈ (0, t′), y > 0}. In what follows, the aim is to prove
that for the solution of u(t, x, y) of (32), ‖∂xu(s, 0, y)‖L∞(Ht) will blow up in (0, T )
under certain assumption. This shall be obtained by developing the idea from [15]
and a contradiction argument.

Denote by f̄(t, y) = f(t, 0, y) and ḡ(t) = g(t, 0). As in [15], by restricting the
problem (32) on the plane {x = 0}, we get that ū(t, y) = u(t, 0, y) satisfies





∂tū+ ū∂xu+ v̄∂yū+
∫ y
∞ ūdy′ − ∂2

y ū = 0,

∂xu+ ∂y v̄ = 0,

ū|t=0 = 0,

(ū, v̄)|y=0 = (0, 0), lim
y→+∞

ū = 0.

(41)

It can be proved that the problem (41) admits a trivial solution only by using the
energy method provided that

lim
y→+∞

(u− U)eψ = 0 (42)

for ψ being given in (34).

Denote by ũ = −∂xu(t, 0, y) and Ũ = −∂xU(t, 0). From (32), we know that

w = ũ− Ũ satisfies



∂tw − w2 + ∂−1
y (w + Ũ)∂yw − 2Ũw +

∫ y
∞ wdy′ − ∂2

yw = 0,

w|t=0 = w0 = ũ0 − Ũ ,
w|y=0 = −Ũ , lim

y→+∞
w = 0,

(43)

where ∂−1
y f(y) :=

∫ y
0
f(y′)dy′.

One can verify that the solution of (43) is non-negative, under assumptions (40),
(42) and

lim
y→+∞

(ux − Ux)ey = 0. (44)
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Defining a Lyapunov functional as

G(t) =

∫ ∞

0

ρ(y)w(t, y)dy

with

ρ(y) =





916
7×4053 y, 0 ≤ y < 2,

− 415
21×4053 y

2 + 4108
21×4053 y − 1660

21×4053 , 2 ≤ y < 5,
1

(y+400)2 , y ≥ 5,

we can obtain that G satisfies the following inequality

dG

dt
≥ K2G

2 −K1G, (45)

for two positive constants K1 and K2.
Therefore, there exists a time 0 < t∗ ≤ T such that G(t) goes to infinity as

t→ t∗ − 0 provided that

G(0) =

∫ +∞

0

ρ(y)(Ux(0, 0)− u0x(0, y))dy ≥M (46)

being properly large.
In particular, when U ≡ 0, the inequality (45) simplifies into

dG

dt
≥ K2G

2, (47)

which implies that G(t) blows up in a finite time always, for any given nonzero
initial value.

Therefore, we conclude the following result, the detail proof can be found in [24].

Theorem 4.1. Under assumptions (40), (42), (44) and (46), the smooth solution
u of (25) blows up in QT .

Remark 4.1. When U(t, x) ≡ 0, from (47) we know that the smooth solution u of
(25) always blows up in a finite time for any nonzero initial data satisfying

u0(0, y) = 0, u0x(0, y) ≤ 0, (48)

which differs from the result obtained in [15] for the classical Prandtl equation.
Therefore, in contrast with the classical Prandtl equation, the integral term in (25)
triggers the formulation of singularities earlier.
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Abstract. We present in this document a short discussion about the time
asymptotic behaviour of dissipative systems with large number of particles.

Two classical examples of non conservative phenomena are brought to the

discussion, viscoelastic and reactive particles. Non linear techniques based
on entropy and spectral analysis are used to rigorously describe the evolution

of such systems toward self-similarity and equilibrium. Such techniques show

universal rates of relaxation of the macroscopic quantities theorized by physicist
and engineers.

1. Introduction. This document brings two examples of non conservative sys-
tems, viscoelastic particles and reactive particles. In the case of viscoelasticity, the
temperature of the system decreases as particle collisions take place. This is be-
cause particle deformation happens as particles bear collisions producing an outflow
of heat. It is natural that the energy dissipation in a particular collision depends
on the impact velocity; for fast collisions the dissipation is large while for slow is
small. As particles collide at all times, energy dissipation continues until particles
reach zero temperature.

In the case of reactive particles that we discuss here, they follow the reactionA+A→
∅ with certain fixed probability at each collision. In this way, as the particles collide
at all times, the number of reactive particles will diminish until no particle is left.
Note that while viscoelastic particles have the Dirac density as steady state due to
conservation of total mass, reactive particle have the zero density as steady state.
The issue that we want to understand here is precisely how such steady states are
reached.

1.1. The Boltzmann equation. Systems with large number of particles that un-
dergo collisions are well described by the Boltzmann equation. For spatially homo-
geneous gases, the Boltzmann equation is given by

∂tf(t, v) = Q(f, f)(t, v) , v ∈ Rd , f(0, v) = f0(v) . (1)

A solution f = f(t, v) ≥ 0 of this equation represent the density distribution of the
particles with respect to velocity v ∈ Rd along time t > 0. The collisional operator

2000 Mathematics Subject Classification. Primary: 35Q20, 70F45; Secondary: 35P15.
Key words and phrases. Inelastic Boltzmann, viscoelastic particles, annihilation equation,

Haff’s law, entropy methods, spectral analysis.
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is a bilinear form defined as

Q(f, g)(v) =

∫

Rd

∫

Sd−1

(
f(′v)g(′v∗)− f(v)g(v∗)

)
|u| b(σ · û) dσ dv∗

= Q+(f, g)(v)−Q−(f, g)(v) .

(2)

Here (′v,′v∗) are the pre collisional velocities of two particles leading, after collision,
two particles with velocities (v, v∗). The relative velocity between particles is u :=
v−v∗ and the hat represents unitary vectors, so, û = u/|u|. Observe that f(′v)g(′v∗)
quantify the probability of a particular collision to gain a pair with velocities (v, v∗).
In the same way f(v)g(v∗) quantify the probability of a pair to lose the velocities
(v, v∗). Therefore, the collisional form is nothing else but the inflow (the positive
part) and outflow (the negative part) of particles acquiring velocity v. This process
is weighted with a collisional kernel B(u, σ) = |u| b(σ · û) representing the physics of
the interaction involved. In the case of hard spheres, such as billiards, the kinetic
weight |u| in the collisional kernel is adequate. The reader is referred to the classical
reference [14] for a complete discussion.

1.2. Observables and entropy. The statistical moments are defined by

mk(t) =

∫

Rd
f(t, v) |v|k dv , k ≥ 0 . (3)

Solutions to the Boltzmann equation conserve mass, momentum, and energy (ad-
dressed also as temperature of f). That is,

m0(t) = m0(0) , m2(t) = m2(0) ,

∫

Rd
f(t, v) v dv =

∫

Rd
f0(v) v dv .

Also, the entropy decreases,
∫

Rd
f(t, v) ln

(
f(t, v)

)
dv =: H(f(t)) ≤ H(f0) .

In addition, it is known that the statistical moments of any order k > 2 are in-
stantaneously generated for solutions f . That is, for initial condition f0 with finite
mass and energy it follows that

mk(t) ≤ C(f0)
(

1 + t−k
)
, ∀ k > 2 , t > 0 . (4)

Furthermore, the emergence of exponential tails also holds,
∫

Rd
f(t, v) ec(f0)min{t,1}|v|dv ≤ C(f0) . (5)

The constants c(f0) and C(f0) depend only on the initial datum f0. This property
is deeply related with the fact that the collisional kernel grows unbounded for large
velocities. See for example [10, 11, 30, 2] for extensive discussion of such properties.

1.3. Dissipation of entropy. Take f(t, v) a solution to the Boltzmann equation.
The relative entropy is defined as

H(f(t)|M) :=

∫

Rd
f(t, v) ln

(
f(t, v)

M(v)

)
dv . (6)

Here M(v) is the Gaussian density with the same mass, momentum, and tem-
perature of f(t, v). A central result for the study of relaxation of the Boltzmann
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equation is, see [27, 29]

−
∫

Rd
Q(f, f)(t, v) ln

(
f(t, v)

M(v)

)
dv ≥ C(f0)H(f(t)|M)1+ε(f0) , (7)

where ε(f0) > 0 can be explicitly computed 1. Estimate (7) is a functional inequality
valid under some minimal regularity requirements on f(t, v) 2, see [3]. This leads
to the estimate for the relative entropy

d

dt
H(f(t)|M) + C(f0)H(f(t)|M)1+ε(f0) ≤ 0 , t > 0 .

Therefore,

H(f(t)|M)(t) ≤ C(f0) (1 + t)
− 1
ε(f0) , (8)

and, using Cszisár - Kullback inequality

‖f(t)−M‖L1(Rd) ≤
√
H(f(t)|M)(t) ≤

√
C(f0) (1 + t)

− 1
2ε(f0) , (9)

which proves an algebraic relaxation toward thermal equilibrium.

1.4. Linear theory. The algebraic relaxation given by (8) using entropy methods
can be improved to exponential relaxation by means of spectral analysis. Take f
a solution to the Boltzmann equation (1). If the linearisation f(t, v) = M(v) +√
M(v)h(t, v) is used in (1), one arrives to

∂th(t, v) = LM(h)(t, v) + 1√
M(v)

Q
(√
Mh,

√
Mh

)
(t, v) ,

where

LM(h) = 1√
M(v)

(
Q
(√
Mh,M

)
+Q

(
M,
√
Mh

))
.

It is not difficult to check that LM is self adjoint in L2(Rd, dv) and 〈LM(h), h〉 ≤ 0,
see [13]. There are another two important observations to make. First, we can write
the linearised Boltzmann operator as

LM = K −D , (10)

where D is a dissipative operator and K a relatively compact operator. In essence,

D(h) ∼ 1√
M(v)

Q−
(√
Mh,M

)
∼ νo 〈v〉h ,

K(h) ∼ 1√
M(v)

(
Q+
(√
Mh,M

)
+Q

(
M,
√
Mh

))
.

Here we used the notation 〈v〉 =
√

1 + |v|2. Such observations lead to the fact
that LM only has real spectrum with the same essential spectrum as D localised
in (−∞, ν0]. Furthermore, using a compact perturbation argument, see [19], the
eigenvalues are localised in (−ν0, 0]. Of course, this is equivalent to say that the
operator

L(g) = Q
(
g,M

)
+Q

(
M, g

)
, (11)

has such spectrum as an operator in L2(Rd,M−1/2dv).

Second, it can be proved that the eigenvalue problem

L(ψ) = λψ , v ∈ Rd ,

1The smoother f is, the smaller ε(f) > 0 is.
2A lower Gaussian barrier [26] and some finite statistical moments for f and f ln f suffice [3].
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lead to C∞ eigenfunctions ψ, all of them having Gaussian tails. This fact is related to
the splitting (10). This point is quite important in the argument used in [24] to de-
duce that if L is considered as an operator in a larger space X ⊃ L2(Rd,M−1/2dv),
then, the eigenvalues will remain invariant in such larger space. The argument
proves quite useful since the Boltzmann dynamic for hard spheres take place in big-
ger spaces such as L1(Rd, ec〈v〉dv), recall (5). In this way, defining the perturbation
h as

h = f −M
we see that, by conservation of mass, momentum, and energy for f , the perturbation
h has zero mass, momentum, and energy. In this way, h relaxes exponentially with
the first negative eigenvalue of L 3.

These ideas can be formalised to prove exponential convergence of f toward the
thermal equilibriumM in a two step approach. First, there is a non linear transitory
slow relaxation guided by the entropy, then, in a second stage, an exponentially
fast linear relaxation happens due to the spectral gap of L in, say, a space such as
X = L1(Rd, ec〈v〉dv). See for instance [24, 3] for technical details. This process of
enlargement of the operator’s space was introduced in the context of the Boltzmann
equation in [24] and formalised in a more general framework in [17].

2. Viscoelastic spheres. Dilute granular gases can be modelled with the inelastic
Boltzmann equation

∂tf(t, v) = Qe(f, f)(t, v) , v ∈ Rd , f(0, v) = f0(v) . (12)

The collision operator is given by

Qe(f, g)(v) =

∫

Rd

∫

Sd−1

(
1
′e′J f(′v)g(′v∗)− f(v)g(v∗)

)
|u| b(σ · û) dσ dv∗ . (13)

The operator is quite similar to the classical Boltzmann operator (2) and, in fact,
many analytical properties are identical, see [4, 5, 20, 21]. However, there are
essential differences, for example the Gaussian density is not longer in the kernel of
the operator Qe(M,M) 6= 0. The key new parameter defining the collision between
particles is the restitution coefficient e := e(|u·n̂|) ∈ [0, 1], which is understood as the
fraction of the energy that is “restituted” after collision. Thus, e ≡ 1 is the classical
elastic collision case and e ≡ 0 is the sticky particle case. In the definition of the
collision operator (13), the reader notices the extra term 1

e J . Here J is the Jacobian
of the transformation (′v,′v∗)→ (v, v∗) which, in general, satisfies J ≤ 1. Refer to [1]
for particular examples. The term 1

e J is evaluated in pre collisional velocities so that
conservation of mass and momentum hold. For viscoelastic particles the restitution
coefficient depends on the impact velocity |u · n̂| where n̂ is the unit vector normal
to the collision’s plane. For small impact velocities deformation of particles due to
collisions is minimal, thus, e ≈ 1 in such case. In fact, it is customary to assume
that

e(r) ≈ 1− arβ , r ≈ 0 , a ∈ [0, 1], β > 0 .

Strictly speaking, assuming linear deformation, it follows that β = 1/5, see [12].
The interested reader may go to [1, 4, 5], for additional information.

3{0} belongs to the spectrum of L. It has d+ 2 associated eigenvectors {
√
M, v

√
M, |v|2

√
M}

related to the d + 2 conservation laws.
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2.1. Statistical moments and entropy. Viscoelastic spheres conserve mass and
momentum, but dissipates energy: m2(t) ≤ m2(0). The rate of energy dissipation
(or cooling) is known as Haff’s law [18]. In fact, it is possible to prove that, see
[4, 5]

c(t0, f0)t−
k

1+β ≤ mk(t) ≤ C(t0, f0)t−
k

1+β , t ≥ t0 > 0 . (14)

Observe that the cooling rate depends uniquely on β > 0. This is the case because
after many collisions most particles will have little energy left. That is, most colli-
sions happen at low impact velocity, consequently, the behaviour of the restitution
coefficient at low impact velocity is key.

An important difference with respect to elastic Boltzmann is that entropy is not
monotonic. From the technical point of view, this implies that the general theory
of renormalised solutions made for the Cauchy problem in the elastic case does not
apply, see [15]. For the homogeneous inelastic case, however, one can prove that
the entropy is uniformly bounded

H(f)(t) ≤ C
(
f0,H(f0)

)
.

2.2. Self-similarity and viscoelastic relaxation. As collisions occur in vis-
coelastic particles, the system evolves to a homogeneous cooling state. The reason
is, again, that the granular gas is becoming more elastic as it loses energy. In order
to observe such homogenisation, we search for a good scale to pose the dynamics. It
turns out, a good scale is given by one that brings back the conservation of energy
[5, 16]. Set

f(t, v) =: V d(t)g(τ(t), V (t)v) , V (t) :=

√
m2(0)

m2(t)
, τ(t) :=

∫ t

0

ds

V (s)
, (15)

then, g(τ, w) conserves mass, momentum, and energy. In fact, it solves the equation

∂τg(τ, w) + V ′
(
t−1(τ)

)
∇w ·

(
w g(τ, w)

)
= Qeτ (g, g)(τ, w) , g(0, w) = f0(w) . (16)

Estimate (14) applied to m2(t) leads to

τ(t) ∼ C(1 + t)
β

1+β , V ′
(
t−1(τ)

)
∼
(

1 + β
1+β τ

)−1
,

and

eτ (r) := e
(
V ′
(
t−1(τ)

)1/β
r
)
∼ e
((

1 + β
1+β τ

)−1/β
r
)

for sufficiently large time. Since limτ→∞ eτ = 1, the self-similar scaling suggests
that

Qeτ (g, g)→ Q(g, g) , as τ →∞ .

In other words, such scaling is quantifying the process at which the granular gas
becomes an elastic gas.

Set M(w) the Gaussian with same mass, momentum, and energy as f0. By con-
struction, g(τ, w) and M(w) have the same mass, momentum, and energy. As a
consequence, we can find an equation for the relative entropy using (16)

d

dτ
H(g|M)−

∫

Rd
Q(g, g)(τ, w) ln

(
g(τ, w)

M(w)

)
dw = I1(τ) + I2(τ) ,
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where

I1(τ) : = −V ′
(
t−1(τ)

) ∫

Rd
∇w ·

(
wg(τ, w)

)
ln

(
g(τ, w)

M(w)

)
dw ,

I2(τ) : =

∫

Rd

(
Q+
eτ (g, g)(τ, w)−Q+(g, g)(τ, w)

)
ln

(
g(τ, w)

M(w)

)
dw .

It is possible to bound such terms as long as some suitable regularity is available
for g. Refer to [5] for the technical part. More precisely,

∣∣I1(τ)
∣∣+
∣∣I2(τ)

∣∣ ≤ C(f0)V ′
(
t−1(τ)

)
.

This estimate and the dissipation of entropy (7) lead to

d

dτ
H(g(τ)|M) + c(f0)H(g(τ)|M)1+ε(f0) ≤ C(f0)V ′

(
t−1(τ)

)
, τ ≥ 1 .

We conclude with Cszisár - Kullback inequality and this estimate that

‖g(τ)−M‖L1(Rd) ≤
√
H(g(τ)|M) ≤ C(f0)

(
V ′
(
t−1(τ)

)) 1
2(1+ε(f0))

. (17)

Furthermore, we know the asymptotic behavior of τ(t). Then, scaling back to the
original problem

‖f(t)− V d(t)M(V (t)·)‖L1(Rd) ≤ C(f0) (1 + t)
− β

1+β
1

1+ε(f0) . (18)

Estimates on ε(f0) show that ε(f0) ∼ 0 for smooth densities f0. Thus, the best

algebraic rate of relaxation that can be expected using this method is β
1+β which

seems to be optimal.

3. Reactive particles and ballistic annihilation. We consider now a systems
of elastic interacting particles that, at the moment of interaction, have probability
α to react and produce an inert product. Such system can be modelled by the
ballistic annihilation equation, see for instance [9, 28, 25]

∂tf(t, v) = (1− α)Q(f, f)(t, v)− αQ−(f, f)(t, v) , v ∈ Rd , t > 0 . (19)

The reactive particles sustain a continuous outflow of particles, consequently, its
total mass decreases. As particles leave, the system cannot conserve momentum or
energy. In fact, in the long run most particles will have reacted, so, the stationary
state is the zero density. The goal here is to describe the rate at which this process
occurs when the probability of reaction is relatively small but nonzero 0 < α � 1,
that is, in the case where particles collide many times before a reaction occurs. In
order to accomplish this, we use the technique introduced for viscoelastic particles.
More precisely, use the rescaling

f(t, v) =:
nf (t)

(2Tf (t))
d
2

g
(
τ(t),

v − uf (t)√
2Tf (t)

)
, (20)

where

nf (t) =

∫

Rd
f(t, v)dv , nf (t)uf (t) =

∫

Rd
f(t, v) v dv ,

are the mass and momentum of f(t, v), and

dnf (t)Tf (t) =

∫

Rd
f(t, v)

∣∣v − uf (t)
∣∣2dv ,
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is its temperature, to construct a normalised density g(τ, w)

∫

Rd
g(τ, w)




1
w
|w|2


 dw =




1
0
d
2


 , τ ≥ 0 .

After some calculations, it is possible to find the equation for g(τ, w)

∂τg(τ, w) +
(
A(g)(τ)− dB(g)(τ)

)
g(τ, w) +B(g)(τ)∇w ·

(
(w − wg(τ))g(τ, w)

)

= (1− α)Q(g, g)(τ, w)− αQ−(g, g)(τ, w) , w ∈ Rd , τ > 0 . (21)

The explicit definitions of the operators A(g)(τ), B(g)(τ), and wg(τ) can be found
in [6]. For the purpose of this discussion, the important fact is that they are of order
α provided that minimal regularity requirements for g(τ, w) are satisfied. An im-

portant remark is that, in order to obtain (21), the time scale τ ′(t) = nf (t)
√

2Tf (t)
is needed. Such time scale pops up naturally to simplify the equation for g(τ, w)
as much as possible. A fine analysis of the statistical moments of the annihilation
equation, see [7, 8], show that for t > 0

(1 + t)−2 . nf (t)
√

2Tf (t) . (1 + αt)−2 , then τ(t) ∼ C ln(1 + τ) . (22)

Of course, knowing the explicit expression of the time scale (22) is essential to find
the relaxation rates in the physical scale from the relaxation rates observed for
the self similar problem. It is worthwhile to remark that using nonlinear moment
analysis does not render an optimal relaxation rate for nf (t) or Tf (t) individually,
but it does for τ ′(t).

3.1. Entropy. SetM(w) the normalised Gaussian distribution, multiply equation
(21) by ln

(
g(τ, w)/M(w)

)
, and integrate in w ∈ Rd. We are led to

d

dτ
H(g(τ)|M)− (1− α)

∫

Rd
Q(g, g)(τ, w) ln

(
g(τ, w)

M(w)

)
dw

=
(
dB(g)(τ)−A(g)(τ)

)
+ I1(τ) ,

where

I1(τ) := −α
∫

Rd
Q−(g, g)(τ, w) ln

(g(τ, w)

M(w)

)
dw .

It follows, under some regularity conditions for g(τ, w) needed for the validity of
(7), that

d

dτ
H(g(τ)|M) + C(f0)H(g(τ)|M)1+ε(f0) ≤ C(f0)α

(
H(g(τ)|M) + 1

)
, τ > 0 .

Consequently, we conclude that

H(g(τ)|M) ≤ C(f0)
(

(1 + τ)−
1
2 + α

1
3

)
, τ > 0 . (23)

Estimate (23) shows that the normalised self similar profile g(τ, w) for the ballistic
annihilation equation (19) relaxes at an algebraic rate toward a stationary state

lying to a distance ∼ α 1
3 , in the sense of relative entropy, of the normalised Gaussian

density M.
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3.2. Linear theory. We want to improve the algebraic relaxation found by entropy
methods to a exponential rate. Thus, we first study the location of the spectrum
for the linearised annihilation operator. The stationary equation is given by

(
A(G)− dB(G)

)
G(w) +B(G)∇w ·

(
(w − wG)G(w)

)

= (1− α)Q(G,G)(w)− αQ−(G,G)(w) , w ∈ Rd . (24)

This equation is well posed for the regime that we are discussing 0 < α � 1 as
shown in [7, 8]. The stationary profile G(w) := Gα(w) is not Gaussian, however,

lim
α→0

Gα(w) =M(w) , in the L1 sense .

Introducing the linearisation g(τ, w) = G(w) + h(τ, w) one finds the equation

∂τg = Lann(h) +Qann(h, h) .

More than the explicit expression of the linearised operator Lann, it is important to
remark that one can write it as a perturbation of the linearised Boltzmann operator
L = KBolt −DBolt4. Indeed,

Lann = L+ Lann − L = KBolt −
(
DBolt + L − Lann

)
= KBolt −Dann .

The key observation here is that Dann is a dissipative operator in the exponentially
weighted Sobolev space W 1,1(Rd, ec〈v〉dv) and its spectrum lies in {z : Re(z) ≤
−να} for a positive να. In fact, να → νo as α → 0. In this sense Dann is a
perturbation of DBolt. Compact perturbation theory, see [19], leads us to conclude
that no essential spectrum, only eigenvalues, will lie in the set {z : Re(z) > −να}.
Take β one of such eigenvalues and a corresponding eigenfunction ψ. Then

Lann(ψ) = β ψ , consequently
(
Lann − L

)
(ψ) =

(
β − L

)
ψ .

That is,

ψ =
(
β − L

)−1(Lann − L
)
(ψ) . (25)

It is simple to check that
∥∥(Lann − L

)
(ψ)
∥∥
W 1,1(Rd, ec〈v〉dv) ≤ αC ‖ψ‖W 2,1(Rd, 〈v〉ec〈v〉dv) .

Additionally, we commented already in relation with the eigenvalue problem for L,
the eigenvalue problem Lann(ψ) = β ψ regularises 5

‖ψ‖W 2,1(Rd, 〈v〉ec〈v〉dv) ≤
C

|να − β|
‖ψ‖W 1,1(Rd, ec〈v〉dv) .

Using these last two estimates in (25), we obtain that

‖ψ‖W 1,1(Rd, ec〈v〉dv) ≤
∥∥(β − L)−1

∥∥
B(W 1,1(Rd, ec〈v〉))

∥∥(Lann − L
)
(ψ)
∥∥
W 1,1(Rd, ec〈v〉dv)

≤ C α

dist(β, σ(L))

‖ψ‖W 1,1(Rd, ec〈v〉dv)
|να − β|

.

4Recall that DBolt is a dissipative operator and KBolt is a relative compact operator.
5The essential difference between the elastic Boltzmann eigenvalue problem and the one of

particle annihilation is that eigenvectors have Gaussian tails for the former and exponential tails,

∼ e−c〈v〉, for the latter. Refer to [11] for a tail analysis in the self similar inelastic case with

constant restitution.

120



DYNAMIC OF DISSIPATIVE PARTICLES

Here σ(L) is the set of eigenvalues of L in W 1,1(Rd, ec〈v〉dv), which agrees with
that in L2(Rd,M−1/2). Consequently,

dist
(
β, σ(L)

)
≤ C α

|να − β|
. (26)

Estimate (26) shows that the spectrum of Lann is indeed a perturbation of the
spectrum of L. As a consequence, for α � 1 the only eigenvalues that pose a
stability problem are those near 0 ∈ σ(L). Letting Pα be the projection onto these
eigenvalues, it can be proved that

‖Pα − P0‖B(W 1,1(Rd, ec〈v〉)) . o(α) < 1 ,

where P0 is the projection onto the null space of L. Perturbation theory [19] leads
us to conclude that

Dim Range(Pα) = Dim Range(P0) = d+ 2 ,

where the number d + 2 relates to the number of conservation laws. With this
information at hand, one can invoke a spectral mapping theorem [22, 23] to show
that Lann generates a semigroup S(t) with the property

‖S(t)(1− Pα)‖B(W 1,1(Rd, ec〈v〉)) ≤ Cµeµt , (27)

where µ < 0 is such that |µ− µ0| ≤ Cα with µ0 the first negative eigenvalue of L.

One last important observation is needed to close the argument. Note that by con-
struction g(τ, w) conserves mass, momentum, and energy, hence, the perturbation
h(τ, w) has zero mass, momentum, and energy. Consequently, P0h(τ) = 0 and,
then, if follows that

ψ(τ) =
(
1− Pα

)
h(τ) =

(
1− (Pα − P0)

)
h(τ) .

Since Pα − P0 has norm less than 1 for sufficiently small α, it is possible to invert
the right side of this equality. One concludes that

‖h(τ)‖W 1,1(Rd, ec〈v〉dv) ≤ ‖
(
1− (Pα − P0)

)−1‖B(W 1,1(Rd, ec〈v〉))‖ψ‖W 1,1(Rd, ec〈v〉dv)

= Cα‖
(
1− Pα

)
h(τ)‖W 1,1(Rd, ec〈v〉dv) .

That is, the projected component of h(τ, w) controls the full norm of h(τ, w). We
remark that the fact that g(τ, w) enjoys all conservation laws was essential for this
last estimate. These are the main ingredients, together with the entropy analysis,
to prove the exponential relaxation for the self similar profile

‖g(τ)−G‖L1(Rd, ec〈v〉dv) ≤ Cµ(g0) eµt , t > 0 . (28)

3.3. Physical problem and universal rates. Recall that the time scale is known
τ(t) ∼ C ln(1 + τ). Thus, we can go back to the original, physical, scaling. The
result is that∫

Rd

∣∣f(t, v)− F (t, v)
∣∣ exp

(
c
|v − uf (t)|√

2Tf (t)

)
dv ≤ C(1 + t)−θ , t > 0 , (29)

where the algebraic rate θ > 0 is explicit. The asymptotic “cooling” profile is given
by

F (t, v) =:
nf (t)

(2Tf (t))
d
2

G

(
v − uf (t)√

2Tf (t)

)
. (30)

Furthermore, in the limit α→ 0, one has

nf (t) ∼ t− 4d
4d+1 , Tf ∼ t−

2
4d+1 , as t� 1 . (31)
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The algebraic rates (31) were conjectured by Trizac [28, 25] after extensive numerical
simulation. Such rates completely define the asymptotic cooling state (30) in the
physical scale. Furthermore, estimate (29) gives theoretical information that is very
hard and expensive to quantify using numerical simulation.

For a full account of the technical details, and more, we refer the interested reader
to [6].
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[23] S. Mischler, Erratum: Spectral analysis of semigroups and growth-fragmentation equations,
https://hal.archives-ouvertes.fr/hal-01422273, 2017.

[24] C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann

equation with hard potentials, Commun. Math. Phys., 261 (2006), 629–672.
[25] J. Piasecki, E. Trizac and M. Droz, Dynamics of ballistic annihilation, Phys. Rev. E, 66

(2002), 066111.

122



DYNAMIC OF DISSIPATIVE PARTICLES

[26] A. Pulvirenti and B. Wennberg, A Maxwellian lower bound for solutions to the Boltzmann
equation, Commun. Math. Phys., 183 (1997), 145–160.

[27] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to

equilibrium for the spatially homogeneous Boltzmann equation, Commun. Math. Phys., 203
(1999), 667–706.

[28] E. Trizac, Kinetics and scaling in ballistic annihilation, Phys. Rev. Lett., 88 (2002), 160601.
[29] C. Villani, Cercignani’s conjecture is sometimes true and always almost true, Commun. Math.

Phys., 234 (2003), 455–490.

[30] B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J.
Stat. Phys., 86 (5-6) (1997), 1053–1066.

E-mail address: ralonso@mat.puc-rio.br

123



A NOTE ON 2-D DETACHED SHOCKS OF STEADY EULER

SYSTEM

Myoungjean Bae∗

Department of Mathematics, POSTECH
77 Cheongam-ro, Nam-gu Pohang,

Pohang, Gyungbuk, Republic of Korea 37673;

Korea Institute for Advanced Study
85 Hoegiro, Dongdaemun-gu,

Seoul 130-722, Republic of Korea

Wei Xiang

Department of Mathematics, City Univerisity of Hong Kong

Hong Kong, China

Abstract. The shock polar analysis shows that if a weak solution of steady

Euler system for inviscid compressible flow has a shock past a blunt body, then
the shock cannot be attached to the blunt body. This observation naturally

raises a question on the existence of a detached shock solution past a blunt

body. The main goal of this paper is to demonstrate how a shock polar analysis
is used to analyze two dimensional shocks past wedges or blunt body, and to

review the recent result on the existence of detached shocks past a blunt body

with a asymptotic state at far field, which is proved in [3]. And, further open
questions on detached shocks are discussed.

1. Shock polars. The steady Euler system

∂x1
(ρu1) + ∂x2

(ρu2) = 0

∂x1
(ρu2

1 + p) + ∂x2
(ρu1u2) = 0

∂x1
(ρu1u2) + ∂x2

(ρu2
2 + p) = 0

1

2
(u2

1 + u2
2) +

γp

(γ − 1)ρ
= B0 (B0 > 0: a constant)

(1.1)

governs two dimensional steady flow of inviscid compressible ideal polytropic gas.
The constant B0 > 0 is called the Bernoulli constant . And, the functions ρ, p, u1, u2

represent density, pressure, horizontal and vertical components of velocity, respec-
tively. The constant γ > 1 represents an adiabatic exponent. In smooth flow, if
∂x2

u1−∂x1
u2 = 0 holds, that is, the flow is irrotational, then one can directly derive
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from (1.1) that p
ργ is a constant, provided that ρ > 0 and p > 0. In that case, (1.1)

can be further simplified as

∂x1
(ρu1) + ∂x2

(ρu2) = 0

∂x1
u2 − ∂x2

u1 = 0

1

2
(u2

1 + u2
2) +

ργ−1

γ − 1
= B0,

(1.2)

which is called the potential flow model of (1.1). Both (1.1) and (1.2) are elliptic-
hyperbolic mixed type nonlinear system. In (1.1) and (1.2), the Mach number M

are defined by M := |u|√
γp/ρ

and M := |u|√
ργ−1

, respectively, for u = (u1, u2). Both

(1.1) and (1.2) are hyperbolic if M > 1(supersonic), hyperbolic-elliptic mixed type
if M < 1(subsonic), and hyperbolic-degenerate mixed type if M = 1(sonic).

Definition 1.1. (a) Let Ω be a domain in R2. Suppose that a non self-intersecting
C1-curve S divides Ω into two open and connected subsets Ω− and Ω+ so that
Ω− ∩ Ω+ = ∅ and Ω− ∪ S ∪ Ω+ = Ω. The vector valued function (ρ, p,u) ∈
[L∞(Ω) ∩ C0(Ω±) ∩ C1

loc(Ω±)]4 is a weak solution of (1.1) with a shock S if the
following properties are satisfied:

(i) ρ > 0 and p > 0 in Ω;
(ii) In Ω±, (ρ, p,u) satisfy all the equations stated in (1.1) pointwisely;

(iii) For each point x∗ ∈ S, set (ρ±, p±,u±)(x∗) := lim
x→x∗
x∈Ω±

(ρ, p,u)(x). On S, (ρ, p,u)

satisfy the Rankine-Hugoniot conditions

ρ+u+ · ν = ρ−u− · ν,
u+ · τ = u− · τ ,
ρ+(u+ · ν)2 + p+ = ρ−(u− · ν)2 + p−,

(1.3)

where ν is a unit normal vector field, and τ is a unit tangential vector field
on S;

(iv) On S, u+ · ν 6= 0 holds, or equivalently u− · ν 6= 0 holds;
(v) On ∂Ω, the slip boundary condition u · n = 0 holds for the inward unit normal

vector field n on ∂Ω.

(b) A weak solution to (1.2) with a shock S is defined to be almost same as in
(a) except for the following differences:

(ii′) In Ω±, (ρ,u) satisfy all the equations stated in (1.2) pointwisely;
(iii′) On S, (ρ,u) satisfy the Rankine-Hugoniot conditions

ρ+u+ · ν = ρ−u− · ν, and u+ · τ = u− · τ . (1.4)

Definition 1.2. A weak solution (ρ, p,u) to (1.1) (or (1.2)) is said to satisfy the
entropy solution if

0 < ρ− < ρ+ <∞, and 0 < u+ · ν < u− · ν <∞ (1.5)

hold on S, where the unit normal ν on S points interior to Ω+.

Note that, due to the continuity of (ρ, p,u) up to S from each side, Definition
1.1(ii) implies that a weak solution of (1.1) with a shock S satisfies

1

2
|u|2 +

γp

(γ − 1)ρ
= B0 on S. (1.6)
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Then, it follows from (1.6) and Definition 1.1(iii) that

1

2
(u+ · ν)2 +

γp+

(γ − 1)ρ+
=

1

2
(u− · ν)2 +

γp−

(γ − 1)ρ−
on S. (1.7)

For fixed constants γ > 1, ρ∞ > 0, p∞ > 0 and u∞ > 0 with M∞ := u∞√
γp∞/ρ∞

>

1, set

u∞ := (u∞, 0), u0 :=
u∞
γ + 1

(
γ − 1 +

2

M2∞

)
, U0 :=

2u∞
γ + 1

+ u0.

A direct computation shows that 0 < u0 < u∞ < U0. Next, we define a function
f : [u0, u∞]→ R+ by

f(u) := (u∞ − u)

√
u− u0

U0 − u
. (1.8)

For each u ∈ (u0, u∞), set u− := u∞, ρ− := ρ∞, p− := p∞, u+ := (u, f(u)), and

ν :=
u∞ − u+

|u∞ − u+| , τ := ν⊥.

Then, we define

ρ+ :=
ρ−u− · ν
u+ · ν , p+ := ρ−(u− · ν)2 + p− − ρ+(u+ · ν)2.

In [5, §121–§122], it is proved that, for each u ∈ (u0, u∞), (ρ±, p±,u±) defined as
above satisfies (1.3) and (1.7) on any line S perpendicular to the vector ν. Fix a line

S perpendicular to ν. For a fixed point P0 ∈ S, define Ω+ := {Q ∈ R2 :
−−→
P0Q·ν > 0}.

Then, (ρ±, p±,u±) satisfies the entropy condition in the sense of Definition 1.2. This

is also proved in [5, §121–§122]. For θw = arctan( f(u)
u ), if we define

W0 := {x = (x1, x2) ∈ R2
+ : x1 ≥ x2 tan θw},

Ω0 := {Q ∈ R2 :
−−→
OQ · ν > 0},

(1.9)

then (ρ, p,u) given by

(ρ, p,u)(x) = (ρ+, p+,u+)χΩ0
(x) + (ρ−, p−,u−)(1− χΩ0

)(x)

is a weak solution to (1.1) in R2
+ \W0 with a shock S (See Fig. 1). Here, the line S

is called an oblique shock past the ramp W0. And, the function f defined by (1.8)
is called a shock polar of the system (1.1).
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Figure 1. Oblique shock past a ramp W0 in R2
+
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In [8], the existence of a shock polar of (1.2) is proved. Differently from (1.1),
it is not possible to find an explicit formula of the shock polar of (1.2). Instead, a
more subtle approach is used in [8].

Lemma 1.3 ([8, Proposition 2.1]). For fixed constants γ > 1, ρ∞ > 0 and u∞ > 0
with M∞ := u∞√

ργ−1
∞

> 1, there exist a unique constant u0 ∈ (0, u∞) and a unique

function fpolar : [u0, u∞]→ R+ satisfying the following properties:

(i) fpolar ∈ C0([u0, u∞]) ∩ C∞((u0, u∞))
(ii) fpolar(u0) = fpolar(u∞) = 0;

(iii) fpolar(u) > 0 for u0 < u < u∞;

(iv) If we set u− := (u∞, 0), u+ := (u, fpolar(u)), ρ± :=

(
(γ − 1)(B0 −

1

2
|u|2)

) 1
γ−1

, then we have

ρ+u+ · ν = ρ−u− · ν for ν =
u− − u+

|u− − u+| , (1.10)

0 < u+ · ν < u− · ν <∞ for u0 < u < u∞. (1.11)

(v) Any vector u = (u, v) ∈ R2 satisfying (1.10) and (1.11) lies either on the
curve v = fpolar(u), or v = −fpolar(u).

Lemma 1.4. The shock polars f of (1.1), given by (1.8), satisfies

f′′(u) < 0 for u0 < u < u∞. (1.12)

Also, the shock polar fpolar of (1.2), whose existence is stated in Lemma 1.3 satisfies

f′′polar(u) < 0 for u0 < u < u∞. (1.13)

Proof. A direct computation with using (1.8) yields that

ff′′ =
−(U0 − u0)(u∞ − u)

4(U0 − u3)(u− u0)
(4(u− u0)(U0 − u∞)− (u∞ − u)(U0 − u0)) .

Since f > 0 and ff′′ < 0 for u0 < u < u∞, (1.12) is obtained.
Since there is no explicit formula of fpolar, we need a different approach to prove

(1.13). The inequality (1.13) can be proved by adjusting the proof of [6, Theorem
1]. Or, one can refer to [2, Appendix A] for a detailed proof.

Lemma 1.4 directly yields the following result.

2

3

1

v

ui

tw

u

ts

td

Figure 2. Shock polar v = f(u) (or v = fpolar(u))
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Corollary 1. The shock polar v = f(u) of (1.1) has a unique constant θd ∈ (0, π2 )
so that

(i) if 0 ≤ θ < θd, then the line v = u tan θ intersects v = f(u) at two distinct
points;

(ii) if θ = θd, the line v = u tan θd intersects v = f(u) at a unique point;
(iii) if θd < θ < π

2 , then there is no intersection of v = u tan θ and v = f(u).

Also, the shock polar v = fpolar(u) of (1.2) has a unique constant θd ∈ (0, π2 )
that satisfies all the properties stated right above. Such a constant θd is called the
detachment angle.

2. Attached shocks and detached shocks. For the rest of the paper, we focus
on the potential flow model (1.2) of Euler system, and its weak solutions with
shocks.

tw

ust

uwk

swk

sst

inc

bw

bs

Figure 3. Attached oblique shocks: strong shock and weak shock

Fix constants γ > 1, ρ∞ > 0 and u∞ > 0 with M∞ := u∞√
ργ−1
∞

> 1. For a

fixed θw ∈ (0, θd), let u1 = (u1, fpolar(u1)) and u2 = (u2, fpolar(u2)) be two distinct
intersections of v = u tan θw and v = fpolar(u). Without loss of generality, assume

that u1 < u2. For each j = 1, 2, set νj =
u∞−uj
|u∞−uj | for u∞ := (u∞, 0). And, let Sj

be the line passing through the origin, and perpendicular to νj . By Lemma 1.4 and
the entropy condition stated in Definition 1.2, we have Sj = {x = (x1, x2) : x2 =
x1 tanβj} for βj ∈ (θw,

π
2 ) and β1 > β2 (See Fig. 3). According to the construction

of the shock polar v = fpolar(u) given in [8], we have

|u∞ − u2| < |u∞ − u1|. (2.1)

For ρj :=
(
(γ − 1)(B0 − 1

2 |uj |2)
) 1
γ−1 , (ρ(j),u(j)) given by

(ρ(j),u(j))(x) := (ρ∞,u∞)χ{x1<x2 tan βj}(x) + (ρj,uj)χ{x1>x2 tan βj}(x)

is a weak solution in R2
+ \W0 with a shock Sj , and it satisfies the entropy condition.

Based on the observation (2.1), (ρ(1),u(1),S1) and (ρ(2),u(2),S2) are called a strong
shock solution and a weak shock solution of (1.2) in R2

+ \W0, respectively.
It is shown in [2, Lemma A.3(a)] that every strong shock(S1) is a transonic

shock in the sense that M1 < 1 < M∞ for M1 := |u1|√
ργ−1

1

. Weak shock(S2) is,

however,different from strong shock in that its type changes depending on θw. In
[2, Lemma A.3(a)], it is proved that there exists a unique θs ∈ (0, θd) such that
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M2 := |u2|√
ργ−1

2

> 1 for θw < θs, M2 = 1 at θw = θs and M2 < 1 for θs < θw < θd

(See Fig. 1). Such θs is called the sonic angle.

Even though the shocks S1 and S2 are quite different, they still share a common
feature. Namely, both shocks are attached to the tip of W0 (See Fig. 3). But what
if the tip of the obstacle is not sharp, or what if the angle θw of W0 is grater than
the detachment angle θd? Would there exists a weak solution of (1.2) with a shock
attached to the tip of the obstacle? If θw > θd, then it follows from Corollary 1
that no attached oblique shock as in Fig. 3 can be formed around W0. Of course,
the example discussed above only concerns a piecewise constant weak solution with
a shock. So one may speculate that (1.2) can still have a weak solution with a
shock S attached to the tip of W0 although the solution is not a piecewise constant
thus S is not a straight line. But, a local shock polar analysis shows that even a
curved attached shock cannot be formed around W0. And, this raises a question
on the existence of a detached shock past a wedge of angle θw greater than the
detachment angle θd. This question on a detached shock has been a long standing
open problem, and no rigourous answer has been given to this day. There is still a
remaining question on a shock solution past a blunt body.

Question 1. For W0 given by (1.9) with θw < θd, let Wb be a blunt body obtained
from smoothing out the tip of W0. Would there exists a weak solution of (1.2) with
a shock attached to the tip of the obstacle?

To make this question more precise, we give a definition of the blunt body.

Definition 2.1. For a fixed constant h0 > 0, let a function b : R → R satisfy the
following properties:

(b1) b(x2) = b(−x2) for all x2 ∈ R;
(b2) b ∈ C3(R);
(b3) b′(x2) > 0 for all x2 > 0;
(b4) b′′(x2) ≥ 0 for all x2 ≥ 0;
(b5) b(x2) = x2 cot θw for x2 ≥ h0.

For such a function b, we define a blunt body Wb by

Wb := {x = (x1, x2) ∈ R2
+ : x1 ≥ b(x2)}. (2.2)

tw

h

wb

Figure 4.

Lemma 2.2. The system (1.2) cannot have a weak solution (ρ,u) in R2
+ \Wb with

a shock S so that (ρ,u) satisfies the entropy condition (1.11), and that the shock S
is attached to the blunt body Wb.
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Proof. Let (ρ,u) be a weak solution to (1.2) in R2
+ \Wb with a shock S in the sense

of Definition 1.1(b). Suppose that S is attached to the blunt body Wb at a point
P0.

Case 1. P0 = (b(x∗2), x∗2) for some x∗2 > 0

Let ν0 be the unit normal vector of S at P0 pointing toward Wb. If ν0 6⊥ Wb

at P0, then there exists a point Q = (b(x̂2), x̂2) with x̂2 > 0, and a small constant
r > 0 such that

(ρ,u) = (ρ∞,u∞) in Br(Q) \Wb. (Fig. 5)

Then, by continuation, we have (ρ,u)(Q) = (ρ∞,u∞). We define a vector field

wb
p

q

ds

us

b

Figure 5.

n(x2) := (−1, b′(x2)) for x2 > 0. By Definition 2.1, n0 := (−1, b′(x̂2)) is a normal
vector of ∂Wb at Q, which points inward of R2

+\Wb. And, we have u·n0 = −u∞ 6= 0
at Q so the slip boundary condition does not hold. This contradicts to Definition
1.1(b).

Next, we suppose that ν0 ⊥ Wb at P0. Then, we have ν0 = n0

|n0| . We compute

the value of (ρ,u) at P0 in the side of Ω+(Fig. 6) by taking the limit

(ρ,u)(P0) = lim
x→P0

x∈Ω+

(ρ,u)(x) =: (ρ+,u+). (2.3)

By the slip boundary condition on the boundary of Wb, and C3 regularity of b, we

wb

p

ds

us

op

op

om

nu

Figure 6.

have

u+ · ν0 = lim
x2→x̂2

u(b(x2), x2) · n(x2)

|n(x2)| = 0,
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which implies that ρ+u+ · ν0 = 0. Then the Rankine-Hugoniot condition (1.4)
cannot not hold at P0 because ρ∞u∞ · ν0 6= 0. This is a contradiction. Therefore,
S cannot be attached to Wb away from the tip (b(0), 0).

Case 2. P0 = (b(0), 0)
From (b1)–(b3) in Definition 2.1, it follows that b′(0) = 0. Let u+ be given by

(2.3). By continuity of u in Ω+(Fig. 7) up to its boundary, and slip boundary
condition on the boundary of Wb, we obtain that

u+ · (−1, 0) = lim
x2→0+

u(b(x2), x2) · n(x2)

|n(x2)| = 0. (2.4)

This implies that if the shock S is attached to Wb at P0, then the horizontal

wb

p

ds

us op

om

Figure 7.

component of u+ is 0. By Lemma 1.3, u+ must lie on either v = fpolar(u) or
v = −fpolar(u). Therefore, u+ must have a strictly positive horizontal component
but this contradicts to (2.4). So we conclude that S cannot be attached to Wb at
the tip.

Lemma 2.2 shows that if (ρ,u) is a weak solution of (1.2) in R2
+ \Wb with a

shock S, then S must be detached from Wb. So our next question is as follows:

Question 2. Does there exists a detached shock solution of (1.2) past Wb?

In the next section, we present a recent result to yield an answer to this question.

3. Detached shock solutions past the blunt body Wb.

3.1. Main result. Fix γ > 1 and B0 > 0. Given constants θw ∈ (0, π2 ) and h0 > 0,
let a function b : R→ R be given by Definition 2.1. And, let Wb be given by (2.1).
In [3], we proved the existence of detached shock solutions of (1.2) past Wb for an
incoming state (ρ∞,u∞) for M∞ = u∞√

ργ−1
∞

being sufficiently large.

Problem 1. Find a weak solution (ρ,u) of (1.2) in R2
+ \Wb with a shock

Γsh = {x = (x1, x2) : x1 = fsh(x2), x2 ≥ 0}
for a C1 function fsh : R+ → R satisfying fsh(x2) < b(x2) for all x2 ∈ R+ so that
(ρ,u) uniformly converges to a piecewise constant state as |x| → ∞.
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Figure 8. Detached shock past the blunt body Wb

In [3], it is proved that if M∞ = u∞√
ργ−1
∞

is sufficiently large, then there exists a

detached shock solution past Wb so that its asymptotic state at far field (|x| =∞) is
given as a strong shock state, which is uniquely determined by shock polar analysis.
We state the main result of [3] in a simplified form as follows:

Theorem 3.1. For a fixed constant d0 > 0, there exists a small constant ε̄ >
0 depending on (γ,B0, d0, θw, h0) so that whenever the incoming supersonic state
(ρ∞, u∞) satisfies M∞ = 1

ε for ε ∈ (0, ε̄], the system (1.2) has a weak solution

(ρ,u) in R2
+ \Wb with a shock Γsh = {(fsh(x2), x2) : x2 ∈ R+}. And, the solution

satisfies the following properties:

(i) fsh(0) = b(0)− d0;
(ii) There exists a constant δ > 0 depending only on (γ,B0, d0, θw, h0) such that

b(x2)− fsh(x2) ≥ δ for all x2 ≥ 0;

(iii) Let uεst be the intersection of the shock polar v = fpolar(u) and v = u tan θw
corresponding to a strong shock. And, let sεst be the slope of the corresponding

strong shock. Finally, set ρεst :=
(
(γ − 1)(B0 − 1

2 |uεst|2)
) 1
γ−1 . Then,

lim
|x|→∞
x∈Ωfsh

|(ρ,u)(x)− (ρεst,u
ε
st)| = 0, and lim

x2→∞
|f ′sh(x2)− sεst| = 0

for Ωfsh
:= {x = (x1, x2) ∈ R2

+ : fsh(x2) < x1 < b(x2), x2 > 0};
(iv) There exists a constant σ ∈ (0, 1) depending only on (γ,B0, d0, θw, h0) so that

the Mach number M(ρ,u) = |u|√
ργ−1

satisfy the inequality

M(ρ,u) ≤ 1− σ in Ωfsh
.

To the best of our knowledge, Theorem 3.1 is the first rigorous result on the global
existence of detached shock solutions past a blunt body in unbounded domain.

By Lemma 1.3 and Corollary 1, if the incoming supersonic state (ρ∞,u∞) is
given, then the detachment angle θd is uniquely determined so that θw < θd hold.
Then a unique strong shock state is determined depending on θw. In Theorem 3.1,
however, we first fix θw from which a wedge W0 is given by (1.9), then we get a
blunt body Wb by perturbing the vertex of W0 with a C3 function b. And, we
seek a detached shock solution of past Wb with its far-field asymptotic state being
determined by shock polar analysis. Therefore, to make Theorem 3.1 valid, we add
a lemma given from [3]:

132



MYOUNGJEAN BAE AND WEI XIANG

Lemma 3.2. For any given θw ∈ (0, π2 ), there exists a small constant ε0 ∈ (0, 1)
depending on (γ,B0, θw) so that whenever the incoming supersonic state (ρ∞, u∞)
satisfies M∞ ≥ 1

ε0
, the shock polar v = fpolar(u) and the line v = u tan θw intersect

at two distinct points. In other words, we have

θw < θd. (3.1)

iu
u

v

tw

Figure 9. Shock polar for M∞ =∞

Proof. For fixed γ > 1 and B0 > 0, direct computations with using (1.10) and
(1.11) show that if M∞ = ∞, then the graph of the shock polar v = fpolar(u) is a
semi-circle with the center at (u∞2 , 0). In this case, the detachment angle θd is π

2 .
Therefore, for any θw ∈ (0, π2 ), the line v = u tan θw intersects with v = fpolar(u) at
two distinct points with one of the intersection being (0, 0) always. Therefore, the
downstream state of any strong shock solution is given as ρ+ =∞ and u+ = (0, 0),
and the corresponding shock is a normal shock (Fig. 9). By using this observation
and the implicit mapping theorem, we can prove that θw < θd for sufficiently large
M∞. All the details are given in [3].

Remark 1. In [3], Theorem 3.1 is proved by using a stream function formulation,
and solving a free boundary problem of stream function in a cut-off domain, then
applying a limiting argument. In doing so, the asymptotic state at far field is essen-
tial to establish a compactness of approximate detached shock solutions obtained
in cut-off domains.

Remark 2. The analysis given in [3] shows that if we fix d > 0, then there exists
a small constant ε̄ > 0 depending on (γ,B0, d, θw, h0) so that whenever d0 ≥ d
and M∞ ≥ 1

ε̄ , a detached shock solution of (1.2) past Wb can be constructed.
Furthermore, the detached distance inf

x2∈R+

(b(x2)− fsh(x2)) is bounded below by a

positive constant δ depending on (γ,B0, d, θw, h0).

Remark 3. Statement (iv) in Theorem 3.1 indicates that the detached shock so-
lutions given in this theorem are transonic.

3.2. Further questions. While Theorem 3.1 provides an answer to Question 2
stated in Section 2, it also raises new interesting problems to be investigated in the
future.

1. For a fixed d0 > 0, is the detached shock solution obtained in Theorem 3.1
unique?

As briefly mentioned in Remark 1, each detached shock solution of Problem 1 for
a given d0 > 0 is obtained by a limiting argument. Therefore, it is unclear how to
achieve the uniqueness of a solution. Furthermore, according to (iii) of Theorem 3.1,
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the tangential slope of each detached shock converges to a constant sεst, which is the
slope of the strong shock corresponding to θw. But there is no unique asymptotic
state of detached shock itself, so we cannot use the argument in [7], and this makes
it even harder to achieve the uniqueness of a detached shock solution for a fixed
d0 > 0.

2. For fixed incoming supersonic state (ρ∞, u∞), Theorem 3.1 yields infinitely
many detached shock solutions. Does this mean that detached shock phenomenon is
unstable?

According to Remark 2, if the incoming supersonic state (ρ∞, u∞) has a suffi-
ciently large Mach number M∞, then there is a lower bound d > 0 so that whenever
d0 ≥ d, Problem 1 has a detached shock solution past Wb. This means that there
are infinitely many different detached shock solutions past Wb. This observation
naturally raises question on the stability of detached shock phenomena. Or would
there be any criterion to pick a physically stable solution?

3. Can we seek a solution of Problem 1 so that its asymptotic state at far field
is given as weak shock solution instead of strong shock solution?

In Theorem 3.1, by fixing the asymptotic state at far field as a strong shock state,
it was possible to find detached shock solutions past Wb, all of which are transonic.
What would happen if we require for a detached shock solution to converge to a
weak shock state at far field (|x| =∞)?
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Figure 10.

Suppose that (ρ,u) is a weak solution of (1.2) with a detached shock Γsh, and
that it converges to a weak shock state at far field (|x| = ∞). As pointed out
earlier in Section 2, if θw is greater than the sonic angle θs, then Mach number

M = |u|√
ργ−1

of downstream state of a weak shock solution satisfiesM > 1. Let us set

Z0 := (b(0), 0), that is, Z0 is the tip ofWb. Since Γsh is detached fromWb, one can fix
a small constant δ > 0 so that (ρ,u) is continuous in Uδ(Z0) := Bδ(Z0)∩(R2

+\Wb) up
to the boundary. By properties (b1)–(b2) stated in Definition 2.1, we have b′(0) = 0.
Then, due to the slip boundary condition on ∂(R2

+ \Wb) and the continuity of u

in Uδ(Z0). we obtain that u · e1 = 0 and u · e2 = 0 at Z0. In other words, Z0 is a

stagnation point. Since ρ(Z0) = ((γ − 1)B0)
1

γ−1 6= 0, we have M = |u|√
ργ−1

= 0 at

Z0. This observation implies that M < 1 near Z0, and M > 1 for |x| sufficiently
large behind the shock Γsh. Perhaps, the simplest configuration of such a solution
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would be as in Fig. 10. Namely, the downstream state behind the shock Γsh is a
smooth transonic, and the solution contains a sonic boundary on which M becomes
1. But even this case is very difficult to construct mathematically unless there is
further information on the sonic boundary.

4. Can we prove Theorem 3.1 for the system (1.1)?

Even though an incoming supersonic flow is uniform state thus irrotational, the
vorticity (∇ × u) is generated across a shock unless the shock has a special geo-
metric structure relative to incoming supersonic flow. The analysis given in [3] to
prove Theorem 3.1 uses a stream function formulation. Namely, we introduce a
scalar function ψ to satisfy ∇⊥ψ = ρu, then we obtain a quasi-linear second order
homogeneous equation for ψ. If we apply the same approach to prove Theorem 3.1
for (1.1), the only difference is that the equation for the stream function ψ becomes
nonhomogeneous due to variation of entropy, which is caused by a generation of vor-
ticity across a shock. This would raise several technical difficulties in constructing a
detached shock solution of (1.1) past Wb, especially because R2

+ \Wb is unbounded.
But we believe that these difficulties can be overcome with more careful analysis.
Further result will be given in the forthcoming work.
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Abstract. We investigate the long-time behavior of solutions to the isother-

mal Euler equation. By writing the system with a suitable time-dependent

scaling we prove that the densities of global solutions display universal disper-
sion rate and asymptotic profile. This result estends to Korteweg or quantum

Navier Stokes equations, as well as generalizations of these equations where
the convex pressure law is asymptotically linear near vacuum.

1. Introduction.

1.1. Isentropic Euler equation: existence of singularities. In the isentropic
case γ > 1, the Euler equation on Rd, d ≥ 1,

{
∂tρ+ div (ρu) = 0, ρ|t=0 = ρ0,

∂t(ρu) + div(ρu⊗ u) + κ∇ (ργ) = 0, ρu|t=0 = J0,
(1)

enjoys the formal conservations of mass,

M(t) =

∫

Rd
ρ(t, x)dx ≡M(0),

and entropy (or energy),

E(t) =
1

2

∫

Rd
ρ(t, x)|u(t, x)|2dx+

κ

γ − 1

∫

Rd
ρ(t, x)γdx ≡ E(0).

In general, smooth solutions are defined only locally in time (see [11, 7, 14]). Indeed,
as first noticed in [11], considering the new unknown

(a, v) =
(
ρ
γ−1
2 , v

)

turns (1) into




∂ta+ v · ∇a+
γ − 1

2
adiv v = 0, a|t=0 = ρ

γ−1
2

0 ,

∂tv + v · ∇v + κ
2γ

γ − 1
a∇a = 0, v|t=0 =

J0
ρ0
.

(2)

2000 Mathematics Subject Classification. Primary: 35Q35, 35B40; Secondary: 35Q40, 76N15.
Key words and phrases. Compressible Euler equation, Korteweg equation, quantum

Navier–Stokes equation, isothermal, large time.
∗ Corresponding author: Rémi Carles.
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This system is hyperbolic symmetric (with a constant symmetrizer), so there exists
a unique local solution (a, u) ∈ C(0, T ;Hs)1+d, provided that s > 1 + d/2 and

ρ
γ−1
2

0 , v0 = J0
ρ0
∈ Hs(Rd).

It is also proven in [11] (and generalized in [14]) that if a|t=0 and v|t=0 are smooth
and compactly supported, then no matter how small they may be (and unless both
are identically zero), the solution to (2) will develop a singularity in finite time.
The proof relies on two key arguments:

• As long as the solution is smooth, its speed of propagation is zero (for instance,
view the equations like ODEs).

• A virial computation shows that if the solution is global, then it is dispersive:

d2

dt2

∫

Rd
|x|2ρ(t, x)dx ≥ E(t) inf (2, 3(γ − 1)) = E0 inf (2, 3(γ − 1)) > 0,

where we have used (one more time) the assumption γ > 1 and the conserva-
tion of the energy (which is granted in the case of smooth solutions).

Suppose that the solution remains smooth for all time. Integrating the above esti-
mate twice yields ∫

|x|2ρ(t, x)dx & t2.

This is incompatible with the fixed compact support of ρ and the conservation of
mass, since these properties imply, for some K > 0 independent of time,

∫
|x|2ρ(t, x)dx ≤

∫

|x|<K
|x|2ρ(t, x)dx . K2d

∫
ρ(t, x)dx = K2dM(0).

Therefore, a singularity appears in finite time.

1.2. Isentropic Euler equation: some global solutions and their asymp-
totic behavior. A first global existence of smooth solutions was obtained by
D. Serre [12], under an extra geometric assumption involving a special structure
for the initial velocity. For 1 < γ ≤ 1 + 2/d, change the unknown functions

ρ(t, x) =
1

(1 + t)d
R

(
t

1 + t
,

x

1 + t

)
, u(t, x) =

1

1 + t
U

(
t

1 + t
,

x

1 + t

)
+

x

1 + t
,

and assume that R
γ−1
2

0 , U0 ∈ Hs, for some s > 1+d/2. This means ρ
γ−1
2

0 ∈ Hs (like
before), and u0(x)− x ∈ Hs (hence u0 6∈ L2).

Theorem 1.1 (D. Serre, [12]). There exists η > 0 such that if

‖(ρ(γ−1)/20 , U0)‖Hs(Rd) ≤ η,

then there is a unique global solution, in the sense that (R,U) ∈ C([0,∞);Hs(Rd))1+d.
In addition, there exists R∞, U∞ ∈ Hs(Rd) such that

∥∥∥∥
(
ρ(t, x)− 1

td
R∞

(x
t

)
, u(t, x)− x

1 + t
− 1

1 + t
U∞

(x
t

))∥∥∥∥
L∞(Rd)

−→
t→∞

0.

Back to the initial unknown functions, we infer (this is a rather straightforward
consequence of the proof in [12], see [6]):
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Corollary 1.2. Let 1 < γ ≤ 1+2/d and s > d/2+1. If R∞, U∞ ∈ Hs(Rd) are such

that ‖(R(γ−1)/2
∞ , U∞)‖Hs(Rd) ≤ η, then there exists Cauchy data ρ0, u0 ∈ Hs(Rd)

such that the solution is global in time in the same sense as above, and∥∥∥∥
(
ρ(t, x)− 1

td
R∞

(x
t

)
, u(t, x)− x

1 + t
− 1

1 + t
U∞

(x
t

))∥∥∥∥
L∞(Rd)

−→
t→∞

0.

Some comments are in order:

• The assumptions on the velocity is reminiscent of the “good case” in Burgers’
equation: particles spread out. Generalizations of this result can be found in
[9, 8].

• In this regime, the density is dispersive, and dispersive rate is universal,

‖ρ(t)‖L∞(Rd) .
1

td
.

• However, the asymptotic profile R∞ may be any smooth, small function.

1.3. Isothermal case. In the case γ = 1,{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + κ∇ρ = 0,
(3)

with κ > 0, the mass is still conserved,

M(t) =

∫

Rd
ρ(t, x)dx ≡M(0),

as well as the entropy, which now reads

E(t) =
1

2

∫

Rd
ρ(t, x)|u(t, x)|2dx+ κ

∫

Rd
ρ(t, x) ln ρ(t, x)dx ≡ E(0).

Now, the energy has no definite sign: no a priori estimate like in the argument of
[11] is available. We show that rigidity results are available in this case though,
involving a large time behavior in sharp contrast with the case 1 < γ ≤ 1 + 2/d of
[12].

2. A large family of explicit solutions. To simplify the presentation, we assume
d = 1 in this section, and refer to [6] for the general case. Consider

ρ0(x) = b0e
−α0x

2

, u0(x) = β0x.

As noticed by M. Yuen [15], the above structure is preserved by the flow:

ρ(t, x) = b(t)e−α(t)x
2

, u(t, x) = β(t)x,

and solving the PDE (3) becomes equivalent to solving the ODEs

α̇+ 2αβ = 0, β̇ + β2 − 2κα = 0, ḃ = −βb.
Following T. Li and D. Wang [10], seek

α(t) =
α0

τ(t)2
, β(t) =

τ̇(t)

τ(t)
.

We come up with the ODE

τ̈ =
2κα0

τ
, τ(0) = 1, τ̇(0) = β0.

At this stage, the surprising fact is the universal behavior of solutions to the above
equation, regardless of initial data.
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Lemma 2.1 ([5]). Let a0, κ̃ > 0, β0 ∈ R. Consider the ordinary differential equa-
tion

τ̈ =
2κ̃

τ
, τ(0) = a0 , τ̇(0) = β0.

It has a unique solution τ ∈ C2(0,∞), and it satisfies, as t→∞,

τ(t) = 2t
√
κ̃ ln t (1 +O(`(t))) , τ̇(t) = 2

√
κ̃ ln t (1 +O(`(t))) ,

where `(t) :=
ln ln t

ln t
.

Back to (3), this yields

ρ(t, x) ∼
t→∞

b0

2t
√
α0κ ln t

e−x
2/(2t

√
κ ln t)2 , u(t, x) ∼

t→∞
x

t
.

Here, we emphasize the property

b0/
√
α0 ∝ ‖ρ0‖L1 .

Note that since the velocity is linear in x, this provides explicit solutions for the
(Newtonian) isothermal Navier-Stokes equation.

Remark 2.2. It is possible to consider an initial Gaussian density which is not
centered at the origin, or, equivalently,

ρ0(x) = b0e
−α0x

2

, u0(x) = β0x+ c0.

Then

ρ(t, x) = b(t)e−α(t)(x−x(t))
2

, u(t, x) = β(t)x+ c(t),

with b, α and β like before, and

x(t) = c0t, c(t) = c0

(
1− τ̇(t)

τ(t)
t

)
.

Remark 2.3 (Universal dynamics for the density). In this Gaussian case, the func-
tion ρ exhibits two interesting features. We get a new dispersive rate, different from
the one proved in [12] in the case 1 < γ ≤ 1 + 2/d (logarithmic correction). More
suprisingly, the density enjoys a universal asymptotic profile: no matter what the
initial variance is, the asymptotic one is always the same.

Remark 2.4 (Generalization to other equations). The same approach can be ex-
tended to




∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + κ∇ρ =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
+ ν div (ρD(u)) ,

with ε, ν ≥ 0 and D(u) = 1
2 (∇u+ t∇u). The term in ε corresponds to Korte-

weg equation (this term models capillarity). The term in ν corresponds to quan-
tum Navier–Stokes equation, to take dissipative effects into account (see[4] for the
derivation). Essentially, we proceed like before, and get the ODE

τ̈ε,ν =
2κα0

τε,ν
+ ε2

α2
0

(τε,ν)3
− να0

τ̇ε,ν

(τε,ν)2
, τε,ν(0) = 1, τ̇ε,ν(0) = β0.

It turns out that ε and ν do not alter the large time behavior, and we observe the
same universal large time dynamics as for the isothermal Euler equation; see [6] for
details.
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3. Isothermal Euler equation and universal large time dynamics. Moti-
vated by the remarkable observations in the one-dimensional Gaussian case, we
introduce another change of unknown functions, in the case of the general space
dimension d ≥ 1. Consider the universal dispersion τ ,

τ̈ =
2κ

τ
, τ(0) = 1 , τ̇(0) = 0 , (4)

and change the unknown functions

ρ(t, x) =
1

τ(t)d
R

(
t,

x

τ(t)

) ‖ρ0‖L1

‖Γ‖L1

, u(t, x) =
1

τ(t)
U

(
t,

x

τ(t)

)
+
τ̇(t)

τ(t)
x,

where

Γ(y) = e−|y|
2

is the Gaussian that appeared in the previous section. The system in (ρ, ρu) is
equivalent to





∂tR+
1

τ2
div (RU) = 0,

∂t(RU) +
1

τ2
div(RU ⊗ U) + 2κyR+ κ∇R = 0.

(5)

Naturally, the conservation of mass remains. The good news is that we gain some
positivity in the entropy. Indeed, define the pseudo-energy

E(t) :=
1

2τ2

∫
R|U |2 + κ

∫
(R|y|2 +R lnR).

Formally, it satisfies

Ė(t) = −D(t) =: − τ̇

τ3

∫
R|U |2.

We also have

E(t) :=
1

2τ2

∫
R|U |2 + κ

∫
R ln

R

Γ
,

and since
∫
R =

∫
Γ, the Csiszár-Kullback inequality (see e.g. [1])

‖f − g‖2L1(Rd) ≤ 2‖f‖L1(Rd)

∫
f(x) ln

(
f(x)

g(x)

)
dx

shows that E is the sum of two non-negative terms. As a matter of fact, Csiszár-
Kullback inequality is not used: it is just a hint that more estimates are available
in terms of (R,U) than in terms of (ρ, u).

Lemma 3.1. Suppose that
∫
Rd R(t, y)dy is bounded and E(t) ≤ Λ for all t ≥ 0.

There exists C0 > 0 such that

1

τ2

∫

Rd
R|U |2 +

∫

Rd
R(1 + |y|2 + | lnR|) ≤ C0, ∀t ≥ 0.

Proof. We decompose E in order to introduce a sum of positive terms,

E+(t) :=
1

2τ2

∫
R|U |2 + κ

(∫
R|y|2 +

∫

R≥1
R lnR

)
.

Since E is non-increasing, we have

E+(t) ≤ Λ + κ

∫

R<1

R ln
1

R
. 1 +

∫

Rd
R1−η.
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By interpolation,
∫

Rd
R1−η ≤ Cη‖R‖1−η−dη/2L1(Rd) ‖|y|2R‖dη/2

L1(Rd), 0 < η <
2

d+ 2
.

Therefore, since the mass is conserved,

E+(t) ≤ Λ + CE+(t)dη/4

and since dη/4 < 1, E+(t) is uniformly bounded for t ≥ 0. As E+ is the sum of
three non-negative terms, each one is uniformly bounded, and the only remaining
term in E is also bounded.

Recall that

Ė(t) = −D(t) =: − τ̇

τ3

∫
R|U |2 ≤ 0.

Therefore, E is naturally bounded from above. The previous lemma shows that E
is bounded from below, hence

∫ ∞

0

D(t)dt <∞.

We can now state our main result.

Theorem 3.2. Let (R,U) be a global weak solution, with constant mass.

1. If sup
t≥0
E(t) <∞, then

∫

Rd
yR(t, y)dy −→

t→∞
0 and

∣∣∣∣
∫

Rd
(RU)(t, y)dy

∣∣∣∣ −→t→∞∞,

unless
∫
yR(0, y)dy =

∫
(RU)(0, y)dy = 0 (a case where each of these quantites

remains identically zero).
2. If sup

t≥0
E(t) <∞ and the energy E satisfies E(t) = o (ln t) as t→∞, then

∫

Rd
|y|2R(t, y)dy −→

t→∞

∫

Rd
|y|2Γ(y)dy.

3. If sup
t≥0
E(t) +

∫ ∞

0

D(t)dt <∞, then R(t, ·) ⇀ Γ weakly in L1(Rd) as t→∞.

Remark 3.3 (Wasserstein distance). Theorem 3.2 implies the large time conver-
gence of R to Γ in the Wasserstein distance W2, defined, for ν1 and ν2 probability
measures, by

Wp(ν1, ν2) = inf

{(∫

Rd×Rd
|x− y|pdµ(x, y)

)1/p

; (πj)]µ = νj

}
,

where µ varies among all probability measures on Rd ×Rd, and πj : Rd ×Rd → Rd
denotes the canonical projection onto the j-th factor. This implies, for instance,
the convergence of fractional momenta (see e.g. [13, Theorem 7.12])

∫
|y|2sR(t, y)dy −→

t→∞

∫
|y|2sΓ(y)dy, 0 ≤ s ≤ 1.

In [6], we prove the above result in the following generalized framework:

• The result remains valid in the presence of capillarity (Korteweg equation)
and quantum dissipation (quantum Navier-Stokes).
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• The result remains valid also with a generalized pressure law:




∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
+ ν div (ρDu) ,

with P convex and P ′(0) = κ > 0.

Remark 3.4. In the case where 0 ≤ ε ≤ ν and ν > 0, with P (ρ) ≡ κρ, we have
another rigidity result: up to an extraction, sequences of solutions on (0, T ) enjoying
uniformly the conservation of mass, and “natural” inequalities (energy dissipation,
BD-entropy dissipation, Mellet-Vasseur inequality in (R,U)), converge to a weak
solution on (0, T ). The proof, presented in [6], follows the same argument as in [2].

4. Elements of proof. We present the main arguments to prove Theorem 3.2.
Details can be found in [6]. Many features of the proof are similar to the arguments
given in [5] in the context of a Schrödinger equation with logarithmic nonlinearity.

4.1. Main Theorem: proof of the first point. Define

I1(t) =

∫

Rd
(RU)(t, y)dy, I2(t) =

∫

Rd
yR(t, y)dy.

We compute

İ1 = − 1

τ2

∫

Rd
div(RU ⊗ U)− 2κI2 − κ

∫

Rd
∇R = −2κI2,

thanks to Lemma 3.1. Similarly, we compute

İ2 = − 1

τ2

∫

Rd
y div(RU) =

1

τ2

∫

Rd
RU ≡ 1

τ2
I1,

since, from Lemma 3.1 and Cauchy-Schwarz inequality,

R|y||U | ∈ L∞loc(0,∞;L1(Rd)).

Then J2 := τI2 satisfies J̈2 = 0, hence

I2(t) =
−I1(0)t+ I2(0)

τ(t)
, I1(t) = I1(0)− 2κ

∫ t

0

I2(s)ds.

The first point is then an easy consequence of Lemma 2.1.

4.2. Main Theorem: proof of the second point. Recall that the energy (en-
tropy) E is formally conserved,

E(t) =
1

2

∫

Rd
ρ(t, x)|u(t, x)|2dx+ κ

∫

Rd
ρ(t, x) ln ρ(t, x)dx.

In view of the change of unknown functions (ρ, u) 7→ (R,U), rewrite E:

E(t) =
1

2τ2

∫
R|U |2dy +

(τ̇)2

2

∫
R|y|2dy +

τ̇

τ

∫
Ry · Udy + κ

∫
R lnRdy

− κ ln
(
τd
) ∫

Rdy.

We already know that the first and fourth terms are uniformly bounded (Lemma 3.1),

and that the third term is O(
√

ln t)) (Lemma 3.1, Cauchy-Schwarz inequality, and
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Lemma 2.1), while each of the second and last term is potentially of order ln t
(Lemma 2.1). Therefore, if E(t) = o(ln t),

2

∫
R|y|2dy − d

∫
Rdy = o(1), hence

∫
R|y|2dy −→

t→∞
d

2

∫
Γdy =

∫
|y|2Γ(y)dy.

4.3. Main Theorem: proof of the last point. Discarding terms which seem
negligible for large time in (5), we get




∂tR+

1

τ2
div (RU) = 0,

∂t(RU) + 2κyR+ κ∇R = 0,

hence

∂t
(
τ2∂tR

)
= κLR, where Lf = ∆f + 2 div(yf)

is a Fokker–Planck operator. Since τ2 � (τ̇ τ)2 as t→∞ (Lemma 2.1), we expect

∂t
(
τ2∂tR

)
= τ2∂2tR+ 2τ̇ τ∂tR ≈ 2τ̇ τ∂tR,

hence, for large time, ∂sR ≈ LR, for the new time variable

s(t) = κ

∫
1

τ τ̇
=

1

2

∫
τ̈

τ̇
=

1

2
ln τ̇(t) ∼

t→∞
1

4
ln ln t.

The large time behavior is thus expected to be dictated by the Fokker–Planck
equation

∂sR∞ = LR∞, Lf = ∆f + 2 div(yf).

It was established in [3] that any solution to this equation, obeying the bounds
given by Lemma 3.1, satisfies

‖R∞(t)− Γ‖L1(Rd) −→
t→∞

0.

To make the argument rigorous, set s(t) = 1
2 ln τ̇(t). At this stage, we emphasize

that this rescaled time turns out to be rather natural: in view of Lemma 2.1,

s(t) ∼
t→∞

1

4
ln ln t.

This property conciles the fact that R∞ converges to Γ exponentially fast in s
(due to a spectral gap), and the fact that the convergence of the above quadratic
quantities involved a logarithmic convergence in t.

Now denote by α : s 7→ α(s) = t its inverse mapping. Set R̄(s, y) = R(t, y),
Ū(s, y) = U(t, y):

∂sR̄−
2κ

(τ̇ ◦ α)2
∂sR̄+

κ

(τ̇ ◦ α)2
∂2s R̄ = LR̄+

1

(τ ◦ α)2
∇2 : (R̄Ū ⊗ Ū).

As a consequence of Lemma 3.1,
∫∞
0
D(t)dt <∞, which now reads

∫ ∞

0

(
τ̇ ◦ α
τ ◦ α

)2 ∥∥∥
√
R̄Ū
∥∥∥
2

L2(Rd)
ds <∞.

For s ∈ [0, 1] and sn →∞, let R̄n(s, y) = R̄(s+ sn, y), Ūn(s, y) = Ū(s+ sn, y):

sup
n∈N

sup
s∈[0,1]

∫

Rd
R̄n(1 + |y|2 + | ln R̄n|)dy ≤ C,

lim
n→∞

∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 ∥∥∥
√
R̄nŪn

∥∥∥
2

L2(Rd)
ds = 0.
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Dunford–Pettis criterion implies that there exists R∞ ∈ L1((0, 1)×Rd), such that,
up to extracting a subsequence,

R̄n ⇀ R∞ weakly in L1((0, 1)× Rd) as n→∞,
and

∫
Rd R∞ =

∫
Rd R̄n =

∫
Rd Γ (tightness).

lim
n→∞

∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 ∥∥∥
√
R̄nŪn

∥∥∥
2

L2(Rd)
ds = 0

yields
1

(τ ◦ αn)2
∇2 : (R̄nŪn ⊗ Ūn) ⇀ 0, hence ∂sR∞ = LR∞.

On the other hand, we can show that R∞ is stationary, ∂sR∞ = 0, and we conclude
thanks to the result of Arnold, Markowich, Toscani and Unterreiter [3]. The limit
is unique, so no extraction is actually needed.
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Abstract. We study a hydrodynamic limit of a system of coupled kinetic and

fluid equations under a strong local alignment force and a strong Brownian

motion. More precisely, we consider the Vlasov-Fokker-Planck-type equation
coupled with compressible Navier-Stokes equations with a density-dependent

viscosity. Based on a relative entropy argument, by assuming the existence of
weak solutions to that kinetic-fluid system, we rigorously derive a two-phase

fluid model consisting of isothermal Euler equations and compressible Navier-

Stokes equations.

1. Introduction. The present work is devoted to the asymptotic analysis of a
system of kinetic-fluid equations, namely Vlasov-Fokker-Planck equation with a
local alignment force coupled with compressible Navier-Stokes equations through
the drag force. This system describes the time evolution of dispersed particles
immersed in a compressible fluid, in which particles interact with each other via
local alignment forces, and particles and fluid are interacting through a drag force.
To be more precise, let f = f(x, ξ, t) be the number density function on the phase
point (x, ξ) ∈ Rd × Rd at time t ∈ R+, and n = n(x, t) and v = v(x, t) be the local
mass density and the bulk velocity of the compressible fluid, respectively. Then,
our main system is governed by

∂tf + ξ · ∇xf +∇ξ · ((v − ξ)f) = ∇ξ · (∇ξf − (u− ξ)f), (x, ξ) ∈ Rd × Rd, t > 0,

∂tn+∇x · (nv) = 0,

∂t(nv) +∇x · (nv ⊗ v) +∇xp− 2∇x · (ν(n)Dv) = −
∫

Rd
(v − ξ)f dξ,

(1)

2000 Mathematics Subject Classification. Primary: 35Q70, 35Q83; Secondary: 35B25.
Key words and phrases. Vlasov/Navier-Stokes equations, asymptotic analysis, hydrodynamic

limit, two-phase fluid system, relative entropy method.
∗ Corresponding author: Young-Pil Choi.
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subject to initial data:

f(x, ξ, 0) = f0(x, ξ), n(x, 0) = n0(x), v(x, 0) = v0(x), (x, ξ) ∈ Rd × Rd

and the boundary conditions:

f(x, ξ, t)→ 0, n(x, t)→ n∞ ∈ R+, and v(x, t)→ 0,

sufficiently fast as |x|, |ξ| → ∞, where Dv is the deformation tensor given by
Dv := (∇xv + (∇xv)t)/2, ν is the viscosity coefficient which is a function of the
fluid density n, p = p(n) := nγ (γ > 0) is the pressure law, and ρ and u denote the
average local densitiy and velocity of f , respectively:

ρ(x, t) :=

∫

Rd
f(x, ξ, t) dξ and (ρu)(x, t) :=

∫

Rd
ξf(x, ξ, t) dξ.

Those types of kinetic-fluid systems have been extensively studied. The global
well-posedness of weak and strong solutions for the Vlasov-type kinetic equations
coupled with the incompressible Navier-Stokes equations are discussed in [2, 3, 6, 7,
14, 20, 29, 31] and coupled with compressible Navier-Stokes [1, 8, 15, 27, 28]. The
local-in-time existence of classical solutions for the Vlasov-Boltzmann/compressible
Euler equations is obtained in [26], and more recently, the global-in-time existence of
weak solutions for the BGK/incompressible Navier-Stokes is also discussed in [16].
We refer to [12] and [13] for a priori estimate of large-time behavior of solutions
and the finite-time blow-up phenomena of Vlasov-type/Navier-Stokes equations,
respectively.

In the current work, we are interested in the asymptotic regime corresponding to
a strong drag force and a strong Brownian motion. More specifically, we consider
the following system:

∂tf
ε + ξ · ∇xfε +∇ξ · ((vε − ξ)fε) =

1

ε
∇ξ · (∇ξfε − (uε − ξ)fε),

∂tn
ε +∇x · (nεvε) = 0,

∂t(n
εvε) +∇x · (nεvε ⊗ vε) +∇xp(nε)− 2∇x · (ν(nε)Dvε) = −ρε(vε − uε),

(2)

where

ρε(x, t) :=

∫

Rd
fε(x, ξ, t) dξ and (ρεuε)(x, t) :=

∫

Rd
ξfε(x, ξ, t) dξ.

Here, since we are concerned with unbounded domain, we assumed the far-field
behavior nε → n∞ as |x| → ∞ for all ε ≥ 0. Note that the global-in-time strong
solutions to the kinetic equation in (2) around the global Maxwellian is studied
in [11] and the global-in-time existence of weak solutions to the Vlasov-Fokker-
Planck/compressible Navier-Stokes equations with a constant viscosity coefficient
in a bounded domain is established in [27]. Our main purpose is to investigate
the convergence of weak solutions (fε, nε, vε) of the above system (2) to the strong
solutions (ρ, u, n, v) to the following system of fluid equations:

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xρ = ρ(v − u),

∂tn+∇x · (nv) = 0,

∂t(nv) +∇x · (nv ⊗ v) +∇xp(n)− 2∇x · (ν(n)Dv) = −ρ(v − u).

(3)

The hydrodynamic limit of kinetic equation appeared in (2) coupled with the incom-
pressible Navier-Stokes equations is addressed in [6] based on the relative entropy
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method which relies on the “weak-strong” uniqueness principle [17]. The hydro-
dynamic limit found in [6] holds as long as there exists a unique strong solution
to the limiting system, which is a system of Euler/incompressible Navier-Stokes
equations. Later, in [9], the global-in-time existence and uniqueness of strong solu-
tions to that limiting system is obtained. We refer to [21, 22, 28] for other kind of
hydrodynamical limits.

Our main strategy relies on the relative entropy argument, which is widely used
to analyze hydrodynamic limits of kinetic equations [19, 24, 30], together with some
entropy inequalities. In order to establish the hydrodynamic limit, we first need to
show the existence of weak and strong solutions to the systems (2) and (3) at least
locally in time, and estimate the error between them by means of relative entropy
method. However, in the current work, we focus on the relative entropy estimates
by assuming the existence of weak solutions to the kinetic-fluid system (2). Since
local existence theories for the types of balance laws have been well developed, the
local-in-time existence and uniqueness of solutions for the limiting system (3) can
be obtained under suitable assumption on the viscosity coefficient ν, see [25] for
the readers who are interested in it. We also refer to [10] where the global-in-
time existence of a unique strong solution under suitable smallness and regularity
assumptions on the initial data is discussed. This yields that once we obtain the
existence of weak solutions to the system (2), our analysis becomes fully rigorous.
We emphasize that the asymptotic regime we considered for the system (2) has not
been studied so far, to the best of our knowledge.

1.1. Formal derivation of the asymptotic system. The right-hand side of the
kinetic equation in (2) reads

∇ξ · [∇ξfε − (uε − ξ)fε] = ∇ξ ·
(
Mfε∇ξ

(
fε

Mfε

))
,

where Mfε = Mfε(x, ξ, t) is the Maxwellian given by

Mfε(x, ξ, t) :=
1

(2π)d/2
e−
|ξ−uε(x,t)|2

2 .

Thus, once we have ρε → ρ and uε → u as ε→ 0, we find

fε →Mρ,u :=
ρ(x, t)

(2π)d/2
e−
|ξ−u(x,t)|2

2 as ε→ 0.

This enables us to close the momentum equations derived from the kinetic equation
(2) and the limiting solutions (ρ, u, n, v), where (nε, vε) → (n, v) as ε → 0, satisfy
the two-phase fluid system presented in (3). See [6, 10] for more detailed discussion.

Without loss of generality, throughout this paper, we may assume ‖fε0‖L1 = 1 for
all ε > 0. This together with the conservation of mass yields ‖fε(·, ·, t)‖L1 = ‖fε0‖L1

for ε > 0 and t ≥ 0. In fact, we only need to assume ‖fε0‖L1 ≤ C for all ε > 0,
where C > 0 is independent of ε.

1.2. Main result. For the hydrodynamic limit, we will use the following notion of
weak solutions to the system (1) and strong solutions to the system (3).

Definition 1.1. For T ∈ (0,∞), we say a triplet (f, n, v) is a weak solution to the
system (1) if the following conditions are satisfied:

1. f ∈ L∞(0, T ; (L1
+ ∩L∞)(Rd ×Rd)), (|x|2 + |ξ|2)f ∈ L∞(0, T ;L1(Rd ×Rd)).
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2. n− n∞ ∈ L∞(0, T ; (L1
+ ∩ Lγ)(Rd)), n|v|2 ∈ L∞(0, T ;L1(Rd)),√

ν(n)∇xv ∈ L2(0, T ;L2(Rd)).
3. (f, n, v) satisfies (1) in a distributional sense.

Definition 1.2. Let s > d/2 + 2. For T ∈ (0,∞), (ρ, u, n, v) is called a strong
solution of (3) on the time interval [0, T ] if it satisfies the system (3) in the sense
of distributions, and it also satisfies the following regularity conditions:

(ρ, u, n, v) ∈ C([0, T ];Hs(Rd))×C([0, T ];Hs(Rd))×C([0, T ];Hs(Rd))×C([0, T ];Hs(Rd)).

Remark 1. As discussed before, the local-in-time existence and uniqueness of
strong solutions in the sense of Definition 1.2 can be obtained under suitable as-
sumptions on the initial data and the viscosity coefficient ν.

We now state our main result on the hydrodynamic limit of (2).

Theorem 1.3. Let d > 2, γ ∈ [1, 2], and (fε, nε, vε) be a weak solution to the
system (2) up to time T > 0 in the sense of Definition 1.1 with the initial data
(fε0 , n

ε
0, v

ε
0) satisfying

fε0 ∈ (L1
+ ∩ L∞)(Rd × Rd), (|x|2 + |ξ|2)fε0 ∈ L1(Rd × Rd),

nε0 − n∞ ∈ (L1
+ ∩ Lγ)(Rd), nε0|vε0|2 ∈ L1(Rd), and

√
ν(nε0)∇xvε0 ∈ L2(Rd).

(4)

Let s > d/2 + 2 and (ρ, u, n, v) be a strong solution to the system (3) up to time
T > 0 in the sense of Definition 1.2 with the initial data (ρ0, u0, n0, v0) satisfying

ρ0 > 0 in Rd, inf
x∈Rd

n0(x) > 0, and

(ρ0, u0, n0, v0) ∈ Hs(Rd)×Hs(Rd)×Hs(Rd)×Hs(Rd).
Suppose that the viscosity coefficient ν ∈ C1(R+) is Lipschitz continuous satisfying

|ν(x)− ν(y)| ≤ νLip|x− y|, ν(x) ≥ ν∗ > 0, and x2 ≤ c0ν(x)p(x), (5)

for all x, y ∈ R+, where νLip, ν∗, and c0 are positive constants. Moreover, the initial
data (fε0 , n

ε
0, v

ε
0) and (ρ0, u0, n0, v0) are well-prepared such that

(H1):
∫

Rd

(∫

Rd
fε0

(
1 + log fε0 +

1

2
(|ξ|2 + |x|2)

)
dξ +

1

2
nε0|vε0|2 +H(nε0)

)
dx

−
∫

Rd

(
ρ0

(
1 + log ρ0 +

1

2
(|u0|2 + |x|2)

)
+

1

2
n0|v0|2 +H(n0)

)
dx

= O(
√
ε),

where

H(x) := x

∫ x

n∞

p(z)

z2
dz − p(n∞)

n∞
(x− n∞).

(H2):
∫

Rd
ρε0|uε0 − u0|2 dx+

∫

Rd
nε0|vε0 − v0|2 dx

+

∫

Rd

∫ ρε0

ρ0

ρε0 − z
z

dzdx+

∫

Rd

(
nε0

∫ nε0

n0

p(z)

z2
dz − p(n0)

n0
(nε0 − n0)

)
dx

= O(
√
ε).
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Then we have
∫

Rd
ρε|uε − u|2 dx+

∫

Rd
(nε)|vε − v|2 dx+

∫

Rd

∫ ρε

ρ

ρε − z
z

dzdx

+

∫

Rd

(
nε
∫ nε

n

p(z)

z2
dz − p(n)

n
(nε − n)

)
dx

+

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds+

∫ t

0

∫

Rd
ρε|(uε − vε)− (u− v)|2 dxds

≤ C√ε,

(6)

where C is a positive constant independent of ε.
As a consequence, we have the following strong convergences of weak solutions

(fε, nε, vε) to the system (2) towards the strong solutions (ρ, u, n, v) to the system
(3):

fε →Mρ,u a.e. and in L1
loc(0, T ;L1(Rd × Rd)),

(ρε, nε)→ (ρ, n) a.e. and in L1
loc(0, T ;L1(Rd))× L1

loc(0, T ;Lploc(R
d)) ∀p ∈ [1, γ],

(ρεuε, nεvε)→ (ρu, nv) a.e. and in L1
loc(0, T ;L1(Rd))× L1

loc(0, T ;L1
loc(Rd)), and

(ρε|uε|2, nε|vε|2)→ (ρ|u|2, n|v|2) a.e. and in L1
loc(0, T ;L1(Rd))×L1

loc(0, T ;L1
loc(Rd)),

as ε→ 0.

Remark 2. Since nε is not integrable in Rd, we only provide the convergences
related to the compressible Navier-Stokes system in (2) locally in Rd.

Remark 3. The technical condition γ ∈ [1, 2] is also used in [28], where the asymp-
totic analysis of the Vlasov-Fokker-Planck equations coupled with the compressible
Navier-Stokes equaiton with the constant viscosity coefficient in a bounded domain
under strong drag force and strong Brownian motion is studied.

Remark 4. By Young’s inequality, we find

r2−γ ≤ (γ − 1) + (2− γ)r for γ ∈ [1, 2].

This yields that ν(r) = 1 + r satisfies the assumption (5) with νLip = ν∗ = 1 and
c0 = max(γ − 1, 2 − γ) > 0. It looks that the assumptions on ν (5) do not allow
us to consider the constant viscosity coefficient. However, if ν ≡ ν∗ for an example,
the third assumption in (5) is not needed in our estimate. To be more specific, the
term K7 in Section 3 vanishes. Thus our strategy can be directly applied to the
constant viscosity coefficient case.

Remark 5. Recently, a non-trivial relative entropy for compressible Navier-Stokes
equations with density-dependent viscosities is introduced, and some applications,
for examples, weak-strong uniqueness, inviscid limit or low Mach number limit, are
discussed in [4, 5, 18].

The next section is devoted to derive an evolution equation for the integrated
relative entropy. Finally, in Section 3, we provide the details of proof of Theorem
1.3.

Before closing this section, we introduce several notations used throughout the
paper. For a function f = f(x, ξ) defined on (x, ξ) ∈ Rd×Rd, u = u(x, t) on x ∈ Rd
and p ∈ [1,∞), we denote ‖f‖Lp and ‖u‖Lp by the usual Lp(Rd×Rd)- and Lp(Rd)-
norm, respectively. Hk(Rd) is the k-th order L2-Sobolev space. We also denote by
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C a generic positive constant which may differ from line to line; C = C(α, β, · · · )
represents the positive constants depending on α, β, · · · .

2. Relative entropy estimate. In this section, we present some entropy inequali-
ties and relative entropy estimates which will be crucially used for the hydrodynamic
limit of the system (2).

2.1. Entropy inequalities. In this part, we show that the weak solutions to the
system (2) in the sense of Definition 1.1 satisfy several entropy inequalities. Simi-
larly to [6, Section 5], let us set

F(fε, nε, vε) :=

∫

Rd×Rd
fε
(

log fε +
|ξ|2
2

)
dxdξ +

∫

Rd

1

2
nε|vε|2 dx+

∫

Rd
H(nε) dx,

D1(fε) :=

∫

Rd×Rd

1

fε
|∇ξfε − (uε − ξ)fε|2 dxdξ, and

D2(fε, nε, vε) :=

∫

Rd×Rd
|vε − ξ|2fε dxdξ +

∫

Rd
ν(nε)|Dvε|2 dx,

where H = H(n) is given by

H(n) := K(n)−K ′(n∞)(n− n∞), K(n) := n

∫ n

n∞

p(z)

z2
dz.

Then we can easily find

F(fε, nε, vε) +
1

ε

∫ t

0

D1(fε) ds+

∫ t

0

D2(fε, nε, vε) ds ≤ F(fε0 , n
ε
0, v

ε
0) + dt (7)

for t ≥ 0. Note that the term
∫
Rd×Rd f

ε log fε dxdξ has an indefinite sign, however,

in the lemma below, we show that it can be controlled by F(fε0 , n
ε
0, v

ε
0) and second

spatial moment of fε0 .

Lemma 2.1. Let T > 0 and suppose that (fε, nε, vε) is a weak solution to the
system (2) on the time interval [0, T ) in the sense of Definition 1.1 with the initial
data (fε0 , n

ε
0, v

ε
0) satisfying (4). Then we have

∫

Rd×Rd
fε
(

1 + | log fε|+ 1

4
(|x|2 + |ξ|2)

)
dxdξ +

1

2

∫

Rd
nε|vε|2 dx+

∫

Rd
H(nε) dx

+
1

ε

∫ t

0

D1(fε) ds+

∫ t

0

D2(fε, nε, vε) ds ≤ C(T ) +O(
√
ε),

for t ∈ (0, T ), where C = C(T ) is a positive constant independent of ε.

Proof. It follows from (7) that

d

dt

(
F(fε, nε, vε) +

∫

Rd×Rd
fε
|x|2
2

dxdξ

)
+

1

ε
D1(fε) +D2(fε, nε, vε)

≤
∫

Rd×Rd
fε(x · ξ) dxdξ + d

≤
∫

Rd×Rd

(
fε
( |ξ|2

2
+
|x|2
2

)
+ 2fε log− f

ε − 2fε log− f
ε

)
dxdξ + d,

where log− g(x) := max{0,− log g(x)}. On the other hand, we get

2

∫

Rd×Rd
fε log− f

ε dxdξ
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≤
∫

Rd×Rd
fε
( |x|2

2
+
|ξ|2
2

)
dxdξ +

1

e

∫

Rd×Rd
e−
|ξ|2
4 −

|x|2
4 dxdξ,

and this implies

d

dt

(
F(fε, nε, vε) +

∫

Rd×Rd
fε
|x|2
2

dxdξ

)

≤ 2

(
F(fε, nε, vε)+

∫

Rd×Rd
fε
|x|2
2

dxdξ

)
+ C,

Thus we obtain

F(fε, nε, vε) +

∫

Rd×Rd
fε
|x|2
2

dxdξ ≤
(
F(fε0 , n

ε
0, v

ε
0) +

∫

Rd×Rd
fε0
|x|2
2

dxdξ

)
eC(T ).

Finally, we combine the above inequality with (7) and (H1) to conclude the desired
result.

We now present an uniform-in-ε estimate of a modified entropy inequality which
can be obtained by using almost the same argument as in [6, Section 5.1].

Lemma 2.2. Let T > 0 and suppose that (fε, nε, vε) is a weak solution to the
system (2) on the time interval [0, T ) in the sense of Definition 1.1 with the initial
data (fε0 , n

ε
0, v

ε
0) satisfying (4). Then we have

F(fε, nε, vε) +
1

2ε

∫ t

0

D1(fε) ds+

∫ t

0

∫

Rd
ρε|uε − vε|2dxds

+

∫ t

0

∫

Rd
ν(nε)|Dvε|2 dxds ≤ F(fε0 , n

ε
0, v

ε
0) + C(T )ε.

(8)

2.2. Relative entropy estimate. In this subsection, we provide the relative en-
tropy estimates. For this purpose, we introduce

U =




ρ
m
n
w


 , A(U) :=




m 0 0 0
(m⊗m)/ρ ρId 0 0

w 0 0 0
(w ⊗ w)/n nγId 0 0


 ,

and

F (U) =




0
ρ(v − u)

0
−ρ(v − u) + 2∇x · (ν(n)Dv)


 ,

where Id denotes the d × d identity matrix, m := ρu, and w := nv, and then we
rewrite the system (3) in the form of conservation of laws:

Ut +∇x ·A(U) = F (U).

For notational simplicity, we drop x-dependence of differential operators, i.e., ∇f :=
∇xf and ∆f = ∆xf for the rest of this paper. The corresponding macroscopic
entropy E(U) to above system is given by

E(U) :=
m2

2ρ
+
w2

2n
+ ρ log ρ+H(n),
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and the relative entropy functional H is defined as

H(V |U) := E(V )− E(U)−DE(U)(V − U), V =




ρ̄
m̄
n̄
w̄


 .

A straightforward computation yields

H(V |U) =
ρ̄

2
|u− ū|2 +

n̄

2
|v − v̄|2 + P (ρ̄|ρ) + P̃ (n̄|n),

where P (x|y) and P̃ (x|y) are relative pressures given by

P (x|y) := x log x−y log y+(y−x)(1+log y) =

∫ x

y

x− z
z

dz ≥ 1

2
min

{
1

x
,

1

y

}
|x−y|2

and

P̃ (x|y) :=





P (x|y) if γ = 1,

1

γ − 1
(xγ − yγ) +

γ

γ − 1
(y − x)yγ−1 if γ > 1,

respectively. Note that

P̃ (x|y) = K(x)−K(y)−K ′(y)(x− y)

≥ γmin
{
xγ−2, yγ−2

}
|x− y|2 ≥ γ

2
max{x2−γ , y2−γ}−1|x− y|2,

for γ > 1. Using those newly defined notations, we derive an evolution equation for
the relative entropy functional H.

Lemma 2.3. The relative entropy H satisfies the following equation:

∫

Rd
H(V |U) dx+

∫ t

0

∫

Rd
ν(n̄)|D(v − v̄)|2 dxds+

∫ t

0

∫

Rd
ρ̄|(ū− v̄)− (u− v)|2 dxds

=

∫

Rd
H(V0|U0) dx+

∫ t

0

∫

Rd
∂sE(V ) dxds+

∫ t

0

∫

Rd
ν(n̄)|Dv̄|2 dxds

+

∫ t

0

∫

Rd
ρ̄|ū− v̄|2 dxds−

∫ t

0

∫

Rd
DE(U)(∂sV +∇ ·A(V )− F (V )) dxds

−
∫ t

0

∫

Rd
(∇DE(U)) : A(V |U) dxds+

∫ t

0

∫

Rd

( n̄
n
ρ− ρ̄

)
(v − v̄)(u− v) dxds

+ 2

∫

Rd

( n̄
n
− 1
)

(∇ · (ν(n)Dv)) · (v − v̄) dx

+ 2

∫

Rd
(∇ · ((ν(n)− ν(n̄))Dv)) · (v − v̄) dx,

where A : B =
∑m
i=1

∑n
j=1 aijbij for A = (aij), B = (bij) ∈ Rmn and A(V |U) is the

relative flux functional defined by

A(V |U) := A(V )−A(U)−DA(U)(V − U).
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Proof. A straightforward computation gives

d

dt

∫

Rd
H(V |U) dx =

∫

Rd
∂tE(V ) dx−

∫

Rd
DE(U)(∂tV +∇ ·A(V )− F (V )) dx

+

∫

Rd
D2E(U)∇ ·A(U)(V − U) +DE(U)∇ ·A(V ) dx

−
∫

Rd
D2E(U)F (U)(V − U) +DE(U)F (V ) dx

=:
4∑

i=1

Ii.

In order to get the desired result, it suffices to estimate I3 and I4 only. For the
estimate of I3, we directly use the idea of [6, Appendix A] to get

I3 = −
∫

Rd
(∇DE(U)) : A(V |U) dx.

For the estimate of I4, we first notice that

D2E(U)F (U)(V − U)

=




∗ −m/ρ2 ∗ 0

∗ 1/ρ ∗ 0

∗ 0 ∗ −w/n2

∗ 0 ∗ 1/n







0
ρ(v − u)

0
−ρ(v − u) + 2∇ · (ν(n)Dv)







ρ̄− ρ
m̄−m
n̄− n
w̄ − w




= −(v − u) · u(ρ̄− ρ) + (v − u) · (m̄−m) +
v

n
· (ρ(v − u)− 2∇ · (ν(n)Dv))(n̄− n)

− 1

n
(ρ(v − u)− 2∇ · (ν(n)Dv)) · (w̄ − w),

and
DE(U)F (V ) = ρ̄(v̄ − ū) · u− (ρ̄(v̄ − ū)− 2∇ · (ν(n̄)Dv̄)) · v

= ρ̄(v̄ − ū) · (u− v) + 2 (∇ · (ν(n̄)Dv̄)) · v.
Combining the above inequalities, we find

D2E(U)F (U)(V − U) +DE(U)F (V )

= (u− v) · u(ρ̄− ρ)− (u− v) · (ρ̄ū− ρu)

− ρv

n
· (u− v)(n̄− n) +

ρ

n
(u− v) · ((n̄)v̄ − (n)v)

+ ρ̄(v̄ · u− ū · u− v̄ · v + ū · v)− 2

n
(n̄− n) (∇ · (ν(n)Dv)) · v

+
2

n
(∇ · (ν(n)Dv)) · (w̄ − w) + 2 (∇ · (ν(n̄)Dv̄)) · v

= ρ̄(u− ū) · (u− v)− n̄

n
ρ(v − v̄) · (u− v)

+ ρ̄(v̄ · u− ū · u− v̄ · v + ū · v)

− 2

n
(n̄− n)(∇ · (ν(n)Dv)) · v +

2

n
(∇ · (ν(n)Dv)) · (w̄ − w) + 2(∇ · (ν(n̄)Dv̄)) · v

=:
3∑

i=1

Ji,
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where J2 can be rewritten as

J2 = ρ̄(v̄ · u− ū · u− v̄ · v + ū · v)

= ρ̄(v̄ · u− ū · u− v̄ · v + ū · v + |u|2 − u · v + ū · v − ū · u)

− ρ̄(|u|2 − u · v + ū · v − ū · u)

= ρ̄(−2(ū− v̄) · (u− v)− v̄ · (u− v)− u · v + |u|2)

− ρ̄(|u|2 − u · v + ū · v − ū · u)

= ρ̄(−2(ū− v̄) · (u− v) + |u− v|2) + ρ̄(−|u− v|2 − v̄ · (u− v)− u · v + |u|2)

− ρ̄(|u|2 − u · v + ū · v − ū · u)

= ρ̄|(ū− v̄)− (u− v)|2 − ρ̄|ū− v̄|2 − ρ̄(u− v) · ((u− ū)− (v − v̄)).

Thus we obtain

J1 + J2 = ρ̄|(ū− v̄)− (u− v)|2 − ρ̄|ū− v̄|2 +
( n̄
n
ρ− ρ̄

)
(v − v̄) · (v − u). (9)

For J3, we estimate

J3 = −2 (∇ · (ν(n)Dv)) · (v − v̄) + 2 (∇ · (ν(n̄)Dv̄)) · v

− 2
( n̄
n
− 1
)

(∇ · (ν(n)Dv)) · (v − v̄)

= −2 (∇ · ((ν(n)− ν(n̄))Dv)) · (v − v̄)− 2 (∇ · (ν(n̄)D(v − v̄))) · (v − v̄)

+ 2 (∇ · (ν(n̄)Dv̄)) · v̄ − 2
( n̄
n
− 1
)

(∇ · (ν(n)Dv)) · (v − v̄),

which together with (9) gives

I4 = −
∫

Rd
ρ̄|(ū− v̄)− (u− v)|2 dx+

∫

Rd
ρ̄|ū− v̄|2dx

+

∫

Rd

( n̄
n
ρ− ρ̄

)
(v − v̄) · (u− v) dx+

∫

Rd
ν(n̄)|Dv̄|2dx

−
∫

Rd
ν(n̄)|D(v − v̄)|2dx+ 2

∫

Rd

( n̄
n
− 1
)

(∇ · (ν(n)Dv)) · (v − v̄) dx

+ 2

∫

Rd
(∇ · ((ν(n)− ν(n̄))Dv)) · (v − v̄) dx.

This completes the proof.

3. Proof of Theorem 1.3. In this section, we provide the details of proof of
Theorem 1.3. Let

U :=




ρ
ρu
n
nv


 and Uε :=




ρε

ρεuε

nε

nεvε


 ,

where (fε, nε, vε) and (ρ, u, n, v) are weak solutions to the system (2) and a unique
strong solution to the system (3), respectively. Then it follows from Lemma 2.3
that∫

Rd
H(Uε|U) dx+

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds

+

∫ t

0

∫

Rd
ρε|(uε − vε)− (u− v)|2 dxds
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=

∫

Rd
H(Uε0 |U0) dx

+

∫ t

0

∫

Rd
∂sE(Uε) dxds+

∫ t

0

∫

Rd
ν(nε)|Dvε|2 dxds+

∫ t

0

∫

Rd
ρε|uε − vε|2 dxds

−
∫ t

0

∫

Rd
DE(U)(∂sU

ε +∇ ·A(Uε)− F (Uε)) dxds

−
∫ t

0

∫

Rd
(∇DE(U)) : A(Uε|U) dxds+

∫ t

0

∫

Rd

(
nε

n
ρ− ρε

)
(v − vε) · (u− v) dxds

+ 2

∫ t

0

∫

Rd

(
nε − n
n

)
(∇ · (ν(n)Dv)) · (v − vε) dxds

+ 2

∫ t

0

∫

Rd
(∇ · ((ν(n)− ν(nε))Dv)) · (v − vε) dxds

=:
7∑

i=1

Ki.

We separately estimate Ki, i = 1, . . . , 7 as follows.

� (Estimates for K1): It follows from (H2) that

K1 = O(
√
ε).

� (Estimates for K2): Similar to [6, Proposition 5.2], we estimate

K2 =

∫

Rd
E(Uε) dx−F(fε, nε, vε) + F(fε, nε, vε) +

∫ t

0

∫

Rd
ν(nε)|Dvε|2 dxds

+

∫ t

0

∫

Rd
ρε|uε − vε|2 dxds−F(fε0 , n

ε
0, v

ε
0) + F(fε0 , n

ε
0, v

ε
0)−

∫

Rd
E(U0) dx

≤ C(T )ε+ F(fε0 , n
ε
0, v

ε
0)−

∫

Rd
E(U0) dx,

where we used the entropy inequality (8) and the fact that
∫

Rd
E(Uε) dx ≤ F(fε, nε, vε).

We then use the assumption (H1) on the well-prepared initial data to obtain

K2 ≤ C
√
ε,

for some C > 0 independent of ε.

� (Estimates for K3): It follows from (2) that

∂tρ
ε +∇ · (ρεuε) = 0,

∂t(ρ
εuε) +∇ · (ρεuε ⊗ uε) +∇ρε − ρε(vε − uε) = ∇·

(∫

Rd
(uε⊗uε− ξ⊗ξ+Id)fε dξ

)
,

∂tn
ε +∇ · (nεvε) = 0,

∂t(n
εvε) +∇ · (nεvε ⊗ vε) +∇p(nε)− 2∇ · (ν(nε)Dvε) + ρε(vε − uε) = 0,

in the sense of distributions. This gives

−
∫ t

0

∫

Rd
DE(U)(∂sU

ε +∇ ·A(Uε)− F (Uε)) dxds
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= −
∫ t

0

∫

Rd
DmE(U) ·

(
∇ ·
(∫

Rd
(uε ⊗ uε − ξ ⊗ ξ + Id)fε dξ

))
dxds

=

∫ t

0

∫

Rd
∇u :

(∫

Rd
(uε ⊗ uε − ξ ⊗ ξ + Id)fε dξ

)
dxds

due to DmE(U) = u. We then follow the proof of [23, Lemma 4.4] to get

K3 ≤ C
√
ε,

where C = C(‖∇u‖L∞) is a positive constant independent of ε.

� (Estimates for K4): Note that

A(Uε|U) = A(Uε)−A(U)−DA(U)(Uε − U)

=




0 0 0 0
ρε(uε − u)⊗ (uε − u) 0 0 0

0 0 0 0

nε(vε − v)⊗ (vε − v) (γ − 1)P̃ (nε|n)Id 0 0


 .

This implies
∫

Rd
|A(Uε|U)| dx ≤

∫

Rd
ρε|uε − u|2 + nε|vε − v|2 + d(γ − 1)P̃ (nε|n) dx

≤ C
∫

Rd
H(Uε|U) dx,

where C > 0 only depends on d and γ. Thus we obtain

K4 ≤ C
∫ t

0

∫

Rd
H(Uε|U) dxds.

� (Estimates for K5): We divide K5 into two terms:

K5 =

∫ t

0

∫

Rd
(ρ− ρε)(v − vε) · (u− v) dxds

+

∫ t

0

∫

Rd
ρ

(
nε − n
n

)
(v − vε) · (u− v) dxds

=: K1
5 +K2

5 .

For the estimate of K1
5 , we use the following elementary inequality

1 = min
{
x−1, y−1

}
max {x, y} ≤ min

{
x−1, y−1

}
(x+ y) for x, y > 0, (10)

to get
∣∣∣∣
∫

Rd
(ρ− ρε)(v − vε) · (u− v) dx

∣∣∣∣

≤
(∫

Rd
min

{
1

ρε
,

1

ρ

}
(ρ− ρε)2 dx

)1/2(∫

Rd
(ρ+ ρε)|v − vε|2|u− v|2 dx

)1/2

≤ C
(∫

Rd
H(Uε|U) dx

)1/2(∫

Rd
(ρ+ ρε)|v − vε|2|u− v|2 dx

)1/2

.

On the other hand, the second term on the above inequality can be estimated as
∫

Rd
(ρ+ ρε)|v − vε|2|u− v|2 dx
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≤ ‖ρ‖L∞‖v − vε‖2Lp∗‖u− v‖2Ld

+ 2

∫

Rd

(
ρε|(u− uε)− (v − vε)|2 + ρε|u− uε|2

)
|u− v|2 dx

≤ C‖∇(v − vε)‖2L2‖u− v‖2Ld

+ 2‖u− v‖2L∞
(∫

Rd
ρε|(u− uε)− (v − vε)|2 dx+

∫

Rd
ρε|u− uε|2 dx

)
,

where 1/p∗ = 1/2− 1/d and we used Gagliardo-Nirenberg-Sobolev inequality. Note
that

‖ρ‖L∞ ≤ C‖ρ‖Hs , ‖u− v‖Ld ≤ ‖u− v‖(d−2)/d
L∞ ‖u− v‖2/dL2 ≤ C‖u− v‖Hs ,

due to s > d/2 + 2, and

1

2

∫

Rd
|∇(v − vε)|2 dx ≤ 1

2

∫

Rd
|∇(v − vε)|2 dx+

1

2

∫

Rd
|∇ · (v − vε)|2 dx

≤
∫

Rd
|D(v − vε)|2 dx ≤ 1

ν∗

∫

Rd
ν(nε)|D(v − vε)|2 dx.

These together with using Young’s inequality give

K1
5 ≤ C

∫ t

0

∫

Rd
H(Uε|U) dxds+

1

8

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds

+
1

2

∫ t

0

∫

Rd
ρε|(u− uε)− (v − vε)|2 dxds,

where C = C(‖ρ‖L∞ , ‖u−v‖L∞(0,T ;Ld∩L∞), ν∗) is a positive constant. For the term

K2
5 , we let n∗ := infx∈Rd n(x) > 0 and use the inequality (10) to get
∣∣∣∣
∫

Rd
ρ

(
nε − n
n

)
(v − vε) · (u− v) dx

∣∣∣∣

≤ ‖ρ‖L∞
n∗

∫

Rd
|nε − n||vε − v||u− v| dx

≤ C
(∫

Rd
min

{
(nε)γ−2, nγ−2

}
(n− nε)2 dx

)1/2

×
(∫

Rd

(
n2−γ + (nε)2−γ) |v − vε|2|u− v|2 dx

)1/2

≤ C
(∫

Rd
H(Uε|U) dx

)1/2(∫

Rd

(
n2−γ + (nε)2−γ) |v − vε|2|u− v|2 dx

)1/2

,

where C = C(‖ρ‖L∞ , n∗, γ) is a positive constant. We further estimate
∫

Rd

(
n2−γ + (nε)2−γ) |v − vε|2|u− v|2 dx

≤ ‖n‖2−γL∞ ‖v − vε‖2Lp∗‖u− v‖2Ld +

∫

Rd
(nε)2−γ |v − vε|2|u− v|2 dx

≤ C‖n‖2−γL∞ ‖u− v‖2Ld‖∇(v − vε)‖2L2 +

∫

Rd
(nε)2−γ |v − vε|2|u− v|2 dx.
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For γ = 1 or 2, we easily get

∫

Rd
(nε)2−γ |v − vε|2|u− v|2 dx ≤




‖u− v‖2L∞

∫

Rd
H(Uε|U) dx for γ = 1,

‖u− v‖2Ld‖∇(v − vε)‖2L2 for γ = 2.

For γ ∈ (1, 2), we first use Young’s inequality to obtain
∫

Rd
(nε)2−γ |v − vε|2|u− v|2 dx

≤
∫

Rd
(nε)2−γ |v − vε|(4−2γ)+(2γ−2)|u− v|2 dx

≤ (2− γ)

∫

Rd
nε|v − vε|2 dx+ (γ − 1)

∫

Rd
|v − vε|2|u− v|2/(γ−1) dx

≤ (2− γ)

∫

Rd
nε|v − vε|2 dx+ (γ − 1)‖v − vε‖2Lp∗‖u− v‖

2
γ−1

L
d
γ−1

≤ C
∫

Rd
H(Uε|U) dx+ C

∫

Rd
|∇(v − vε)|2 dx,

where C = C(γ, ‖u−v‖L∞(0,T ;Ld∩L∞)) is a positive constant. Note that d/(γ−1) >

d > 2. Using the similar argument as in the estimate of K1
5 , we find

K2
5 ≤ C

∫ t

0

∫

Rd
H(Uε|U) dxds+

1

8

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds,

for any γ ∈ [1, 2]. Thus, we collect the estimates for K1
5 and K2

5 to yield

K5 ≤ C
∫ t

0

∫

Rd
H(Uε|U) dxds+

1

4

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds

+
1

2

∫ t

0

∫

Rd
ρε|(u− uε)− (v − vε)|2 dxds,

where C = C(γ, n∗, ν∗, ‖ρ‖L∞ , ‖u− v‖L∞(0,T ;Ld∩L∞)) is a positive constant.

� (Estimates for K6): By using almost the same argument as in the estimate of K2
5 ,

we have

2

∣∣∣∣
∫

Rd

(
nε − n
n

)
(∇ · (ν(n)Dv)) · (v − vε) dx

∣∣∣∣

≤ 2

n∗

∫

Rd
|nε − n||v − vε||∇ · (ν(n)Dv)| dx

≤ C
(∫

Rd
min

{
(nε)γ−2, nγ−2

}
(n− nε)2 dx

)1/2

×
(∫

Rd
(n2−γ + (nε)2−γ)|v − vε|2|∇ · (ν(n)Dv)|2 dx

)1/2

≤ C
∫

Rd
H(Uε|U) dx+

1

8

∫

Rd
ν(nε)|D(v − vε)|2 dx.

This asserts

K6 ≤ C
∫ t

0

∫

Rd
H(Uε|U) dxds+

1

8

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds,
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where C = C(γ, n∗, ν∗, ‖ρ‖L∞ , ‖∇ · (ν(n)Dv)‖L∞(0,T ;Ld∩L∞)) is a positive constant.
We notice that

‖∇ · (ν(n)Dv)‖Ld∩L∞ ≤ C‖∇n‖L∞‖Dv‖Ld∩L∞ + C‖∇Dv‖Ld∩L∞
≤ C‖∇n‖L∞‖Dv‖Hs−2 + C‖∇Dv‖Hs−2

≤ C(1 + ‖∇n‖Hs−1)‖∇v‖Hs−1 ,

due to ν ∈ C1(R+), d > 2, and s− 2 > d/2.

� (Estimates for K7): Using the integration by parts and symmetry of Dv, we find

2

∫

Rd
(∇ · ((ν(n)− ν(nε))Dv)) ·(v−vε) dx = −

∫

Rd
(ν(n)− ν(nε))Dv : D(v−vε) dx.

Then we estimate∣∣∣∣
∫

Rd
(ν(n)− ν(nε))Dv : D(v − vε) dx

∣∣∣∣

≤ νLip‖Dv‖L∞
∫

Rd
|D(v − vε)||n− nε| dx

≤ νLip‖Dv‖L∞
(∫

Rd
min

{
(nε)γ−2, nγ−2

}
(n− nε)2 dx

)1/2

×
(∫

Rd

(
n2−γ + (nε)2−γ) |D(v − vε)|2 dx

)1/2

≤ CνLip‖Dv‖L∞
(∫

Rd
H(Uε|U) dx

)1/2(∫

Rd
(n2−γ + (nε)2−γ)|D(v − vε)|2 dx

)1/2

.

On the other hand, by using the assumption on ν (5), we get (nε)2−γ ≤ c0ν(nε),
and this gives

∫

Rd
(n2−γ + (nε)2−γ)|D(v − vε)|2 dx

≤ ‖n‖
2−γ
L∞

ν∗

∫

Rd
ν(nε)|D(v − vε)|2 dx+ c0

∫

Rd
ν(nε)|D(v − vε)|2 dx.

This together with using Young’s inequality provides

K7 ≤
1

8

∫

Rd
ν(nε)|D(v − vε)|2 dx+ C

∫

Rd
H(Uε|U) dx,

where C = C(νLip, ν∗, c0, ‖Dv‖L∞ , ‖n‖L∞ , γ) is a positive constant independent of
ε.

By combining all of the above estimates, we have
∫

Rd
H(Uε|U) dx+

1

2

∫ t

0

∫

Rd
ν(nε)|D(v − vε)|2 dxds

+
1

2

∫ t

0

∫

Rd
ρε|(uε − vε)− (u− v)|2 dxds ≤ C

(∫ t

0

∫

Rd
H(Uε|U) dxds+

√
ε

)
,

where C is a positive constant depeding on νLip, c0, γ, n∗, ν∗, ‖ρ‖L∞ , ‖u− v‖Ld∩L∞ ,
‖n‖L∞ , ‖Dv‖L∞ , ‖∇ · (ν(n)Dv)‖Ld∩L∞ and ‖∇u‖L∞ . Finally, we apply Grönwall’s
inequality to the above to conclude the desired result.
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We next provide the strong convergence appeared in Theorem 1.3 by using the
relative entropy inequality (6). Since the convergence of ρε, ρεuε, and ρε|uε|2 can
be obtained by the same argument as in [23], we only show the strong convergence
of nε, nεvε and nε|vε|2 below.

� (Convergence of nε to n): Before proceding, we claim that the following inequality
holds: if x, y > 0 and 0 < ymin ≤ y ≤ ymax <∞, then

P̃ (x|y) = K(x)−K(y)−K ′(y)(x− y)

≥





γ(2ymax)γ−2|x− y|2 if y/2 ≤ x ≤ 2y,

γyγmin
4(1 + yγmin)

(1 + xγ) otherwise.

(11)

If y/2 ≤ x ≤ 2y, we easily find

K(x)−K(y)−K ′(y)(x− y) ≥ γmin{xγ−2, yγ−2}|x− y|2

≥ γ(2y)γ−2|x− y|2 ≥ γ(2ymax)γ−2|x− y|2.
If x > 2y > y (> ymin), i.e., y/x < 1/2, we get

K(x)−K(y)−K ′(y)(x− y)

≥ γmin{xγ−2, yγ−2}|x− y|2 = γxγ−2|x− y|2 = γxγ
∣∣∣1− y

x

∣∣∣
2

≥ γxγ

4
=
γ

4
(1 + xγ)

(
1− 1

1 + xγ

)
≥ γ

4
(1 + xγ)

(
1− 1

1 + yγmin

)
.

On the other hand, if x < y/2, i.e., x/y < 1/2, we obtain

K(x)−K(y)−K ′(y)(x− y) ≥ γyγ−2|x− y|2 = γyγ
∣∣∣∣1−

x

y

∣∣∣∣
2

≥ γyγ

4
=
γ

4
(1 + yγ)

(
1− 1

1 + yγ

)

≥ γ

4
(1 + xγ)

(
1− 1

1 + yγmin

)
.

Thus we have the inequality (11). We now use that inequality (11) to show the
convergence of nε to n. For Ω ⊂ Rd with |Ω| <∞, we estimate
∫

Ω

|nε − n|γ dx =

∫

Ω∩{n/2≤nε≤2n}
|nε − n|γ dx+

∫

Ω∩{n/2≤nε≤2n}c
|nε − n|γ dx

=: Lε1 + Lε2.

For Lε1, we find

Lε1 ≤
(∫

Ω∩{n/2≤nε≤2n}
min{(nε)γ−2, nγ−2}|nε − n|2 dx

) γ
2

×
(∫

Ω∩{n/2≤nε≤2n}
max{(nε)γ , nγ} dx

) 2−γ
2

≤ C
(∫

Ω∩{n/2≤nε≤2n}
H(Uε|U) dx

) γ
2 ((

2‖n‖L∞
)γ
|Ω|
) 2−γ

2 −→ 0,
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as ε → 0, where C = C(γ) is a positive constant independent of ε. For Lε2, we use
(11) to get

Lε2 ≤
∫

Ω∩{n/2≤nε≤2n}c
‖n‖γL∞

∣∣∣∣
nε

n
+ 1

∣∣∣∣
γ

dx

≤
∫

Ω∩{n/2≤nε≤2n}c
(2‖n‖L∞)γ

((
nε

n

)γ
+ 1

)
dx

≤
∫

Ω∩{n/2≤nε≤2n}c
(2‖n‖L∞)γ

((
nε

n∗

)γ
+ 1

)
dx

≤ C
∫

Ω∩{n/2≤nε≤2n}c
(1 + (nε)γ) dx

≤ C
∫

Ω∩{n/2≤nε≤2n}c
H(Uε|U) dx −→ 0,

as ε→ 0, where C = C(‖n‖L∞ , n∗, γ) is a positive constant independent of ε. Thus
we have the convergence nε → n in L1

loc(0, T ;Lγloc(Rd)), and this together with the

integrability condition yields that it also holds in L1
loc(0, T ;Lploc(Rd)) with p ∈ [1, γ].

� (Convergence of nεvε to nv): For Ω ⊆ Rd with |Ω| < ∞, similarly as before, we
estimate ∫

Ω

|nεvε − nv| dx ≤
∫

Ω

(nε|vε − v|+ |nε − n||v|) dx =: Lε3 + Lε4,

where Lε3 can be bounded by

Lε3 ≤
(∫

Ω

nε|vε − v|2 dx
)1/2(∫

Ω

nε dx

)1/2

.

Note that nε is locally integrable in Rd, and furthermore, we find
∫

Ω

nε dx =

∫

Ω∩{n/2≤nε≤2n}
nε dx+

∫

Ω∩{n/2≤nε≤2n}c
nε dx

≤ 2‖n‖L∞ |Ω|+ |Ω|
γ−1
γ

(∫

Ω∩{n/2≤nε≤2n}c
(nε)γ dx

) 1
γ

≤ 2‖n‖L∞ |Ω|+ |Ω|
γ−1
γ

(∫

Ω∩{n/2≤nε≤2n}c
H(Uε|U) dx

) 1
γ

.

This gives Lε3 → 0 as ε→ 0. For the estimate of Lε4, we obtain

Lε4 ≤ ‖v‖L∞ |Ω|
γ−1
γ

(∫

Ω

|nε − n|γ dx
)1/γ

−→ 0,

as ε→ 0. This gives the desired result for the convergence of nεvε.

� (Convergence of nε|vε|2 to n|v|2): Note that the following identity holds:

nε|vε|2 − n|v|2 = nε|vε − v|2 + 2v · (nεvε − nv) + |v|2(n− nε).
This relation together with the previous convergence results yields the desired strong
convergence of nε|vε|2. This completes the proof.
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Abstract. In these notes we review and we announce some results concerning
the non-uniqueness of solutions of the Euler equations in Hölder spaces C0,β

with β < 1/3, obtained also in collaboration with L. Székelyhidi. In particular,

we can show the existence of dense sets of wild initial data, namely data for
which non-uniqueness of energy dissipating solutions occur, up to Onsager’s

critical exponent.

1. Introduction. In these notes we consider the following initial value problem
for the Euler equations on the three-dimensional torus T3





∂tv + div (v ⊗ v) +∇p = 0 in (0, T )× T3

div v = 0 in (0, T )× T3

v(·, 0) = v0 on T3

(1)

In 1, v : [0, T ) × T3 → R3 is the velocity field of the fluid, p : [0, T ) × T3 → R
the pressure field and v0 : T3 → R3 is a given divergence free velocity field, the
prescribed initial datum for the Cauchy problem.

While for initial data in C1,α one has short time existence and uniqueness of
classical solutions [16], a completely different picture appears for weak L∞ solutions.
In the seminal paper [9], De Lellis and Székelyhidi showed the existence of infinitely
many bounded solutions of the Euler equations with compact support in space and
time, in any dimension greater than or equal to two. A feature of these non-physical
solutions is that the total kinetic energy of the fluid, namely the map

[0, T ) 3 t 7→
∫

T3

|v(t, x)|2 dx.

increases at time t = 0. Therefore, in [10] they considered solutions satisfying an
additional admissibility condition, which among the possible formulations takes the
form ∫

T3

|v(t, x)|2 dx ≤
∫

T3

|v0|2 dx, ∀ t ≥ 0, (2)

2000 Mathematics Subject Classification. Primary: 35-06, 35Q31; Secondary: 76D03.
Key words and phrases. Euler equations, initial value problem, nonuniqueness, convex integra-

tion, Onsager’s conjecture.
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and asked themselves if in this class one can prevent non-uniqueness. The answer
turns out to be negative: there are initial data v0 in L∞, called by the authors
wild initial data, which give rise to infinitely many bounded and admissible weak
solutions of 1. Moreover, in [24] they were shown to be dense in the solenoidal
fields in L2. Notice that, due to the weak-strong uniqueness result by Brenier, De
Lellis and Székelyhdidi [1], not any initial datum can be a wild initial datum, since
whenever a classical solution exists, this is the unique solution in the class of weak
admissible solutions with the same initial datum. As shown in [23], the vortex sheet
is an L∞-wild initial datum.

Therefore a natural question arises, namely whether there exists a regularity
threshold above which solutions are unique, for all initial data, and below which
non-uniqueness may happen.

The aim of these notes is to show, by reviewing some already published re-
sults and announcing a result obtained by the two authors in collaboration with L.
Székelyhidi, that such a threshold must be bigger than Hölder continuity in space
of order β = 1/3 (with Hölder constant uniformly bounded in time).

In order to state the main results obtained in answer to this question, which are
reviewed or announced in these notes, we need the following definitions.

Definition 1.1. Let β ∈ (0, 1). We say that v : T3 × [0, T ) → R3 is in C0,β if
∃C > 0 s.t. ∀x, y ∈ T3 and ∀ t ∈ [0, T )

|v(t, x)− v(t, y)| ≤ C|x− y|β . (3)

Definition 1.2. Let 0 < β ≤ β0 < 1. We say that a divergence free vector field
v0 ∈ C0,β0(T3) is a wild initial datum in C0,β if there exist infinitely many solutions
v to 1 on T3 × [0, T ) satisfying 2 and 3 for all t ∈ (0, T ).

Notice that in the last definition we allow the solutions of the Euler equation to
possibly lose a bit of regularity for t > 0.

The results that have been obtained about the existence of wild initial data are
the following.

The first existence result for wild initial data in Hölder spaces was given by the
first author in [6].

Theorem 1.3. For every ε > 0, there exist vector fields in C0,1/10−ε(T3) which are
wild initial data in C0,1/16−ε.

Moreover, they are infinitely many.

Then, by the first author in collaboration with L. Székelyhidi in [8], the result was
improved to larger Hölder exponents without having loss of regularity for positive
times and showing the density in L2 of the wild initial data.

Theorem 1.4. Let θ < 1
5 . Then, there exist vector fields v0 ∈ C0,θ(T3) which are

wild initial data in C0,θ.
Moreover, the set of such initial data is dense in L2(T3).

Finally, the two authors of these notes in collaboration with L. Székelyhidi show,
in a work in preparation [7], that such an existence and density result for wild initial
data can be extended up to Hölder regularity less than 1/3.

Theorem 1.5. Let θ < 1
3 . Then, there exist vector fields v0 ∈ C0,θ(T3) which are

wild initial data in C0,θ.
Moreover, the set of such initial data is dense in L2(T3).
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Such a regularity class is connected to the celebrated Onsager’s conjecture [19],
according to which solutions of 1 in the class of C0,β-functions conserve the total
kinetic energy

∫
T3 |v(t, x)|2 dx as soon as β > 1/3 and may dissipate it if β < 1/3.

While the first part of the conjecture was proven in [5] after a partial result in
[13], the proof of the second part of the conjecture required a much longer time,
expressed through a series of results by different authors (see Section 2), starting
with [9] and culminating with [15]. In particular, in the proof of Theorem 1.4 the
first author in collaboration with L. Székelyhidi introduced a set of flows, called
Mikado flows, which turned out to be fundamental for the proof of the Onsager’s
conjecture given in [15].

The method adopted both to show the existence of dissipative solutions to 1 (On-
sager’s conjecture) and to show non-uniqueness is the so-called convex integration.
Such a technique, introduced for the first time by Nash [18] in order to prove the
existence of infinitely many C1 isometric embeddings of n-dimensioanl Riemannian
manifolds in Rn+2, has found application in different areas of analysis and geometry.
It was applied in the context of differential inclusions for the first time by Müller
and Sverak [17] and to the non-uniqueness problem for the Euler equations by De
Lellis and Szekelyhidi in [9].

The plan of these notes is the following: in Section 2, after reviewing the known
results about the existence of dissipative solutions to 1, we explain the general strat-
egy and the ideas of the proof of the Onsager’s conjecture, in the form presented in
[3]; in Section 4 we explain the additional difficulties in the non-uniqueness problem
(existence and density of wild initial data) and how they have been overcome (for
solutions in C0,β with β < 1/5) in [8].

2. Existence of dissipative solutions and Onsager’s conjecture. In his fa-
mous paper [19] in 1949, Onsager conjectured that the regularity threshold for
energy conservation of solutions of the Euler equations is C0,1/3. In particular, for
β > 1/3 solutions must conserve the total kinetic energy, while for β < 1/3 they
might not.

Energy conservation for β > 1/3 was proved by Constantin, E and Titi in [5],
after a partial result by Eyink in [13] (see [4] for a sharper result in L3 spaces).

Concerning the existence of non-conservative solutions of the Euler equations,
in a pioneering paper Scheffer [20] constructed an example of compactly supported
weak solutions in L2 to the Euler-equations in dimension two. Later, Shnirelman
[21] gave a different proof of the same result. In [22], Shnirelman proved the ex-
istence of L2 weak solutions with energy decreasing in time. In [9] De Lellis and
Szekelyhidi were the first to understand that Nash’s convex integration method
could be adapted to the Euler framework to prove a much stronger result, namely
the existence of infinitely many non-conservative weak solutions in the space L∞t L

∞
x ,

in any space dimension. Their techniques opened the way for all the subsequent
results on the negative part of the Onsager’s conjecture. In [10], they were able to
show that none of the available admissibility criteria, in the spirit of 2, is able to
single out a unique solution for 1, for some initial data. In [11], they introduced
new techniques (in particular, convex integration using perturbations of stationary
solutions of the Euler equations called Beltrami flows) and they proved that, given
a smooth and positive function e : [0, T ]→ R, there exist infinitely many solutions
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of the Euler equations with kinetic energy e which are continuous in space and
time. In particular, if e is nonincreasing, such solutions must be dissipative. In [12],
they show that actually the regularity of such solutions can be increased to Hölder
1/10. After that, in his PhD thesis [14], Isett introduced new ideas and managed to
prove the existence of non-conservative solutions with Hölder regularity exponent
up to 1/5. In [2], the result was improved to provide with 1/5 − ε solutions with
prescribed smooth and positive kinetic energy e. Then, in [8], the first author to-
gether with Székelyhidi proved the existence of infinitely many C0,1/5−ε wild initial
data in C0,1/5−ε, namely Theorem 1.4, and their density in L2 solenoidal initial
data. While proving the density of wild initial data in L2, the authors used in this
process a new class of stationary solutions of the Euler equations, that were called
by the authors Mikado flows. In [15], Isett was able to substitute the Beltrami flows
with the Mikado flows in the whole convex integration scheme, thanks to a proce-
dure that he called the gluing. A convex integration scheme based on Mikado flows
turned out to have better error estimates, which lead to non-conservative solutions
in the regularity class C0,1/3−ε, namely the second part of Onsager’s conjecture. In
[3], the result was improved to get solutions in C0,1/3−ε with preassigned smooth
and positive kinetic energy e.

3. Some ideas of the proof of the Onsager’s conjecture. We give here a
rough review of some parts of the proof of Onsager’s conjecture, with the formalism
used in [3]. Our aim is to give an idea of some of the basic estimates which are
required in the process, giving up precision in return for heuristics and motivation.

The general strategy of a proof via convex integration, starting from [18], consists
in the following:

• Start from a subsolution of the problem, namely a solution of a “relaxed” ver-
sion of the original problem. The error from being an exact solution provides
the room for perturbing a subsolution and approaching gradually the space of
solutions;
• Add iteratively a sequence of nonlinear perturbations to the original subso-

lution, in such a way that after each iteration one obtains still a subsolution
but with a smaller and smaller gap from being a solution;
• At each iteration check that the perturbed subsolution enjoys estimates which

guarantee in the limit the convergence to a solution of the problem in the
desired regularity class.

Given that a solution of the problem is a solution of the Euler equations in
the regularity class C0,β for 0 < β < 1/3 and with prescribed kinetic energy e, a
subsolution at step q ∈ N is a triple (vq, pq, Rq) : [0, T ]×T3 → R3×R×S3×3+ , where

S3×3+ denotes the space of symmetric positive definite matrices, which satisfies the
following Euler-Reynolds system

{
∂tvq + div (vq ⊗ vq) +∇pq = −divRq

div vq = 0
(4)

on [0, T ]× T3 and ∫

T3

|vq(t, x)|2 dx < e(t), ∀ t ∈ [0, T ].

The Euler-Reynolds system appears naturally also in turbulence theory if one con-
siders averages of the Euler flow, where the appearance of the Reynolds stress Rq is
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due to the fact that the tensor product vq ⊗ vq does not commute with averaging.
We ask also that

Rq(t, x) = ρ(t)Id + R̊q(t, x),

where R̊q(t, x) is a traceless symmetric 3× 3 matrix. Moreover, the subsolution has
to satisfy quantitative estimates on the energy gap e(t)−

∫
T3 |vq(t, x)|2 dx, on the C0

and C1 norms of vq and on the C0 norm of the Reynolds stress Rq. In particular, if

‖vq − vq−1‖0 ≤ δ1/2q , (5)

‖vq‖1 ≤ δ1/2q λq, (6)

where {δq}q∈N and {λq}q∈N are two sequences of parameters linked by the relation

δq = λ−2β
′

q , β′ > β, λq → +∞, (7)

then by interpolation

‖vq − vq−1‖β ≤ ‖vq − vq−1‖(1−β)0 ‖vq − vq−1‖β1 ≤ δ1/2q λβq ,

which implies the convergence of vq in C0,β as q → +∞. Therefore, 5 and 6
are required to be a subsolution. More precisely, one chooses double exponential
sequences

λq = [ab
q

], a� 1, 1 < b < 1 + ε. (8)

Moreover, so that (vq, pq, Rq) converges to a solution of the problem, ‖Rq‖0 and
e(t)−

∫
T3 |vq(t, x)|2 dx have also to converge to 0. In order to understand how small

such quantities should be, in term of the sequences {δq} and {λq}, let us set

vq+1 = vq + wq+1, pq+1 = pq + p

where wq+1 is a suitable divergence free perturbation and let us see how large errors
‖Rq‖0 and e(t)−

∫
T3 |vq(t, x)|2 dx can be reduced by wq+1.

One has that

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1 =

= −div R̊q+1

= div (wq+1 ⊗ wq+1 + pId− R̊q) (9)

+ ∂twq+1 + vq · ∇wq+1 (10)

+ wq+1 · ∇vq. (11)

One calls 9 the oscillation error, 10 the transport error and 11 the Nash error. In
first approximation (here we are not precise, our aim is just to heuristically and
gradually motivate the choice of the perturbation as a mean to decrease the errors),
the perturbation wq+1 is an highly oscillating flow of the form

wq+1(t, x) =
∑

k∈N
ak(t, x)eiλq+1k·x = Wq+1(t, x, λq+1x), (12)

Wq+1(t, x, ξ) =
∑

k∈N
ak(t, x)eik·ξ. (13)

The fact that an highly oscillating flow can produce a smaller new error R̊q+1 is
expressed by the following stationary phase lemma.
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Lemma 3.1. If divw = 0, there exists R̊q+1 = R(“oscillation error” +
+ “transport error” + “Nash error”), with R(f)ij = Rijkfk

Rijk = −1

2
4−2∂1∂j∂k +

1

2
4−1∂kδij −4−1∂iδjk −4−1∂jδik.

Moreover, for every m ∈ N, θ ∈ (0, 1), ∃C = C(m, θ) s.t. ∀F (x) = a(x)eiλk·x,
k 6= 0

‖R(F )‖θ ≤ C
( ‖a‖0
λ1−θ

+
‖a‖m
λm−θ

+
‖a‖m+θ

λm

)
. (14)

So, if the terms of order λq or higher in the errors 9, 10 and 11 vanish, choosing

λq large enough the error ‖R̊q+1‖0 will be smaller. At this aim, looking at the
oscillation error it turns out that the perturbation wq+1 has to be built on stationary
solutions of the Euler equations, namely

{
div ξW ⊗W +∇p = 0

div ξW = 0
(15)

and moreover ∫

T3

W ⊗W dξ = f(t)Id + R̊q. (16)

Since by 5 ‖wq+1‖0 = ‖vq+1 − vq‖0 ∼ δ1/2q+1, then by 16 one asks that a subsolution

(vq, pq, Rq) fulfils

‖R̊q‖0 ≤ δq+1.

In the papers [11, 12, 14, 2] the perturbations wq+1 fulfilling 15 and 16 were the
so-called Beltrami flows. In [8], in order to prove the density in L2 of the wild initial
data, a new class of flows satisfying 15 and 16 was introduced, namely the Mikado
flows. One has the following

Lemma 3.2. For any compact subset N ⊂⊂ S3×3+ , there exists a smooth vector
field W : N × T3 → R3 such that, ∀R ∈ N{

div ξW (R, ξ)⊗W (R, ξ) = 0

div ξW (R, ξ) = 0
(17)

∫

T3

W (R, ξ)⊗W (R, ξ) dξ = R,
∫

T3

W (R, ξ) = 0. (18)

In order to explain how the vector field W is constructed, we need the following
lemma.

Lemma 3.3. For every compact subset N ⊂⊂ S3×3+ there exist λ0 ≥ 1 and smooth
functions Γk ∈ C∞(N ; [0, 1]) for every k ∈ Z3 with |k| ≤ λ0 such that

R =
∑

k∈Z3,|k|≤λ0

Γ2
k(R)k ⊗ k, ∀R ∈ N .

The choice of W in Lemma 3.2 is then of the form

W (R, ξ) =
∑

k∈Z3,|k|≤λ0

Γk(R)ψk(ξ)k,

where ψk(ξ) = gk(dist(ξ, `pk,k)), with gk ∈ C∞c ((0, rk)), rk > 0, and `pk,k is the
T3-periodic extension of the line {pk+ tk : t ∈ R} passing through the point pk and
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pointing in direction k. The points pk and the radii rk are chosen in such a way
that the supports of the functions ψk are disjoint as k varies. Moreover, gk is such
that

∫
T3 ψ

2
k(ξ) dξ = 1. It is easy to see that 17 and 18 are satisfied. Moreover,
∫

T3

W (R, ξ)⊗W (R, ξ) dξ =
∑

k

Γ2
k(R)

∫

T3

ψ2
k(ξ) dξk ⊗ k = R.

The presence of the transport error, where a spatial gradient of the perturbation
wq+1 appears, suggests however that the first ansatz 12 for wq+1 is still rough:
indeed one has to find a way to eliminate the appearance of such a term of order
λq+1. The idea, introduced already in [14], is to choose a nonlinear phase governed
by the flow of the underlying vector field vq, namely a wq+1 of the form

wq+1(t, x) =
∑

j,k

χj(t)e
iλq+1k·φj(t,x)aj,k(t, x),

where {
∂tφj + vq · ∇φj = 0

φj(tj , x) = x,

is the flow of vq, tj = jτq, 0 < τq � 1, χj are cut-off functions with support of
order τq centered at tj . The reason for such a choice is that in the transport error
the terms of order λq+1 coming from a differentiation of the phase now disappear,
and the resason why the nonlinear phase starting from tj is taken only for a time
interval of order τq is that, provided

τq ≤
1

2
‖vq‖−11 ,

then

‖∇φj − Id‖0 ≤ τq‖vq‖1 ≤
1

2
,

namely one is close to a linear flow for short times. On one hand this is an advantage
and it is indeed necessary to carry on the estimates. On the other hand, the supports
of χj and χj+1 intersect and therefore one has to estimate the Reynolds stresses
produced by the tensor products

χjχj+1Wj ⊗Wj+1.

While these can be estimated when Wj are perturbed Beltrami flows (even though
leading to regularity 1/5− ε), if Wj and Wj+1 are two different Mikado flows, this
leads to problems in the estimation of the error. Indeed, in [8] Mikado flows where
used only in the first step of the convex integration scheme, where rougher estimates
were needed and in particular just one flow φ was used (no time dependent cut-off
functions χj). In order to substitute Mikado flows to Beltrami flows in the whole
scheme, this issue had to be overcome, and this was done by Isett in [15] (and
later in [3]) introducing an intermediate step preliminary to the perturbation called
“gluing”.

The aim of the gluing is to produce from vq a flow v̄q whose associated Reynolds

stress ˚̄Rq has support in pairwise disjoint temporal regions of width and distance τq.
In this way, one needs to perturb only on these regions, and the associated cut-off
functions χj are now disjoint in time. The name gluing comes from the fact that
such v̄q is obtained by gluing with a partition of unity exact classical short-time
solutions of the Euler equations with initial datum vq(tj).
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As for reducing the energy gap, one has that∫

T3

|vq+1|2(t, x) dx =

∫

T3

|vq(t, x)|2 dx+

∫

T3

|wq+1(t, x)|2 dx

+ 2

∫

T3

vq · wq+1(t, x) dx

∼
∫

T3

|vq(t, x)|2 dx+

∫

T3

|wq+1(t, x)|2 dx

∼
∫

T3

|vq(t, x)|2 dx+ 3(2π)3f(t).

Therefore, setting

f(t) =
1

3(2π)3

(
e(t)−

∫

T3

|vq(t, x)|2 dx− δq+2

)

and asking that

e(t)−
∫

T3

|vq(t, x)|2 dx ∼ δq+1,

the new energy gap e(t)−
∫
T3 |vq+1(t, x)|2 dx is of the order δq+2, thus smaller.

The Nash error 11 tells us that the best regularity one can hope to obtain with
such method is Hölder 1/3. Indeed, looking at 5, 6 and 14, one has that

‖R(wq+1 · ∇vq)‖0 ∼
δ
1/2
q+1δ

1/2
q λq

λq+1
. (19)

In order to have that 19 is smaller than δq+2, which is the expected order of mag-

nitude for ‖R̊q+1‖0, by the choice of parameters δq and λq made in 7 and 8 one
finds

ab
q(−βb−β+1−b) ≤ abq(−2βb2),

which implies that

β <
1

2b+ 1
,

1

3
,

since b > 1.

4. The initial value problem. The aim of Theorems 1.3, 1.4 and 1.5 is twofold:

1. to show that if some initial data satisfy suitable conditions, they generate
infinitely many admissible weak solutions in the appropriate regularity space;

2. to show that such wild initial data exist and are infinitely many.

Then, there is the issue of the density of wild initial data, that we do not pursue
here.

The idea from [6] is to solve both points 1 and 2 with a convex integration scheme,
which though in comparison with the one described in the last section has to satisfy
some additional requirements. Indeed, if the perturbation (and in Theorem 1.5 the
gluing) stages are applied uniformly in time, then the solutions so obtained will be
infinitely many but in general different at time t = 0. Hence, if we want to use
a convex integration scheme leading to solutions with the same initial datum, we
have to start from a concept of subsolution (adapted subsolution) that at time 0 is
already a solution with energy e(0) and then apply perturbations that at time t = 0
must all be null, in order not to change the initial datum. This will answer point 1
above. In order to show that such adapted subsolutions exist, and in particular that
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wild initial data exist (the fact that their initial data are wild is given by point 1),
one performs another convex integration scheme starting from a classical (strong)
subsolution (namely, a subsolution as in Section 3) and adding perturbations which
are nonzero in smaller and smaller neighbourhoods of t = 0. The difficulties, as we
will see, arise from the fact that the estimates on the C0 and C1 norms are not
uniform in time any more as it was the case in Section 3, due to the presence of
time cut-offs.

Let us first consider the convex integration scheme leading to an adapted subso-
lution, namely point 2 above. We will give a rough idea of the construction present
in the paper [8], leaving comments on [7] at the end of this section. One starts
from (v0, p0, R0) classical (or strong) subsolution, for example the identically zero
subsolution. Then, at step q + 1, one takes

vq+1 ∼ (1− ϕq+1)vq + ϕq+1(vq + wq+1)

with ϕ ∈ C∞c ([0, T ]; [0, 1]) cut-off in time such that

ϕq+1 =

{
1 on [0, 2−qT ]

0 on [2−(q−1)T, T ]

Since suppϕq+2 ⊂ {ϕq+1 = 1}, in the next step the perturbation will be sup-
ported in a region where one has uniform estimates of the 1/5-scheme (1/3 in [7])
of the previous Section.

One has to show that on the remaining regions, namely where ϕq+2 = 0, one
still has a quantitative control on the decay/growth of the C0/C1 norms which
will now depend on t. Indeed, in the estimates for the Reynolds stress generated
by the transport error, also a derivative of the cut-off function ϕq will appear. By
performing careful estimates, one can show convergence of (vq, pq, Rq) to an adapted
subsolution, which is defined by the following properties: defining

ρ(t) := e(t)−
∫

T3

|v(t, x)|2 dx,

an adapted subsolution is a triple (v, p, R̊) ∈ C∞((0, T ]) ∩ C0([0, T ]) solving 4 on
(0, T ] with ∫

T3

|v(0, x)|2 dx = e(0), R̊(0, x) ≡ 0

and satisfying among others the following (non-uniform) estimates

‖R̊‖0 ≤ σρ (20)

‖v‖1 ≤ ρ−2−α (21)

|∂tρ| ≤ ρ−1−α. (22)

for some sufficiently small and positive σ and 0 < α � 1. Of course, in order to
have convergence of the flow in Hölder spaces with exponent 1/3 − ε instead of
1/5 − ε one needs better exponents in 20-22. Notice that, since at time t = 0 the
vector field v will be only in C0,1/5−ε, the corresponding C1 norms blow up at t = 0,
where ρ = 0. Moreover, the energy gap ρ is the quantity dictating the bounds on
the decay/growth of norms.

In order now to perform a convex integration scheme to solve point (1) at the
beginning of this section, one has to start from an adapted subsolution, which carries
naturally estimates which are non-uniform in time. Now the cut-off functions have
to be chosen null at t = 0, so that the obtained solutions are all equal to v(0, ·) at
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time 0. In [6], the cut-off functions where chosen of the form 1− ϕq, where ϕq are
the cut-off functions used in the convex integration scheme for point (2). However,
the choice of cut-off functions supported on dyadic intervals leads to quantitative
estimates which are worse (therefore a loss in the exponent from 1/10 to 1/16)
since at step q on the support of 1− ϕq the best available uniform estimates of the
adapted subsolution are the uniform estimates of point (2) for step q−1, instead of
step q. The idea of [8] is instead to localize the perturbations using cut-off functions
which are adapted to regions where the energy gap is bounded from below, which
implies by 20-22 that one has uniform bounds on the decay/growth of the C0/C1

norms.
An additional difficulty in [7] is that a careful localized gluing step has also to

be implemented.
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Abstract. In this work we focus on the numerical study of shallow submarine

avalanches. Submarine avalanches could be modeled by a two-layer shallow-

water Savage-Hutter type model (see [9]). The system is discretized by a finite
volume solver named as IFCPH, that results form a combination of IFCP solver

(see [11]) and the standard HLL solver (see [13]). Concerning the applications,
we focus on the collapse of an initially cylindrical submarine granular mass

along an horizontal plane. It is well stablished by laboratory studies ([14]) and

the dimensional analysis of the Savage-Hutter model and numerical simulations
([16]), that the final profile of the landslide depends on the aspect ratio a =

Hi/Ri, where Hi and Ri are the initial height and radius, respectively, and

the effective friction angle. In this work, a similar behavior, for the two-layer
model, and the final profile of the landslide only depends on the two aspect

ratios: aH = H1/H2 and a2 = H2/R, with R and H2 the initial radius and

height of the sediment column, respectively, and H1 the initial height of the
water above the sediment column. The sensitivity of the granular dynamics and

of the associated water perturbation to these two aspect ratios is investigated.

1. Introduction. Submarine avalanches may occur when a sediment layer lying
on the ocean bottom suddenly becomes unstable. These avalanches may generate
tsunami waves that carry the signature of their characteristics and dynamics. These
processes are however difficult to simulate because of the complex interaction be-
tween the granular and the fluid phases [2] and because of the accurate derivation of
the shallow approximation for both the sediment and fluid layers. In [9] a two-layer
Shallow Water Equation (SWE) system has been proposed to simulate submarine
avalanches and the potentially generated tsunami waves. The first layer corresponds
to the fluid and the second one to the sediment layer.
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For the sediment layer, a Savage-Hutter type model is considered. The pioneering
work of Savage-Hutter [24] derives a model to describe granular flows over a slop-
ping plane based on a Coulomb friction law that describes the avalanche/bottom
interaction.

One of the characteristics of the model proposed in [9] is that the definition of the
Coulomb friction term takes into account bouyancy effects involved in submarine
avalanches. Another characteristics is that, depending on the ratio between the
water density and the sediment density, the motion of the sediment avalanche can
be more or less influenced by the presence of the fluid.

In this work we present a two-dimensional two-layer model that is a generaliza-
tion of the 1D model presented in [9] in cartesian coordinates. One of the question
arising in the deduction of the model is the choice of the coordinate system in which
the model is deduced. Let us remember that the Saint-Venant equations are set up
in cartesian coordinates, but it is valid only for almost flat topography, thus not
relevant for debris avalanches in particular. On the other hand, the Savage-Hutter
model uses the curvilinear coordinate along a sloping plane. New Savage-Hutter
models over a general bottom have been proposed by Bouchut et al. in [1], taking
into account the curvature of the topography. In [3], Bouchut and Westdickenberg
generalize the previous models for small or for general slope variation in two di-
mensions. The 1D model introduced in [9] for submarine avalanches has been also
deduced on local coordinate along the topography, by taking into account the cur-
vature of the bottom. Here, we only focus on the spreading of an initially cylindrical
submarine granular mass on a flat bottom, therefore, cartesian coordinates could be
used. The resulting model has non-conservative terms, that come from the pressure
terms, and can be written under the general formulation

∂W

∂t
+
∂F1

∂x1
(W ) +

∂F2

∂x2
(W ) +B1(W )

∂W

∂x1
+B2(W )

∂W

∂x2
= S(W ), (1)

where the unknown W (x, t) is defined in the domain D×(0, T ), where D is a subset
of R2, with values in an open subset Ω of RN ; Fi, i = 1, 2 are regular functions from
Ω to RN ; Bi, i = 1, 2 are regular function matrices from Ω to MN×N (R) and S, is
defined from Ω to RN .

Finite volume path-conservative schemes ([19]) are well-adapted to approximate
non-conservative hyperbolic system (1). Here, we propose to combine two par-
ticular path-conservative schemes: the IFCP solver (Intermediate Field Capturing
Parabola method, see [11]), that is very well-adapted to approximate two-layer
shallow-water type systems, with the robust extension of HLL solver to the non-
conservative framework (see [6]). IFCP solver provides accurate results, similar to
the standard path-conservative Roe scheme ([20]), being IFCP more efficient, from
the computational point of view, but may present disturbances in wet/dry fronts,
while HLL solver is more robust in such situations. Therefore, the main objective
is to naturally combine both solvers, and this can be easily done in the framework
of PVM schemes. Both solvers, IFCP and HLL could be re-written as PVM meth-
ods with a similar structure, that allows to combine them in a very natural way,
obtaining the IFCPH solver.

As the two-dimensional landslide model is rotationally invariant, IFCPH solver
could be extended as the HLL solver to deal with the contact discontinuities asso-
ciated to the tangential velocities (see [26])
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This work is organized as follows. In Section 2 we present a 2D extension of
the model proposed in [9] for submarine avalanches. Section 3 is devoted to the
presentation of the IFCPH finite volume solver. Finally, in Section 4, we analyze
the dependency of the model on the parameters involved both in terms of avalanche
dynamics and water wave generation.

2. 2D two-layer Submarine landslide model. In [9] a two-layer 1D model is
presented to study submarine avalanches. The first layer corresponds to the water
and it is modeled by the standard shallow-water system and the submerged sediment
layer is modeled by a Savage-Hutter type system (see [24]).

Savage-Hutter model is characterized by the presence of a Coulomb friction term.
This term opposes the avalanche motion and depends on the pressure at the bottom
and on a friction coefficient. When the driving forces are higher than a threshold,
the avalanche is moving and Coulomb friction applies to the flow [15]. When the
driving forces are smaller, the material stops. The Coulomb friction term in the
model proposed by [9] also includes the bouyancy effect.

In this section we present a 2D simplified extension of the model proposed in
[9] with flat bottom topography. With subindex 1 we denote the unknowns corre-
sponding to the fluid layer: h1 is the height of the fluid layer and ~q 1 = (q11, q12) =
(h1U1, h1V1) is the fluid flux, with ~u1 = (U1, V1) the fluid velocity vector. Index
2 corresponds to the sediment layer: by h2 we denote the height of the sediment
layer and ~q 2 = (q21, q22) = (h2U2, h2V2) is the flux of the granular material, with
~u2 = (U2, V2), the granular velocity vector

h

h

2

1

x

Granular layer y

Water free surfacez

Figure 1. Notation: 2D submarine avalanche on a flat bottom
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∂t (h1) + ∂x(h1U1) + ∂y(h1V1) = 0,

∂t (h1U1) + ∂x(h1U
2
1 ) + ∂y(h1U1V1) + gh1∂x(h1 + h2) = 0

∂t (h1V1) + ∂x(h1U1V1) + ∂y(h1V
2
1 ) + gh1∂y(h1 + h2) = 0

∂t (h2) + ∂x(h2U2) + ∂y(h2V2) = 0,

∂t (h2U2) + ∂x(h2U
2
2 ) + ∂y(h2U2V2) + gh2∂x(rh1 + h2) = Tx

∂t (h2V2) + ∂x(h2U2V2) + ∂y(h2V
2
2 ) + gh2∂y(rh1 + h2) = Ty

(2)

where g is the gravity acceleration, r = ρf/ρs is the ratio between the fluid density,
that it is supposed to be ρf = 1000 kg.m−3 and the density of the granular material,
ρs. Typical values of ρs are between 1200 to 2500 kg.m−3 depending on the solid
volume fraction and on the material involved. Note that we consider here quite
dense granular material consistent with our model. As a result, the density ratio is
0.4 < r < 0.8. T = (Tx, Ty) denotes the Coulomb friction term:

T = −g(1− r)h2µ√
U2

2 + V 2
2

(
U2

V2

)
.

Note that this term is multi-valuated when |~u2| = 0.
The simplest friction law corresponds to a constant friction coefficient:

µ = tan(δ), (3)

where δ is the friction angle, although more complex friction terms have been used
to simulate natural subaerial or submarine landslides (see [17], [22]). For example,
in order to incorporate turbulence effects, McDougall and Hungr [18] proposed to
add a turbulent friction term proportional to (U2

2 +V 2
2 ). Other definitions, deduced

from experimental data, have been proposed by Pouliquen (see [23]) where the
friction coefficient depends on the velocity and thickness of the granular layer. This
law is widely used in the literature but involves at least three parameters that are
difficult to calibrate for natural landslides (see e. g. [4]).

Model (2) can be written in the same form as (1), by setting:

W =




h1

h1U1

h1V1

h2

h2U2

h2V2



, F1(W ) =




h1U1

h1U
2
1

h1U1V1

h2U2

h2U
2
2

h2U2V2



, F2(W ) =




h1V1

h1U1V1

h1V
2
1

h2V2

h2U2V2

h2V
2
2



,

B1(W ) =




0 0 0 0 0 0
gh1 0 0 gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rgh2 0 0 gh2 0 0
0 0 0 0 0 0



,
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B2(W ) =




0 0 0 0 0 0
0 0 0 0 0 0
gh1 0 0 gh1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

rgh2 0 0 gh2 0 0



,

S(W ) = S1,T (W ) + S2,T (W ) is defined by the Coulomb Friction terms,

S1,T (W ) = −g(1− r)h2µ√
U2

2 + V 2
2




0
0
U2

0


 , S2,T (W ) = −g(1− r)h2µ√

U2
2 + V 2

2




0
0
0
V2


 .

Note that Fi(W ), i = 1, 2 represent the convective terms and Bi(W )∂xW are the
pressure terms.

System (2) is rotationally invariant. Thus, if we denote by η = (η1, η2) an unit
vector, and

Rη =

(
η1 η2

−η2 η1

)
, Tη =




1 0 0 0
0 Rη 0 0
0 0 1 0
0 0 0 Rη


 .

and if we also denote

Fη(W ) = F1(W )η1 + F2(W )η2, Bη(W, s) = B1(W )η1 +B2(W )η2,

Sη(W ) = S1,T (W )η1 + S2,T (W )η2.

Then, the following properties follows:

TηFη(W ) = F1(TηW ), TηBη(W ) = B1(TηW ) and TηSη(W ) = S1,T (TηW ). (4)

Moreover, for any unit vector η, system (2) can be rewritten as follows:

∂tW + ∂ηFη + ∂η⊥Fη⊥ +Bη(W )∂ηW +Bη⊥(W )∂η⊥W = Sη(W ) + Sη⊥(W ).

Multiplying previous system by Tη and using (4) we obtain

∂t(TηW ) + ∂ηF1(TηW ) +B1(TηW )∂ηTηW = S1(TηW, ) +Rη⊥ (5)

where

Rη⊥ = −Tη
(
∂η⊥Fη⊥ +Bη⊥(W )∂η⊥W − Sη⊥(W )

)
.

h

K

E

K
i

j

ij

ij

Figure 2. Notation, control volumes
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Up to our knowledge, there is not in the bibliography results on the existence
and uniqueness of solution of this model. It can be seen as a bilayer Shallow Water
system with a specific definition of the friction terms. In this sense we can remark
that in [25] an existence theorem of global weak solutions is presented for a bilayer
Shallow Water system with other friction terms and capillary effects.

3. Numerical scheme. First we set a partition of the domain Ω into control
volumes. We denote the volumes that define the mesh by Ki. Here, quadrilateral
finite volume meshes are considered. In any case, the description of the numerical
scheme is also valid for arbitrary meshes. Let also denote by |Ki| the are of the
volume Ki and by Ei j the common edge between the volumes Ki and Kj . dij is
the distance between the center of mass of both volumes, and ηi j is the unitary
normal vector to Ei j outward to Ki (see Figure 2). We will also denote by Wn

i the
approximation computed by the numerical scheme of the cell average of the solution
at every volume Ki at time tn:

Wn
i ≈

1

|Ki|

∫

Ki

W (x, tn) dx.

Here a two step method is used to discretize (2). In the first step, the Coulomb
friction term is neglected and the non-conservative hyperbolic system is discretized
by means of the IFCPH path-conservative finite volume solver, to obtain the value

W
n+1/2
i given by:

W
n+1/2
i = Wn

i −
∆t

|Ki|
∑

j∈Ki
|Ei j |D−(Wn

i ,W
n
j , ηi j). (6)

In the second step, that corresponds to the discretization of the Coulomb friction

term, we obtain Wn+1
i from W

n+1/2
i as follows:

We set hn+1
1,i = h

n+1/2
1,i , ~q n+1

1,i = ~q
n+1/2
1,i and hn+1

2,i = h
n+1/2
2,i . In order to compute

~q n+1
2,i , let us first define ~u ∗2,i as follows,

~u ∗2,i = ~u
n+1/2
2,i −∆t

g(1− r)µ
| ~u2,i

n+1/2|
~u
n+1/2
2,i .

Then we proceed as follows: if |~u ∗2,i| ≤ g(1−r)µ then we set ~un+1
2,i = ~u ∗2,i. Otherwise

~un+1
2,i = 0. Finally, ~q n+1

2,i is obtained multiplying ~un+1
2,i by hn+1

2,i .

In order to define D−(Wn
i ,W

n
j , ηi j), we consider at each edge Eij of the finite

volume mesh the following 1D projected Riemann problem (see [5], [7] and [10]):




∂tW + ∂ηijFη +Bηij (W )∂ηijW = 0,

W (x, y, t = 0) =

{
Wi if (x, y) ∈ Ki,
Wj if (x, y) ∈ Kj .

Notice that taking into account the invariance by rotation property (4)

∂tW + ∂ηijFη +Bηij (W )∂ηijW =

= T−1
ηij

(
∂tTηijW + ∂ηijF1(TηijW ) +B1(TηijW )∂ηijTηijW

)
.

Then, we propose to define

D−(Wn
i ,W

n
j , ηi j) = T−1

ηijD
−(TηijW

n
i , TηijW

n
j )
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being D−(TηijW
n
i , TηijW

n
j ) the path-conservative fluctuation associated to the fol-

lowing 1D problem:




∂tw(ξ, t) + ∂ξF1(w) +B1(w)∂ξw = 0,

w(ξ, t = 0) =

{
TηijWi if ξ < 0,
TηijWj if ξ > 0.

(7)

System (7) has non-conservative products. The presence of the nonconservative
product implies that the notion of weak solution in the sense of distributions can-
not be used. The theory introduced by Dal Maso, LeFloch, and Murat [8] is followed
here to define weak solutions of (7). This theory allows one to define the noncon-
servative product B1(w)∂ξw as a bounded measure provided a family of Lipschitz
continuous paths ϕ : [0, 1] × Ω × Ω → Ω is prescribed, which must satisfy certain
natural regularity conditions. Here, the family of straight segments is considered:

ϕ(s;wL, wR) = wL + s(wR − wL).

Moreover, the chosen path will play also an important role in the discretization of
the system. As mentioned before, here path-conservative finite volume framework
will be used.

Moreover, system (7) has two linearly degenerated fields associated to the tan-
gential velocities of each layer with respect to the normal vector ηij , that act as two
passive scalars. In this way, the definition of D−(Tηi jWi, Tηi jWj) is blocked based:
the first block corresponds to the non passive scalar unknowns and the second block
to the passive scalar unknowns.

To define D−(Tηi jWi, Tηi jWj), we introduce the following notation. Let N de-
note the set of index associated to the non passive scalar unknowns, that for that (7)
is N = {1, 2, 4, 5}. We also denote by [D−]N the vector defined by the components
of D− with index in N .

The definition of the numerical scheme is done in the following two steps:

◦ Step 1: Definition of [D−(wi, wj)]N .
We consider here path-conservative numerical schemes, corresponding to the fol-

lowing definition:

[D−(wi, wj)]N =
1

2

(
[F1(wj)− F1(wi)]N +B1,ij [wj − wi]N

−Qij([wj − wi]N +A−1
ij [S1,T ,ij ]N )

)
,

(8)

In the previous equation Aij is a generalized Roe matrix (see [20, 19]) associated
to (7) for the equations of the set N , that is

Ai j [wj − wi]N = [F1(wj)− F1(wi)]N +B1,ij [wj − wi]N ,
where

B1,ij [wj − wi]N =

∫ 1

0

[B1(ϕ(s, wi, wj))∂sϕ(s, wi, wj)]Nds

and

[S1,T ,ij ]N = [S1,T (wij)]N ,

being wij an intermediate state computed from wi and wj .
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Note that the numerical diffusion term Qij([wj −wi]N +A−1
ij [S1,T ,ij ]N ) depends

on the Coulomb friction term. This correction is critical in order to preserve accu-
rately the stationary solutions of the form:

~u1 = ~0, ~u2 = ~0, h1 + h2 = cst, and ∂xh2 ≤ µ ∂yh2 ≤ µ.
The viscosity matrix Qij is defined by considering the IFCP method (see [11]):

Qij = αij0 Id+ αij1 Aij + αij2 A
2
ij (9)

where αijl , l = 0, 1 2 are defined in terms of the wave speed of the system:

αij0 = δL S
ij
R S

ij
int + δR S

ij
L S

ij
int + δint S

ij
L S

ij
R ,

αij1 = −SijL (δR + δint)− SijR (δL + δint)− Sijint(δL + δR), (10)

αij2 = δL + δR + δint

with

δL =
|SijL |

(SijL − SijR )(SijL − Sijint)
, δR =

|SijR |
(SijR − SijL )(SijR − Sijint)

,

δint =
|Sijint|

(Sijint − SijL )(Sijint − SijR )
.

Here, SijL and SijR are approximations of the slowest and fastest waves (respectively)
of the Riemann problem associated to intercell Eij . Here, the following expressions
are used:

SijL = min(λ−ext,i, λ
−
ext,ij), SijR = max(λ+

ext,j , λ
+
ext,ij).

Sijint is defined by

Sijint = sij max(|λ−int,ij |, |λ+
int,ij |) (11)

with

sij =

{
sign(SijL ) if |SijL | ≥ |SijR |,
sign(SijR ) otherwise.

(12)

where λ−ext,ij < λ−int,ij < λ+
int,ij < λ+

ext,ij are the eigenvalues of Aij . Moreover, for

the case of wet/dry fronts, that is if hk,i or hk,j is zero for k = 1, 2, we consider the

following definition of the coefficients αijl , l = 0, 1, 2:

αij0 =
SijR |SijL | − SijL |SijR |

SijR − SijL
, αij1 =

|SijR | − |SijL |
SijR − SijL

, αij2 = 0.

With this choice, it is straightforward to check that the Riemann solver reduces to
HLL solver (see [6]), which is more robust when wet/dry fronts appear.

Therefore, the resulting numerical scheme reduces to HLL solver in wet/dry areas
and in other case reduces to IFCP solver.

◦ Step 2: In this second step, we define the components of the numerical fluctuation,
D−, corresponding to the passive scalar unknowns. In this particular system, they
correspond to equations 3 and 6. Taking into account the relation between the
passive scalar and the other variables, and that their associated wave speeds only
depends on the normal velocities of both layers, we propose the following definition:

[D−(wi, wj)]3 =

(
[D−(wi, wj)]1 + [F1(wi)]1

)
C∗1,η⊥i j − [F1(wi)]3
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[D−(wi, wj)]6 =

(
[D−(wi, wj)]4 + [F1(wi)]4

)
C∗2,η⊥i j − [F1(wi)]6.

where, C∗
l,η⊥ij

, l = 1, 2 is an uncentered approximation of the tangential velocities of

each layer through edges Eij :

C∗1,η⊥ij =

{
[TηijWi]3/h1,i if S∗1,ij < 0,
[TηijWj ]3/h1,j if S∗1,ij > 0,

C∗2,η⊥ij =

{
[TηijWi]6/h2,i if S∗2,ij < 0,
[TηijWj ]6/h2,i if S∗2,ij > 0,

(13)
The values S∗l,ij , l = 1, 2 are an approximation of the normal velocities through

edges Eij . We can use for example S∗1,ij = ([D−(wi, wj)]1 + [F1(wi)]1)/h1,ij and

S∗2,ij = ([D−(wi, wj)]4 + [F1(wi)]4)/h2,ij , respectively, being hl,ij =
hl,i+hl,j

2 . Some
other definitions are possible, as the one proposed in [10].

Theorem 3.1. The previous numerical scheme exactly preserves the water at rest
solutions given by

~u1,i = 0, ~u2,i = 0, h1,i + h2,i = cst,
1

|Ki|

√√√√∑

j∈Ki

(
h2,j − h2,i

∆xηi,j,1 + ∆yηi,j,2

)2

≤ µ.

The proof is similar to the one performed in [9].

4. Numerical tests: submarine collapse of initially cylindrical granular
masses. In this section we simulate a set of submarine circular dam-break problems
and we also compare them with some existing laboratory data for the case of aerial
avalanches. Let us denote by R the radius of the initial granular column and by
H2 its initial height. H1 designs the initial height of the water layer above the
sediment column (See Figure 3). We introduce two aspect ratios : aH = H1/H2

and a2 = H2/R. By scaling the equations as proposed below, we observe that the
dimensionless equations only depend on aH and a2 and not on the granular mass
or on the gravity acceleration g.

x

y

Water free surfacez

H

R

H

1

2

Figure 3. Initial condition and notation

The following change of variable is done:

(x, y) = (R x̃,R ỹ), t =

√
R

g
t̃,

Ul =
√
gHlŨl, Vl =

√
gHlṼl, hl = Hlh̃l, l = 1, 2.
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By omitting the tildes, we obtain the following system




√
aH
a2

∂t (h1) + aH∂x(h1U1) + aH∂y(h1V1) = 0,

√
aH
a2

∂t (h1U1) + aH∂x(h1U
2
1 ) + aH∂y(h1U1V1) + h1∂x(aHh1 + h2) = 0

√
aH
a2

∂t (h1V1) + aH∂x(h1U1V1) + aH∂y(h1V
2
1 ) + h1∂y(aHh1 + h2) = 0

1√
a2
∂t (h2) + ∂x(h2U2) + ∂y(h2V2) = 0,

1√
a2
∂t (h2U2) + ∂x(h2U

2
2 ) + ∂y(h2U2V2) + h2∂x(raHh1 + h2) = Tx

1√
a2
∂t (h2V2) + ∂x(h2U2V2) + ∂y(h2V

2
2 ) + h2∂y(raHh1 + h2) = Ty

where

T = −a2(1− r)h2µ√
U2

2 + V 2
2

(
U2

V2

)
.

and µ = tan δ. So, the solutions are mainly governed by the values of aH , a2, r and
δ.

In what follows, we initially check that the previous numerical scheme is able
to recover the stationary profiles of aerial avalanches. Aerial avalanches (not sub-
merged) can be described here by setting r = 0. Next, we will consider fully
submerges landslides and we perform some sensitivity analysis with respect to the
parameters aH , a2, r and δ.

The initial condition is ~q1 = ~0, ~q2 = ~0,

h1(x, 0) = aHa2R+ a2R− h2(x, 0),

h2(x, 0) =

{
a2R if (x− x0)2 + (y − y0)2 ≤ (R)2,
0 otherwise.

We set the domain [0, 0.6]m×[0, 0.6]m, the center of the cylinder is (x0, y0) =
(0.3m, 0.3m) and R = 0.0705m. The domain is decomposed in 200 × 200 square
finite volumes.

We compare the numerical solutions for r = 0, r = 0.2, r = 0.4, r = 0.6 and
r = 0.8 with laboratory data of dry granular flows, i. e. corresponding to r = 0.
The case r = 0.2 is presented to show the transition between submarine and aerial
avalanches. The test is done for a2 = 0.56 as in the experiments (1) in the sub-aerial
case and (2) for different values of the relative height aH = 1, 2, 10 to assess the
sensitivity of the flow dynamics and generated tsunami to the water depth.

We also denote

η(x, t) = h1(x, t) + h2(x, t)−Aref .
where Aref is the reference water surface. For this test Aref = h1(x, 0) + h2(x, 0).

We begin with the experiments corresponding to a2 = 0.56. First, in Figure 4 the
comparison between the experiment with r = 0 and experimental data is presented.
A good agreement of the numerical results and the laboratory data can be observed.
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(a) h2 at t=80 ms.
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(b) h2 at t=160 ms.
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(c) h2 at t=240 ms.
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(d) h2 at t=580 ms.

Figure 4. Granular mass profiles. h2 evolution for r = 0.

In Figure 5 a comparison between the evolution of the sediment layer for different
values of r is presented, where aH is set to 1. For other values of aH , similar
behaviour is obtained. The evolution of the submarine avalanche depends on r. For
smaller values of r, the final deposit is quickly reached.

In Figure 6 we present the evolution of the front of the avalanche denoted by
xfront. Figure 6(c) correspond to Lf , the final length of the deposit. We observe
that the final length of the avalanche is smaller for bigger values of r and bigger
values of aH . The main difference of the final length between the aerial avalanche
(corresponding to r = 0) and submarine avalanches corresponds to r = 0.8 and
aH = 10.

In Figure 7 we present the evolution of xfront, for the values aH = 1 and aH = 10.
We can observe how, effectively the final deposit is reached previously for smaller
values of r. , i. e. the propagation time is smaller. The front position is more
sensitive to r for aH = 1 than for aH = 10.

In Figure 8 we represent the evolution of maxx |η(x, t)|, for t = 80, 160, 240 and
540 ms. We observe that the perturbation of the water surface are bigger from
smaller values of r and also smaller values of the aspect ratio aH . Indeed, the
spreading has been shown to be faster for small values of r and the water surface is
more sensitive to the granular flow if it is closer to it. For aH = 10 there is almost
no perturbation of the water surface, during the submarine avalanche. In Figure
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(c) h2 at t=240 ms.
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(d) h2 at t=580 ms.

Figure 5. Granular mass profiles. h2 evolution for aH = 1,
r ∈ {0, 0.2, 0.4, 0.6, 0.8}.

9 the evolution of the water surface for aH = 1 and aH = 2 is presented. We can
observe the different behaviour of the water surface, depending on the initial aspect
ratios.

In Figure 10 the tridimensional evolution of the sediment avalanche and water
surface, for r = 0.4 and aH = 1 is presented.

5. Conclusion. In this work we present a preliminary study of the influence of
the ratio of densities and the characteristic dimensions of a cylindrical submarine
landslide over a flat bottom topography. This is done by considering a 2D general-
ization of the model presented in [9] where the bottom topography is supposed to
be flat. The 2D system is discretized by a first order Riemann solver that results of
the combination of the IFCP and HLL Riemann solvers. In particular, the solver
reduces to the HLL in wet/dry regions, while the IFCP solver is used in the other
regions. Finally, the model has been written in non-dimensional variables in terms
of the aspect ratio between the initial height of the avalanche and the initial height
of the fluid above the granular mass, and the aspect ratio of the initial sediment
mass. The evolution of the maximum amplitude of the free surface and the front
position has been studied in terms of the aspect ratios, the ratio of densities r and
the friction angle. A comparison with experimental data for the limit case when
r = 0, corresponding to aerial avalanches has been also presented. We observe that
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Figure 6. xfront evolution and Lf for r ∈ {0, 0.2, 0.4, 0.6, 0.8},
aH ∈ {1, 2, 10}.
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Figure 7. xfront for aH = 1 and aH = 10 for r ∈ {0, 0.2, 0.4, 0.6, 0.8}.
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(b) aH = 2
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Figure 8. maxx |η| for aH = 1, aH = 2 and aH = 10, r ∈ {0.2, 0.4, 0.6, 0.8}.

the mass spreading takes more time and lead to smaller runout distance for granu-
lar flows of smaller density, leading to a smaller amplitude of the generated water
wave. When the granular mass is closer to the water free surface, the runout of
the granular flow is smaller but the generated water wave is bigger than when it is
10 times deeper. For intermediate values of the water depth, the behavior is more
complex.
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[25] J.D. Zabsonré, G. Narbona-Reina. Existence of global weak solution for a 2D viscous bilayer

Shallow-Water model. Nonlin. Anal. Real World Appl. 10(5) (2009) 2971–2984.
[26] E.F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley, England

(2001).

E-mail address: edofer@us.es

E-mail address: castro@anamat.cie.uma.es

E-mail address: mangeney@ipgp.jussieu.fr

191



ON STATIONARY BIFURCATION PROBLEM FOR THE

COMPRESSIBLE NAVIER-STOKES EQUATIONS

Yoshiyuki Kagei

Faculty of Mathematics ∗

Kyushu University

Fukuoka 819-0395, Japan

Abstract. Bifurcation of wave trains from the Poiseuille flow of the compress-
ible Navier-Stokes equations is studied. Results on instability of the Poiseuille

flow and the bifurcation of wave trains are summarized. A sketch of the proof

of the bifurcation is given to illustrate a scheme to prove stationary bifurcation
in the compressible Navier-Stokes equations.

1. Introduction. This article is concerned with stationary bifurcation problem for
the compressible Navier-Stokes equations. To discuss it we will review the result
in [7] on the bifurcation of wave trains (spatio-temporal periodic traveling waves)
from the Poiseuille flow. Let us consider the following compressible Navier-Stokes
system for a barotropic motion:

∂tρ+ div (ρv) = 0, (1)

ρ(∂tv + v · ∇v)− µ∆v − (µ+ µ′)∇divv +∇P (ρ) = ρg, (2)

where ρ = ρ(x, t) and v = >(v1(x, t), v2(x, t)) are the unknown density and velocity,
respectively, at time t ≥ 0 and position x ∈ R2; P = P (ρ) is the pressure that is
assumed to be a smooth function of ρ; µ and µ′ are the viscosity constants; and g
is a given external force. Here and in what follows >· stands for the transposition.

We assume that P ′(ρ∗) > 0 for a given positive constant ρ∗ and µ > 0, µ+µ′ ≥ 0.
The system 1–2 is considered in a two-dimensional infinite layer Ω = R× (0, `):

Ω = {x = (x1, x2) : x1 ∈ R, 0 < x2 < `}.
The external force g is assumed to have the form

g = ge1,

where g is a positive constant and e1 = >(1, 0) ∈ R2.

We consider the system 1–2 under the boundary condition

v|x2=0,` = 0. (3)
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We impose the periodic boundary condition on ρ and v in x1:

ρ(x1 + 2πk
α , x2, t) = ρ(x1, x2, t), v(x1 + 2πk

α , x2, t) = v(x1, x2, t), (4)

where α > 0 is a given wave number and k is any integer.
One can easily verify that 1–4 has a stationary solution us = >(ρs,vs) of the

form

ρs = ρ∗, vs =
ρ∗g
2µ

x2(`− x2)e1.

This stationary solution is called the plane Poiseuille flow.
In this article we will summarize the result in [7] on the bifurcation of wave

trains from the plane Poiseuille flow and will give a sketch of its proof to illustrate a
scheme to prove stationary bifurcation in the compressible Navier-Stokes equations.

Bifurcation problems for equations describing fluid motions has been exten-
sively studied for the incompressible Navier-Stokes equations since 1960’s; see,
e.g., [5, 9, 13, 14], and so on. Classical bifurcation theories such as the one by
Crandall and Rabinowitz [1] is directly applicable to bifurcation problems for the
incompressible Navier-Stokes equations. This is because the incompressible Navier-
Stokes equations can be classified in semilinear parabolic systems. In contrast to
the incompressible case, bifurcation problems for the multi-dimensional compress-
ible Navier-Stokes equations which are classified in quasilinear hyperbolic-parabolic
systems have begun to be studied recently. The first result for compressible bi-
furcation problems was given by Nishida, Padula and Teramoto [11] (cf., [10]) who
proved the existence of bifurcating convection solutions for thermal convection prob-
lem. The main difficulty in the proof of the bifurcation for the compressible system
arises from the convection term v ·∇ρ in 1; this term may cause the derivative-loss;
in other words, it is not Frechét differentiable in a standard setting in classical bifur-
cation analysis. In [11], the effective viscous flux is used to overcome this difficulty
and establish the necessary estimates for the proof of the bifurcation of stationary
convective patterns. In [7], a bifurcation problem of wave trains from the plane
Poiseuille flow in viscous compressible fluids was studied. The effective viscous flux
is not employed in the proof in [7]. Instead, an iterative argument based on the
method of characteristics is employed, that is, the convection term v · ∇ρ in 1 is
regarded as a part of the principal part as in the proof of the local solvability of
the time evolution problem. To prove the existence of bifurcating wave trains, the
time evolution problem is rewritten to a stationary problem in a moving coordi-
nates. The Lyapunov-Schmidt reduction then applies to decompose the stationary
problem into the parts on the null space of the linearized operator and its com-
plementary subspace. One of the points of the proof is to establish the solvability
in the complementary subspace. The complementary part is solved based on the
estimates obtained by the Matsumura-Nishida energy method [12] and the results
by Heywood and Padula [3] on the resolvent problem for transport equation includ-
ing the convective term v · ∇ρ as in 1 with a given velocity v. The method in [7]
will be widely applicable to stationary bifurcation problems for certain classes of
quasilinear hyperbolic-parabolic systems.

We mention one more remark. The bifurcation theory in [1, 2] also provides the
stability of bifurcating solutions and smooth dependence of bifurcating solutions
on the bifurcation parameter, which is applicable to incompressible problems. The
situation in compressible cases is different. In fact, it is not straightforward to
conclude the stability and smooth dependence because of the derivative-loss in v·∇ρ.
These issues will be discussed in [8].
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The remaining of this article is devoted to surveying the bifurcation result and a
sketch of its proof given in [7]. In section 2, a non-dimensional form of the system
1–2 is firstly derived and then it is rewritten into the system of equations for the
perturbation. The instability result of the plane Poiseuille flow obtained in [6] is
given in section 3. We state in section 4 the result on the existence of bifurcating
wave trains obtained in [7]; and we give a sketch of the proof of the bifurcation
result in section 5.

2. Preliminaries. In this section we first derive a non-dimensional form of the
system 1–2 and then give the system of equations for the perturbation. In the
second part of this section we introduce notations used in this article.

2.1. Non-dimensionalization. We transform the problem into the non-dimensional
form under the following variable transformations: x = `x̃, t = `

V t̃, v = V ṽ,

ρ = ρ∗ρ̃, P = ρ∗P ′(ρ∗)p, where V = ρ∗g`
2

µ .

Using these new non-dimensional variables, we arrive at the system of equations,
after omitting tildes,

∂tρ+ div (ρv) = 0, (5)

ρ(∂tv + v · ∇v)− ν∆v − (ν + ν′)∇divv + γ2∇p(ρ) = νρe1. (6)

Here ν, ν′ and γ are the non-dimensional parameters given by ν = µ
ρ∗`V

, ν′ = µ′

ρ∗`V

and γ =

√
P ′(ρ∗)
V . The assumption P ′(ρ∗) > 0 is reduced to the form p′(1) = 1. To

derive 6 we have used the relation `g
V 2 = ν.

The system 5–6 is then considered on the two-dimensional infinite layer:

{x = (x1, x2) ; x1 ∈ R, 0 < x2 < 1}.
Our purpose is to show the existence of wave trains of 5–6 bifurcating from the

plane Poiseuille flow. Under the above non-dimensionalization, the plane Poiseuille
flow is transformed into us = >(ρs,vs), where

ρs = 1, vs = >(v1
s(x2), 0), v1

s(x2) =
1

2
(−x2

2 + x2).

We substitute u(t) = >(φ(t),w(t)) with φ(t) = γ2(ρ(t)−ρs) and w(t) = v(t)−vs
into 5 and 6 to obtain the equations for the perturbation. Since ρs = 1, vs =
>(v1

s(x2), 0) and −∆vs = e1, we have

∂tφ+ v1
s∂x1

φ+ γ2divw = f0, (7)

∂tw − ν∆w − ν̃∇divw +∇φ− ν

γ2
φe1 + v1

s∂x1w + (∂x2v
1
s)w2e1 = f . (8)

Here ν̃ = ν + ν′; and f0 and f = >(f1, f2) are the nonlinear terms:

f0 = −div (φw),

f = −w · ∇w − φ

γ2 + φ

(
ν∆w +

ν

γ2
φe1 + ν̃∇divw

)
+ P (1)(φ)φ∇φ

with

P (1)(φ) =
1

γ2 + φ

(
1−

∫ 1

0

p′′(1 + θγ−2φ) dθ

)
.

The boundary conditions are written as

w|x2=0,1 = 0, φ, w: 2π
α -periodic in x1, (9)

where α is a given positive number.
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2.2. Notation. For a given α > 0, we denote the basic period cell by Ωα = Tα ×
(0, 1), where Tα = R/ 2π

α Z.

We denote by L2(Ωα) the usual L2 space on Ωα with norm ‖ · ‖2, and likewise,
by Hk(Ωα) the k th order L2 Sobolev space on Ωα with norm ‖ · ‖Hk . We also
denote by C∞0 (Ωα) the space of functions in C∞(Ωα) which vanish near x2 = 0, 1.
We define H1

0 (Ωα) by the H1(Ωα) -closure of C∞0 (Ωα).
The inner product of fj ∈ L2(Ωα) (j = 1, 2) is denoted by

(f1, f2) =

∫

Ωα

f1(x)f2(x) dx.

Here z denotes the complex conjugate of z.
We define 〈φ〉 by

〈φ〉 =
1

|Ωα|

∫

Ωα

φ(x) dx.

We also define L2
∗(Ωα) by

L2
∗(Ωα) = {φ ∈ L2(Ωα); 〈φ〉 = 0}.

Furthermore, we set

Hk
∗ (Ωα) = Hk(Ωα) ∩ L2

∗(Ωα).

The inner product of uj = >(φj ,wj) ∈ L2(Ωα) (j = 1, 2) is defined by

〈u1, u2〉 =
1

γ2

∫

Ωα

φ1(x)φ2(x) dx+

∫

Ωα

w1(x) ·w2(x) dx.

In the following we omit Ωα in L2(Ωα), Hk(Ωα), · · · , and etc., and simply write
them as L2, Hk, · · · , and etc.

The resolvent set of a closed operator A is denoted by ρ(A) and the spectrum
of A by σ(A). We denote the null space and the range of A by N(A) and R(A),
respectively.

3. Instability of plane Poiseuille flow. In this section we briefly state the in-
stability result on the plane Poiseuille flow obtained in [6].

We consider the linearized problem

∂tφ+ v1
s∂x1φ+ γ2divw = 0, (10)

∂tw − ν∆w − ν̃∇divw +∇φ− ν

γ2
φe1 + v1

s∂x1w + (∂x2v
1
s)w2e1 = 0, (11)

w|x2=0,1 = 0, φ,w : 2π
α -periodic in x1, (12)

u|t=0 = u0 = >(φ0,w0). (13)

We define the space X by

X = L2
∗ × (L2)2

and the operator L on X by

D(L) =
{
u = >(φ,w) ∈ X; w ∈ (H1

0 )2, Lu ∈ X
}
,

L =

(
v1
s∂x1

γ2div

∇ −ν∆− ν̃∇div

)
+




0 0

− ν
γ2 e1 v1

s∂x1
+ (∂x2

v1
s)e1

>e2


 .

Here e2 = >(0, 1). Following the argument in [4] one can show that −L generates
a C0-semigroup in X.
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We have the following instability criterion for the plane Poiseuille flow.

Theorem 3.1. ([6]) There exist positive constants r0 and η0 such that if α ≤ r0,
then

σ(−L) ∩
{
λ ∈ C; |λ| ≤ η0

}
= {λαk; |k| = 1, · · · , n0}

for some n0 ∈ N, where λαk are simple eigenvalues of −L that satisfy

λαk = − i
6

(αk) + κ0(αk)2 +O(|αk|3)

as αk → 0. Here κ0 is the number given by

κ0 =
1

12ν

[(
1

280
− γ2

)
− ν

30γ2
(3ν + ν′)

]
.

As a consequence, if γ2 < 1
280 and ν(3ν + ν′) < 30γ2

(
1

280 − γ2
)
, then κ0 > 0 and

the plane Poiseuille flow us = >(φs,vs) is linearly unstable.

We note that the eigenspace for λαk is spanned by a function of the form
u(x2)eiαkx1 with an eigenfunction u(x2) for the eigenvalue λαk of −Lη,k, where
Lη,k is an operator given in 18 below. See [6, Sections 4–6].

4. Bifurcation of wave trains. In this section we state the result on the existence
of wave trains bifurcating from the plane Poiseuille flow after its becoming unstable.

We fix γ in such a way that 1
280 − γ2 > 0; and we regard ν as a bifurcation

parameter. We denote the eigenvalue λαk by λαk(ν):

λαk = λαk(ν),

and the linearized operator L by Lν :

L = Lν .

We take ν̃0 > 0 in such a way that κ0 = 0, where κ0 is the coefficient of (αk)2

of λαk(ν) described in Theorem 3.1. Then, a perturbation argument shows that for
each 0 < α � 1, there exists ν0 > 0 such that Reλ±α(ν0) = 0, Reλ±α(ν) < 0 iff
ν > ν0 and Reλ±α(ν) > 0 iff ν < ν0; if α � 1, then λ±α(ν) cross the imaginary
axis from left to right at ν = ν0 when ν is decreased. See [7, Section 6].

On the spectrum, we assume the following:

σ(−Lν0) ∩ {λ; Reλ = 0} = {λα(ν0), λ−α(ν0)}. (14)

The result on the bifurcation of wave trains is now stated as follows.

Theorem 4.1. ([7]) Assume that 14 holds true. Then there is a solution branch
{ν, u} = {νε, uε} (|ε| � 1) such that

νε = ν0 +O(ε),

uε = uε(x1 − cεt, x2), uε(x1 + 2π
α , x2) = uε(x1, x2),

uε(x1, x2) = ε




1
1

2γ2 (−x2
2 + x2)

0


 √2

2 cosαx1(1 +O(α)) +O(ε2),

cε = 1
6 +O(ε).
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5. Sketch of Proof of Theorem 4.1. In this section we give a sketch of proof of
Theorem 4.1. Details can be found in [7, Sections 5–6].

We introduce a new bifurcation parameter η = ν − ν0. We then write Lη+ν0 as
Lη for simplicity in notation.

Let us consider the nonlinear problem which is written in the form:

∂tũ+ Lηũ = F (η, ũ), (15)

where F (η, ũ) denotes the nonlinear term.
Our task is to find a nontrivial solution in the form ũ(x1, x2, t) = u(x1 − ct, x2).

Substituting this into 15, we have

Lc,ηu = F (η, u), (16)

where Lc,η = Lη − c∂x1 .
To solve 16, we investigate the spectrum of Lc,η.

5.1. Spectrum of −L0. We consider the resolvent problem for −Lη:

λu+ Lηu = F. (17)

To investigate this problem, u and F are expanded into the Fourier series in x1:

u =

√
α

2π

∑

k∈Z
uk(x2)eiαkx1 , uk = >(φk,wk),

F =

√
α

2π

∑

k∈Z
Fk(x2)eiαkx1 , Fk = >(f0

k ,fk)

with
∫ 1

0
φ0(x2) dx2 =

∫ 1

0
f0

0 (x2) dx2 = 0. The problem is then reduced to the
following problem for each k ∈ Z:

(λ+ Lη,k)uk = Fk. (18)

Here Lη,k is the operator on L2
k(0, 1) × L2(0, 1)2 obtained by replacing ∂x1 in Lη

by iαk with domain D(Lη,k) = {uk = >(φk,wk) ∈ L2
k(0, 1) × L2(0, 1)2;wk ∈

H1
0 (0, 1)2, Lη,kuk ∈ L2

k(0, 1)× L2(0, 1)2}, where

L2
k(0, 1) =

{
L2(0, 1) (k 6= 0)

L2(0, 1) ∩ {φ;
∫ 1

0
φ(x2) dx2 = 0} (k = 0).

We denote by L̃η the extension of Lη to X̃ = L2× (L2)2, and likewise, we define an

operator L̃η,k on L2(0, 1)×L2(0, 1)2 by the extension of Lη,k to L2(0, 1)×L2(0, 1)2.

It follows that L̃η,k = Lη,k when k 6= 0 and Lη,0 is the restriction of L̃0,η to

L2
0(0, 1)×L2(0, 1)2. The adjoint operator L̃∗η with respect to the inner product 〈·, ·〉

is given by

L̃∗η =

(−v1
s∂x1

−ν>e1 − γ2div

−∇ −ν∆− ν̃∇div − v1
s∂x1

+ (∂x2
v1
s)e2

>e1

)
.

The adjoint operators L̃∗η,k of L̃η,k are similarly given.

Since X is an invariant space of L̃η, if λ is an eigenvalue of −Lη, then the

eigenprojection for λ of −Lη is the restriction of the eigenprojection for λ of −L̃η.

The same assertions also hold for eigenprojections of Lη,0 and L̃η,0.
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Under the assumption 14, we have the following information on the spectrum.
In the following we set

λ±α(ν0) = ±ia,
where a = −α6 (1 +O(α2)) ∈ R \ {0}.
Proposition 1. There holds σ(−L0,±1) ∩ {λ; Reλ = 0} = {±ia}, where ±ia are
isolated simple eigenvalues of −L0,±1, N(±ia+L0,±1) = span{v±1}, and v−1 = v+1.
Furthermore, there exists a positive constant β such that σ(−L0,k) ⊂ {λ; |Reλ| ≥ β}
for all k ∈ Z with k 6= ±1.

As for the eigenprojections for the eigenvalues ±ia, we have the following

Proposition 2. The eigenprojections Π± for the eigenvalues ±ia are given by

Π±u = 〈〈u, v∗±1〉〉v±1, where N(∓ia+ L̃∗0,±1) = span{v∗±1}, 〈〈v±1, v
∗
±1〉〉 = 1. Here,

for uj = >(φj ,wj)
∈ L2(0, 1) (j = 1, 2), the symbol 〈〈u1, u2〉〉 denotes

〈〈u1, u2〉〉 =
1

γ2

∫ 1

0

φ1(x2)φ2(x2) dx2 +

∫ 1

0

w1(x2) ·w2(x2) dx2.

We thus conclude that σ(−L0) has the following properties.

Proposition 3. There holds σ(−L0) ∩ {λ; Reλ = 0} = {±ia}. Here ±ia are
isolated simple eigenvalues of −L0 and N(±ia + L0) = span{V±}, where V± =
v±1(x2)e±iαx1 .

We set V ∗± = α
2πv
∗
±1(x2)e±iαx1 . It then follows that −L̃∗0V ∗± = ∓iaV ∗±, 〈V±, V ∗±〉 =

1, 〈V±, V ∗∓〉 = 0, and the eigenprojections P± for ±ia of −L0 are given by

P±V = 〈V, V ∗±〉V±.
5.2. Spectrum of −Lc0,0. We next investigate the spectrum of the critical oper-
ator −Lc0,0.

Proposition 4. Set c0 = − a
α . Then σ(−Lc0,0) ∩ {λ; Reλ = 0} = {0}, where 0 is

an isolated semisimple eigenvalue of −Lc0,0 and N(−Lc0,0) = span{V+, V−} with

V− = V+.

Let us consider the eigenprojection for the eigenvalue 0 of −Lc0,0. We have

N(−Lc0,0) = span{V1, V2}, 〈Vj , V ∗k 〉 = δjk, j, k = 1, 2.

Here

V1 =
√

2ReV+, V2 =
√

2ImV+, V ∗1 =
√

2ReV ∗+, V ∗2 =
√

2ImV ∗+.

We define the symbol JuKj (j = 1, 2) by JuKj = 〈u, V ∗j 〉. We set P , P1 and P2 as

Pu = P1u+ P2u, Pju = JuKjVj (j = 1, 2).

We have the following properties of Pj .

Proposition 5. P is the eigenprojection for the eigenvalue 0 of −Lc0,0; and

R(Pj) = span{Vj}, P 2
j = Pj , PjPk = O (j 6= k).

For each nonnegative integer k, Pj are bounded from L2
∗ × (L2)2 to Hk

∗ × (Hk)2:

‖Pju‖Hk×(Hk)2 ≤ C‖u‖2.
Furthermore, u ∈ R(I − Pj) if and only if JuKj = 0.
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5.3. Lyapunov-Schmidt reduction. To look for nontrivial solutions of 16, we
employ the Lyapunov-Schmidt reduction. We wet

c = c0 + εσ, u = ε(V1 + εV ), V ∈ R(Q), Q = I − P,
Here ε is a small parameter.

We write
Lη = L0 + ηK0,

where

K0 =
1

η
(Lη − L0) =

(
0 0

− 1
γ2 e1 −∆−∇div

)
.

It follows that
Lc,η = Lc0,0 − εσ∂x1 + ηK0.

Setting η = εω, we rewrite the problem 16 as

Lc0,0V − σ∂x1(V1 + εV ) + ωK0(V1 + εV ) =
1

ε2
F (εω, ε(V1 + εV )). (19)

We write the right-hand side as

1

ε2
F (εω, ε(V1 + εV )) = −N [V1 + εV ](V1 + εV ) +G(ε, εω, V1 + εV ),

where
N [ũ]u = >(div (φw̃),0)

for ũ = >(φ̃, w̃) and u = >(φ,w), and

G(ε, ω, u) = >(0, g(ε, ω, u))

with

g(ε, ω, u) = −w · ∇w − φ
γ2+εφ

(
(ν0 + ω)∆w + (ν0+ω)

γ2 φe1 + (ν̂0 + ω)∇divw
)

+P (1)(εφ)φ∇φ
for u = >(φ,w), where ν̂0 = ν0 + ν′.

We now decompose 19 into a finite-dimensional part and an infinite-dimensional
part.

Taking the inner product of 19 with V ∗j (j = 1, 2) and applying Q to 19 we have

ωJK0V1K1 = −εωJK0V K1 − JN [V1 + εV ](V1 + εV )K1

+JG(ε, εω, V1 + εV )K1,
(20)

ωJK0V1K2 + ασ = −εωJK0V K2 − JN [V1 + εV ](V1 + εV )K2

+JG(ε, εω, V1 + εV )K2,
(21)

ωQK0V1 + (Lc0,0 − εσQ∂x1
+ εQN [V1 + εV ])V

= −εωQK0V −QN [V1 + εV ]V1 +QG(ε, εω, V1 + εV ).
(22)

Here we have used J∂x1(V1 + εV )K1 = 0 and J∂x1(V1 + εV )K2 = −α.
In the classical bifurcation theory, the nonlinearity is regarded as a perturbation

of the linearized part. This does not work well for the problem under consideration,
since the term εQN [V1 + εV ]V causes derivative loss in a standard setting of the
classical bifurcation theory. We thus put εQN [V1 + εV ]V on the left-hand side of
22 to regard it as a part of the principal part as in the proof of the local solvability
of the time quasilinear evolution problem. This is the main difference to the case
of the incompressible problem.

199



BIFURCATION FOR VISCOUS COMPRESSIBLE SYSTEM

The problem 20–22 is now formulated in the form

T (ε, σ, V )U = F(ε, U), (23)

where U = >(ω, σ, V ) ∈ R×R×X2. Here and in what follows we define the function
space X` by X` = H`

∗ × (H`+1 ∩H1
0 )2, ` = 1, 2. The map T (ε, σ, V )U is defined as

follows; for a given (σ̃, Ṽ ) ∈ R×X2, we define the linear map T (ε, σ̃, Ṽ ) by

T (ε, σ̃, Ṽ ) : R× R×QX` → R× R×Q(H` × (H`−1)2), ` = 1, 2,

T (ε, σ̃, Ṽ ) =




JK0V1K1 0 0

JK0V1K2 α 0

QK0V1 0 Lc0,0 − εσ̃Q∂x1
+ εQN [V1 + εṼ ]


 .

The map F(ε, U) on the right-hand side of 23 is defined in such a way that F(ε, U) =
>(F1(ε, U),F2(ε, U),F3(ε, U)) with Fj(ε, U) (j = 1, 2, 3) given by the right-hand
side of 20, 21, 22, respectively.

If we would have a suitable invertibility of the map T (ε, σ̃, Ṽ ) we could solve the
problem 23. One can show the following

Proposition 6. If 0 < α� 1, then the following assertions hold true.

(i) JK0V1K1 > 0.

(ii) For a given positive number M , there exists a positive constant ε1 such that if

|ε| ≤ ε1 and |σ̃|+ ‖Ṽ ‖X2 ≤M , then Lc0,0− εσ̃Q∂x1
+ εQN [V1 + εṼ ] has a bounded

inverse from Q(H`
∗ × (H`−1)2) to QX` (` = 1, 2).

Proposition 6 (i) can be proved by a perturbation argument for 0 < α � 1. To
prove Proposition 6 (ii), we apply the Matsumura-Nishida energy method [12] and
the results on the resolvent problem for transport equation by Heywood and Padula
[3]; see [7, Section 6].

Proposition 6 implies the invertibility of T (ε, σ̃, Ṽ ) as follows.

Proposition 7. Under the assumption of Proposition 6, the operator T (ε, σ̃, Ṽ )
has a bounded inverse from R× R×Q(H`

∗ × (H`−1)2) to R× R×QX` (` = 1, 2),
and the estimates

‖T (ε, σ̃, Ṽ )−1U‖R×R×X` ≤ C1‖U‖R×R×H`×(H`−1)2 , ` = 1, 2,

hold uniformly for U = >(ω, σ, V ).

The nonlinear map F(ε, U) satisfies the following estimates. Let CS be the
positive constant appearing in the Sobolev inequality: ‖φ‖L∞ ≤ CS‖φ‖H2 .

Proposition 8. For given M ∈ (0, γ2

2CS
], there exists a positive constant ε2 such

that if |ε| ≤ ε2, ‖U‖R×R×X2 ≤ M and ‖U (j)‖R×R×X2 ≤ M (j = 1, 2), then the
estimates

‖F(ε, U)−F(0, 0)‖R×R×H2×(H1)2 ≤ C(M)M |ε|,

‖F(ε, U (1))−F(ε, U (2))‖R×R×H1×(L2)2 ≤ C(M)|ε|‖U (1) − U (2)‖R×R×X1 ,

hold true, where C(M) > 0 is a nondecreasing continuous function of M .
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5.4. Iteration argument. To obtain a solution branch of wave trains, we employ
an iteration argument based on Propositions 7 and 8.

We construct approximate solutions U (n) = >(ω(n), σ(n), V (n)) (n ≥ 1) as follows.
Let U (1) be the solution of

T (0, 0, 0)U (1) = F(0, 0)

= >(JF (0, V1)K1, JF (0, V1)K2, QF (0, V1)).

Here F (0, V1) is given by F (0, V1) = −N [V1]V1 +G(0, 0, V1). Proposition 7 shows

‖U (1)‖R×R×X2 ≤ C1‖F(0, 0)‖R×R×H2×(H1)2 <∞. (24)

LetM = 2C1‖F(0, 0)‖R×R×H2×(H1)2 and assume that |ε| ≤ min{ε1, ε2,
1

2C1C(M)}.
Then U (n) (n ≥ 2) can be defined by the solution of

T (ε, σ(n−1), V (n−1))U (n) = F(ε, U (n−1)). (25)

By using Propositions 7 and 8, one can show, with an inductive argument, that

‖U (n)‖R×R×X2 ≤M
for all n ≥ 1, and that {U (n)} is a Cauchy sequence in R×R×X1 for sufficiently small
ε. It then follows that if |ε| ≤ ε0 for some small positive constant ε0, there exists
U = >(ω, σ, V ) ∈ R×R×X2 satisfying T (ε, σ, V )U = F(ε, U). The desired branch
of wave trains is now obtained as ν = ν0 +εω, u = εV1(x1−ct, x2)+ε2V (x1−ct, x2),
c = c0 + εσ.
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Abstract. In this paper we review the algorithm development in high order

methods for some conservation laws. The emphasis is on our recent contri-
bution in the study of two model classes: Fokker-Planck-type equations and

hyperbolic conservation law systems. For the former we will review free-energy-

satisfying and positivity-preserving schemes. For the later we will review the
general invariant-region-preserving (IRP) limiter, and its application to high

order methods for multi-dimensional hyperbolic systems of conservation laws.

1. Introduction. Systems of conservation laws for field quantities arise in diverse
applications. Their solutions may be visualized as evolving observables or propa-
gating waves. When the system is nonlinear, solution profiles can become steeper
as shocks or even concentrated as measures, propagation of these profiles cause
mathematical and numerical challenges in solving systems of conservation laws.

We are interested in building structure-preserving high order numerical methods
for time-dependent conservation laws through model refinement. In this paper we
restrict to two model classes: Fokker-Planck-type equations and hyperbolic conser-
vation law systems. By structure preserving algorithms we mean algorithms that
can preserve certain intrinsic solution properties at the discrete level.

For Fokker-Planck-type equations, the three main solution properties are mass
conservation, non-negativity, and the free energy/entropy dissipation law. We
present a second order explicit-implicit scheme that satisfies all three properties
at the discrete level, without a strict time step restriction [15], and discuss how
to incorporate these solution properties into a high order discontinuous Galerkin
(DG) method of arbitrary order [19]. For multi-dimensional hyperbolic conserva-
tion law systems endowed with a convex invariant region in the phase space, main
solution properties are also in three aspects: solution conservation, invariant region
preservation, and the entropy dissipation law. Here we only review the invariant-
region-preserving (IRP) limiter designed in [10], and has been tested in [9, 11] for
systems of Euler equations.

The organization of this paper is as follows. Section 2 is devoted to two models
and their main mathematical properties. Section 3 gives a short account of the
direct DG discretization techniques. Section 4 contains a review of the entropy
satisfying methods for Fokker-Planck type equations. In section 5 we address the

2000 Mathematics Subject Classification. Primary: 65M60, 35L65; Secondary: 35L45.
Key words and phrases. Structure-preserving, High order methods, Conservation laws.
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invariant-region-preserving limiter and its applications to multi-D hyperbolic sys-
tems of conservation laws, and finally in section 6 we give some concluding remarks.

2. PDE models and solution properties. We begin with the fundamental
transport equation

∂tρ(t, x) +∇x · (ρ(t, x)u) = 0, (1)

for which the probability density space

P = {ρ, ρ ≥ 0,

∫
ρ = 1}

is invariant. This transport equation alone is not closed, unless u can be related to
ρ or governed by further equations.

In dynamics driven by an entropy/ free energy functional E = E[ρ], a direct
verification (assuming zero-flux boundary condition) shows that fast decay of E
along the transport dynamics (1) can be ensured if u = −∇x (δρE) , where δρ
denotes the usual L2 variational derivative. We are led to the Fokker-Planck type
equation

∂tρ = ∇x · (ρ∇xδρE[ρ]) . (2)

Dictated by different forms of E, this class includes many equations such as the
heat equation, the Fokker-Planck equation [28], the aggregation equation [12, 33]
with

E =

∫ [
ρlogρ+ V (x)ρ+

1

2
W ∗ ρρ

]
dx,

as well as drift-diffusion models such as the Poisson-Nernst-Planck equation [7] and
the Keller-Segel system [26]. Equation (2) is a natural gradient flow generated by
functionals E[ρ] in Wasserstein distance, directly linked to the minimization prob-
lem minρ∈PE[ρ], and has received ample attention in multiple contexts. Solutions
to (2) are usually not sensitive to initial distributions, but often to the critical mass,
some patterns will emerge as time evolves leading to rich solution structures when
coupled with notrivial forces. In order for a numerical method to generate solutions
with satisfying long time behavior, it is crucial to preserve some intrinsic solution
properties. The main solution properties are

• nonnegativity principle, ρ0 ≥ 0 =⇒ ρ(t, x) ≥ 0 ∀t > 0.
• mass conservation

∫
ρ(t, x) dx =

∫
ρ0(x) dx ∀t > 0.

• the entropy/energy dissipation inequality

d

dt
E = −

∫
ρ|∇xδρE|2dx ≤ 0.

These properties are naturally desired for high order numerical schemes.
In Eulerian dynamics of ‘fluids‘, velocity field is governed by the moment equation

∂tu+ u · ∇u = F.

Dictated by different forcing F , examples of such system include the Euler equation,
the Navier-Stokes equation, the Euler-Poisson equation, etc. For such Eulerian
balance laws the solution is often sensitive to the initial velocity field, leading to the
so called critical threshold (CT) phenomena! [16]. We note that gradient flows (2)
can be seen as describing the long-time response of an Euler equation with friction
[4, system (2.1)].
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The simplest hyperbolic balance laws is the system of compressible Euler equa-
tions, which belongs to the following model class:

∂tw +
d∑

j=1

∂xjFj(w) = 0, x ∈ Rd, t > 0; w(0, x) = w0, (3)

where w ∈ Rl with l > 1 , and the flux function Fj(w) ∈ Rl. It is known that
discontinuities can develop at finite time even for smooth initial data [13], hence
entropy inequalities should be used to single out the physically relevant solution
among many weak solutions. In application problems, the pointwise range of solu-
tions (invariant region) may be known from physical considerations.

The main solution properties, also desired at discrete level, are

• Invariant region w0 ∈ Σ =⇒ w(t, ·) ∈ Σ ∀t > 0.
• Conservation

∫
w(t, x)dx =

∫
w0(x) dx ∀t > 0.

• Entropy inequality. ∂tη(w(t, x)) +∇x ·Ψ(w(t, x)) ≤ 0, a.e,
where (η,Ψ) is an admissible entropy-pair.

In the construction of structure-preserving algorithms for the above two model
classes, we have adopted the following strategy:

• Direct DG (DDG) discretization of the PDE weak formulation, choosing
proper numerical fluxes to preserve solution conservation and certain en-
tropy dissipation law, together with Runge–Kutta methods [3] for time dis-
cretizaiton.

• Limiting numerical solutions to weakly enforce the point-wise solution bounds.

3. Discretization techniques. For solutions with either concentrations or discon-
tinuities, the finite volume method as a natural choice can lead to the conservation
form of a scheme which is a main ingredient of shock capturing methods for hy-
perbolic conservation laws. Its high order extension is the Discontinuous Galerkin
(DG) method, which is also a class of finite element methods, using a completely
discontinuous piecewise polynomial space for the numerical solution and the test
functions [8, 29, 30].

For DG methods to conservative PDEs, the key is to design suitable numerical
fluxes so that the resulting scheme satisfies the desired properties.

Taking ∂tu + ∂x · J = 0 as an example, a simple integration by parts over any
computational cell I gives

∫

I

∂tuvdx−
∫

I

Jvxdx+ Jv|∂I = 0.

Here ∂I denotes the boundary of I. To complete the DG method, a single valued
numerical flux Ĵ is needed to replace J , and values from inside I for the test function
v. For first order scalar conservation laws J = f(u), it is simple to take a monotone
flux

Ĵ = f̂(u−, u+),

including the celebrated Lax-Friedrichs flux and Godunov flux, see [30].

However, for high order PDEs, it is subtle to define Ĵ . For example, for J =
−∂xu, there is a need to define a flux for ∂xu. The average of ∂xu from traces of
derivatives of two neighboring polynomials is known to give a wrong solution for
P 1 polynomials! Indeed, various ideas have appeared in the literature to overcome
such difficulty, see e.g. [29].
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The solution of the heat equation ∂tu = ∂2
xu with initial data g which has only

one discontinuity at x = 0 gives

ux(t, 0) =
1√
4πt

[g] + {∂xg}+

√
t

π
[∂2
xg] + · · · ,

where [·] denotes the jump and {·} the average. This led us to the flux formula in
[23]

ûx = β0
[u]

∆x
+ {ux}+

bk/2c∑

m=1

βm(∆x)2m−1[∂2m
x u].

Motivated by such formula, we design a refined DDG for diffusion in [24] as
∫

Ij

∂tuvdx+

∫

Ij

∂xu∂xvdx− ûxv
∣∣∣
∂Ij

+ ({u} − u)vx

∣∣∣
∂Ij

= 0,

where

ûx = β0
[u]

∆x
+ {ux}+ β1∆x[uxx].

In [14], the DDG method is shown L2 stable in the sense that
∫
u2(t, x)dx+ {· · · } ≤

∫
u2(0, x)dx,

with {· · · } ≥ 0 if

β0 > Γ(β1) := k2

(
1− β1(k2 − 1) +

β2
1

3
(k2 − 1)2

)
.

The use of β0, β1 provides extra room for incorporating more desired solution prop-
erties. Sharp L2 error estimates are obtained in [14] as

‖uexact(t, ·)− u(t, ·)‖L2
x
≤ Ch(k+1),

when using polynomial elements of degree k for ∂tu +∇x · f(u) = ∆u. Moreover,
3rd order maximum-principle-preserving DG scheme (P2 polynomials) is possible,
if

1

8
< β1 <

1

4
, β0 ≥ 1;

as shown for linear Fokker-Planck equations [21], and for a class of convection-
diffusion equations [34]. In addition, super-convergence rate of h2k at nodes has
been proved by Cao, Liu and Zhang [2] if

β1 =
1

2k(k + 1)
; β1 =

1

12
if k = 2.

The results also include rate hk+1 for solution derivatives at Gauss points, hk+2 at
Lobatto points, and h2k at nodes.

4. Fokker-Planck-type equations. We begin with the aggregation model

∂tρ = ∇ · (∇ρ+ ρ∇(V (x) +W ∗ ρ)),

where V (x) is a given potential, and W is a symmetric, positive kernal with integral
1. Based on the reformulation of the form

∂tρ = ∇ ·
(
M∇

( ρ
M

))
, M = e−V (x)−W∗ρ,
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we introduced in [15] an explicit-implicit scheme:

hj
ρn+1
j − ρnj

∆t
= h−1

j+1/2M
n
j+1/2

(
ρn+1
j+1

Mn
j+1

−
ρn+1
j

Mn
j

)
−h−1

j−1/2M
n
j−1/2

(
ρn+1
j

Mn
j

−
ρn+1
j−1

Mn
j−1

)
,

where ρnj approximates ρ(t, xj) at time t = n∆t. This scheme is easy to imple-
ment, and is shown to preserve all three desired properties without a strict time
step restriction. This has extended and improved upon our earlier works [20, 17].
Extensions to multi-dimensional settings and/or the case when W ∗ρ is replaced by
Ψ solved by a Poisson equation are doable as shown in [15].

It is more challenging to design a high order scheme (3rd or higher order) while
three properties remain preserved at the discrete level. Next we show how this can
be achieved through a drift-diffusion system. A detailed account can be found in
[19], also earlier works [18, 22].

In a mean field approximation of diffusive molecules or ions, one finds the Poisson–
Nernst–Planck (PNP) system, i = 1, · · · ,m,

∂tci = ∇ · (∇ci + qici∇ψ) x ∈ Ω, t > 0 (4a)

−∇ · (ε(x)∇ψ =

m∑

i=1

qici + ρ0(x), x ∈ Ω, t > 0, (4b)

ci(0, x) = cini (x), x ∈ Ω, (4c)

∂ψ

∂n
= σ,

∂ci
∂n

+ qici
∂ψ

∂n
= 0, x ∈ ∂Ω, t > 0. (4d)

Here ci = ci(t, x) denotes density of i-th charged particle with charge qi, at time t
and position x, and ψ = ψ(t, x) the electro-static potential. The PNP system has
been widely accepted in applications in electrical engineering and electrokinetics,
electrochemistry, and biophysics: for example in biological channels [7] or semi-
conductor devices [25].

Main mathematical features of the system include the conservation of ions, pos-
itivity of concentration, and dissipation of the free energy

d

dt
F = −

m∑

i

∫

Ω

c−1
i |∇ci + ci∇ψ|2dx ≤ 0

where

F =

∫

Ω

m∑

i=1

cilogcidx+
1

2

∫

Ω

|∇xψ|2dx.

In order to construct a DG scheme to incorporate these solution properties, we refor-
mulate the PNP system (one dimensional case and ε = 1, for notational simplicity)
as

∂tci = ∂x(ci∂xpi), i = 1, · · · ,m,
pi = qiψ + log ci,

−∂2
xψ =

m∑

i=1

qici + ρ0(x).

Let Vh denote a DG solution space (piecewise polynomials), then the DDG spatial
discretization when coupled with the Euler forward time discretization gives us the
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scheme: find cnih, p
n
ih, ψ

n
h ∈ Vh, ∀ vi, ri, η ∈ Vh, i = 1, · · · ,m,

∫

Ij

cn+1
ih − cnih

∆t
vidx = −

∫

Ij

cnih∂xp
n
ih∂xvidx+ {cnih}

(
∂̂xpnihvi + (pnih − {pnih})∂xvi

) ∣∣∣
∂Ij
,

∫

Ij

pnihridx =

∫

Ij

(qiψ
n
h + log cnih)ridx,

∫

Ij

∂xψ
n
h∂xηdx−

(
∂̂xψnhη + (ψnh − {ψnh})∂xη

) ∣∣∣
∂Ij

=

∫

Ij

[
m∑

i=1

qic
n
ih + ρ0

]
ηdx,

with flux ∂̂xpih = Fl(pih) and ∂̂xψh = Fl(ψh), and

Fl(w) : = β0
[w]

h
+ {∂xw}+ β1h[∂2

xw].

The numerical solution is shown to have following properties.

Theorem 4.1. [19]

1. The fully discrete scheme is conservative

N∑

j=1

∫

Ij

cnihdx =

N∑

j=1

∫

Ij

cn+1
ih dx, i = 1, · · · ,m, n ∈ N.

2. Assuming cnih(x) > 0, there exists µ∗ > 0 such that if the mesh ratio µ =
∆t

∆x2 ∈ (0, µ∗), then the fully discrete free energy

Fn =

N∑

j=1

∫

Ij

[
m∑

i=1

cnihlogcnih +
1

2

(
m∑

i=1

qic
n
ih + ρ0

)
ψnh

]
dx+

1

2

∫

∂Ω

σψnhds,

Fn+1 ≤ Fn − ∆t

2

m∑

i=1

Acnih(pnih, p
n
ih).

where Ac(·, ·) is a weighted bilinear operator, which is coercive if β0 is suitably
large, and β1 = 0 in Fl(ψh).

The free energy dissipation law is also proved for high order strong stability pre-
serving Runge-Kutta methods [3], which are convex combinations of several formal
forward Euler steps.

As a result, steady states can well be preserved: if initial data c0ih is already at
steady states, i.e., logc0ih + qiψ

0
h(x) = Ci. By induction, it can be shown that the

following holds:

logcnih + qiψ
n
h(x) = Ci ∀n ∈ N.

The scheme requires cih be positive, which is difficult to achieve for high order
approximations. Inspired by the Zhang-Shu limiter [35] for scalar conservation laws,
we impose a limiter. For approximation wh ∈ P k(Ij) with cell averages w̄j > δ, we
reconstruct

wδh(x) = w̄j +
w̄j − δ

w̄j −minIj wh(x)
(wh(x)− w̄j), if min

Ij
wh(x) < δ.

This reconstruction maintains same cell averages, satisfies minIj w
δ(x) ≥ δ, and

does not destroy accuracy when δ < hk+1.
The algorithm in [19] can be summarized in following steps.

1. (Initialization) Project cini (x) onto Vh to obtain c0ih(x).
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2. (Reconstruction) From cnih(x), apply, if necessary, the reconstruction limiter
to update cnih so that cnih > δ.

3. (Poisson solver) Solve the Poisson equation to obtain ψnh .
4. (Projection) Obtain pnih ∈ Vh by projection of qiψ

n
h + logcnih.

5. (Update) Solve the NP equations to obtain cn+1
ih with some Runge-Kutta

solver.
Repeat steps 2-5 until final time T .

5. IRP limiter for hyperbolic systems. An invariant region to (3) is an open
set in phase space Rl such that if the initial data is in this set, then the solution
will remain in this set. It was proved by Hoff [6] that an invariant region for one
dimensional hyperbolic conservation laws must be convex. For 2×2 systems such as
the isentropic Euler system, an invariant region can be described by two Riemann
invariants [31]. For general hyperbolic conservation law systems, it is a challenging
task to identify a useful invariant region.

Shock capturing numerical methods have seen revolutionary developments over
the past 40 years, with both conservation and entropy stability as two main in-
gredients in each scheme construction. However, it remains a difficult task to pre-
serve an invariant region by a high order numerical method unless some nonlinear
limiter is frequently imposed (Refs [1, 5] for first order IRP schemes). Indeed,
recent efforts using limiting techniques have been made to construct high order
maximum-principle-preserving schemes for scalar conservation laws (see [35]) and
positivity-preserving schemes for hyperbolic systems including compressible Euler
equations (see e.g. [27, 36, 38]). The work by Zhang and Shu in [37] introduced
a limiter to preserve the minimum-entropy-principle [32] for high order schemes to
the compressible Euler equation.

We now discuss the general explicit limiter introduced in [10]. Assume the multi-
dimensional system of conservation laws admits an invariant region Σ, characterized
by

Σ = {w
∣∣ U(w) ≤ 0},

where U is convex. Denote the interior of Σ by Σ0. A key fact we have used is that
for any bounded domain K, the averaging defined by

w̄ =
1

|K|

∫

K

w(x)dx

is a contraction operator.

Lemma 5.1. Let w(x) be non-trivial piecewise continuous vector functions. If
w(x) ∈ Σ for all x ∈ K ⊂ Rd and U is strictly convex, then w̄ ∈ Σ0 for any
bounded domain K.

This lemma sets the foundation for using the domain average as a reference
to limit the existing polynomials, through a linear convex combination as in [35,
37]. In the system case, the question of particular interest is whether the limited
approximation is still high order accurate.

Let wh(x) be a sequence of vector polynomials over K, a high order accurate
approximation to the function w(x) ∈ Σ. Assume w̄h ∈ Σ0, but wh(x) is not
entirely located in Σ. We construct

w̃h(x) = θwh(x) + (1− θ)w̄h,
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where θ ∈ (0, 1] is defined by θ = min{1, θ1}, where

θ1 =
U(w̄h)

U(w̄h)− Umax
h

, Umax
h = max

x∈K
U(wh(x)) > 0.

If Σ =
M⋂
i=1

{w
∣∣ Ui(w) ≤ 0}, then the limiter parameter needs to be modified as

θ = min{1, θ1, · · · , θM}.
This reconstruction has been shown to satisfy three desired properties.

Theorem 5.2. [10] The reconstructed polynomial w̃h(x) satisfies the following three
properties:

(i) the average is preserved, i.e. w̄h = ¯̃wh;
(ii) w̃h(x) lies entirely within invariant region Σ,∀x ∈ K;

(iii) order of accuracy is maintained, i.e., if ‖wh −w‖∞ ≤ 1, then

‖w̃h −w‖∞ ≤
C

|U(w̄h)| ‖wh −w‖∞,

where C > 0 depends on w and Σ.

Let wn
h be the numerical solution at n-th time step generated from a high order

finite-volume-type scheme of an abstract form

wn+1
h = L(wn

h), wn
h = wn

h(x) ∈ Vh.
Provided that the scheme has the following property: there exists λ0, and a test set
S such that if

λ :=
∆t

∆x
≤ λ0 and wn

h(x) ∈ Σ for x ∈ S,

then

w̄n+1
h ∈ Σ0;

the limiter can then be applied with K replaced by SK : S ∩K, i.e.,

Umax
h = max

x∈SK
U(wh(x)),

through the following algorithm:
Step 1. Initialization: take the piecewise L2 projection of w0 onto Vh, such that

〈w0
h −w0, φ〉 = 0, ∀φ ∈ Vh.

Step 2. Limiting: Impose the modified limiter on wn
h for n = 0, 1, · · · to obtain

w̃n
h .

Step 3. Update by the scheme:

wn+1
h = L(w̃n

h).

Return to Step 2.
A limiter as such was first reported in [11] for one-dimensional Euler equations,

and in [9] for the isentropic gas dynamics. The limiter in [11] is explicit and si-
multaneously preserves the positivity of density and pressure and also a minimum
principle for the specific entropy [32].

For multi-dimensional systems of conservation laws, there is a need to check
whether the projected system shares the same invariant region as that for the full
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multi-D system. For 2D compressible Euler equations with w = (ρ,m, n,E)>,
F(w) = (F1(w), F2(w)), where

F1(w) = (m, ρu2 + p, ρuv, (E + p)u)>,

F2(w) = (n, ρuv, ρv2 + p, (E + p)v)>

m = ρu, n = ρv, E =
1

2
ρu2 +

1

2
ρv2 +

p

γ − 1
, γ > 1,

this as been shown true with the invariant region expressed as

Σ = {w
∣∣ ρ > 0, p > 0, q < 0},

where s = log
(
p
ργ

)
and s0 = infx log

(
p0(x)
ργ0 (x)

)
, and q = (s0 − s)ρ is convex in w.

Hence, a corresponding IRP algorithm can be well established, and has been tested
in [10].

6. Conclusions and outlook. In this paper, we have reviewed some of our contri-
butions to the development of structure-preserving algorithms for two model classes.
It is clear from the works we have reviewed, and from related references in the
literature, that these techniques are not limited to these model equations, it is in-
teresting to check the algorithmic improvement with more complex systems. Inter-
esting directions worth further investigation include: (1) Design of explicit-implicit
structure-preserving algorithms for nonlinear Fokker-Planck-type equations so to
enhance computational efficiency; (2) Design of local IRP algorithms for multi-
dimensional systems of hyperbolic conservation laws, with more realistic applica-
tions.
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Institute of Mathematics, University of Zurich

Winterthurerstrasse 190
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Abstract. We focus on the correction procedure via reconstruction (CPR)

/ flux reconstruction (FR) methods for hyperbolic conservation laws. Their
long time error behavior is investigated and their connection with the Resid-

ual Distribution schemes is pointed out. Considering a model problem, we

start by deriving an error equation that will be investigated in detail. There,
we show that the choice between upwinding and central numerical fluxes af-

fects the growth rate and asymptotic value of the error. Furthermore, the

selection of the bases themselves (Gauß-Lobatto-Legendre or Gauß-Legendre)
highly impacts the solution. In particular, using Gauß-Legendre basis, the error

reaches the asymptotic value faster than using Gauß-Lobatto-Legendre basis

[8, 9] which also appears to be smaller. In the second part of this contribution,
we demonstrate that FR schemes can be transformed into the Residual Dis-

tribution (RD) framework and vice versa. As a consequence, we can directly

apply the known results from RD schemes to CPR/FR methods [2].

1. Introduction. Various physical processes are modeled with hyperbolic conser-
vation laws, including fluid mechanics and electromagnetism. Since the existence of
analytical solutions is still unknown, especially for non-linear equations, numerical
methods have to be applied. So far, many numerical methods are based either on fi-
nite element (FE) or finite difference (FD) approaches. However, one can transform
and reformulate numerical schemes from one to another. Thus, techniques which
are originally used in some framework can be transferred to the other ones. Here,
summation-by-parts (SBP) operators are a good example [3]. In this contribution,
we mainly focus on two numerical methods by considering two different topics.
First, we are considering the correction procedure via reconstruction (CPR) / flux
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reconstruction (FR). These methods unify several high-order methods like discon-
tinuous Galerkin (DG), spectral volume (SV) and spectral difference (SD) schemes
in a common framework [5]. We investigate their long time error behavior. In the
literature several examples demonstrating a linear error growth can be found, even
though stability issues should exclude this. In the same time, other examples show
a bounded temporal error growth. It was also shown in [7] that when considering
one-block FD schemes the error behavior depends only on the choice of boundary
procedure, whereas in the DG framework the internal approximation has indeed an
influence [6]. The selection of the numerical fluxes is therefore essential. We ex-
tend the investigation from [6] to the CPR/FR framework, consider different bases
(Gauss-Lobatto-Legendre, Gauss-Legendre) and include variable coefficients in the
model problem [8, 9]. We also focus on the residual distribution (RD) approach
that leads to a general framework containing several numerical methods including
DG [1]. As there is a close relation between RD and CPR/FR to DG, it seems
natural to analyze the link between RD and CPR/FR. In the second part of this
contribution we demonstrate how to embed the CPR/FR approach into the RD
framework, and derive two conditions for the construction of the CPR/FR correc-
tion functions to guarantee that the remaining schemes have favorable properties
(e.g. conservation). This builds the foundation of further developments in the
context of FR/CPR methods [2].

2. Correction Procedure via Reconstruction / Flux reconstruction using
Summation-by-parts Operators. Flux reconstruction schemes were introduced
by Huynh [4] as an alternative to other high order methods. Rather than using a
weak/variational formulation or integral form in the spirit of common DG methods,
the semidiscretisation of FR uses a differential formulation. This approach has been
extended to unstructured grids in [12], and in [5] the authors suggested the common
name correction procedure via reconstruction (CPR). Today the literature mostly
refers to those methods by the term flux reconstruction, term that we adopt here
under the short-name FR. Let us start now by explaining the main idea of FR. For
simplicity, we consider a one-dimensional scalar conservation law

∂tu+ ∂xf(u) = 0 (1)

in the domain Ω ⊂ R. FR performs a semidiscretisation by using a polynomial
approximation within elements. The domain Ω ⊂ R is thus split into disjoint
intervals Ωi ⊂ Ω, and each element Ωi is transferred onto a standard element, in
our case [−1, 1], where all the calculations are done. The solution u(t) = u(t, ·) is
approximated by a polynomial U ∈ Pp of degree smaller or equal than p. To this end,
in the basic formulation of FR a nodal Lagrange basis is employed. The coefficients
of u are given by the nodal values ui = u(ζi), i ∈ {0, . . . , p}, where −1 ≤ ζi ≤ 1
are interpolation points in [−1, 1]. The numerical solution is obtained by U(ξ) =∑p
i=0 uili(ξ), where li(ξ) is the i-th Lagrange interpolation polynomial that satisfies

lj(ξj) = δij . Besides the solution u, the flux is also approximated by a polynomial

f̂ with coefficients f
i

= f (ui) = f (u(ζi)). Note that the possible discontinuities of
the numerical solution will also appear in the discrete flux. There, instead of using
only a numerical flux fnum to avoid this issue, correction terms/functions working
at the boundaries between the elements are also applied. This is the main idea of
the FR approach. More precisely, a FR semidiscretisation of (1) is given by

∂tU + ∂ξ
(
f̂(ξ) +

(
fnum
L − f̂L

)
gL(ξ) +

(
fnum
L − f̂R

)
gR(ξ)

)
= 0, (2)

where gi, i = L,R denote the left and right correction functions. The properties of
the FR methods highly rely on their definitions. In [11], linear stability of the FR
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schemes is demonstrated using the following corrections

gL =
(−1)p

2

[
Lp −

(
ηpLp−1 + Lp+1

1 + ηp

)]
, gR =

1

2

[
Lp +

(
ηpLp−1 + Lp+1

1 + ηp

)]
,

where Lp are the Legendre polynomials, ηp = c(2p+1)((2p)!)2

22p+1(p!)2 and c is a free parameter

bounded from below which finally specifies completely the methods, c.f [11] for
details. In [10], a reformulation of FR in the general framework of summation-by-
parts (SBP) operators using simultaneous approximation terms (SATs) is provided,
yielding proofs of conservation and stability in discrete norms. Classically, a nodal
basis associated with a quadrature rule (Gauß-Lobatto-Legendre or Gauß-Legendre)
is given and the mass matrix M = diag (ω0, . . . , ωp) corresponds to a SBP operator.
We denote by B = diag (−1, 1) the boundary matrix, D the discrete derivative
matrix and R the restriction term. The main idea of SBP is to mimic integration
by parts on a discrete level, meaningly

uTM Dv + uTDTM v ≈
∫ 1

−1

u ∂xv +

∫ 1

−1

∂xu v = u v
∣∣1
−1
≈ uTRTBRv.

The SBP property reads M D+DTM = RTBR . Therefore, the semidiscretisation
of (2) is given by

∂tu = −Df − C
(
fnum −Rf

)
,

where C is the correction matrix and fnum are the coefficients of the numerical
flux. Again, the choice of the correction matrices C will determine the numerical

methods. Considering C = M −1R TB is the canonical choice and is equivalent to

the DGSEM of [3]. Choosing C = (M + K )−1R TB where K = c(D p)TM D p is
a symmetric matrix, M + K > 0 (i.e. positive definite) and KD = 0 leads to the
above mentioned schemes. In particular, the SBP-FR semidiscretisation of a linear
advection equation with constant coefficient one (i.e. f(u) = u in (1)) reads

∂tu = −Du− (M + K )−1RTB
(
fnum −Ru

)
. (3)

3. Long-Time Error Behavior of Flux Reconstruction Schemes. We study
the long time error behavior of SBP-FR methods for a scalar linear advection equa-
tion with non-periodic boundary conditions. We consider the following model prob-
lem.

∂tu(t, x) + ∂x(a(x)u(t, x)) = 0, x ∈ [0, L], t ≥ 0

u(t, 0) = g(t), u(0, x) = u0(x).
(4)

Theory of constant coefficients. In the first part of this contribution, we set
a(x) ≡ 1. Then, (4) is similar to the problems investigated in [7, 6]. We further
assume that u(t, x) ∈ Hm

c (0, L) for m > 1 and that ||u||Hmc is uniformly bounded in
time. Hm

c denotes the function space equipped with a broken Sobolev norm which
is used in [11] to demonstrate linear stability for their methods. For the commonly
used methods, c tends to (or is) zero. We presume the latter, see [8] for details. The
entire interval [0, L] is divided into several elements ek = [xk−1, xk], k = 1, . . . ,K,
where the xk are the element boundaries and where x0 = 0 and xK = L. We
set ∆xk

2 = xk−xk−1

2 a transformation factor from our standard element [−1, 1].

The change of the discrete norm for the total energy ||uk||2 = uk,T (M + K )uk is

investigated. Here, T denotes the transposed vector. By multiplying uk,T
(
M + K

)

to equation (3) we obtain

∆xk
2

uk,T
(
M + K

)
∂tu

k = −uk,T
(
M + K

)
Duk − uk,TRTB

(
fnum,k −Ruk

)
. (5)
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With the SBP property, the rate of change of the total energy is derived as follows
(see [8] for more details).

1

2

d

d t

K∑

k=1

∆xk
2
||uk||2M+K +

K∑

k=1

uk,TR TB

(
fnum,k − 1

2
Ruk

)
= 0

The error in every element Ek = u(x(ξ, t))− Uk(ξ, t) can be split into two parts:

Ek = u(x(ξ, t))− Uk(ξ, t) = (IN (u)k − Uk)︸ ︷︷ ︸
=:εk1∈PN

+ (u− IN (u)k)︸ ︷︷ ︸
=:εkp

,

where IN denotes the interpolation operator. Then, εkp is the interpolation error
which is the sum of the series truncation error and the aliasing error. The error can
be bounded by the triangle inequality in the discrete norm ||Ek||K ≤ ||εk1 ||K+||εkp||K.

As ||εkp||K decays spectrally fast, fulfilling the above mentioned assumption and
using either Gauß-Lobatto-Legendre or Gauß-Legendre nodes allow us to neglect the
interpolation error in our investigation (see [8]). As it can be seen in [8], applying
Ek in the continuous equation together with (5) allow to derive the error equation
for εk1

1

2

d

d t

K∑

k=1

∆xk
2
||εk1 ||2M+K +

K∑

k=1

εT,k1 R TB

(
εnum,k
1 − 1

2
Rε1

k

)

=

K∑

k=1

(
∆xk

2

((
T k(u), εk1

)
+
(
Q(u)k, εk1

)
M+K

)
− ε̃k2

)
,

(6)

with ε̃k2 =εk1IN (u)k
∣∣1
−1
− εT,k1 R TBfnum,k

(
IN (u)k,−, IN (u)k,+

)
, εnum,k

1 = fnum,k
((
εk1
)−
,
(
εk1
)+)

,

T k(u) = −
{
∂tε

k
p + ∂xε

k
p +Q(u)k

}
, and where Q measures the projection error of a

polynomial of degree N to a polynomial of degree N − 1. Note that ε̃k2 is zero if the
Gauß-Lobatto-Legendre nodes are applied. All above terms are well-defined under
the given conditions. By fundamental estimations (Cauchy-Schwarz) the right side
of (6) can be estimated from above by C1||ε1||K. By splitting the sum on the left
side in (6) into three parts (one for the left physical boundary, one for the right
physical boundary and a sum over the internal element endpoints), we get

K∑

k=1

εT,k1 R TB

(
εnum,k
1 − 1

2
Rε1

k

)
=

K∑

k=1

εT,k1 R TB

(
fnum,k

((
εk1

)−
,
(
εk1

)+
)
− 1

2
Rεk1

)

=−E1
L

(
fnum,1
L −E1

L

2

)
+

K∑

k=2

(
fnum,k
L − 1

2

(
Ek−1
R +EkL

))(
Ek−1
R −EkL

)
+EKR

(
fnum,K
R −EKR

2

)
.

Here, Ei (i = L,R) is the approximated error of ε1, the indices give the position in

the elements, fnum,k
L := fnum,k

(
Ek−1
R ,Ek

L

)
, fnum,1
L := fnum,1

(
0,E1

L

)
and fnum,K

R :=

fnum,1
(
EK
R , 0

)
. We set on the left physical boundary U1 to g and the external states

to zero. At the right boundary, an upwind numerical flux is used and there is no
need to prescribe the external state since its coefficient in the numerical solution is

zero. Thus, using [[Ek]] = Ek−1
R −Ek

L we obtain in the internal elements

K∑

k=2

(
fnum,k
L − 1

2

(
Ek−1
R + EkL

))(
Ek−1
R −EkL

)
=

K∑

k=2

σ

2

(
[[Ek]]

)2

≥ 0,
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with σ = 0 central flux and σ = 1 upwind flux. Finally, we conclude from (6) that
the energy growth rate is bounded by

1

2

d

d t
||ε1||2K +

σ

2

((
EKR

)2

+
(
E1
L

)2
)

+
σ

2

K∑

k=2

(
[[Ek]]

)2

︸ ︷︷ ︸
BTs

≤ C1||ε1||K. (7)

There, BTs ≥ 0. Defining η(t) := BTs
||ε1||2K

, we obtain from (7)

∂

∂t
||ε1||K + η(t)||ε1||K ≤ C1. (8)

Let us now assume that the mean value of η(t) over any finite time interval is
bounded by a positive constant δ0 from below (i.e. η ≥ δ0 > 0). This together with
integration over time yields

||ε1(t)||K ≤ 1− exp(−δ0t)
δ0

C1. (9)

Remark 1. Our investigation demonstrates that both the selection of bases and
numerical fluxes have an essential influence on the error behaviors. Furthermore,
from (9) we predict that applying Gauß-Legendre nodes leads in general to lower
total errors as using Gauß-Lobatto-Legendre nodes. Indeed, the error ε1 is smaller
and δ0 can therefore be chosen bigger. Also, the use of the upwind flux should be
preferred, fact that was already seen for the DGSEM in [6]. Taking the terms in
(9) into account, we expect that the selection of bases is even more important.

Numerical Simulations. Let us now support our theoretical investigation by
some numerical simulations. First, we consider the interval [0, 2π] together with
the initial condition u0 = sin(12(x− 0.1)). The boundary function g(t) is chosen
to match with the exact solution u(x, t) = sin(12(x− t− 0.1)). In the Figure 1, we
represented the long-time error behaviors obtained by the use of polynomial of order
p = 4, K = 50 elements and of the correction term C = M −1R TB . In contrast,
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Figure 1. Error behaviors for t = 4 and t = 20

in the Figure 2 we show the error behaviors using p = 3, K = 20 and correction
terms C = (M + K )−1R TB with correction parameters cSD = 1/1050 (SD meth-
ods) and cHu = 8/4725 (Huynh scheme [4]). These simulations clearly support our
conclusion drawn in the Remark 1. The use of Gauß-Legendre nodes together with
the upwind fluxes yields always the smallest error. For more numerical tests and
some discussion we recommend again [8].
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Figure 2. SD and Huynh

Extension to variable coefficients. Instead of using a(x) ≡ 1 variable coeffi-
cients a(x) can also be applied in (4). This makes the investigation quite more
difficult and demonstrating stability already requires a splitting approach (see [9]).
Using the correction term C = M −1R TB the long-time error behavior for the
model problem (4) with variable coefficients is finally described in [9]. One obtains
an estimation for the energy growth rate similar to (7). It reads

1

2

d||ε1||2N
dt

+
σ

2

(
aKR

(
EKR

)2

+a1
L

(
E1
L

)2
)

+
σ

2

K∑

k=2

ak−1
R

(
[[Ek]]

)2

+

K∑

k=1

∆xk
4

(
ε k1ε

k
1 , ∂xa

k
)
N
≤C2||ε1||N ,

where the values of the coefficients and their derivatives at the boundaries also
play a fundamental role. If both are strictly non-negative, we obtain following
the same steps as before an estimation similar to (9). However, if for example
a′(x) < 0 for some values, then the behaviors highly depend on the numerical
dissipation. To show it, we consider (4) with a(x) = cos(x) and the initial condi-

tion u0(x) = sin(5x). Its solution is given by u(t, x) = u0

(
x0(t, x)

) cos
(
x0(t,x)

)
cos(x) , with

x0(t, x) = −2 arctan
(
tanh

(
t/2− artanh(tan(x/2))

))
. We apply the SBP-CPR/FR

method with the correction term C = M −1R TB in the interval I = [0.1, π/3]. In
the Figure 3, the left picture shows the error behaviors using different bases and
numerical fluxes until t = 40. One can realize that the errors using central flux in-
crease whereas with upwind fluxes the errors remain bounded. It can be better seen
in the right picture where a logarithmic scale is used, and the errors are plotted up
to t = 100. This boundedness results from the introduction of dissipation through
the upwind flux definition. More examples along with a general discussion can be
found in [9].
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Figure 3. p = 3, K = 30,t = 40 and logarithmic scale up to t = 100
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4. Connection between Flux Reconstruction and Residual Distribution.
In this section, we shortly demonstrate the connection between the residual distri-
bution schemes and the flux reconstruction approach. We show how FR fits in the
RD framework and vice versa. This knowledge can be used to study the proper-
ties of these methods from a different perspective and to construct new methods
with favorable properties as done in [2]. Before explaining the relation between
these two frameworks, we shortly introduce the residual distribution methods from
[1]. We strongly recommend this paper and references therein for a more detailed
introduction. We are considering the steady state problem with initial condition

div f(u) =

d∑

j=1

∂f j
∂xj

(u) = 0 for x ∈ Ω ⊂ Rd, (∇uf(u) · n(x))− (u− ub) = 0 on ∂Ω.

(10)
There, ub is a regular enough function and n denotes the outward normal vector at
x ∈ ∂Ω. The flux is given by f j = (f1,j , · · · , fp,j)T ⊂ Rp and u = (u1, · · · , up)T ∈
D ⊂ Rp is the conserved variable. Again, the domain Ω is split into a partition K
(triangles or general polygons), and the solution in each element is approximated
by a polynomial of degree k. The term uh indicates the numerical solution. Let us
also introduce the notations related to the RD formulation and denote by S the set
of degrees of freedom (DOF),

∑
K the set of DOF of linear forms acting on the set

Pk and {φσ}σ∈∑K
the set of basis functions with which for all x ∈ K the relation∑

σ∈K
φσ(x) = 1 is fulfilled. The main idea of the RD schemes is to define residuals

ΦKσ on every element K, satisfying the following conservation relations.

∑

σ∈K
ΦKσ (uh) =

∮

∂K

fnum(uh,uh,−) ·ndγ,
∑

σ∈Γ

ΦΓ
σ(uh) =

∮

∂Γ

fnum(uh,ub) ·n−f(uh) ·ndγ

(11)

There, uh,− describes the approximated solution on the other side of the local
edge of K, fnum is a consistent numerical flux (i.e. fnum(u,u) = f(u) · n),

∮
K

is the boundary integral evaluated by a numerical quadrature rule and Γ term the
boundary elements. The formula for the discretisation of (10) reads: for any σ ∈ S,

∑

K⊂Ω, σ∈K
ΦKσ (uh) +

∑

Γ⊂∂Ω, σ∈Γ

ΦΓ
σ(uh) = 0. (12)

This relation shows the advantage of RD having a general formulation. Thus,
depending on the solution space V h and the exact definition of the residuals, we
can embed several numerical methods like finite element or DG into this framework
([1]). Let us now demonstrate the connection between RD and FR. With fh being
the approximated flux function the discretisation of (10) in the FR framework reads

div(fh +α∇ψ) = 0⇐⇒ div
(
fh +

(
fnum · n− fh · n

)
∇ψ

)
= 0, (13)

where α∇ψ are our correction functions with the scaling term α = fnum ·n− fh ·n.
Using an Galerkin approach with vh ∈ V h and the Gauß theorem, we obtain

−
∫

K

∇vh ·
(
fh +α∇ψ

)
dx +

∫

∂K

vh ·
(
fh · n +

((
fnum · n− fh · n

)
∇ψ · n

))
d γ = 0.

(14)
Because of the conservation relation, the flux over the element boundaries should be
expressed only by the numerical flux of elements sharing this boundary. Therefore,
we demand ∇ψ · n ≡ 1 on the boundary and obtain

(
fh · n +

(
fnum(uh,uh,−) · n− fh · n

)
∇ψ · n

)
= fnum(uh,uh,−) · n.
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This is the first property on our correction function ∇ψ. The key of the RD
schemes is a proper definition of the residuals. When considering (14), by passing
from integrals to quadrature formulas, splitting vh along {φσ}σ∈S and ∇ψ · n ≡ 1,
we can define the residuals in the following manner.

ΦK,FRσ (uh)=−
∮

K

∇φσ·fhdx+

∮

∂K

φσf
num(uh,uh,−)·ndγ

:=rσ︷ ︸︸ ︷
−
∮

K

∇φσ ·α∇ψdx =ΦK,DGσ (uh)+rσ

(15)

There, ΦK,DGσ (uh) denotes the residuals of the DG scheme, see [1]. A second
condition on ∇ψ is provided by the conservation relation (11)

∑

σ∈K
rσ = −

∑

σ∈K

∮

K

∇φσ ·α∇ψ dx = 0. (16)

In summary, using the residuals (15) in (12), we embed the flux reconstruction
within the RD framework. By ensuring that conditions (16) and ∇ψ · n ≡ 1
hold, the conservation relation (11) is guaranteed. The theoretical results of RD
can be now applied for the FR schemes under consideration. This opens up new
possibilities to construct new FR schemes with favourable properties on arbitrary
meshes [2] and we are looking forward to do this.
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Abstract. In this work, we aim to investigate the theoretical and numer-

ical properties of weak asymptotic solutions within the Lagrangian-Eulerian

framework for hyperbolic conservation laws. Recent successful applications
of the locally conservative Lagrangian-Eulerian framework has been achieved

in situations where the dynamic forward tracking must preserve the delicate

well-balancing between the first-order hyperbolic flux and the source term.
In this framework, no approximate or exact Riemann solvers and no upwind

source term discretization are used. Numerical solutions for the shallow water

equations on an horizontal bed with topography are presented to illustrate the
significant potential of the novel approach.

1. Introduction. The Lagrangian-Eulerian approach is a promising tool for nu-
merically solving partial differential equations of several types. This framework
has been used for solving hyperbolic conservation laws [1, 4], balance laws problems
[2, 4, 9]. In the work [11], it was identified the region in the space-time domain where
the mass conservation takes place, but linked to a scalar convection-dominated non-
linear parabolic problem (see also [8]). More recently in [1, 4, 5, 6], such ideas were
extended to a wide range of nonlinear purely hyperbolic conservation laws and
balance laws – scalar and systems – with applications to various physical models.
Similar developments based on Lagrangian-Eulerian ideas, focusing on increasing
order and accuracy can be found in [2].
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Volume.
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In this work, we present the formal construction of an Lagrangian-Eulerian
scheme for hyperbolic conservation laws in a non-staggered form, and our goal
in the current work is to investigate its numerical properties of weak asymptotic
solutions, as seen from [7].

Weak asymptotic methods have been introduced in [10] in the framework of the
Maslov-Whitham asymptotic analysis; see [7] and references cited therein. They
have proved to be an efficient mathematical tool to study creation and superposi-
tion of singular solutions to various nonlinear PDEs, such as δ-waves and the more
general δ(n)-waves. The weak asymptotic methods presented in this paper are con-
structed by transforming each scalar PDE into a family of ODEs of the Lipschitz
type in the Banach spaces of continuous functions and essentially bounded functions.
Numerical experiments illustrating the explicit calculation of the weak asymptotic
approximations for concrete conservation law equations are also presented. Qual-
itatively correct numerical approximations for the shallow water equations on an
horizontal bed with topography are presented to illustrate the significant potential
of the novel approach.

2. The Lagrangian-Eulerian finite volume method. We present a non-stagge-
red form of the Lagrangian-Eulerian framework for the following first-order scalar
conservation law x ∈ R, t ∈ R+, u = u(x, t) : R× R+ → Ω ⊂ R, H : Ω→ R.

∂u

∂t
+
∂H(u)

∂x
= 0, x ∈ R, t > 0, u(x, 0) = u0(x). (1)

As in the Lagrangian-Eulerian schemes [1, 2, 3, 4, 5, 6, 9, 11], local conservation is
obtained by integrating the conservation law over the region in the space-time do-
main where the conservation of the mass flux takes place. Consider the Lagrangian-
Eulerian finite-volume cell centers

Dn
j = {(t, x) / tn ≤ t ≤ tn+1, σj− 1

2
(t) ≤ x ≤ σj+ 1

2
(t)}, (2)

where σn
j− 1

2

(t) is the parameterized integral curve such that σn
j− 1

2

(tn) = xn
j− 1

2

.

These curves are the lateral boundaries of the domain Dn
j in (2) and we define

x̄n
j− 1

2

:= σn
j− 1

2

(tn+1) and x̄n
j+ 1

2

:= σn
j+ 1

2

(tn+1) as their endpoints in time tn+1. The

numerical scheme is expected to satisfy some type of mass conservation (due to
the inherent nature of the conservation law) from time tn in the space domain[
xn
j− 1

2

, xn
j+ 1

2

]
to time tn+1 in the space domain

[
x̄n+1
j− 1

2

, x̄n+1
j+ 1

2

]
. With this, we must

have the flux through curves σn
j− 1

2

(t) to be zero. From the integration of (1) and the

divergence theorem, using the fact that the line integrals over curves σnj (t) vanish,

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx =

∫ xn
j+1

2

xn
j− 1

2

u(x, tn)dx. (3)

The linear case from [9] is essentially imitated, but here the curves σnj−1/2(t) are

not straight lines in general, but rather solutions of the set of local nonlinear dif-

ferential equations [1, 9]:
dσnj−1/2(t)

dt = H(u)
u , for tn < t ≤ tn+1, with the initial

condition σnj−1/2(tn) = xnj−1/2, assuming u 6= 0 (for the sake of presentation).

This construction follows naturally from the finite volume formulation of the lin-
ear Lagrangian-Eulerian scheme as building block to construct local approximations

such as fnj−1/2 =
H(Unj−1/2)

Un
j−1/2

≈ H(u)
u with the initial condition σnj−1/2(tn) = xnj−1/2.
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Indeed, distinct and high-order approximations are also acceptable for
dσnj−1/2(t)

dt and
can be viewed as ingredients to improve accuracy of the new family of Lagrangian-
Eulerian methods. Equation (3) defines mass conservation but in a different mesh
cell-centered in points x̄n

j+ 1
2

of width hn+1
j . Along the linear approximation for

fnj−1/2, we find out that x̄j− 1
2

= xj− 1
2

+ fj−1/2∆t and x̄j+ 1
2

= xj+ 1
2

+ fj+1/2∆t.

Equation (3) defines a local mass balance between space intervals at time tn and
intervals at time tn+1. We will later address how to project these volumes back to
the original mesh.

Figure 1. The Integral tube. Left: nonlinear, right: linear approximation.

Using the approximations1

U
n+1

j :=
1

hn+1
j

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx, and Unj :=
1

h

∫ xn
j+1

2

xn
j− 1

2

u(x, tn)dx,

the discrete version of equation (3) is

U
n+1

j =
1

hn+1
j

∫ x̄n+1

j+1
2

x̄n+1

j− 1
2

u(x, tn+1)dx =
1

hn+1
j

∫ xn
j+1

2

xn
j− 1

2

u(x, tn)dx =
h

hn+1
j

Unj , (4)

Solutions σnj−1/2(t) of the differential system are obtained also using the lin-

ear approximations L(x, t). As in [6], the piecewise constant numerical data is
reconstructed into a piecewise linear approximation (but high-order reconstruc-
tions are acceptable), through the use of MUSCL-type interpolants Lj(x, t) =
uj(t) + (x− xj) 1

∆xu
′
j . For the numerical derivative 1

∆xu
′
j , there are several choices

of slope limiters (see, e.g., [8, 13]). A priori choice of such slope limiters is quite
hard, but they are chosen upon the underlying model problem under investigation.

1We must notice that the approximation of fn
j−1/2

may cause spurious oscillation in Riemann

problems, specially in shocks and discontinuity regions. For that, we use a polynomial reconstruc-

tion of second degree to smooth out the approximation and also slope limiters approximation of

the form (see, e.g., [8, 13]). The numerical solutions have shown qualitatively correct behavior for
nonlinear hyperbolic conservation laws. The convergence order remains unchanged even with the

reconstruction, being a first-order approximation. In the reconstruction we may use the nonlinear

Lagrange polynomial in Uj−1, Uj and Uj+1.
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The approximation of Uj− 1
2

is given by:

Uj− 1
2

=
1

h

∫ xnj

xnj−1

L(x, t)dx =
1

h



∫ xn

j− 1
2

xnj−1

Lj−1(x, t)dx+

∫ xnj

xn
j− 1

2

Lj(x, t)dx




=
1

2
(Uj−1 + Uj) +

1

8
(U ′j − U ′j−1).

(5)

Next, we obtain the resulting projection formula as follows

Un+1
j =

1

h

(
c−1,jU

n

j−1 + c0,jU
n

j + c1,jU
n

j+1

)
, where h = ∆x, (6)

where the projection coefficients are

c−1,j =
1

2

(
1 + sgn(fj− 1

2
)
)
|fj− 1

2
|∆t =: f+(Uj− 1

2
)∆t, (7)

c+1,j =
1

2

(
1− sgn(fj+ 1

2
)
)
|fj+ 1

2
|∆t =: f−(Uj+ 1

2
)∆t, (8)

c0,j = (h− c−1,j − c+1,j). (9)

Here ∆t is obtained under CFL-condition

max
j

{
|fj− 1

2
∆t|
}
≤ h

2
, (10)

which is taken by construction of method. We note that in the linear case, when
a(x, t) = a > 0 (or a < 0), the numerical scheme (4)-(6) is a generalization of the
Upwind scheme, but our scheme can approximate solution in both cases a > 0 and
a < 0. The CFL-condition in this case is |a∆t| ≤ h as in the Upwind scheme. We
now investigate the theoretical properties of the Lagrangian-Eulerian scheme via
weak asymptotic solutions.

2.1. Sketch of a convergence proof from the weak asymptotic solution.
The weak asymptotic solution method (see [7, 10] and references therein), is used
to study the existence of solutions of scalar and system of hyperbolic equations,
giving a new sense of definition for the solution. An interesting characteristic of
this theory is the possibility of proving the existence of a solution from numerical
methods. In the current work, we give a definition of the weak asymptotic solution
for a scalar equation (1) and a sketch of proof of stability of the numerical method;
in an article in preparation, [3], we describe the complete proof of convergence.

To define the weak asymptotic method, we consider the one-dimensional scalar
equation (1). Here, to avoid boundary conditions in the bounded domain from
numerical purposes, we consider x ∈ S1 = R/Z, t ∈ R+, u = u(x, t) : S1 × R+ →
Ω ⊂ R and the flux function H(u) : Ω → R. The weak asymptotic solution is
a sequence of solution (uε)ε = (u(x, t, ε))ε of class C1 in t and of class L∞ and
piecewise continuous in x such that for all ψ ∈ C∞c and for all t:

lim
ε→0

∫

R

((uε)tψ −H(uε)ψx)dx = 0 and uε(x, 0) = u0(x). (11)

The weak asymptotic solution consists on first proposing a PDE with a special flux
(using the parameter ε); then, for each fixed x, we obtain an ordinary differential
equation (ODE). From the theory of ODEs, we prove existence and stability of the
solution. Finally, we prove that when taking ε→ 0, the limit satisfies (11). The idea
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is that the flux represents the numerical method, thus the existence and stability
of the PDE of special class can represent an extension of the numerical method.

For our method, we propose the PDE:

∂t(uε) =
1

ε

[
uε,−f

+(ûε,−)− uεf+(ûε,−)− uεf−(ûε,+) + uε,+f
−(ûε,+)

]
, (12)

with initial condition uε(x, 0) = u0(x), where, we define the uε,−, uε,+ and uε,· as:

uε,− = u(x− ε, t, ε), uε,+ = u(x+ ε, t, ε) and uε = u(x, t, ε) (13)

We remember that f(u) = H(u)/u. In our sketch of proof, we assume that u 6= 0
to avoid technical details. We remark that H(u) (and then f(u)) can explicitly
depend on x and t, however, here we describe the sketch only for which there is no
this explicit dependence.

The states ûε,− and ûε,+ are obtained from a combination of known states, i.e.,
there is a function L(·, ·) : Ω×Ω→ R assumed to be Lipschitzian (in both variables),
such that:

ûε,− = L(uε,−, uε) and if uε,− is continuous then lim
ε→0

L(uε,−, uε) = lim
ε→0

uε. (14)

To prove our result, we assume that H(u) is Lipschitzian and u 6= 0, such that f(u)
is also Lipschitzian. Notice that, since we assume that the reconstruction L, Eq.
(14), is also Lipschitzian, thus f applied to ûε,− is Lipschitzian.

We state the existence and stability result:

Proposition 1. We construct as solution of (12) a family of functions (x, t) →
u(x, t, ε) : S1 × R → R for ε small enough, which for a fixed ε, are of class C1 and
class L∞ for x ∈ S1 and satisfy (11). The family {u(·, t, ε)}ε is bounded in L1(S1)
uniformly in ε; in fact, ||u(t, ε)||L1(S1) ≤ ||u0||L1(S1) for all t. Moreover, if the initial
condition u0(x) and H(u) are continuous, then u(x, t, ε) is also continuous in x.

Sketch of proof. First, we fix x and ε and we obtain a ODE from (12). Since
f(·) and the reconstruction L(·, ·) are Lipschitzian functions, we obtain that the
flux is also Lipschitzian. Thus, from classical theory for ODEs in Banach spaces in
the Lipschitizian case, there is a local solution for t ∈ [0, δ(ε)] for some δ(ε) that
depends on ε. For the global solution, since f is bounded, we can prove that we
can extend the solution for δ(ε)→∞. To prove that the solutions of ODEs provide
a weak asymptotic solution for (1), we will prove L1 is bounded uniformly with
respect to ε. To do so, let T > 0, for t + dt ≤ T and dt > 0. It follows from the
mean value theorem that we can write (12) as:

u(x, t+ dt, ε) =uε +
dt

ε

[
uε,−f

+(ûε,−)− uεf+(ûε,−)− uεf−(ûε,+) + uε,+f
−(ûε,+)

]

+ dtr(x, t, dt), (15)

where ||r(·, t, dt)|| → 0 when dt → 0. Since we are interested in obtaining the L1

bound, we take the absolute value:

|u(x, t+ dt, ε)| ≤|uε|
(

1− dt

ε
(f+(ûε,−) + f−(ûε,+)

)
+
dt

ε

[
|uε,−|f+(ûε,−)

]

+
dt

ε

[
|uε,+|f−(ûε,+)

]
+ dt|r(x, t, dt)|, (16)

Eq. (16) is satisfied if 1− dt

ε
(f+(ûε,−) + f−(ûε,+) ≥ 0, and from definition of f+

and f−, Eqs. (7)-(8), we obtain that if the CFL condition (10) is satisfied, then

227



E. ABREU, W. LAMBERT, J. PÉREZ AND A. SANTO

(16) is true. This prove that the CFL condition provides stability for the method,
since by integrating (16) and due translations of ±ε, one can prove the L1 bound
as: ∫ 1

S
|u(x, T, ε)|dx ≤

∫ 1

S
|u0(x)|dx (17)

To finish the prove of proposition, we define the integral I:

I =

∫

S1

(
1

ε

[
uε,−f

+(ûε,−)− uεf+(ûε,−)− uεf−(ûε,+) + uε,+f
−(ûε,+)

]
ψ(x) (18)

−H(uε)∂xψ(x)) dx

and we prove that I → 0 when ε→ 0, obtaining (11). �
To finish the convergence of numerical method, we show that (6) can be written

as a particular case of (12) taking ε = ∆t.

Proposition 2. The numerical scheme (6) is compatible with the ODE:

Ut = Unj−1f
+
j− 1

2

− Unj f−j− 1
2

− Unj f+
j+ 1

2

+ Unj+1f
−
j+ 1

2

. (19)

Sketch of proof. We substitute Eqs. (4), (7)-(9) in Eq. (6) and we obtain:

Un+1
j = Unj

h

hn+1
j

+ ∆t

(
f+
j− 1

2

Unj−1

hn+1
j−1

− (f+
j− 1

2

+ f−
j+ 1

2

)
Unj

hn+1
j

+ f−
j+ 1

2

Unj+1

hn+1
j+1

)
. (20)

Using that hn+1
j = h + (fj+ 1

2
− fj− 1

2
)∆t that gives h

hn+1
j

= 1 −
f
j+1

2
−f

j− 1
2

hn+1
j

∆t and

substituting this result in the Eq. (20), one can prove that:

Un+1
j − Unj = −Unj ∆t

(
fj+ 1

2
− fj− 1

2

hn+1
j

)
+

+
∆t

h

(
f+
j− 1

2

Unj−1 − (f+
j− 1

2

+ f−
j+ 1

2

)Unj + f−
j+ 1

2

Unj+1

)
+ o(∆t2).

(21)

Using that f = f+ − f− and taking the limit of ∆t→ 0 in Eq. (21), we prove that
the numerical method is compatible with the (19). �

Notice that Proposition 2 shows that the numerical method is compatible with
the ODE (12) constructed in Proposition 1. This technique is very powerful because
we can construct the ODE (12) to represent the proposed numerical scheme. The
complete proofs of Propositions 1 and 2 are obtained in [3]. Moreover, we extend
the result for n-dimensional spatial domain and we prove that the numerical scheme
satisfies the Kruzhkov entropy.

2.2. Numerical Experiments. We consider, as in [12], a 2×2 nonlinear system of
balance laws modeling the flow of water downing in a channel having a rectangular
cross section. This is a prototype model for shallow-water flow (see [1]) on an
horizontal bed with topography:

∂h

∂t
+
∂(hu)

∂x
= 0,

∂(hu)

∂t
+
∂
(
hu2 + 1

2gh
2
)

∂x
= −gh∂z

∂x
, (22)

where h is the height of the free surface and u is the averaged horizontal velocity.
Precisely, as in [12], z is the elevation of the bed above a reference level. Details for
discretization strategies of the source term, see [1, 2, 3, 4]. The calculations were
performed in the order of seconds with Matlab on a standard laptop with 2.60 GHz
Intel Core i7-4510U CPU and 8.0 GB of RAM memory. On physical grounds, in
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this model problem it was assumed the hydrostatic balance in the vertical direction
and surface tension was ignored. The first case (RP1) corresponds to a dam break
over wet bed, i.e. initial conditions with left and right velocities equal to zero
and different water depths (hL > hR). The solution of the Riemann Problem, is
constituted by a left moving 1-Rarefaction, the bottom step discontinuity and a
right-moving 2-Shock (assuming that the left rarefaction does not span across the
x-axis). Numerical approximations are shown in Figure 3 with a clearly qualitatively
correct approximations at t = 8. The second case (RP2) we have two rarefactions
moving away from the step, one to the left and one to the right. Thus, the solution
of the Riemann Problem is given by a left-propagating 1-Rarefaction, the bottom
step discontinuity and a right-propagating 2-Rarefaction.
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Figure 2. Numerical solutions to shallow water system (RP1) (22)
with 2000 cells, h + Z (height) on the left and v (velocity) on the
right, at time t=8.0. The elapsed computer time is 10 sec.
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Figure 3. Numerical solutions to shallow water system (RP2) (22)
with 2000 cells, h + Z (height) on the left and v (velocity) on the
right, at time t=8.0. The elapsed computer time is 10 sec.

229



E. ABREU, W. LAMBERT, J. PÉREZ AND A. SANTO

3. Conclusions. We discussed the formal construction of a Lagrangian-Eulerian
scheme for solving hyperbolic conservation laws with source terms. By the ap-
plication of weak asymptotic solutions theory (see [7]) we investigated theoretical
properties of the scheme. Numerical solutions for the shallow water equations were
presented to illustrate the significant potential of the novel analysis approach.
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DECAY IN L∞ FOR THE DAMPED SEMILINEAR WAVE

EQUATION ON A BOUNDED 1D DOMAIN
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Abstract. In this paper we study the long time behavior for a semilinear

wave equation with space-dependent and nonlinear damping term, rewritten
as a first order system. Under appropriate assumptions on the nonlinearity, we

prove the exponential convergence in L∞, as t→ +∞, of the solution towards

a stationary solution.

1. Introduction. In this paper we study the initial–boundary value problem for
the 2× 2 system in one space dimension

{
∂tρ+ ∂xJ = 0,

∂tJ + ∂xρ = −2k(x)g(J)
(1)

where x ∈ I = [0, 1] and t ≥ 0, and

(ρ, J)(x, 0) = (ρ0, J0)(x) , J(0, t) = J(1, t) = Jb (2)

for (ρ0, J0) ∈ BV (I) and for a constant Jb ∈ R. Assume that

0 < k1 ≤ k(x) ≤ k2 ∀x , k1, k2 > 0 (3)

and that

g ∈ C1(R) , g(0) = 0 , g′(J) > 0 ∀ J . (4)

The long time behavior of the solutions to (1), (2) is addressed by means of the
stationary equation

∂xJ = 0 , ∂xρ = −2k(x)g(J) .

The initial and boundary conditions (2) lead to a stationary solution (ρ̃, J̃):

ρ̃(x) = −2g(Jb)

∫ x

0

k(y) dy + C , J̃(x) = Jb , (5)

the constant C being uniquely identified by
∫ 1

0

ρ̃(x) dx =

∫ 1

0

ρ0(x) dx . (6)
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By the change of variable (ρ, J) 7→ (ρ− ρ̃, J − Jb) and g(J) 7→ g(J + Jb)− g(J), we
can reduce to the case

Jb = 0 ,

∫ 1

0

ρ0(x) dx = 0 . (7)

Problem (1), (2), (7) is related to the one-dimensional damped semilinear wave
equation on a bounded interval: indeed the function

u(x, t) = −
∫ x

0

ρ(y, t) dy

satisfies ux = −ρ, ut = J and

∂ttu− ∂xxu+ 2k(x)g(∂tu) = 0 . (8)

The equation (8) has been considered in several papers, see [9, 6, 7, 11], the recent
monograph [8] and references therein. It is well known that the initial-boundary
value problem for (8) is well-posed for initial data (u0, ∂tu0) ∈ H1

0 (I) × L2(I), for
k(x) ∈ L∞(I) with k(x) ≥ 0, and decay estimates for the energy are obtained,
either exponential or polynomial.

Moreover, in [7], Lp decay estimates with 2 ≤ p ≤ ∞ are studied for the 1-
dimensional problem. These estimates are obtained under the assumption that g′

vanishes at 0, and using the hypotheses of sufficiently regular data, (u0, ∂tu0) ∈
W 2,∞(I)×W 1,∞(I).

In this paper we study the decay in L∞ for a very similar problem, assuming
that the damping is space-dependent and that g′ > 0, 4. Our main contribution
is to develop an alternative approach that originates from the point of view of
the hyperbolic systems of balance laws. In particular, we construct approximate
solutions that allow us to get an accurate description of the solution, whose evolution
is recast as a discrete time system. Then we provide a strategy for the analysis of
this system, that makes use of a discrete representation formula. This eventually
leads to the decay in L∞ of the solution in terms of (ux, ut).

Here ux(·, t), ut(·, t)) belong to BV (I) ⊂ L∞(I) so that (u(·, t), ut(·, t)) are in
W 1,∞(I)× L∞(I).

The main result of this paper here follows.

Theorem 1.1. Let k satisfy (3) and g satisfy (4). Define

d1 = k1 min
J∈DJ

g′(J) > 0 , d2 = k2 max
J∈DJ

g′(J) (9)

where DJ is a closed bounded interval depending on the data, which is invariant for
J . Finally assume that

ed2 − d2 < ed1 . (10)

Let (ρ, J)(x, t) be the solution of the problem (1), (2), (7) with (ρ0, J0) ∈ BV (I).
Then there exist constant values C1 > 0 and C2 > 0, that depend only on the

coefficients of the equation and on the initial and boundary data, such that

‖J(·, t)‖∞ ≤ C1e−C3t ,

‖ρ(·, t)‖∞ ≤ C2e−C3t .
(11)

where

C3 = | logC(d1, d2)| , C(d1, d2) = e−d1(ed2 − d2) < 1 .
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2. Approximate solutions. In this section we present our approach for the defi-
nition of approximate solutions. It consists of an adaptation of the scheme for the
Cauchy problem developed in [3]. Our approach is based on the formulation of
system (1) that is obtained by adding an equation for the antiderivative of k(x)

a(x) =

∫ x

0

k(s) ds . (12)

More precisely, we introduce the non-conservative 3× 3 system




∂tρ+ ∂xJ = 0 ,

∂tJ + ∂xρ+ 2g(J)∂xa = 0 ,

∂ta = 0 ,

(13)

and the piecewise constant initial data
(
ρ∆x

0 , J∆x
0 , a∆x

)
(x) = (ρ0(xj+), J0(xj+), a(xj)) x ∈ (xj , xj+1)

xj = j∆x j = 0, . . . , N, ∆x =
1

N
,

(14)

where N ∈ 2N is a fixed positive even number determining the size of the space
mesh. In this way, we can set up a so-called Well-Balanced algorithm to construct
approximate wave-front tracking solutions [5], with discontinuities uniformly dis-
tributed on a grid in the (x, t)-plane. We define an approximate solution as follows.

An approximate solution (ρ∆x, J∆x, a∆x)(x, t) is an exact solution to
the initial-boundary value problem (13)–(14) with boundary condition
J∆x(0, t) = J∆x(1, t) = 0. In particular, a∆x(x) is piecewise constant with
discontinuities located at each xj and (ρ∆x, J∆x) is a piecewise constant
function, w.r.t. (x, t), with discontinuities traveling along segments in the
(x, t)-plane with slopes ∈ {±1, 0}.

As ∆x→ 0, the approximate solutions converge in L1
loc (up to a subsequence) to a

weak solution of (13).
The characterization of such approximate solution is based on the Riemann prob-

lem for (13), that is the initial-value problem for (13) with unknown U = (ρ, J, a)
and data

U(x, 0) =

{
U` x < 0,

Ur x > 0,
(15)

for a given left state U` = (ρ`, J`, a`) and right state Ur = (ρr, Jr, ar). By assuming
(4) and that a` ≤ ar, this problem is uniquely solved by

U(x, t) =





U` x/t < −1,

U∗ = (ρ∗,`, J∗, a`) −1 < x/t < 0,

U∗∗ = (ρ∗,r, J∗, ar) 0 < x/t < 1,

Ur x/t > 1,

(16)

where ρ∗,`, ρ∗,r, J∗ satisfy suitable conditions. See Figure (1) for a diagram of (16)
in the (x, t)-plane, where the discontinuities travel along lines separating the couples
(U`, U∗), (U∗, U∗∗) and (U∗∗, Ur), which stand for a −1-wave, a 0-wave and a +1-
wave, respectively. In general, we call i-wave a couple of states (U`, Ur) separated
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U` Ur

U∗ U∗∗

σ1σ−1 δ

0

Figure 1. The solution to the Riemann problem (15).

by a discontinuity with speed (i.e. slope) i ∈ {0,±1} and we denote its size by

σ±1 = Jr − J` = ±(ρr − ρ`) if i = ±1, (17)

δ = ar − a` if i = 0.

In the following we describe the approximate solutions in more detail; the proce-
dure can be also regarded as a Well-Balanced scheme. See Figure (3) for a picture
of the scheme in the case N = 4.

Step 1. The initial data is approximated as in (14); the 0-waves are located at
each 0 < xj < 1, with size given by

δj = a(xj)− a(xj−1) =

∫ xj

xj−1

k(x)dx (18)

for j = 1, . . . , N − 1. Since k ∈ L∞(I), we assume ∆x = 1/N to be sufficiently
small so that

(sup g′) · δj <
1

2
. (19)

Step 2. At time t = 0+ the solution is constructed by piecing together the
solutions to the local Riemann problems at each 0 < xj < 1 (see (16)) and at the
boundaries x = 0 and x = 1. Remark that at the boundaries the solution consists
of a single +1-wave at x = 0 and of a single −1-wave at x = 1, respectively.

Step 3. At time t = tn = n∆t with n ≥ 1 and ∆t = ∆x, multiple interactions
of waves occur at 0 < xj < 1 (i.e. multiple segments intersect at each (xj , t)) and
the newly generated Riemann problems are solved according to

(
σ+
−1

σ+
1

)
=

(
1− cj cj
cj 1− cj

)(
σ−−1

σ−1

)
, cj :=

g′(snj )δj

g′(snj )δj + 1
, (20)

where snj ∈ DJ , σ−−1, σ−1 are the sizes of the incoming waves, σ+
−1, σ+

1 are the sizes
of the outgoing ones and c is transition coefficient. The size of the 0-wave involved
in the interaction remains constantly equal to δj (see (18)) across time t. Moreover,
the waves hitting the boundaries x = 0 and x = 1 are both reflected and bounce
back with the same size they had before the interaction. See Figure (2) for a picture
of these two situations. We remark that a key property is that approximating a(x)
by a piecewise constant function implies that the source term is concentrated at
the points xj and results in the discontinuities with 0-slope in the solutions to the
Riemann problems.

3. The iteration matrix. The semilinear character of system (1) and the presence
of the (reflecting) boundary conditions allow us to view the problem as the time
evolution of the solutions to a finite dimensional linear system of the form

σ(tn+) = B(tn)σ(tn−1+) = · · · = B(tn)B(tn−1) · · ·B(0+)σ(0+) . (21)
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σ+
1σ+

−1

σ−1 σ−−1

δ

δ

(a)

σ+
−1σ+

1

σ−−1 σ−1
x = 0 x = 1

(b)

Figure 2. Interactions at t = tn > 0: an example of multiple
interaction at 0 < xj < 1 in (a); an example of interaction at the
boundaries in (b).

∆t

2∆t
σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

x1 x2 x30 1

Figure 3. Well-balanced scheme for N = 4.

The components of the vector

σ(t) = (σ1, . . . , σ2N ) ∈ R2N , N ∈ 2N,

are the wave sizes, see (17), that occur in the approximate solution to (13)–(14)
at time tn, ordered according to increasing space position; while the matrix B ∈
R2N×2N is a doubly stochastic matrix (i.e. a nonnegative matrix for which the sum
of all the elements by row is 1, as well as by column) given by

B(c) =




0 1 0 0 · · · 0 0 0 0
c1 0 0 1− c1 · · · 0 0 0 0

1− c1 0 0 c1
...

...
...

...
...

...
...

...
0 0 0 0 · · · cN−1 0 0 1− cN−1

0 0 0 0 · · · 1− cN−1 0 0 cN−1

0 0 0 0 · · · 0 0 1 0




,

where c = (c1, · · · , cN−1) ∈ RN−1 and by the smallness of δj (see (18), (19)) we
have that

inf g′

2
δj ≤ cj ≤ (sup g′)δj , j = 1, . . . , N − 1 . (22)

In general the vector c depends on n, which is the index for the time: t = tn = n∆t.
The eigenvalues λi of B satisfy |λi| ≤ 1 for all i = 1, . . . , 2N . In particular, λ = ±1
are eigenvalues with corresponding (left and right) eigenvectors

λ− = −1 , v− = (1,−1,−1, 1, . . . , 1,−1,−1, 1) ,

λ+ = 1 , e = (1, 1, . . . , 1, 1) .
(23)

Denote by E− the (2N − 2)–dim eigenspace related to λi with |λi| < 1.
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It is well known (Birkhoff Theorem, [10, Theorem 8.7.2]) that doubly stochastic
matrices can be written as a convex combination of permutations.

In case of c = c(1, · · · , 1) ∈ RN−1 for c ∈ [0, 1/2), the decomposition is obtained
with two terms:

B(c) = (1− c)B(0) + cB1 = (1− c) [B(0) + γB1] , (24)

where

γ =
c

1− c =
(sup g′)k̄

N
:=

d

N
,

B(0) is the matrix B(c) with c = 0 and B1 is a permutation matrix that switches
two consecutive rows (2k − 1) and 2k. We can rewrite (24) as

B(c) =

(
1 +

d

N

)−1 [
B(0) +

d

N
B1

]
.

On the other hand, if c is not constant (that is the case for nonlinear damping),
we can bound each matrix B = B(cn), n ∈ N with a term-by-term inequality by

B(cn) ≤
(

1 +
d1

N

)−1 [
B(0) +

d2

N
B1

]
(25)

where d1, d2 are defined in (9).

3.1. Total variation estimates. Here we give a proof of the fact that

L±(t) =
∑

(±1)−waves
|∆f±| = TV J∆x(·, t)

is not increasing in time, by means of the properties of doubly stochastic matrices.
We recall here some results from [4, pp.149–153].

Definition 3.1 (Majorization of vectors). Let v, u ∈ Rn and denote

v[1] ≥ v[2] ≥ · · · ≥ v[n], u[1] ≥ u[2] ≥ · · · ≥ u[n],

the components rearranged in non-increasing order. We say that v is majorized by
u if the following conditions hold:

n∑

i=1

vi =
n∑

i=1

ui,

h∑

i=1

v[i] ≤
h∑

i=1

u[i] h = 1, . . . , n− 1.

The following theorem is a useful characterization of majorization.

Theorem 3.2 (Hardy-Littlewood-Polya). Let v, u ∈ Rn. Then, v is majorized by
u if and only if there exists a doubly stochastic matrix A such that v = Au.

Lemma 3.3. Let v, u ∈ Rn. If v is majorized by u and φ : R → R is a convex
function, then

n∑

i=1

φ(vi) ≤
n∑

j=1

φ(ui) . (26)

The following corollary is an easy consequence of these results, and it proves that
L± is non-increasing in time.
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Corollary 1. Denote σnj the jth component of σ(tn+). Then,

2N∑

j=1

|σn+1
j | ≤

2N∑

j=1

|σnj | , n ≥ 0 .

Proof. Since σ(tn+1+) = B(n)σ(tn+) and B(n) is doubly stochastic, we have that
σ(tn+1+) is majorized by σ(tn+). Then, we can conclude by applying the previous
lemma to φ(·) = | · | and v = σ(tn+1+), u = σ(tn+).

4. A discrete representation formula. The proof of Theorem (1.1) is given in
[1] (with a slight improvement in the condition (10) given in [2]). Here we provide
some key points.

First, a proposition which relates the L∞-norm of J(·, tn), ρ(·, tn) as n → ∞ to
the evolution of the `1–norm of the operator Bn:

Bn=̇
[
B(n)B(n−1) · · ·B(2)B(1)

]
, B(n) = B(cn) ∈M2N , n ≥ 1 (27)

on the eigenspace E−=̇ < e, v− >⊥, see (23).

Proposition 1. For some constant values C̃j > 0, j = 1, 2, 3, independent on ∆x
one has that for every t ∈ (tn, tn+1)

‖J∆x(·, t)‖∞ ≤ C̃1∆x+ ‖Bnσ̃(0+)‖`1
‖ρ∆x(·, t)‖∞ ≤ C̃2∆x+ C̃3‖Bnσ̃(0+)‖`1

where σ̃(0+) is the projection of σ(0+) onto E−.

Next, the goal is to prove that ‖Bnσ̃(0+)‖`1 decays exponentially fast as n→∞,
uniformly as ∆x = N−1 → 0. We focus our analysis on the iteration of the matrices
B = B(cn) up to time

tN = N∆t = N∆x = 1 .

Recalling (25), we get the following inequality:

BN ≤
(

1 +
d1

N

)−N [
B0 +

d2

N
B1

]N
, B0=̇B(0). (28)

It is clear that (
1 +

d1

N

)−N
→ e−d1 as N →∞ ,

while it takes a bigger effort to estimate the second factor

[B0 + γB1]
N

=

N∑

k=0

γkSk(B0, B1), γ =
d2

N
(29)

since the matrices B0, B1 ∈M2N do not commute. Each term Sk(B0, B1) is the
sum of all possible products of 2N matrices of size 2N equal to either B1 or B0

(and in which B1 appears exactly k times). In particular,

S0 = BN0 , S1 =
N−1∑

j=0

B2j
0 =̇ P̂ .

In the following theorem we provide an estimate of the sum in (29) for the terms
with k ≥ 2.
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Theorem 4.1. Let N ∈ 2N. Then,
[
B0 +

d

N
B1

]N
= BN0 +

d

N
P̂ +

N−1∑

j=0

ζj,NB
2j+1
0 B1 +

N−1∑

j=1

ηj,NB
2j
0 , (30)

where the scalar coefficients in the sums are bounded by:

0 ≤
N−1∑

j=0

ζj,N ≤ sinh(d)− d+
f0(d)

N
,

0 ≤
N−1∑

j=1

ηj,N ≤ cosh(d)− 1 +
f1(d)

N
,

with terms f0(d) and f1(d) containing modified Bessel functions of the first type.

Thanks to (30) we can prove the following contraction property:

‖BN σ̃(0+)‖`1 ≤ CN (d1, d2)‖σ̃(0+)‖`1 (31)

where
CN (d1, d2)→ e−d1(ed2 − d2) =̇ C(d1, d2) < 1 , N →∞ .

The last inequality follows from the assumption (10). By iterating the estimate
(31), recalling Prop. (1) and sending N →∞, it is possible to prove the L∞ decay
stated in (11).
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Abstract. We are concerned with the well-posedness of a model of granular
flow that consists of a hyperbolic system of two balance laws in one-space

dimension, which is linearly degenerate along two straight lines in the phase

plane and genuinely nonlinear in the subdomains confined by such lines. This
note provides a survey of recent results [3] on the Lipschitz L1-continuous

dependence of the entropy weak solutions on the initial data, with a Lipschitz

constant that grows exponentially in time. Our analysis relies on the extension
of a Lyapunov like functional and provide the first construction of a Lipschitz

semigroup of entropy weak solutions to the regime of hyperbolic systems of
balance laws (i) with characteristic families that are neither genuinely nonlinear

nor linearly degenerate and (ii) initial data of arbitrarily large total variation.

1. Introduction. We consider the system of balance laws

ht − (hp)x = (p− 1)h,

pt + ((p− 1)h)x = 0,
(1)

with h ≥ 0 and p ≥ 0. System (1) represents the model in the one space dimensional
setting proposed by Hadeler and Kuttler [12] for the flow of granular material and
describes he evolution of a moving layer on top and of a resting layer at the bottom.
Here, the unknown h = h(x, t) and p(x, t) represent, respectively, the thickness of
the rolling layer and the slope of the standing layer, while t ≥ 0 and x ∈ R are
the time and space variables. The evolution equations (1) show that the moving
layer slides downhill with speed proportional to the slope of the standing layer in
the direction of steepest descent. The model (1) is written in normalised form,
assuming that the critical slope is p = 1. This means that, if p > 1, then grains
initially at rest are hit by rolling matter of the moving layer and hence they start
moving too; thus, the moving layer gets thicker. On the other hand, if p < 1,
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semigroup.
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then rolling grains can be deposited on the standing bed and, hence, the moving
layer becomes thinner. Typical examples of granular material whose dynamics are
described by such models are dry sand and gravel in dunes and heaps, or snow in
avalanches.

This article serves as a survey of the analysis in [3] on the well-posedness of
the Cauchy problem for (1). More precisely, in [3], the authors obtain a Lipschitz
continuous semigroup of entropy weak solutions to the nonlinear system of balance
laws (1) via a Lyapunov type functional with large initial data. Besides the moti-
vation of this analysis in the setting of the granular flow model, the results provide
the first construction of a semigroup for

(i) systems with characteristic families that are neither genuine nonlinear (GNL)
nor linear degenerate (LD) (nor of Temple class), and

(ii) initial data with arbitrary large total variation.

The aim here is to provide a short exposition on the analysis of [3] pointing out
the challenges that arise by these features and comparing the Lyapunov functional
introduced in [3] with the classical one of Bressan et al [9].

Since, in general, global smooth solutions to hyperbolic systems do not exist, we
consider weak solutions in the sense of distributions and in particular, an entropy-
admissible weak solution of (1), that means a weak solution, admissible in the sense
of Lax. Global existence of classical smooth solutions to (1) were established for a
special class of initial data by Shen [14]. In the case of more general initial data with
bounded but possibly large total variation, the existence of entropy weak solutions
globally defined in time was proved by Amadori and Shen [2].

For systems without source term and small BV data, the Lipschitz L1-continuous
dependence of solutions on the initial data, was first established by Bressan and
collaborators in [7, 8] under the assumptions that all characteristic families are gen-
uinely nonlinear (GNL) or linearly degenerate (LD), relying on a homotopy method
that is lengthy and involves several technical points. An extension of these results
is established in [4] to a class of 2 × 2 systems with non GNL characteristic fields
that does not comprise the convective part of system (1). A different proof of the
L1-stability of solutions for conservation laws with GNL or LD characteristic fields
that is less technical and more transparent was later achieved by a technique intro-
duced by Liu and Yang in [13] and then developed by Bressan et al [9]. Extensions
of L1-stability results to the setting of large BV data was obtained for systems of
conservation laws with Temple type characteristic fields and other special systems
and also for balance laws with small data. A rich bibliography on these references
can be found in [3] as well as further ones on other models of granular flow.

However, our system (1) does not fulfill these classical assumptions and in ad-
dition, its special source terms do not belong within a class for which L1 stability
results are available in the literature. The heart of the matter in [3] is to con-
struct a Lyapunov-like nonlinear functional Φ, equivalent to the L1-distance, which
is decreasing in time along any pair of solutions. In this review article, we state
some preliminary results in Section 2, and then present the stability functional Φ
in Section 3 comparing it with the classical one of Bressan et al [9] and providing
the motivation of our construction. In Section 4, we conclude stating our main
theorems and refering to [3] for the proofs and further analysis.
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2. Preliminaries. It is easy to verify that system (1) is strictly hyperbolic on the
domain

Ω
.
=
{

(h, p) : h ≥ 0, p > 0
}

(2)

and weakly linearly degenerate at the point (h, p) = (0, 1). We observe that the line
p = 1 separates the domain Ω into two invariant regions for solutions of the Riemann
problem: the quarter {h ≥ 0, p > 1} and the half-strip {h ≥ 0, 0 < p < 1}. Indeed,
the rarefaction and Hugoniot curves of the first family through a point (h`, p`), with
p` 6= 1, never meets the line p = 1, while the rarefaction and Hugoniot curves of
the second family through a point (h`, p`), with h` > 0, never meets the line h = 0.
On the the other hand, the lines p = 1 and h = 0 are also invariant regions for
solutions of the Riemann problem since they coincide with the rarefaction and
Hugoniot curves of the first and second family, respectively, passing through any of
their points. Notice that, although the characteristic field of the first family does
not satisfy the classical GNL assumption, no composite waves are present in the
solution of a Riemann problem for

ht − (hp)x = 0,

pt + ((p− 1)h)x = 0,
(3)

since in each invariant region {p > 1}, {p < 1} the field is GNL. In fact, the general
solution of a Riemann problem for (3) consists of at most one simple wave for
each family which can be either a rarefaction or a compressive shock or a contact
discontinuity.

Let u = u(x, t)
.
= (hs,ε, ps,ε)(x, t) be a piecewise constant s-ε-approximate solu-

tion converging to an entropy weak solutions to (1) with initial data

h(x, 0) = h(x) , p(x, 0) = p(x) for a.e. x ∈ R . (4)

constructed as in [2] by the usual operator splitting scheme as ε→ 0+ and s→ 0+.
Here, s = ∆t > 0 stands for the time step and a parameter ε > 0 a small positive
parameter of the front tracking algorithm. We refer to [11] and [1] for the early
works on this subject and also point out that the source term (1) does not belong
in the class of the so-called “dissipative” terms exploited in [11, 1, 10]. As usual,
a-priori bounds on the total variation of u(t)

.
= u(·, t) outside the time steps are

obtained in [2] by analyzing suitable wave strength and wave interaction potential
that are defined as follows.

First, the sizes of wave fronts of approximate solutions of (1) are defined as
the jumps between the left and right states either measured with the original vari-
ables (h, p) or with the corresponding Riemann coordinates (H,P ) associated to
system (1). So given a wave front with left and right states (h`, p`) and (hr, pr),
respectively, let (H`, P`) and (Hr, Pr) be the corresponding Riemann coordinates.
Then, the wave size of the jump

(
(h`, p`), (hr, pr)

)
can be defined in two coordinate

systems as follows:

• the size of a 1-wave (h-wave) is measured by ρh = Hr −H` or γh = hr −h` in
Riemann or original coordinates, respectively.

• the size of a 2-wave (p-wave) is measured by ρp = Pr − P` or γp = pr − p` in
Riemann or original coordinates, respectively.

Next, at any time t > 0 where no interaction occurs and away from time steps,
let Ji

(
u(t)

)
denote a set of indexes α associated to the jumps of the i-th family of

u(t) located at xα and let p`α
.
= P (xα−). Also, set J

(
u(t)

) .
= J1

(
u(t)

)⋃J2
(
u(t)

)

to denote the collection of indexes associated to all jumps of u(t) and kα ∈ {1, 2}
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the characteristic family of the jump α ∈ J
(
u(t)

)
, so that, in particular, one has

α ∈ Jkα
(
u(t)

)
. Then, we define the total strength of waves in u(t) as:

Vi
(
u(t)

) .
=

∑

α∈Ji((u(t))
|ρα|, i = 1, 2,

V
(
u(t)

)
= V1

(
u(t)

)
+ V2

(
u(t)

) .
=

∑

α∈J (u(t))

|ρα| ,
(5)

and the interaction potential as:

Q
(
u(t)

) .
= Qhh +Qhp +Qpp . (6)

where

Qhh .
=

∑

kα=kβ=1

xα<xβ

ωα,β |ρα||ρβ | , Qhp .
=

∑

kα=2,kβ=1

xα<xβ

|ραρβ |, Qpp .
=

∑

(α,β)∈Appr2
|ραρβ |

(7)
with the weights ωα,β := δ ·min{|p`α−1|, |p`β−1|} if ρα, ρβ are 1-shocks lying on the

same side of p = 1, otherwise ωα,β := 0, for a suitable constant δ > 0 sufficiently
small. Also, Appr2 denotes the set of pairs of indexes of approaching p-waves. Note
that Qhh is the modified interaction potential of waves of the first family (h-waves)
introduced in [2] and the others are defined the usual way. Relying on the interaction
estimates established in [2], the Glimm functional

G
(
u(t)

) .
= V

(
u(t)

)
+Q

(
u(t)

)
(8)

is nonincreasing in any time interval ]tk, tk+1[ between two consecutive time steps.
Instead, the estimates derived in [2] on the variation of the strength of waves when
the solution is updated with the source term, imply that at any time step tk =
k∆t = k s there holds

G
(
u(tk+)

)
≤
(
1 +O(1)∆t

)
· G−

(
u(tk−)

)
, (9)

i.e. G is increasing across tk.

3. Stability Functional. Let u and v : R+×R→ Rn be two approximate solutions
to (1) and consider any piecewice constant function z with the property that for
fixed t, z(t, ·) : R→ R2 is a L1 function of small total variation. In addition, z(t, x)
has finitely many discontinuities that are polygonal lines and the slope of such a

line is bounded in absolute value by a fixed number λ̂. Also, there exists a constant
σ > 0 such that Tot.V ar.z(t) ≤ σ, for all t > 0. We clarify that z is an arbitrary
function with the aforementioned properties and is not related to the system (1).
Next, consider the i-shock curve Si(·; ·) and the scalar functions ηi i = 1, 2 defined
implicitly by

w(t, x) = S2(η2(t, x); ·) ◦ S1(η1(t, x);u(t, x)) , (10)

where w
.
= v+z. According to this definition, the parameter ηi denotes the strength

in the original coordinates along the i-shock curves connecting u and w = v + z.
We clearly have

1

C0
|u(x)− w(x)| ≤

∑

i

|ηi(x)| ≤ C0|u(x)− w(x)| (11)
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for some constant C0 > 0. We can now define the stability functional

Φz(u(t), v(t))
.
=

2∑

i=1

∫ ∞

−∞
|ηi(x, t)|Wi(x, t) dx (12)

with weights Wi of be

Wi(x, t)
.
= 1 + κ1Ai(x, t) + κ2

[
G(u(t)) + G(v(t))

]
, (13)

for suitable positive constants κ1 < κ2 to be specified. Here G is the Glimm func-
tional defined in (5)-(8), and Ai(t;x) measures the total amount of waves in u(t)
and v(t) which approach the i-wave ηi located at x defined as follows:

A1(t;x)
.
=

∑

α∈J (u)∪J (v)

kα=2, xα<x

|ρα|

+





[ ∑

α∈Zneg(u)
+

∑

α∈Zneg(v)

]
|p`α − 1||ρα| if η1(t, x) < 0

[ ∑

α∈Zpos(u)
+

∑

α∈Zpos(v)

]
|p`α − 1||ρα| if η1(t, x) > 0

(14)

and

A2(t;x)
.
=

∑

α∈J (u)∪J (v)

kα=1, xα>x

|ρα|+





[ ∑

α∈J (u),kα=2
xα>x

+
∑

α∈J (v),kα=2
xα<x

]
|ρα| if η2(t, x) < 0

[ ∑

α∈J (v),kα=2
xα>x

+
∑

α∈J (u),kα=2
xα<x

]
|ρα| if η2(t, x) > 0

(15)
where Z denotes the set of selected 1-waves α chosen as follows

Zneg(u) := {α ∈ J1(u) : either [u2(xα−) > 1, xα < x] or [u2(xα−) < 1, xα > x]}
Zneg(v) := {α ∈ J1(v) : either [v2(xα−) > 1, xα > x] or [v2(xα−) < 1, xα < x]}

for η1 < 0, and

Zpos(v) := {α ∈ J1(v) : either [v2(xα−) > 1, xα < x] or [v2(xα−) < 1, xα > x]}
Zpos(u) := {α ∈ J1(u) : either [u2(xα−) > 1, xα > x] or [u2(xα−) < 1, xα < x]}

for η1 > 0 and p`α denotes the left state of the jump located at xα and by ρα the
corresponding strength of the jump in Riemann coordinates.

Notice that the main novelty of our functional is encoded in the weight W1 and
in particular in A1, whereas W2 has almost the same expression of the weight given
in [9] for GNL and LD characteristic fields. In fact, the only difference between the
definition of the weight W2 here and the one given in [9] relies in the presence of the
whole Glimm functional G of u and v in Wi, instead of their interaction potential
Q. Indeed, in comparison to the weights Wi used in [6, § 8], here the terms of
the Glimm functionals G and not only the interaction potential Q are needed in
the definition of Wi to control the change Ai across an interaction time. This is
due to the fact that, since the first characteristic family is not GNL, we adopt as
in [2] a wave interaction potential Q, suited to (1), that is in general not decreasing
in presence of interactions of 1-waves of different sign (1-shocks with 1-rarefaction
waves). Therefore, one needs to exploit the decrease of the total strength V of
waves due to cancellation in order to control the possible increase of the potential
interaction Q occurring at such interactions.
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Figure 1. Approaching waves in v towards η1(x) > 0 are indicated by
the jumps marked with bolded lines. Also, regions p < 1, p > 1 can only
be connected by 2−waves crossing the line p = 1. The selected 1−waves
that are located at xα with xα < x correspond to γ → λ1(γ; ·) strictly
increasing, i.e. {p > 1}. On the other hand, the selected 1−waves
that are located at xα with xα > x correspond to γ → λ1(γ; ·) strictly
decreasing, i.e. {p < 1}.

Instead, because of the properties of the non GNL first characteristic family, the
definition of 1-waves approaching η1 varies if the left state of such waves lies on the
left or on the right of {p = 1} (see Figure 1). The key ingredient in the definition
of A1 is the appropriate formulation of approaching wave of the first family for a
given wave η1(x) in the jump (u(x), v(x)), which extends to our case the definition
given in [9] for GNL characteristic fields. Observe that, letting γ 7→ S1(γ; h0, p0)
be the Rankine-Hugoniot curve of right states of the first family issuing from a
given state (h0, p0) ∈ Ω, and denoting λ1(γ; h0, p0) the Rankine-Hugoniot speed of
the jump connecting (h0, p0) with S1(γ; h0, p0), by the properties of system (1) it
follows that γ 7→ λ1(γ; h0, p0) is strictly increasing on {p > 1}, strictly decreasing
on {0 < p < 1}, and constant along {p = 1}. Therefore, if the size η1(x) is positive,
we shall regard as approaching all the 1-waves present in v which either have left
state in the region {p > 1} and are located on the left of η1(x), or have left state
in the region {0 < p < 1} and are located on the right of η1(x). On the contrary,
we regard as approaching to η1(x) > 0 all the 1-waves present in u which either
have left state in the region {p > 1} and are located on the right of η1(x), or have
left state in the region {0 < p < 1} and are located on the left of η1(x). Similar
definition is given in the case where η1(x) < 0.

Moreover, in [9], the weights Wi are expressed only in terms of the strength of
the approaching waves. Instead here the terms of A1 related to the approaching
waves of the first family have the form of the product of the strength of the waves
|ρα| times the distance from {p = 1} of the left state of the waves |pα − 1|. The
presence of the factor |pα − 1| is crucial to guarantee the decreasing property of
Φz(u(t, ·), v(t, ·)) at times of interactions involving a 1-wave, say of strength |ρα|,
and a 2-wave crossing {p = 1} (i.e. connecting two states lying on opposite sides
of {p = 1}), say of strength |ρβ |. In fact, in this case the possible increase of
A1 turns out to be of order |pβ − 1||ρα| ≈ |ραρβ |, and thus it can be controlled
by the decrease of G determined by the corresponding decrease of the interaction
potential. Unfortunately, because of the presence of these quadratic terms in the
weight W1, we are forced to establish sharp fourth order interaction estimates in
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order to carry on the analysis of the variation of Φz(u(t, ·), v(t, ·)). This is achieved
deriving accurate Taylor expansions of the Hugoniot and rarefaction curves of each
famiy, which rely on the specific geometric features of system (1). Namely, the
rarefaction and Hugoniot curves through the same point are “almost” straight lines
and have “almost” third order tangency at their issuing point near {p = 1} for the
first family and near {h = 0} for the second family. We say that the characteristic
fields of (1) are “almost Temple class”.

4. Main Theorems. It should be noted that for fixed κ1 and κ2, the functional
Wi is locally bounded. Hence, the functional Φz is equivalent to the L1 distance
between u(t) and w(t) = v(t) + z(t):

1

C0

∥∥u(t)−w(t)
∥∥
L1 ≤ Φz(u(t), v(t)) ≤ C0 ·W ∗ ·

∥∥u(t)−w(t)
∥∥
L1 ∀ t > 0 . (16)

In the same spirit of [9], we prove that Φz is “almost decreasing” in time if the only
effect of the convective part of (1), otherwise it is exponentially increasing in time
with the increase to be estimated using the operator splitting scheme. To prove this,
we clarify that the functional Φz(u, v) in (12) is employed in two ways: either when
both u and v are approximate solutions to the non-homogeneous system (1) and
z ≡ 0 or when u and v are approximate solutions to the homogeneous system (3)
and z 6= 0 is arbitrary.

First, consider domains D of the form

D(M0, p0, δ0) =cl
{

(h, p) ∈ L1(R;R2) : h, p are piecewise constant,

0 ≤ h(x) ≤ δ0, p(x) ≥ p0 for a.e. x,

and TotVar{(h, p)} ≤M0, ‖h‖L1 + ‖p− 1‖L1 ≤M0

}
,

(17)

where cl denotes the L1-closure, TotVar{(h, p)} .
= TotVar{h} + TotVar{p}, and

M0, p0, δ0 are positive constants. Given M0, p0 > 0, we prove in [3] that there exist
constants δ0, δ

∗
0 , p
∗
0, p
∗
1, κ1, κ2, σ, C1, C2 > 0, so that, letting Φz be the functional

defined in (12)-(15), the followings hold true.

(i) Let u and v : R×R+ → R2 be two ε-front tracking approximate solution to (3)
with initial data u( ·, 0), v( ·, 0) ∈ D(M0, p0, δ0) and with values in [0, δ∗0 ] ×
[p∗0, p

∗
1]. Let z be a piecewise constant function as in Section 3, then

Φz
(
u(τ2), v(τ2)

)
≤ Φz

(
u(τ1), v(τ1)

)
+C1 ·

(
ε+ σ

)
(τ2 − τ1) ∀ τ2 > τ1 > 0 . (18)

(ii) Let u and v : R×R+ → R2 be two s-ε-approximate solution of (1) with initial
data u( ·, 0), v( ·, 0) ∈ D(M0, p0, δ0) and with values in [0, δ∗0 ]× [p∗0, p

∗
1]. Then,

letting tk
.
= k∆t = k s, (k ∈ N) be the time steps, there holds

Φ0

(
u(τ2), v(τ2)

)
≤ Φ0

(
u(τ1), v(τ1)

)
+C1 ·ε(τ2−τ1) ∀ tk < τ1 < τ2 < tk+1 , (19)

and

Φ0

(
u(tk+), v(tk+)

)
≤ Φ0

(
u(th+), v(th+)

)(
1 + C2 ·∆t

)(k−h)
+

+ C1 · ε∆t
k−h∑

i=1

(
1 + C2 ·∆t

)i ∀ 0 ≤ h < k,
(20)

for all k ∈ N.
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The proofs of (i) and (ii) above can be found in [3, §4]. By estimate (18), the
front tracking approximate solutions to the homogeneous system (3) converge to a
unique limit, depending Lipschitz continuously on the initial data in the L1 norm,
that defines a semigroup solution operator St, t ≥ 0, on the domains D defined
above. In other words, for any given initial data u

.
= (h, p ) ∈ D(M0, p0, δ0), the

map u(t, x)
.
= Stu(x) provides an entropy weak solution of the Cauchy problem

for (3)–(4). The statement is the following:

Theorem 4.1. Given M0, p0 > 0, there exist δ0, δ
∗
0 ,M

∗
0 , p
∗
0, L > 0 and a unique

(up to the domain) semigroup map

S : [0,+∞)×D0 → D∗0 , (τ, u) 7→ Sτu , (21)

with D0
.
= D(M0, p0, δ0), D∗0

.
= D(M∗0 , p

∗
0, δ
∗
0) domains defined as in (17), which

enjoys the following properties:
(i) Sτ2

(
Sτ1 u

)
∈ D∗0 ∀ u ∈ D0, ∀ τ1, τ2 ≥ 0;

(ii) S0 u = u, Sτ1+τ2 u = Sτ2
(
Sτ1 u

)
∀ u ∈ D0, ∀ τ1, τ2 ≥ 0;

(iii)
∥∥Sτ2u− Sτ1v

∥∥
L1 ≤ L · (|τ1 − τ2|+ ‖u− v‖L1) ∀ u, v ∈ D0, ∀ τ1, τ2 ≥ 0;

(iv) For any u
.
= (h, p) ∈ D0, the map

(
h(x, τ), p(x, τ)

) .
= Sτ u(x) provides an

entropy weak solution of the Cauchy problem (3), (4). Moreover, Sτ u(x)
coincides with the unique limit of front tracking approximations.

(v) If u ∈ D0 is piecewise constant, then for τ sufficiently small u( · , τ)
.
= Sτ u

coincides wtth the solution of the Cauchy problem (3), (4) obtained by piecing
together the entropy solutions of the Riemann problems determined by the
jumps of u.

It should be noted that the image of the map St in (21) is the same for every
t > 0, but the domain D0 is not positively invariant under the action of S. Indeed,
it turns out that the L∞, L1- norms as well as the total variation of the solution
(that appear in the definition of the domain (17)) may well increase in presence of
interactions (see the analysis in [2, Section 5]).

Moreover, relying on (19)–(20) and on Theorem 4.1, we prove that approximate
solutions of (1) generated by a front-tracking algorithm combined with an operator
splitting scheme, in turn, converge to a map that defines a Lipschitz continuous
semigroup operator Pt, t ≥ 0, on domains as (17), with a Lipschitz constant that
grows exponentially in time and the trajectories u(t) = Ptū are entropy weak solu-
tion of the Cauchy problem (1), (4). Let us point out that, although the source term
of system (1) is not dissipative, relying on the global existence result established
in [2], we construct a semigroup map whose image D∗0 is the same for every time
t > 0. Also, the uniqueness of the limit of approximate solutions to (1) and of the
semigroup operator P, is achieved as in [1] deriving the key estimate

∥∥Pθu− Sθu− θ ·
(
(p− 1)h

)∥∥
L1 = O(1) · θ2 as θ → 0 , (22)

relating the solutions operators of the homogeneous and nonhomogeneous systems,
and invoking a general uniqueness result for quasidifferential equations in metric
spaces [5]. Here is our theorem:

Theorem 4.2. Given M0, p0 > 0, there exist δ0, δ
∗
0 ,M

∗
0 , p
∗
0, L
′, C > 0 so that the

conclusions of Theorem 4.1 hold together with the following. There exist a map

P : [0,+∞)×D0 → D∗0 , (τ, u) 7→ Pτu , (23)

(with D0,D∗0 domains as in (17)), which enjoys the properties:
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(i) Pτ1
(
Pτ2 u

)
∈ D∗0 ∀ u ∈ D0, ∀ τ1, τ2 ≥ 0;

(ii) P0u = u, Pτ1+τ2u = Pτ2
(
Pτ1u

)
∀ u ∈ D0, ∀τ1, τ2 ≥ 0;

(iii)
∥∥Pτ1u−Pτ2v

∥∥
L1 ≤ L′

(
eC4·τ2 · ‖u− v‖L1 + (τ2− τ1)

)
∀ u, v ∈ D0, ∀ τ2 >

τ1 > 0 ,
(iv) For any u

.
= (h, p) ∈ D0, the map

(
h(x, τ), p(x, τ)

) .
= Pτu(x) provides an

entropy weak solution of the Cauchy problem (1), (4).

Acknowledgments. The authors would like to thank the organizers of XVII In-
ternational Conference on Hyperbolic Problems Theory, Numerics, Applications
(Hyp2018) that took place at PennState from June 25th until 29th of 2018 for
the invitation and the warm hospitality.

REFERENCES

[1] D. Amadori and G. Guerra, Uniqueness and continuous dependence for systems of balance
laws with dissipation, Nonlinear Anal. 49 (7) (2002), 987–1014.

[2] D. Amadori and W. Shen, Global existence of large BV solutions in a model of granular flow,
Comm. Part. Diff. Equations 34 (2009), 1003–1040.

[3] F. Ancona, L. Caravenna and C. Christoforou, Exponential stability of large BV solutions in

a model of granular flow, Preprint (2019).
[4] F. Ancona and A. Marson, Well-posedness for general 2 × 2 systems of conservation laws,

Mem. Amer. Math. Soc., 169 (2004), (801).

[5] A. Bressan, On the Cauchy problem for systems of conservation laws, Actes du 29ème Congrès
d’Analyse Numérique: CANum’97 (Larnas, 1997) Soc. Math. Appl. Indust., Paris, 1998,

ESAIM Proc., 3, 23–36 (electronic).

[6] A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem.
Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, 2000.

[7] A. Bressan, R.M. Colombo, The semigroup generated by 2× 2 systems of conservation laws,

Arch. rational Mech. Anal., 133 (1996), 1-75.
[8] A. Bressan, G. Crasta, B. Piccoli, Well-posedness of the Cauchy problem for n×n conservation

laws, Amer. Math. Soc. Memoir, 146 (2000), (694).
[9] A. Bressan, T.P. Liu and T. Yang, L1 stability estimates for n × n conservation laws, Arch.

Rational Mech. Anal., 149, (1999) 1-22.

[10] C. Christoforou, Hyperbolic systems of balance laws via vanishing viscosity, J. Differential
Equations 221 (2006), 470–541.

[11] C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and

dissipation, Indiana U. Math. J. 31 (1982), 471– 491.
[12] K. P., Hadeler, and C. Kuttler, Dynamical models for granular matter. Granular Matter 2

(1999), 9–18.

[13] T.P. Liu and T. Yang, L1-stability for 2×2 systems of hyperbolic conservation laws, J. Amer.
Math. Soc., 12 (1999), (3), 729–774.

[14] W. Shen, On the shape of avalanches, J. Math. Anal. Appl. 339 (2008), 828–838.

E-mail address: ancona@math.unipd.it

E-mail address: laura.caravenna@unipd.it

E-mail address: christoforou.cleopatra@ucy.ac.cy

247



QUANTITATIVE COMPACTNESS ESTIMATE FOR SCALAR

CONSERVATION LAWS WITH NONCONVEX FLUXES

Fabio Ancona

Dipartimento di Matematica “Tullio Levi-Civita”
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Abstract. This note provides a survey of recent results establishing upper
and lower estimates for the Kolmogorov ε-entropy of the image through the

mapping St of bounded sets in L1 ∩ L∞ for scalar conservation laws with
non-convex fluxes in one space dimension. As suggested by Lax [25], these

quantitative compactness estimates could provide a measure of the order of

“resolution” of the numerical methods implemented for these equations.

1. Introduction. Consider a scalar conservation law in one dimensional space

ut + f(u)x = 0, (1)

where u = u(t, x) is the state variable, and f : R → R is the twice continuously
differentiable flux. In the classical setting, the problem is well-posed only locally
in time, therefore one considers solutions in the sense of distributions. For sake of
uniqueness, the weak solution is required to satisfy an entropy admissibility crite-
rion [16] equivalent to the celebrated Olěınik E-condition [30] which generalizes the
classical stability conditions introduced by Lax [24]:

Olěınik E-condition. A shock discontinuity located at x and connecting a left state
uL

.
= limy→x− u(t, y) with a right state uR

.
= limy→x+ u(t, y) is entropy admissible

if and only if there holds

f(uL)− f(u)

uL − u ≥ f(uR)− f(u)

uR − u (2)
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for every u between uL and uR.

A celebrated theorem of Kruzkov establishes a L1-contractive semigroup of solutions
(St)t≥0 of (CL) that associates, to every given initial data u0 ∈ L1(R)∩L∞(R), the
unique entropy admissible weak solution Stu0

.
= u(t, ·) of the corresponding Cauchy

problem. In the case of strongly convex fluxes, say f ′′(u) ≥ c > 0, P. D. Lax proved
in [23] that the map (St)t≥0 is compact in L1

loc for t > 0. Following a suggestion
by Lax [25, 26], De Lellis and Golse [17] used the concept of Kolmogorov ε-entropy,
recalled below, to provide a quantitative estimate of this compactness effect.

Definition 1.1. Let (X, d) be a metric space and K a totally bounded subset of X.
For ε > 0, let Nε(K) be the minimal number of sets in a cover of K by subsets of
X having diameter no larger than 2ε. Then the ε-entropy of K is defined as

Hε(K | X)
.
= log2Nε(K).

In other words, this is the minimum number of binary digits (bits) needed to repre-
sent a point in a given subset E with accuracy ε w.r.t. the metric d.

Basing on the classical Olěınik inequality, Dxu(t, ·) ≤ 1
ct , they proved an upper

bound on the number of bits needed to represent an entropy solution u of (1) at any
given time t > 0, with accuracy ε w.r.t. the L1-distance. In [3], we established a
lower bound on such ε-entropy which is of the same order of magnitude as the upper
bound given in [17]. This result was also extended to balance laws with strictly
convex flux and to strictly hyperbolic systems of conservation laws in [5, 4]. Similar
results in the context of vanishing viscosity solutions of Hamilton-Jacobi equations
have been establishd in [1, 2]. Notice that, when one removes the assumption of
uniform convexity of the flux function of (1), the above Olěınik inequality does not
hold and the weak entropy solution may have unbounded variation (see [12]). In
the case of C2 strictly convex fluxes, exploiting the one side Lipschitz property of
the derivative of the flux (see in [14, 20]), i.e.,

f ′(u(t, x))− f ′(u(t, y)) ≤ 1

t
· (x− y) ∀t > 0, x ≥ y,

we provided in [6] upper and lower estimates on Hε
(
St([CL,M ])

∣∣L1(R)
)

with

C[L,M ]
.
=
{
u0 ∈ L∞(R)

∣∣ Supp (u0) ⊂ [−L,L] , ‖u0‖L∞ ≤M
}

(3)

the set of bounded, compactly supported initial data.

Aim of this note is to discuss some recent extended results on this topic to the
scalar conservation law (1) with the non-convex fluxes. More precisely, in the next
section we will present a sharp estimate on Hε

(
St([CL,M ])

∣∣L1(R)
)

in the case of
fluxes with a single inflection point having polynomial degeneracy (see Theorem
2.2). Notice that for fluxes having one inflection point where all derivatives van-
ishes, the composition of the derivative of the flux with the solution of (1) fails in
general to belong to the BV space (see [28]). In the section 3, combining results on
the generalized BV regularity of weak entropy solution in [28] and the ε-entropy for
a class of generalized BV functions in [19], we obtain in Theorem 3.1 an upper es-
timate on Hε

(
St([CL,M ])

∣∣L1(R)
)

for weakly genuinely nonlinear fluxes, i.e., fluxes
with no flat parts.
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2. Flux with one inflection point. Without loss of generality, we suppose that

f ′(0) = 0, (4)

since one may always reduce the general case to this one by performing the space-
variable and flux transformations x→ x+ tf ′(0) and f(u)→ f(u)−uf ′(0). In this
section, we assume that

(A1) the flux f : R→ R is a smooth, non convex function with a single inflection
point at 0 having polynomial degeneracy, i.e. such that

f (j)(0) = 0 for all j = 2, . . . ,m, f (m+1)(0) 6= 0 ,

f ′′(u) · u · sign
(
f (m+1)(0)

)
> 0 ∀ u ∈ R \ {0} ,

(5)

for some even integer m ∈ Z+.

By the monotonicity of the solution operator St, and recalling that Stu0 can be
obtained as limit of piecewise constant front tracking approximations [10, Chapter
6], one can show that∥∥STu0

∥∥
L∞(R)

≤ M and Supp(STu0) ⊆
[
− l[L,M,T ], l[L,M,T ]

]
(6)

where
f ′M

.
= sup
|v|≤M

|f ′(v)| and l[L,M,T ]
.
= L+ T · f ′M .

Under the assumption (A1), the uniform upper bounds on the total variation of
the flux of an entropy weak solutions have been established in [13, Theorem 3.4,
Theorem 4.9] (see also [28, Theorem 2]) [6, Lemma 2.3]).

Lemma 2.1. For any L,M, T > 0 and for every u0 ∈ C[L,M ], there holds

TV
{
f ′ ◦ STu0 | R

}
≤ C1

(
1 +

L

T

)
, (7)

where C1 =
2CM ·l[L,M,T ]

T +C̃M , and the positive constants CM , C̃M > 0 depends only
on the flux f and M .

Exploiting this BV bound and establishing a controllability result for (1), we
obtain our main result.

Theorem 2.2. Assume that f satisfies (5). For any given L,M, T > 0, and for
every ε > 0 sufficiently small, the following estimates hold:

Γ− · 1

εm
≤ Hε

(
ST (C[L,M ]) | L1(R)

)
≤ Γ+ · 1

εm
(8)

where

Γ− = c2 ·
Lm+1

T
and Γ+ = c2 ·

(
1 + L+ T +

L2

T

)m+1

for some constant c2 > 0 depending only on f and M .

Sketch of proof.
Upper estimate. We shall provide here an outline of the proof of the upper esti-

mate for Hε
(
ST (C[L,M ]) | L1(R)

)
.

Step 1. Let’s consider the set

L[L,M,T ] := {f ′ ◦ u
∣∣ u ∈ ST

(
C[L,M ]

)
}
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From (6) and Lemma 2.1, it holds

L[L,M,T ] ⊆
{
w ∈ L∞(R) ∩ L1(R)

∣∣∣ supp(w) ∈
[
− l[L,M,T ], l[L,M,T ]

]
,

‖w‖L∞ ≤ f ′M and TV
{
w | R

}
≤ C1

(
1 +

L

T

)}
.

Thus, thanks to a result on an upper estimate of ε-entropy for class of uniformly
bounded BV function (see ([7, Theorem 1] or [18, Lemma 2.3]), one obtains that
for any ε′ > 0 sufficiently small, there exists a set of piecewise nonnegative constant
functions, {g1, . . . , gp} ⊂ L[L,M,T ], with

p ≤
⌊

2

(
Γ

+
1

2 ε′

)⌋
+ 1, Γ+

1 = c1

(
L+ T +

L2

T

)

for some constant c1 > 0 depending only on f and M , such that for all i ∈ 1, . . . , p
one has

gi(x) = gi(xν) ∀ x ∈ [xν , xν+1) , ν ∈ {0, 1, . . . , N−1},

with

xν
.
= −l[L,M,T ] +

2 l[L,M,T ]

N
· ν , ν ∈ {0, 1, ..., N} ,

N ≥
⌊

8 l[L,M,T ] · V[L,M,T ]

ε′

⌋
, V[L,M,T ]

.
= max

{
C1

2
·
(

1 +
L

T

)
, f ′M

}
,

and

L[L,M,T ] ⊆
p⋃

i=1

B
(
gi, ε

′) (9)

where B
(
gi, ε

′) denotes the L1(R)-ball centered at gi of radius ε′.

Step 2. For every gi, i = 1, . . . , p, and in connection with any N -tuple ι =
(ι0, . . . , ιN−1) ∈ {−1, 1}N , we now define a piecewise constant map T Nι (gi) as fol-
lows. Let f ′−1, f

′
1 denote the restrictions of f ′ to the semilines (−∞, 0] and [0,+∞),

respectively. Then, set

T Nι (gi)(x)
.
=





(
f ′ιν
)−1(

gi(xν)
)
∀ x ∈ [xν , xν+1) if x ∈

[
−l[L,M,T ], l[L,M,T ]

)
,

0 otherwise.

(10)
Using the assumption (A1), for any u ∈ ST (C[L,M ]), one can find iu ∈ 1, p and

ιu ∈ {−1, 1}N such that
∥∥u− T Nιu (giu)

∥∥
L1(R)

≤
(
2 + 4 l[L,M,T ]

)
·∆−1

f,M (2ε′) (11)

where a map ∆f,M : (0,+∞)→ R measuring the oscillation of f ′, defined by setting

∆
f,M

(s)
.
= s · inf

|u|,|v|≤M u·v ≥ 0
|v−u|≥s

∣∣∣∣
f ′(v)− f ′(u)

v − u

∣∣∣∣ ∀ s > 0 .
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Step 3. Given ε > 0 sufficiently small, choosing ε′ = 1
2 · ∆f,M

(
ε

2+4 l[L,M,T ]

)
, we

obtain from (9) and (11) that

ST (C[L,M ]) ⊆
⋃

ι∈{−1,1}N

p⋃

i=1

B
(
T Nι (gi), ε

)
.

From the assumption (A1), it holds

sm

βM
≤ ∆

f,M
(s) ≤ βM · sm

for some constant βM depending only on f and M . Thus,

Hε
(
ST (C[L,M ]) | L1(R)

)
≤ N + log2(p)

and it yields the second inequality in (8).

Lower estimate. The main steps of the proof of the lower bound in (8) are
the following:
1. (A controllability result). Given L, h, T > 0, setting

b−h :=
1

2T ·maxz∈[−h,0] |f ′′(z)|
, b+h :=

1

2T ·maxz∈[0,h] |f ′′(z)|
, (12)

we introduce two classes of functions

A+
[L,h] :=

{
v ∈ C[L/2, h] ∩BV (R)

∣∣ v(x) ≥ 0 ∀ x ∈ R, sign(f ′′(h)) ·Dv ≤ b+h
}
,

A−[L,h] :=
{
v ∈ C[L/2, h] ∩BV (R)

∣∣ v(x) ≤ 0 ∀ x ∈ R, sign(f ′′(−h)) ·Dv ≤ b−h
}
.

Using the method of backward characteristics, one show that

A+
[L, h]

⋃
A−[L, h] ⊆ ST (C[L,h]) (13)

for all h > 0 such that max|z|≤h f ′(z) ≤ L
2T .

2. From ([3, Proposition 2.2]), one can derive that for 0 < ε ≤ Lh
6 , it holds

Hε
(
A±[L, h]

∣∣∣ L1(R)
)
≥ L2

54 ln 2 · b±h
· 1

ε
.

Thus, (13) and (12) imply that

Hε
(
ST (C[L,h])

∣∣∣ L1(R)
)
≥ L2

108 ln 2 · T ·
1

min
{

max
z∈[0,h]

|f ′′(z)|, max
z∈[−h,0]

|f ′′(z)|
} · 1

ε
.

From the assumption (A1), there exists a constant ᾱ > 0 depending only on f such
that

min
{

max
z∈[0,h]

|f ′′(z)|, max
z∈[−h,0]

|f ′′(z)|
}
≤ ᾱ · hm−1

for all h > 0 sufficiently small. Therefore, for every ε > 0 sufficiently small, choosing
h = 6ε

L , we obtain

Hε
(
ST (C[L,h])

∣∣∣ L1(R)
)
≥ Lm+1

108 ln 2 · 6m−1 · α · T ·
1

εm

which yields the first inequality in (8).
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3. Weakly genuinely nonlinear flux. In this section, we will provide an upper

estimate on Hε
(
ST (C[L,M ])

∣∣∣ L1(R)
)

for weakly nonlinear flux f ∈ C2(R), i.e.,

{u ∈ R | f ′′(u) 6= 0} is dense in R . (14)

Introduce the function d : [0,+∞)→ [0,+∞) such that

d(h) = min
a∈[−M,M−h]

(
inf

g∈A[a,a+h]

‖f − g‖L∞([a,a+h])

)

where A[a,a+h] is the set of affine functions defined on [a, a+h]. Let Φ be the convex
envelop of d, i.e.,

Φ = sup
ϕ∈G

ϕ with G = {ϕ : [0,+∞)→ [0,+∞) convex | ϕ(0) = 0, ϕ ≤ d},

and denote by

Ψ(x) := Φ(x/2) · x ∀x ∈ [0 +∞).

It is clear that Ψ is a convex, strictly increasing function on [0,+∞) with Ψ(0) = 0.
Relying on this function, we obtain the following result.

Theorem 3.1. Assume that f ∈ C2 satisfies (14). Given constants L,M, T > 0,
for every ε > 0 sufficiently small, it holds

Hε
(
ST (C[L,M ])

∣∣∣ L1(R)
)
≤ 32(L+ Tf ′M ) ·


2M

ε
+

γ[L,M ](1 + T )

T ·Ψ
(

ε
4(L+Tf ′

M )

)


 (15)

for a constant γ[L,M ] depends only on L,M and f .

To prove the above theorem, let us recall a class of generalized bounded total
variation functions which was introduced in [29].

Definition 3.2. Given an open interval ]a, b[, we say that a function g : R → R
has a Ψ-bounded total variation on ]a, b[, and we denote g ∈ BV Ψ(]a, b[), if

TV Ψ{g | ]a, b[} .
= sup

n∈N,a<x1<...<xn<b

n−1∑

i=1

Ψ
(∣∣g(xi+1)− g(xi)

∣∣) < +∞.

As a consequence of [28, Theorem 1], the following holds

Lemma 3.3. Given L,M, T > 0, for any u0 ∈ C[L,M ], the function ST (u0) has a
Ψ-bounded total variation on R and

TV Ψ{Stu0 | R} ≤ γ[L,M,T ] := γ[L,M ] ·
(

1 +
1

T

)
(16)

for a constant γ[L,M ] depending only on L,M and f .

For any R,M, V > 0, let us introduce a class of uniformly bounded generalized
variation functions on R with compact supports

G[R,M,V ]
.
=
{
g ∈ BV Ψ(R)

∣∣ supp(g) ⊂ [−R,R], ‖f‖L∞ ≤M,TV Ψ{g | R} ≤ V
}
.

Thanks to a forthcoming result in [19], one has that

Lemma 3.4. For ε > 0 sufficiently small, it holds

Hε
(
G[R,M,V ]

∣∣∣ L1(R)
)
≤ 64RM

ε
+

32RV

Ψ
(
ε

4R

) . (17)
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To complete this section, let us give a short proof of theorem 3.1 relying on
lemma 3.3 and lemma 3.4.
Proof of theorem 3.1. Recalling that

f ′M = max
z∈[−M,M ]

|f ′(z)| and l[L,M,T ] = L+ T · f ′M ,

it holds

‖STu0‖L∞(R) ≤ M and supp(STu0) ⊆
[
−l[L,M,T ],−l[L,M,T ]

]
∀u0 ∈ C[L,M ].

Recalling (16), we then have ST
(
C[L,M ]

)
⊆ G[l[L,M,T ],M,γ[L,M,T ]]. Thus, from (17),

it holds

Hε
(
ST (C[L,M ])

∣∣∣ L1(R)
)
≤ Hε

(
G[l[L,M,T ],M,γ[L,M,T ]]

∣∣∣ L1(R)
)

]

≤ 64 l[L,M,T ]M

ε
+

32 l[L,M,T ] · γ[L,M,T ]

Ψ
(

ε
4 l[L,M,T ]

)

and a direct computation yields (15).

Remark 1. The upper estimate on Hε
(
ST (C[L,M ])

∣∣∣ L1(R)
)

in Thererem 3.1 is in

general not optimal. It remain an open problem to see if it is possible to improve the
estimate (15) for weakly genuinely nonlinear fluxes and to obtain a lower estimate

of Hε
(
ST (C[L,M ])

∣∣∣ L1(R)
)

of the same order.
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Abstract. This paper is devoted to the analysis of the incompressible limit

for Quantum Navier-Stokes equations on R3. We present the main result of [1]
where we show that for general ill-prepared data, finite energy weak solutions

of the Quantum Navier-Stokes equations strongly converge to weak solutions

of incompressible Navier-Stokes equations. The strong convergence result is
achieved by introducing refined Strichartz estimates that analyse accurately

the dispersion of acoustic waves given by the Bogoliubov dispersion relation.

1. Introduction. We investigate the low Mach number limit for finite energy weak
solutions to the Quantum Navier-Stokes equations on (0, T )×R3 given by

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu⊗ u) +∇P (ρ) = 2ν div(ρDu) + 2κ2ρ∇
(

∆
√
ρ√
ρ

)
,

(1)

where the physical unknowns are the mass density ρ and the velocity field u. We
equip (1) with non-zero conditions at infinity,

ρ→ 1 as |x| → ∞. (2)

The energy functional associated to (4) reads

E(t) =

∫

R3

1

2
ρ|u|2 + 2κ2|∇√ρ|2 + π(ρ)dx, (3)

with internal energy

π = π(ρ) =
ργ − 1− γ(ρ− 1)

γ(γ − 1)
.

The choice of the internal energy encodes the boundary condition (2) for finite en-
ergy weak solutions. System (1) presents a viscous stress tensor whose viscosity
coefficient is degenerate, namely it vanishes in the vacuum region. Further, the

2000 Mathematics Subject Classification. Primary: 35Q35; Secondary: 35Q30, 76Y99.
Key words and phrases. Compressible and Incompressible Navier-Stokes equation, Quantum

fluids, Low Mach number limit, Acoustic Waves, Strichartz estimates, Energy estimates.
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third order tensor is referred to as quantum pressure and takes in account for capil-
larity effects in the fluid. The system (1) enters the class of Navier-Stokes-Korteweg
equations [12] describing e.g. fluid flow including capillarity effects. Moreover, in
the inviscid case, namely for ν = 0, system (1) reduces to the Quantum Hydro-
dynamical system (QHD) [3, 4] arising for instance in Bose-Einstein condensation
and superfluidity [17]. In this paper, we are concerned with the low Mach number
regime, for that purpose we denote the scaled Mach number ε � 1 and after an
appropriate rescaling system (1) reads
{

∂tρε + div(ρεuε) = 0,

∂t(ρεuε) + div (ρεuε ⊗ uε) + 1
ε2∇P (ρε) = 2ν div(ρεDuε) + 2κ2ρε∇

(
∆
√
ρε√
ρε

)
,

(4)
with initial data

ρε(0, x) = ρε,0,

(ρεuε)(0, x) = ρε,0,

The scaled internal energy is given by

πε = π(ρε) =
ργε − 1− γ(ρε − 1)

ε2γ(γ − 1)
. (5)

The main result we present shows that the dynamics is asymptotically governed by
the incompressible Navier-Stokes equation,

∂tu+ u · ∇u+∇p = ν∆u, div u = 0. (6)

Heuristically, one expects that ρε tends to 1 as ε goes to 0 and consequently also
div(ρεuε) is expected to converge to 0; yet the system propagates rapidly oscillating
acoustic waves that require a suitable control. Here, we rigorously prove that any
sequence of finite energy weak solutions of (4) converges strongly to a weak solution
of (6) without requiring any further assumptions on the initial data such as regu-
larity, smallness or well-preparedness. Our method is based on refined Strichartz
estimates that allow to analyse accurately the dispersion of acoustic waves that is
described by the Bogoliubov dispersion relation [8], see (21) below. It takes into
account the quantum pressure and differs significantly from the dispersion relation
observed for compressible fluids. Different augmented dispersion relations for the
acoustic waves also appear in other contexts e.g. in the study of the quasineu-
tral limit in Navier-Stokes-Korteweg system [10], while the Bogolibuov dispersion
is typical for quantum fluids. Capturing precisely the dispersion phenomena allows
to obtain strong convergence of the acoustic waves at improved convergence rates
and to simplify the method compared to previous works [15, 18]. Moreover, we con-
sider general ill-prepared data giving rise to finite energy solutions to the system (4)
without damping for which in particular no control on the velocity field is available.
Here, we retrieve global weak solution to the limiting system, while [15, 18] achieve
convergence to local strong solutions.

The low Mach number limit for compressible fluids has been extensively studied
in literature, we refer the reader to the monograph [13]. Let us mention that our
method is somehow inspired by [9] where the authors use dispersive effects by means
of Strichartz estimates to infer the strong convergence of the irrotational part of the
momentum ρεuε. The low Mach number limit for the inviscid counterpart, i.e. the
QHD system, has been studied in [11] on the d-dimensional torus. Due to absence
of dispersion for periodic solutions, the method is completely different. The low
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Mach number analysis on the whole space Rd will be addressed in the forthcoming
paper [2].

This note provides a brief overview of the low Mach number analysis for (4)
discussing in section 2 recent existence results and uniform estimates on finite energy
weak solutions before introducing the main result in Section 3. In Section 4, we
introduce the analysis of the acoustic waves based on refined Strichartz estimates.
Finally, we sketch the ideas of the proof of Theorem 3.1 in Section 5. The interested
reader can find more details in [1].

2. The Cauchy Problem and uniform estimates. In our study we deal with
finite energy weak solutions to (4). In the two and three dimensional torus the global
existence of such solutions are proved in [5, 16]. To our knowledge, no such result
exists for the whole space with condition (2). Here we postulate the global existence
of those solutions and we postpone this question to future research. As it is clear
from [5] the problem is best studied by using the variables

√
ρε and Λε =

√
ρεuε,

see also [3] where it is done similarly for the QHD system. In particular, at at no
moment neither the velocity field uε nor its gradient ∇uε are defined. For the same
reason - see also [6] for a similar problem in the context of a Navier-Stokes-Korteweg
system - the viscous tensor should be rather thought of as

ρεDuε =
√
ρεSε, (7)

where Sε is the symmetric part of the tensor Tε defined by the distributional identity
√
ρεTε = ∇mε − 2∇√ρε ⊗ Λε. (8)

Indeed, it is not clear whether finite energy weak solutions satisfy the energy in-
equality

E(t) + 2ν

∫ t

0

∫

R3

ρε|Duε|2dxdt ≤ E(0).

To circumvent this issue we introduce a weaker energy inequality in Definition
2.1, see also [1, 5, 16, 6]. Recalling that the dispersive tensor can be rewritten
alternatively in D′ as

2ρ∇
(

∆
√
ρ

√
ρ

)
= div

(
ρ∇2 log ρ

)
= ∇∆ρ− 4 div(∇√ρ⊗∇√ρ), (9)

the equation for the moment density in (4) then reads

∂tmε+div
(
Λε ⊗ Λε + 4κ2∇√ρε ⊗∇

√
ρε
)
+

1

ε2
∇P (ρε) = 2ν div(

√
ρεSε)+κ2∇∆ρε.

This motivates the following.

Definition 2.1. A pair (ρε, uε) with ρε ≥ 0 is said to be a finite energy weak
solution of the Cauchy Problem (4) if

(i) integrability conditions
√
ρε ∈ L2

loc((0, T )×R3);
√
ρεuε ∈ L2

loc((0, T )×R3);

∇√ρε ∈ L2
loc((0, T )×R3);

(ii) continuity equation: for any φ ∈ C∞c ([0, T )×R3),
∫

R3

ρε,0φ(0) +

∫ T

0

∫

R3

ρεφt +
√
ρε
√
ρεuε∇φ = 0.
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(iii) momentum equation: for any ψ ∈ C∞c ([0, T )×R3; R3),

∫

Rd

ρε,0uε,0ψ(0) +

∫ T

0

∫

Rd

√
ρε
√
ρεuεψt + (

√
ρεuε ⊗

√
ρεuε)∇ψ +

1

ε2
ργε divψ

− 2ν

∫ T

0

∫

Rd

(
√
ρεuε ⊗∇

√
ρε)∇ψ − 2ν

∫ T

0

∫

Rd

(∇√ρε ⊗
√
ρεuε)∇ψ

+ ν

∫ T

0

∫

Rd

√
ρε
√
ρεuε∆ψ + ν

∫ T

0

∫

Rd

√
ρε
√
ρεuε∇ divψ

− 4κ2

∫ T

0

∫

Rd

(∇√ρε ⊗∇
√
ρε)∇ψ + 2κ2

∫ T

0

∫

Rd

√
ρε∇
√
ρε∇ divψ = 0.

(iv) there exists Tε ∈ L2((0, T )×R3) satisfying (8), such that for a.e. t ∈ [0, T ],

E(t) + 2ν

∫ t

0

∫

R3

|Sε|2dxdt ≤ E(0), (10)

where Sε = Tsym
ε .

(v) Let µ = ν −
√
ν2 − κ2 and for 0 < c < µ define

Bε(t) =

∫

R3

1

2
|√ρεuε + 2c∇√ρε|2 + πε + κ̃2 |∇√ρε|2 dx,

then the Bresch-Desjardins entropy inequality holds for a.e. t ∈ [0, T ],

Bε(t) + c

∫ t

0

∫

R3

1

2
|Aε|2 dxds

+ C

∫ t

0

∫

R3

∣∣∇2√ρε
∣∣2 dxds+

cγ

2ε2

∫ t

0

∫

R3

∣∣∣∇ρ
γ
2
ε

∣∣∣
2

dxds

≤
∫

R3

1

2

∣∣√ρε,0uε,0 + 2c∇√ρε,0
∣∣2 + πε,0 + κ̃2

∣∣∇√ρε,0
∣∣2 dx,

(11)

where Aε = Tasym
ε .

2.1. Uniform estimates. We summarize the most relevant uniform estimates for
finite energy weak solutions of (4). The lack of integrability of

√
ρε is compensated

by regularity properties of
√
ρε − 1 and control on Tε provided by (10) and (11).

This leads to a new uniform bound at Sobolev regularity for the momentum mε

that is crucial for our method.

Lemma 2.2. If the initial data (ρ0
ε, u

0
ε) is of finite energy, then there exists C > 0

independent from ε > 0 such that

(i)
√
ρ0
ε−1 ∈ H1(R3) and in particular for 2 ≤ p < 6 and 2(6−p)

p(6−γ) ≤ α(p, γ) ≤ 6−p
2p ,

the following bound holds true ‖
√
ρ0
ε − 1‖Lp ≤ Cεα(p,γ).

(ii) ρ0
εu

0
ε ∈ L2(R3) + L

3
2 (R3). In particular ρ0

εu
0
ε ∈ H−s(R3) with s > 1

2 .

Lemma 2.3. If (ρε, uε) is a finite energy weak solution of (4), then there exists
C > 0 independent from ε > 0 such that

(i) such that ‖ρε−1‖L∞(R+;L2(R3)) ≤ Cεβ, where β = β(γ) satisfies 2
5 ≤ β(γ) ≤ 1

(ii)
√
ρε− 1 ∈ L∞(R+;H1(R3)) and in particular for 2 ≤ p < 6 and for 2(6−p)

p(6−γ) ≤
α(p, γ) ≤ (6−p)

2p , it holds ‖√ρε − 1‖L∞(R+;Lp(R3)) ≤ Cεα(p).
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(iii) for any 0 ≤ s < 2 and 2 ≤ p < 4
s , there exists 0 < β(p, s) < 2 such that

‖√ρε − 1‖Lp(R+;Hs(R3)) ≤ Cεβ. Moreover, for 1 < s ≤ 2,

‖√ρε − 1‖
L

2
s−1 (R+;Hs(R3))

≤ C. In particular,
√
ρε − 1 ∈ L2(R+;L∞(R3)).

(iv) ‖√ρεuε‖L∞(R+;L2(R3)) ≤ C,
(v) if Tε is defined as in (8) then ‖Tε‖L2(R+;L2(R3)) ≤ C.

(vi) for any 0 ≤ s ≤ 1
2 and 1 ≤ p < 4

1+4s , it holds

ρεuε ∈ Lp(0, T ;Hs(R3)), (12)

where the bound is uniform in ε > 0. In particular for any 0 ≤ s1 <
1
4 , one

has ρεuε ∈ L2(0, T ;Hs1(R3)).

3. Statement of the main result. We consider initial data (ρε,0, uε,0) of finite
energy, namely such that

‖∇
√
ρ0
ε‖L2(R3) ≤ C, ‖

√
ρ0
εu

0
ε‖L2(R3) ≤ C, ‖πε(ρ0

ε)‖L1(R3) ≤ C, (13)

where is C independent on ε > 0. In addition, we assume that
√
ρ0
εu

0
ε ⇀ u0 in L2(R3). (14)

No further regularity or smallness assumptions are required, in particular the initial
data is ill-prepared, i.e. πε(ρ

0
ε) is only bounded in L1(R3). We now state the main

Theorem characterising the low Mach number regime for (4).

Theorem 3.1. Let 1 < γ < 3, let (ρε, uε) be a finite energy weak solution of (4)
with initial data satisfying (13) and (14) and let 0 < T < ∞ be an arbitrary time.
Then ρε − 1 converges strongly to 0 in L∞(0, T ;L2(R3)) ∩ L4(0, T ;Hs(R3)) for
any 0 ≤ s < 1. For any subsequence (not relabeled)

√
ρεuε converging weakly to

u in L∞(0, T, L2(R3)), then u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1(R3)) is a global
weak solution to the incompressible Navier-Stokes equation (6) with initial data
u∣∣t=0

= P(u0) and
√
ρεuε converges strongly to u in L2(0, T ;L2

loc(R
3)). Moreover,

Q(ρεuε) converges strongly to 0 in L2(0, T, Lq(R3)) for any 2 < q < 9
4 .

We emphasize that the whole sequence Qmε converges strongly to 0, no ex-
traction of subsequences is required. The sequence mε is strongly compact in
L2(0, T ;L2

loc(R
3)). While the compressible system only satisfies the energy inequal-

ity in its weak form (10), we obtain that u ∈ L∞(0, T ;L2(R3))∩L2(0, T ; Ḣ1(R3)).
Moreover, the limit function u satisfies u ∈ Lp(0, T ;Hs(R3)) with 0 ≤ s ≤ 1

2 and

1 ≤ p < 4
1+4s provided by (viii) in Lemma 2.3. If the formation of an initial layer

is ruled out by stronger assumption on the preparation of the initial data, then the
limiting function u satisfies the energy inequality, i.e. is a Leray weak solution. We
require √

ρ0
εu

0
ε → u0 = P(u0) strongly in L2(R3),

πε(ρ
0
ε)→ 0 strongly in L1(R3),

∇
√
ρ0
ε → 0 strongly in L2(R3).

(15)

Proposition 1. Under the same assumptions of Theorem 3.1, let (ρ0
ε, u

0
ε) further

satisfy (15). Then the limiting solution u to (6) satisfies the energy inequality
∫

R3

|u(t)|2dx+ ν

∫ t

0

∫

R3

|∇u|2dxdt′ ≤
∫

R3

|u0|2dx, (16)

for almost every t ∈ [0, T ].
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To prove Theorem 3.1, we decompose the momentum mε by means of the Leray-
Helmholtz projections on a divergence free field Pmε and a irrotational field Qmε.
The refined analysis of acoustic waves allows to conclude the strong convergence of
Qmε to 0 while the dynamics is governed in the limit by the limit of Pmε for which
strong convergence is achieved by a Aubin-Lions compactness argument based on
the Sobolev regularity of mε from Lemma 2.3.

4. Analysis of acoustic waves. This Section is devoted to the convergence to
0 of σε = ρε−1

ε and Qmε in suitable space-time norms. When considering ill-
prepared data rapid oscillations in time occur and only weak convergence can be
expected. However, by means of refined Strichartz estimates capturing accurately
the dispersion on the whole space we obtain the following statement.

Theorem 4.1. Let (ρε, uε) be a finite energy weak solution of (4). Then, for any
0 < T <∞,

(i) the density fluctuations ρε − 1 converge strongly to 0 in C0(0, T ;L2(R3)) and
in L4(0, T ;Hs(R3)) for any s ∈ (− 3

2 , 1),

(ii) If γ = 2, then σε converges strongly to 0 in L2(0, T ;Lq(R3)) for any 2 < q < 6,
(iii) and for any 2 < q < 9

4 there exists δ > 0 such that Q(mε) converges strongly

to 0 in L2(0, T ;Bδq,2(R3)).

We remark that this implies in particular that Qmε converges strongly to 0 in
L2(0, T ;L2

loc(R
3)). Theorem 4.1 is proven by observing that upon using (9) the

linearized system for (σε,mε) reads
{

∂tσε + 1
ε div(mε) = 0,

∂tmε + 1
ε∇
(
1− κ2ε2∆

)
σε = Fε,

(17)

where

Fε = div
(
−Λε ⊗ Λε − 4κ2∇√ρε ⊗∇

√
ρε + 2ν

√
ρεSε

)
− (γ − 1)∇πε. (18)

The initial datum for (17) satisfies

σ0
ε =

ρ0
ε − 1

ε
∈ H− 3

2 (R3), m0
ε = ρ0

εu
0
ε ∈ H−

1
2 (R3),

in virtue of Lemma 2.2. The desired control of (σε,Qmε) in suitable space-time
norms in terms of the scaled Mach number ε are consequence of Strichartz estimates
of a symmetrization of system (17). Namely, we introduce

σ̃ε := (1− ε2κ2∆)
1
2σε, m̃ε := (−∆)−

1
2 divmε,

and observe that (σ̃ε, m̃ε) satisfies
{

∂tσ̃ε + 1
ε (−∆)

1
2 (1− κ2ε2∆)

1
2 m̃ε = 0,

∂tm̃ε − 1
ε (−∆)

1
2 (1− κ2ε2∆)

1
2 σ̃ε = F̃ε,

(19)

where F̃ε = (−∆)−
1
2 divFε. The evolution of (19) is characterised by the unitary

semigroup e−itHε , where

Hε =
1

ε

√
(−∆)(1− (εκ)2∆) (20)

is a self-adjoint operator with Fourier multiplier given by

ω(ξ) =
1

ε
|
√
|ξ|2 + ε2κ2|ξ|4. (21)
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Unlike the case of compressible fluid where the dispersion relation is linear, here
the dispersion relation (21) corresponds to the Bogoliubov dispersion relation aris-
ing in the excitation spectrum for Bose-Einstein condensates [8]. The dispersion
relation (21) behaves linearly with slope 1

ε for frequencies below the threshold 1
ε

and Schrödinger like for frequencies above the threshold. For ε = 1, the Strichartz
estimates for the semigroup operator eitH1 have been introduced in [14]. For the
analysis of the low Mach number limit, we need to track the ε-dependence in the
estimates. Let us mention that this is not trivial given the non-homogeneity of (21).
Here, the bound of (σ̃ε, m̃ε) in terms of the scaled Mach number ε is rather due to
the observation that the Strichartz estimates are Schrödinger like rather than wave-
like for the whole frequency spectrum and behave slightly better than the one for
the free Schrödinger evolution around the Fourier origin. This improved behavior
is particularly relevant for the low-frequency regime while for high-frequencies one
may always gain a factor ε to a small power in the estimates by Sobolev embed-
ding. Being related to the curvature of the hyper-surface τ = 1

ε |
√
|ξ|2 + ε2κ2|ξ|4

our argument provides the desired decay in dimension d ≥ 3. In dimension d ≥ 2,
the evolution of the semigroup operator eitHε has been addressed in [7]. The au-
thors distinguish the low and high frequency regime and approximate Hε by the
linear wave operator for low frequencies and by the Schrödinger operator for high
frequencies respectively. The approximation of the low frequency regime by the
wave equation leads to a higher loss of regularity in the estimates compared to the
ones introduced in [1].

5. Sketch of the Proof of the main result. We present the argument that allows
to conclude that Pmε is strongly compact in L2(0, T ;L2

loc(R
3)). Together with

Theorem 4.1 this is enough in order to infer that the whole sequence mε converges
strongly to u in L2(0, T ;L2

loc(R
3)) being weak solution of the incompressible Navier-

Stokes equation.

Proposition 2. The sequence P(mε) converges strongly to u in L2(0, T ;L2
loc(R

3))
as ε goes to 0. Further,

1. mε converges strongly to u in L2(0, T ;L2
loc(R

3)),
2. Λε converges strongly to u in L2(0, T ;L2

loc(R
3)).

Moreover, the limit function u is weak solution of (6) with initial data u
∣∣
t=0

= P(u0)

defined in (14).

The first part of the Proposition is proven by noticing that from Lemma 2.3 we
have that Pmε ∈ L2(0, T ;H

1
8 (R3) and ∂tPmε ∈ L2(0, T ;H−s(R3) for some s > 5

2 .
Hence, in the virtue of the Aubin-Lions compactness Lemma we conclude that Pmε

converges locally strongly to u and thus Theorem 4.1 then yields that mε converges
strongly to u in L2(0, T ;L2

loc(R
3)). Writing Λε = mε − (

√
ρε − 1)Λε we infer the

desired convergence for Λε. The strong compactness of Λε is sufficient to pass to
the limit in the weak formulation of (4). Finally, we remark that the weak L2-limit
of tensor Sε can be identified with the velocity gradient, i.e.

Sε ⇀ Du,

from (7) combined with the convergences of mε,
√
ρε − 1 and Λε. By the lower-

semicontinuity of the norms, we conclude that Du ∈ L2(0, T, L2
loc(R

3) and since
div u = 0 this implies ∇u ∈ L2(0, T, L2

loc(R
3). If we further assume that the initial

data is well-prepared, namely (15), then we may pass to the limit in the energy
inequality (10) and conclude that u is a Leray weak solution of (6).
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in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2017.[10.1007/978-3-319-63781-5]
[14] S. Gustafson, K. Nakanishi and T.-P. Tsai, Scattering for the Gross–Pitaevskii equation,

Mathematical Research Letters, 13 (2005), 273–285.
[15] Y.-S. Kwon and F. Li, Incompressible limit of the degenerate quantum compressible Navier–

Stokes equations with general initial data, J. Differ. Eqns., 264, no. 5 (2018), 3253–3284.

[16] I. Lacroix-Violet and A. Vasseur, Global weak solutions to the compressible quantum Navier-
Stokes and its semi-classical limit, J. Math. Pures Appl., 114 (2018), 191–210.

[17] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity, The Clarendon

Press, Oxford University Press, 2016.[10.1093/acprof:oso/9780198758884.001.0001]
[18] J. Yang, Q. Ju and Y.-F. Yang, Asymptotic limits of Navier–Stokes equations with quantum

effects, Z. Angew. Math. Phys. 66, no. 5 (2015), 2271–2283.

E-mail address: paolo.antonelli@gssi.it

E-mail address: larseric.hientzsch@gssi.it

E-mail address: pierangelo.marcati@gssi.it

263



1D QUANTUM HYDRODYNAMIC SYSTEM: GLOBAL

EXISTENCE, STABILITY AND DISPERSION

Hao Zheng∗

Gran Sasso Science Institute
Viale Francesco Crispi, 7

L’Aquila, AQ 67100, Italy

Paolo Antonelli and Pierangelo Marcati

Gran Sasso Science Institute
Viale Francesco Crispi, 7

L’Aquila, AQ 67100, Italy

Abstract. In this paper we consider the Cauchy problem for the one-

dimensional quantum hydrodynamic (QHD) system. We show global existence

of weak solutions. Moreover, by introducing a novel functional which is uni-
formly bounded in time along the flow of solutions and controls some higher

order norms of the unknowns, we provide a stability result for sequence of
weak solutions satisfying those bounds. Finally, we present some dispersive

properties of solutions to the QHD system.

1. Introduction. This work is concerned about the following one dimensional
quantum hydrodynamic (QHD) system





∂tρ+ ∂xJ = 0

∂tJ + ∂x

(
J2

ρ

)
+ ∂xP (ρ) =

1

2
ρ∂x

(
∂2x
√
ρ

√
ρ

)
.

(1)

This system describes a compressible, inviscid fluid with quantum effects de-
scribed by the third order dispersive term on the right hand side of the equation
for the momentum density. This model is used in the description of physical phe-
nomena in superfluidity and BEC [15] or in the modeling of semiconductor devices
at nanoscales [12]. The unknowns ρ and J in (1) represent the mass and momen-
tum densities of the fluid, respectively, P (ρ) = γ−1

γ ργ is the pressure term, with

1 < γ < ∞. Under some suitable regularity assumptions the quantum term can
also be written in different ways, like

1

2
ρ∂x

(
∂2x
√
ρ

√
ρ

)
=

1

4
∂3xρ− ∂x(∂x

√
ρ)2 =

1

4
∂x
(
ρ∂2x log ρ

)
. (2)

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Quantum hydrodynamics, QHD, global existence, stability, dispersion.
The first author is supported by Gran Sasso Science Institute.
∗ Corresponding author: Hao Zheng.

264



PAOLO ANTONELLI, PIERANGELO MARCATI AND HAO ZHENG

The system (1) is Hamiltonian and its total energy

E =

∫

Rd

1

2
(∂x
√
ρ)2 +

1

2

J2

ρ
+ f(ρ) dx (3)

is formally conserved along the flow of solutions. The internal energy in (3) is
defined from the pressure by the formula f(ρ) = ρ

∫ ρ
0
p(s)/s2 ds = 1

γ ρ
γ .

System (1) is intimately related to the following nonlinear Schrödinger equation



i∂tψ =− 1

2
∂2xψ + f ′(|ψ|2)ψ

ψ(0) =ψ0 ∈ H1(R).
(4)

This can be formally seen through by expressing the wave function in terms of
its amplitude and its phase, ψ =

√
ρeiS . By plugging this ansatz inside the NLS

equation (4), by separating the real and imaginary parts and after some algebra,
we find that (ρ, S) solves the following system





∂tρ+ ∂x(ρ∂xS) = 0

∂tS +
1

2
(∂xS)2 + f ′(ρ) =

1

2

∂2x
√
ρ

√
ρ
.

(5)

Given (ρ, S) satisfying system (5) we see it is possible to define the velocity field
v = ∂xS and we have that (ρ, J), with J = ρv = ρ∂xS, satisfy the QHD system.
However this approach fails in the nodal region, namely the set where the wave
function vanishes {ρ = 0}, since there the phase is not well-defined.

Alternatively the hydrodynamical quantities (ρ, J) associated to a wave function
ψ are defined by means of the Madelung transformations, i.e. ρ = |ψ|2, J =
Im(ψ̄∂xψ). In [3, 4] the authors set up a polar factorisation approach for finite
energy wave functions in order to show the existence of global in time finite energy
weak solutions to (1) in three and two space dimensions, respectively. The main
advantage of this approach is that the polar factorisation technique allows to define
the hydrodynamical quantities

√
ρ and Λ = J/

√
ρ (see Lemma 3.1), thus overcoming

the problem of defining the velocity field in the nodal region. In this way they show
the existence of finite energy weak solutions to (1) by considering the Madelung
transform of a wave function, solution to (4), see also Theorem 3.2 below.

Conversely, it is not clear whether it is possible to give an existence result for
weak solutions to (1) without passing through the analogue wave function dynamics
given by (4). This problem is also linked to the more general question in quantum
mechanics, the so called Pauli problem, which asks whether it is possible to deter-
mine a quantum state given a set of its observables. In this paper we shall present
some partial answers to those questions. First of all, we show that in 1D it is pos-
sible to invert the Madelung transform. More precisely, given a set of finite energy
hydrodynamical quantities (

√
ρ,Λ) such that Λ vanishes in the vacuum region, it

is indeed possible to define an associated wave function. As a consequence we ob-
tain the global existence of weak solutions to (1) without assuming that the initial
data are generated by a wave function. Furthermore by requiring some further
integrability/regularity hypotheses on the initial data we can also show compact-
ness properties for solutions. Finally, if we further assume that the initial data
ρ0 has finite variance then we can prove that the solutions obtain some dispersive
properties.
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The results announced here will be proved and discussed more extensively in the
forthcoming paper [6].

2. Preliminaries. Let us first introduce the concept of finite energy weak solutions
to (1), for more details we address the reader to [5]. Following [3, 4] we consider
the quantities (

√
ρ,Λ) which define the hydrodynamic variables by ρ = (

√
ρ)2,

J =
√
ρΛ. Using this definition and by exploiting the identity (2), we rewrite

system (1) in the following way




∂tρ+ ∂xJ = 0

∂tJ + ∂x(Λ2 + p(ρ) + (∂x
√
ρ)2) =

1

4
∂3xρ.

(6)

Thus we say that (
√
ρ,Λ) is a finite energy weak solution to (1) if

√
ρ ∈ L∞([0, T ],

H1(R)), Λ ∈ L∞([0, T ], L2(R)) and they solve (6) in the sense of distribution for
some T > 0.

To precisely characterise the regularity condition of the initial data and solutions,
we define the following conditions:

‖√ρ0‖H1 + ‖Λ0‖L2 ≤M1 (7)

and

‖ Λ2
0√
ρ0
‖L2 + ‖∂2x

√
ρ0‖L2 + ‖∂xJ0√

ρ0
‖L2 ≤M2. (8)

Condition (7) is equivalent to require the initial mass and energy are finite. On the
other hand, assumptions (8) are related to the definition of a novel functional, see
(11) below, which is introduced in order to study the compactness issue. From the
physical point of view this functional formally gives a control on L2−norm of the
chemical potential

µ = −1

2

∂2x
√
ρ

√
ρ

+
1

2
v2 + f ′(ρ), (9)

in ρ dx, where formally v = J/ρ is the velocity field. More rigorously, we shall
consider the following quantity

λ = −1

2
∂2x
√
ρ+

Λ2

√
ρ

+ f ′(ρ)
√
ρ, (10)

which formally equals λ =
√
ρµ. The functional we are going to study is then

defined by

I(t) =

∫
λ2 + (∂t

√
ρ)2 dx, (11)

so that the bounds in (8) yield I(0) ≤ M2
2 . Unfortunately proving a uniform

estimate on I(t) will not guarantee that the bounds in (8) are preserved along the
evolution. Nevertheless it will provide some a priori estimates which will yield the
compactness for solutions to (1).

As it will be clear through a direct computation, for Schrödinger-generated hy-
drodynamical momenta, say ρ = |ψ|2 and J = Im(ψ̄∂xψ), the functional (11) can
be written as

I(t) =

∫
|∂tψ|2 dx, (12)

so that intuitively I(t) controls the H2 norm of the solution to (4).
Let us first recall some basic facts on (4) which will be used later. The reader

will find more details and proofs in [8].
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Theorem 2.1. Let ψ0 ∈ H1(R) then there exists a unique global solution ψ ∈
C(R;H1(R)) to (4) such that the total mass and energy are conserved at all times.
If moreover ψ0 ∈ H2(R), then we also have ψ ∈ C(R;H2(R))∩ C1(R : L2(R)) and
for any 0 < T <∞ we have

‖ψ‖L∞(0,T ;H2(R)) + ‖∂tψ‖L∞(0,T ;L2(R)) ≤ C(T, ‖ψ0‖H2(R)). (13)

In what follows we shall also use the following fact, see Theorem 6.19 in [14].

Lemma 2.2. Let f : Ω→ R be in H1(Ω), and

B = f−1({0}) = {x ∈ Ω : f(x) = 0} .
Then ∇f(x) = 0 for almost every x ∈ B.

3. Wave Function Lifting and Global Existence of Weak Solutions. In
this Section we first review some known facts about the polar factorization, then
we introduce the wave function lifting in order to invert the Madelung transform.

The polar factorization, developed in [3, 4], allows to define the hydrodynamic
quantities (

√
ρ,Λ) and sets up a correspondence between the wave function dynam-

ics and the hydrodynamical system. The main advantage of this approach with
respect to the usual method for instance is that vacuum regions are allowed in the
theory. For a more detailed presentation we address to Section 3 in [2]. Given any
function ψ ∈ H1(R) we can define the set of polar factors as

P (ψ) :=
{
φ ∈ L∞(R) | ‖φ‖L∞

x
≤ 1, ψ = φ|ψ| a.e.

}
.

Lemma 3.1. Let ψ ∈ H1(R),
√
ρ := |ψ| and φ ∈ P (ψ). Then ∂x

√
ρ = Re(φ̄∂xψ) ∈

H1(R) and by setting Λ := Im(φ∂xψ), we have

|∂xψ|2 = (∂x
√
ρ)2 + Λ2, a.e. x ∈ R. (14)

Furthermore if {ψn} ⊂ H1(R) is such that ||ψn − ψ||H1 → 0, then

∂x
√
ρn → ∂x

√
ρ, Λn → Λ, in L2(R). (15)

By using the previous Lemma and Theorem 2.1 it is possible to prove the fol-
lowing result on global existence of finite energy weak solutions to (1).

Theorem 3.2. Let ψ0 ∈ H1(R) and let us define ρ0 = |ψ0|2, J0 = Im(ψ̄0∂xψ0).
Then there exists a global in time finite energy weak solution to (1) such that the
total mass and total energy are conserved at all times.

The above Theorem was first proved in [3, 4] in the three and two dimensional
case, then alternative proofs appeared also in [9, 1]. We point out that the main
results in [3, 4] in fact concern the existence of global solutions for a dissipative
version of the QHD system, where the equation for the momentum density in (1) is
augmented by a linear damping term which destroys the analogy with (4), see [3, 4]
for more details. The study of that system then requires a more delicate analysis
which passes through the construction of a sequence of approximating solutions by
means of an operator splitting argument and the analysis of suitable compactness
estimates given by the dispersive effects encoded in the system. Here we focus only
on the Hamiltonian system (1).

Lemma 3.1 allows us to determine suitable hydrodynamical quantities (
√
ρ,Λ)

from a given finite energy wave function ψ ∈ H1. The opposite result is given by
the following wave function lifting proposition.
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Proposition 1. Let (
√
ρ,Λ) be satisfying (7) and let us further assume that Λ = 0

a.e. on {√ρ = 0}. Then there exists a wave function ψ ∈ H1(R) such that

√
ρ = |ψ|, Λ = Im(φ̄∂xψ),

where φ ∈ P (ψ). If we furthermore assume that (
√
ρ,Λ) satisfy also the bounds (8),

then ψ ∈ H2(R) and we have

‖ψ‖H2(R) ≤ C(M1,M2). (16)

Proof. Here we briefly sketch the proof of the proposition, for more details we refer

to [6]. Let δ(x) = e−x
2

and let
√
ρn(x) =

√
ρ(x) + 1

nδ(x), Λn = J/
√
ρn. By

definition
√
ρn converges to

√
ρ in H1(R) and pointwise. Moreover, by assumption

we have Λ(x) = 0 a.e. in {√ρ = 0} and by construction the same holds also for
Λn. Hence the pointwise convergence of

√
ρn(x) also implies Λn(x)→ Λ(x) a.e. As

a consequence Λn(x) → Λ(x) in L2(R) by dominant convergence theorem. Since√
ρn is positive everywhere, we can apply the inverse of Madelung transformation to

hydrodynamic data (
√
ρn,Λn) to define a phase function Sn(x) =

∫ x
0
vn(y)ds and

a wave function ψn =
√
ρne

iSn ∈ H1(R). Direct computation shows ||ψn||H1 ≤
||√ρ||H1 + ||Λ||L2 , which implies upto a subsequence ψn converges weakly to a

ψ ∈ H1(R). Using the strong convergence of
√
ρn and Λn, we can show ψ is exactly

the wave function we want. The additional condition (8) implies that the sequence
ψn ⊂ H2(R), with H2(R) norm is bounded by C(M1,M2).

We remark that the assumption on Λ vanishing on the vacuum is quite reasonable
in view of the polar factorization and of Lemma 2.2. Indeed for ψ ∈ H1, we have
∂xψ = 0 a.e. on {√ρ = 0} and consequently Λ constructed in Lemma 3.1 satisfies
Λ = 0 a.e. in {√ρ = 0}. By using Proposition 1 we can show a global existence
result for finite energy initial data.

Theorem 3.3 (Global Existence). Let d = 1. Consider a pair (
√
ρ0,Λ0) of initial

data with finite energy, i.e. satisfying bounds (7) and let us further assume that
Λ0 = 0 a.e. on the set {√ρ0 = 0}. Then there exists a global in time finite energy
weak solution to the Cauchy problem (1) which conserves the total energy for all
times. Moreover, if we also assume that the initial data satisfy the estimate in (8),
then for any 0 < T <∞ we have

‖ρ‖L∞(0,T ;H2(R)) + ‖J‖L∞(0,T ;H1(R)) + ‖√e‖L∞(0,T ;H1(R)) ≤ C(T,M1,M2), (17)

where e is the kinetic energy density defined by

e =
1

2
(∂x
√
ρ)2 +

1

2
Λ2. (18)

The proof of the global existence theorem follows by applying Proposition 1 to
(
√
ρ0,Λ0). This gives ψ0 ∈ H1(R) and by Theorem 2.1 we obtain ψ ∈ L∞(I,H1(R))

solution to (4) which preserves the mass and energy. Then using the polar decom-
position Lemma 3.1 we define

√
ρ = |ψ|, Λ = Im(φ∂xψ) and show (

√
ρ,Λ) is a weak

solution to (6). If further assume (8), then ψ0 ∈ H2(R) and again by Theorem 2.1
ψ ∈ C(R;H2(R)) satisfies(13). By using (12), we see I(t) is uniformly bounded.
The higher order bounds of ρ, J and

√
e are consequence of the bound for I(t).
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4. Stability. After the existence of global solutions, we can show that the frame-
work determined by the existence theorem ensures suitable compactness properties
for sequences of solutions to (1).

Theorem 4.1 (Stability). Let us assume {(√ρn,Λn)}n≥1 is a sequence of solutions
to (1) with uniform bounded total mass, energy and functional I(t). Then upto
subsequence we have

√
ρn →

√
ρ in L∞(0, T ;H1

loc(R))

Λn →Λ in L∞(0, T ;L2
loc(R)),

for any 0 < T <∞, where (
√
ρ,Λ) is a finite energy weak solution to (1). Further-

more, we have weak convergence

∂2xρn ⇀ ∂2xρ
∂xJn ⇀ ∂xJ

∂x
√
en(·) ⇀ ∂x

√
e(·)

λn ⇀ λ

in L∞t L
2
x,

where en(t) is the kinetic energy density of (ρn, Jn)(t, x), and λn defined as (8).

The weak convergence is given by the uniform bound of I(t) and (17). We first
denote

√
ν the weak limit of

√
e, which is also the weak limit of the non-linearity of

(6), then to prove the compactness it is sufficient to show the following proposition:

Proposition 2. We have the following identity

ν2 =
1

2
(∂x
√
ρ)2 +

1

2
Λ2 (19)

is satisfied a.e. x ∈ R, and consequently we have

∂x
√
ρn →

√
ρ, L∞(0, T ;L2

loc(R)),

Λn → Λ, L∞(0, T ;L2
loc(R)).

The idea of the proof is to consider ν away from and inside the vacuum region
separately. When away from the vacuum, since ρ(x) > 0 it is sufficient to consider
ρν, for which the local strong convergence is given by the higher order bound and
Sobolev embedding. For the vacuum region, it is important to notice that en and ν
vanish almost everywhere by the L2 boundedness of λn and λ. Combining this fact
with Lemma 2.2, we show that in the vacuum region both sides of (19) vanish a.e..

5. Dispersion. In this last Section we provide some results about the asymptotic
behaviour of finite energy weak solutions to the QHD system (1).

Theorem 5.1 (Dispersion). Let (ρ, J) be a finite energy weak solution to system (1)
such that the energy is conserved and let us further assume that

∫
|x|2ρ0(x) dx <∞.

Then we have
‖∂x
√
ρ(t)‖L2 + ‖Λ− x

t

√
ρ‖L2 . t−σ, (20)

where σ = min{1, 12 (γ − 1)}.
The main idea stems from writing the hydrodynamical analogue of the pseudo-

conformal energy for the NLS equation. Similar functionals are also studied in
classical fluid dynamics [10]. We consider the functional

V (t) =

∫

R

x2

2
ρ(t, x) dx− t

∫

R

x · J(t, x) dx+ t2E(t), (21)

269



1D QUANTUM HYDRODYNAMIC SYSTEM

where the energy E(t) is defined in (3). Theorem 5.1 is proved by using the result
in Proposition below and an argument similar to the one given in [7].

Proposition 3. Let (ρ, J) be a finite energy weak solution to (1) such that ||x2ρ0||L1

<∞ and the energy is conserved for all times. Then we have

V (t) + (1− 3

γ
)

∫ t

0

∫

R

ργ(s, x) dxds =

∫

R

x2

2
ρ0(x) dx.
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html RIMS Kôkyûroku 2070 (2018), 107–129.

[3] P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in Quantum
Fluid Dynamics, Comm. Math. Phys., 287 (2009), no 2, 657–686.

[4] P. Antonelli and P. Marcati, The Quantum Hydrodynamics system in two space dimensions,

Arch. Rat. Mech. Anal., 203 (2012), 499–527.
[5] P. Antonelli and P. Marcati, Some results on systems for quantum fluids, Recent Advances

in Partial Differential Equations and Application, Cont. Math., 666 (2016), 41–54.

[6] P. Antonelli, P. Marcati and H. Zheng, Global existence, stability and scattering for weak
solutions to the one dimensional QHD system, preprint.

[7] J. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation,
J. Math. Phys., 25 (1984), 3270.

[8] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol.

10, New York University, Courant Institute of Mathematical Sciences, AMS, 2003.
[9] R. Carles, R. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinear-

ity, 25 (2012), 2843–2873.
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ABOUT VISCOUS APPROXIMATIONS OF THE

BITEMPERATURE EULER SYSTEM
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Abstract. This paper is devoted to the study of the construction of a viscous

approximation of the nonconservative bitemperature Euler system. Starting

from a BGK model coupled with Ampère and Poisson equations proposed in
[1], we perform a Chapman-Enskog expansion up to order 1 leading to a Navier-

Stokes system. Next, we prove that this system is compatible with the entropy

of the bitemperature Euler system.

1. Introduction. This paper is devoted to a viscous approximation of the bitem-
perature Euler system that has been studied in [1]. This fluid model describes the
interaction of a mixture of one species of ions and one species of electrons in ther-
mal nonequilibrium, with applications in the field of Inertial Confinement Fusion
where solutions with shocks occur. Quasineutrality being assumed, the electronic
and ionic mass fractions are constant: subscripts e and i standing for electron and
ions respectively,

ρe = mene = ceρ, ρi = mini = ciρ, ce + ci = 1

and the model consists of two conservation equations for mass and momentum and
two nonconservative equations for each energy.

Moreover the pressure of each species is supposed to satisfy a gamma-law with
its own γ constant:

pe = (γe − 1)ρeεe = nekBTe, pi = (γi − 1)ρiεi = nikBTi, (1)

where kB is the Boltzmann constant, εα and Tα represent respectively the internal
specific energy and the temperature of species α, α ∈ {e, i}.

The total energies are given by Eα = ραεα + 1
2ραu

2, α ∈ {e, i}. We denote
νei ≥ 0 the interaction coefficient between electronic and ionic temperatures. The

2000 Mathematics Subject Classification. Primary: 35L60 ; Secondary: 82D10, 76X05.
Key words and phrases. Bitemperature Euler, Chapman-Enskog expansion, BGK model, Dis-

sipative entropy, Plasmas.
∗ Corresponding author: D. Aregba-Driollet.
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bitemperature Euler system is the following:




∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pe + pi) = 0,

∂tEe + ∂x(u(Ee + pe))− u(ci∂xpe − ce∂xpi) = νei(Ti − Te),
∂tEi + ∂x(u(Ei + pi)) + u(ci∂xpe − ce∂xpi) = −νei(Ti − Te).

(2)

A first step in the comprehension of this system is to suppose that γe = γi = γ.
In this case, one can define a global internal energy ε = ceεe + ciεi which satisfies
pe + pi = (γ − 1)ρε. Denoting E = Ee + Ei the total energy one has

E = ρε+
1

2
ρu2

and

∂tE + ∂x(u(E + p)) = 0

so that (ρ, ρu, E) satisfies the usual Euler 3 × 3 system with γ law. Nevertheless,
even in this case one needs to solve a nonconservative equation in order to get Te
and Ti separately. In our context, the nonconservativity is not only due to source
terms but especially to terms multiplying u by pressure gradients, making delicate
the definition of admissible shocks. In order to define nonconservative products,
Dal Maso, Le Floch and Murat proposed in [5] a new theory based on the definition
of family of paths. In [4], the authors consider the bitemperature Euler system
with diffusive terms. By assuming that the electrons are isentropic, the system is
transformed into a conservative model. In [7], the authors consider a kinetic system
for sprays and derive a nonconservative hyperbolic system that is studied in [6].

In [1], the Euler bitemperature system has been derived by hydrodynamic limit
of an underlying kinetic model which consists of a BGK model coupled with Pois-
son equation in the quasi-neutral regime. Moreover the obtained fluid system has
been proved to be entropy dissipative by a direct approach and also by using the
Boltzmann entropy. In particular, the nonconservative terms are obtained from the
definition of the electric field according to a generalized Ohm’s law.

In the present paper, we perform a Chapman-Enskog expansion of our kinetic
model up to order one in order to get rigorously a viscous, Navier-Stokes type
approximation of the bitemperature Euler system in the case γe = γi. As a result,
we obtain conservative and nonconservative second order terms. To go into details,
let us denote U = (ρ, ρu, Ee, Ei). The Euler bitemperature system (2) being written
in condensed form as

∂tU +A(U)∂xU = S(U),

for a fixed relaxation parameter τ > 0 the obtained second order system can be
written under the form

∂tUτ +A(Uτ )∂xUτ = S(Uτ ) + τ (uτ∂x (J(Uτ )∂xUτ ) + ∂x (D(Uτ )∂xUτ )) . (3)

Here J(Uτ ) and D(Uτ ) are 4 × 4 matrices, while uτ is the velocity. This result
completes known models such as the one studied by C. Chalons and F. Coquel in
[3], by constructing rigorously some second order terms to their system.

Next we prove the compatibility of the entropy of the bitemperature Euler system
with the diffusive terms. We recall that a dissipative entropy η exists for (2), namely
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([1])

η(U) = ηe(ρce, εe) + ηi(ρci, εi),

ηα(ρα, εα) =− ρα
mα(γα − 1)

ln

(
pα
ργαα

)
, α ∈ {e, i}.

(4)

We prove here that the solutions Uτ of (3) formally satisfy the following inequality:

∂tη(Uτ ) + ∂x(uη(Uτ )) ≤ − νei
kBTiTe

(Ti − Te)2 − τ
5kB
2mα

∑

α=e,i

∂x (nα∂xTα) .

This is a first step to prove that Uτ owns a limit U which is a weak entropy
solution of the Euler bitemperature system.

The paper is organized as follows. The Section 2 deals with the derivation of
a Navier-Stokes system starting from the kinetic system proposed in [1]. In sec-
tion 3, the diffusive terms are shown to be dissipative w.r.t. the entropy of the
bitemperature Euler system. Finally, section 4 gives conclusions to this work.

2. Derivation of the Navier-Stokes system.

2.1. Notations. Kinetic models are described by the distribution function fα of
each species depending on the time variable t ∈ R+, on the position x ∈ R3 and
on the velocity v ∈ R3. The macroscopic quantities can be obtained by extracting
moments on these distribution functions w.r.t the velocity variable. Indeed density,
velocity and total energy of the species α can be defined as

nα =

∫

R3

fαdv, uα =
1

nα

∫

R3

v1fαdv, Eα =
3

2
ρα

kB
mα

Tα +
1

2
ραu

2
α =

∫

R3

mα
v2

2
fαdv.

(5)
The present model is monoatomic (γ = 5

3 ). Hence, the internal specific energy of
species α writes

εα =
3

2mα
kBTα.

In the following, we denote Uα the moments of fα

Uα =




ρα
ραuα
Eα


 = mα

∫

R3




1
v1
v2

2


 fαdv. (6)

Usually the velocity and the temperature of the mixture are defined by

u =
ρeue + ρiui
ρe + ρi

, nkBT =
∑

α

(
1

2
ρα(u2α − u2)) +

∑

α

(nαkBTα), (7)

where n = ne + ni.
Moreover, the current of the plasma j and the total charge ρ̄ are defined by

ρ =

∫

R3

(qefe + qifi) dv = neqe + niqi,

j =

∫

R3

v1(qefe + qifi) dv = neqeue + niqiui,

(8)

where qe = −e, qi = Ze are the particle charges.
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2.2. Chapman-Enskog expansion. Consider the following kinetic model in the
quasi-neutral regime





∂tfα + v1∂xfα +
qα
mα

E∂v1fα =
1

τ
(Mα − fα) +

1

τei
(Mα − fα),

∂tE = − j

τ2
,

∂xE =
ρ

τ2
,

(9)

where τ is a positive parameter proportional to the Knudsen number and 1/τei
corresponds to the collision frequency for the ion/electron interaction.
Mα and Mα are the two Maxwellian distribution functions

Mα(fα) =
nα

(2πkBTα/mα)3/2
exp(− |v − uα|

2

2kBTα/mα
), α = e, i, (10)

Mα(fe, fi) =
nα

(2πkBT/mα)3/2
exp(− |v − u|

2

2kBT/mα
), α = e, i. (11)

Next we perform a first order Chapman-Engskog expansion up to order 1. Hence
the solution of the system (9, 10, 11) fα is researched as the expansion

fα =Mα + τgα, α ∈ {e, i}, (12)

with the constraints∫

R3

fαdv =

∫

R3

Mαdv,

∫

R3

v1fα dv =

∫

R3

v1Mα dv,

∫

R3

v2fα dv =

∫

R3

v2Mα dv.

(13)

By neglecting the terms gα, one obtains the bitemperature Euler system as an
hydrodynamic limit as in ([1]). Our goal here is to compute explicitly the first
order term gα to get the related Navier-Stokes system.

2.3. Obtention of the viscous fluid system. We expand fα as in (12, 13) and
we extract the moments w.r.t. 1, v1, v2.

One important point to determine the viscous terms of the Navier-Stokes is to
compute the term gα of the expansion (12, 13). The calculus is performed in the
following proposition.

Proposition 1. The first order terms ge and gi of the expansion (12, 13) write

ge = −
((

(v1 − u)

(
∂xne
ne
− 3

2

∂xTe
Te

)
+ ∂xu

(
(v1 − u)2

kB
me
Te

− 1

3

(v − u)2

kB
me
Te

)

+
νei

nekBTe
(Ti − Te)

(
(v − u)2

3 kBmeTe
− 1

)

− (v1 − u)
(v − u)2

2 kBme
∂x(

1

Te
)− (v1 − u)

kB
me
Teρ

∂x(pe + pi)
)
Me

+
qe
me

E∂v1Me −
1

τei

(
Me −Me

)
)
, (14)
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gi = −
((

(v1 − u)

(
∂xni
ni
− 3

2

∂xTi
Ti

)
+ ∂xu

(
(v1 − u)2

kB
mi
Ti

− 1

3

(v − u)2

kB
mi
Ti

)

+
νei

nikBTi
(Te − Ti)

(
(v − u)2

3kBmiTi
− 1

)

− (v1 − u)
(v − u)2

2kBmi
∂x(

1

Ti
)− (v1 − u)

kB
mi
Tiρ

∂x(pe + pi)
)
Mi

+
qi
mi

E∂v1Mi −
1

τei

(
Mi −Mi

)
)
. (15)

Proof. gα is given by the relation

gα = −
(
∂tMα + v1∂xMα +

qα
mα

E∂v1Mα −
1

τei
(Mα −Mα

)
.

A direct computation gives

∂tMe =

(
(
∂tne
ne
− 3

2

∂tTe
Te

) + (v1 − u)
∂tu
kB
me
Te
− (v − u)2

2 kBmeTe
∂t

(
1

Te

))
Me (16)

and

v1∂xMe =

(
(
v1∂xne
ne

− 3

2

v1∂xTe
Te

) + (v1 − u)
v1∂xu
kB
me
Te
− (v − u)2

2 kBmeTe
v1∂x

(
1

Te

))
Me.

By using the non-conservative Euler system (2), the time derivatives of (16) are
computed in function of the space derivatives up to O(τ) terms, as follows

∂tne
ne
− 3

2

∂tTe
Te

= −u∂xne
ne

+
3

2
u
∂xTe
Te
− νei
nekBTe

(Ti − Te) +O(τ),

∂tu = −u∂xu−
1

ρ
∂x(pe + pi) +O(τ),

∂tni
ni
− 3

2

∂tTi
Ti

= −u∂xni
ni

+
3

2
u
∂xTi
Ti
− νei
nikBTi

(Te − Ti) +O(τ),

∂tTe
Te

= −u∂xTe
Te
− 2

3
∂xu+

2

3

νei
nekBTe

(Ti − Te) +O(τ)

∂tTi
Ti

= −u∂xTi
Ti
− 2

3
∂xu+

2

3

νei
nikBTi

(Te − Ti) +O(τ).

Hence up to O(τ) order terms, we get

∂tMe + v1∂xMe =

[
(v1 − u)

(∂xne
ne
− 3

2

∂xTe
Te

)
+ ∂xu

(
(v1 − u)2

kB
me
Te

− (v − u)2

3 kBmeTe

)

+
νei

nekBTe
(Ti − Te)

(
(v − u)2

3 kBmeTe
− 1

)

− (v1 − u)
(v − u)2

2 kBme
∂x

( 1

Te

)
− (v1 − u)

kB
me
ρTe

∂x(pe + pi)

]
Me

and we recover (14). The same result holds for (15).

The proposition 1 is the cornerstone of this paper. It allows us to obtain the
following proposition after some more computations.
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Proposition 2. The viscous approximation of the kinetic system (9, 10, 11) writes

∂tρ+ ∂x(ρu) = 0, (17)

∂t(ρu) + ∂x(ρu2 + pe + pi)−
4

3
τ∂x(p ∂xu) = 0, (18)

∂t(ρeεe +
1

2
ρeu

2) + ∂x(u(ρeεe +
1

2
ρeu

2 + pe))− u(ci∂xpe − ce∂xpi)

−u
(

4

3
τce∂x(pi∂xu)− 4

3
τci∂x(pe∂xu)

)

−4

3
τ∂x (upe ∂xu)− 5

2
τ∂x(

kB
me

pe ∂xTe) = νei(Te − Ti), (19)

∂t(ρiεi +
1

2
ρiu

2) + ∂x(u(ρiεi +
1

2
ρiu

2 + pi)) + u(ci∂xpe − ce∂xpi)

+u

(
4

3
τce∂x(pi∂xu)− 4

3
τci∂x(pe∂xu)

)

−4

3
τ∂x (upi ∂xu)− 5

2
τ∂x(

kB
mi

pi ∂xTi) = νei(Ti − Te), (20)

and the electric field E is given by
(
neqe
ρe
− niqi

ρi

)
E =

ρ

ρeρi
neqeE = − ρ

ρeρi
niqiE

=
∂xpe
ρe
− ∂xpi

ρi
− 4

3

τ

ρe
∂x (pe ∂xu) +

4

3

τ

ρi
∂x (pi ∂xu) . (21)

Remark 1. The relation (21) is an approximation at order τ of the Ohm law given
in [1]. The nonconservative terms of the system (17, 18, 19, 20) are shown to appear
from this relation defining E.

Remark 2. By using the internal energy variable, our result can be compared to
the model studied in ([2], [3]). However, we obtain additional terms which are not
present in those papers.

3. Dissipativity of the second order terms with respect to the entropy.
This section is devoted to the proof of the entropy dissipativity of the viscous system
(17-20).

Proposition 3. We assume that γe = γi = 5/3. Let Uτ be a solution of the second
order system (17-20). Then Uτ satisfies the following entropy inequality:

∂tη(Uτ )+∂x(uτη(Uτ )) ≤ − νei
kBT τi T

τ
e

(T τi −T τe )2−τ 5kB
2

∑

α=e,i

1

mα
∂x (nτα∂xT

τ
α ) (22)

where η is defined by (4).

Proof. The result is obtained by multiplying (17)–(20) by η′(Uτ ). The system (17)–
(20) being written in the synthetic form (3), we denote W the viscous terms

W = uτ∂x (J(Uτ )∂xUτ ) + ∂x (D(Uτ )∂xUτ ) .

In [1] we have shown that

η′(Uτ ) [∂tUτ +A(Uτ )∂xUτ − S(Uτ )] =
νei

kBT τi T
τ
e

(T τi − T τe )2.
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It remains to prove that

η′(Uτ )W ≤ −5kB
2

∑

α=e,i

1

mα
∂x (nτα∂xT

τ
α ) .

A straightforward computation gives

η′(U)W = − 4

3kB
(∂xu)

2

(
pe
Te

+
pi
Ti

)
− 5

2kBTe
∂x

(
kB
me

pe∂xTe

)

− 5

2kBTi
∂x

(
kB
mi

pi∂xTi

)

= −4n

3
(∂xu)

2 −
∑

α=e,i

(
5

2mαTα
∂x (nαkBTα∂xTα)

)
.

Using the fact that

T−1α ∂x (nαTα∂xTα) = ∂x (nα∂xTα) +
nα (∂xTα)

2

Tα
,

we thus have

η′(U)W = −4n

3
(∂xu)

2 − 5kB
2

∑

α=e,i

1

mα

(
∂x (nα∂xTα) +

nα (∂xTα)
2

Tα

)
.

4. Conclusion. In this paper, starting from a kinetic model, we have derived a
viscous approximation of the bitemperature Euler system from a Chapman-Enskog
expansion. We have been able to compute explicitly all the viscous terms and we
have obtained a generalization of the model proposed in [3]. Then we have proved an
entropy inequality. These results support the approach taken in [1] where the same
kinetic model is the basis of the numerical approximation of the system (2). The
case γe 6= γi can be handled by using a kinetic model with internal energy variable.
In a future work we plan to study the shocks obtained by limits of travelling waves
constructed from this viscous model and to compare them to the ones numerically
computed in our previous work [1].
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Abstract. We consider two distinguished asymptotic limits of the Euler equa-

tions in a gravitational field, namely the incompressible and Boussinesq limits.
Both these limits can be obtained as singular limits of the Euler equations

under appropriate scaling of the Mach and Froude numbers. We propose and

analyse an asymptotic preserving (AP) time discretisation for the numerical
approximation of the Euler system in these asymptotic regimes. A key step

in the construction of the AP scheme is a semi-implicit discretisation of the
fluxes and the source term. The non-stiff convective terms are treated explicitly

whereas the stiff pressure-gradient and source term are implicit. The implicit

terms are combined to get a nonlinear elliptic equation. We show that the
overall scheme is consistent with the respective limit system when the Mach

number goes to zero. A linearised stability analysis confirms the L2-stability

of the proposed scheme. The results of numerical experiments validate the
theoretical findings.

1. Introduction. The presence of sound/acoustic waves poses a major challenge
in atmospheric and meteorological flow computations due to their fast characteristic
time scales. Hence, in most of the practical computations, one relies on the so-called
‘sound-proof’ models in which the sound waves are eliminated. The incompressible
equations, Boussinesq equations, pseudo-incompressible equations, anelastic equa-
tions etc. are sound-proof models frequently used in the literature, to name but a
few. The derivation and analysis of sound-proof models, study of their regimes of
validity etc. are topics of active research even today; see, e.g., [2] and the references
cited therein for more details.

A powerful and systematic method to derive a sound-proof model is an asymp-
totic analysis of the Euler equations in which one or more of the non-dimensional
quantities, such as the Mach, Froude or Rossby numbers, assume the role of limiting
parameters [4]. However, from a mathematical point of view, a sound-proof model
is often recognised as a singular limit of the Euler equations under appropriate scal-
ings. In addition, sound-proof equation systems are typically of hyperbolic-elliptic
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Key words and phrases. Asymptotic preserving, Low Mach number limit, Boussinesq limit,

IMEX-RK scheme, L2-stability.
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in nature, as opposed to the purely hyperbolic compressible Euler equations. On the
other hand, from a numerical point of view, approximation of singular limits poses
several challenges: stiffness arising from stringent stability requirements, reduction
of order of accuracy due to the presence of limiting parameters and so on.

The goal of the present work is to obtain the incompressible and Boussinesq
equations as two distinguished singular limits of the Euler equations in a gravita-
tional field under appropriate scalings of the Mach and Froude numbers. We present
their numerical resolution via the so-called asymptotic preserving (AP) methodol-
ogy. An AP discretisation for a singularly perturbed problem in general is a one
which reduces to a consistent discretisation of the limit model when the limits of
perturbation parameters are taken. In addition, the stability requirements of the
discretisation should remain independent of the perturbation parameters; see [6].
A key step in the construction of our AP scheme is a semi-implicit time discretisa-
tion based on a splitting of the flux and source terms into stiff and non-stiff terms.
We show the asymptotic consistency of the scheme with the incompressible and
Boussinesq limits as the Mach number approaches zero. As a first step towards
the stability of the scheme in the asymptotic regime, we perform an L2-stability
analysis of the proposed scheme on a linearised model, namely the wave equation
system. The results of our numerical experiments presented here clearly validate
the AP nature of the proposed scheme.

2. Isentropic Euler System with Gravity and Its Asymptotic Limits. We
consider the scaled, isentropic compressible Euler equations with gravity:

∂tρ+∇ · (ρu) = 0, (1)

∂t(ρu) +∇ · (ρu⊗ u) +
∇p
Ma2 = −ρe3

Fr2 , (2)

where ρ > 0 is the density and u ∈ R3 is the velocity vector. Here, ∇, ∇· and
⊗ are respectively the gradient, divergence and tensor product operators and e3 is
the unit vector in the x3-direction. We assume a simplified equation of state of an
isentropic process, therein the pressure is related to density via p = P (ρ) = ργ ,
where γ is a constant. In (1)-(2), the non-dimensional parameters Ma and Fr are
respectively, the reference Mach and Froude numbers.

The goal of the present work is the numerical approximation of some distin-
guished asymptotic limits of the Euler system (1)-(2) which models slow convection
in a highly stratified medium; see, e.g. [2, 4] for more details. In order to describe
these asymptotic regimes, in the following, we consider two important scalings of
Ma and Fr in terms of an infinitesimal parameter ε.

• Ma = ε and Fr = 1. In this case, the pressure gradient term dominates the
gravity term and we obtain the low Mach number limit.

• Ma = ε and Fr =
√
ε. In this case, the gravitational term is also significant,

and we derive the Boussinesq limit.

As a first step towards the derivation of the low Mach and Boussinesq limits, we
expand all the dependent variables using the following three-term ansatz:

f(t, x) = f(0)(t, x) + εf(1)(t, x) + ε2f(2)(t, x). (3)

We do not intent to provide the details of the derivation, but refer the interested
reader to [4] for more details.
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2.1. Zero Mach Number Limit. We set Ma = ε and Fr = 1 in (1)-(2) and let
ε→ 0 to obtain the zero Mach number limit model:

∂tu(0) +∇ ·
(
u(0) ⊗ u(0)

)
+∇p(2) = −e3, (4)

∇ · u(0) = 0. (5)

The above system (4)-(5) is the standard incompressible Euler system for the un-
knowns u(0) and p(2).

Remark 1. Throughout our analysis and the numerical experiments presented in
this paper, we assume either periodic or wall boundary conditions. As a conse-
quence, the leading order density ρ(0) is a constant and the leading order velocity
u(0) is divergence-free. Therefore, both the zero Mach and Boussinesq limits fall in
the category of ‘sound-proof’ models.

2.2. Boussinesq Limit. Now we set Ma = ε and Fr =
√
ε in (1)-(2). Letting

ε→ 0 yields the Boussinesq model:

∂tu(0) +∇ ·
(
u(0) ⊗ u(0)

)
+∇p(2) = −ρ(1)e3, (6)

∇ · u(0) = 0. (7)

Since the first order density ρ(1) appears in (6)-(7), we need a closure relation. Using
the multiscale ansatz (3) in the equation of state p = ργ and using the hydrostatic
balance ∇p(1) = −ρ(0)e3 gives

ρ(1) = 1− x3

γ
. (8)

Remark 2. It has be noted that both zero Mach and the Boussinesq limit systems
are hyperbolic-elliptic in nature.

3. Semi-implicit Time Discretisation. In this section we present the time dis-
cretisation of the Euler system (1)-(2) based on implicit-explicit (IMEX) Runge
Kutta (RK) schemes. These schemes were originally designed for stiff ordinary
differential equations; see .e.g. [5] and the references therein.

Let 0 = t0 < t1 < · · · < tn < tn+1 < · · · be an increasing sequence of times and
let ∆t be the uniform time-step. Let us denote by fn(x), the approximation to the
value of any function f at time tn, i.e. fn(x) ∼ f(tn, x).

A first order accurate semi-discrete scheme for the Euler equations (1)-(2) is
defined as

ρn+1 − ρn
∆t

+∇ · qn+1 = 0, (9)

qn+1 − qn
∆t

+∇ ·
(
q ⊗ q
ρ

)n
+
∇p(ρn+1)

ε2
= −ρ

n+1

εα
e3. (10)

Here, q = ρu denotes the momentum and α ∈ {0, 1} is a parameter so that α = 0
corresponds to the low Mach limit and α = 1 corresponds to the Boussinesq limit.
Though the scheme (9)-(10) consists of a fully implicit step (9) and a semi-implicit
step (10), its numerical resolution is fairly simple. Eliminating qn+1 between (9)
and (10) yields the nonlinear elliptic equation:

−∆t2

ε2
∆P (ρn+1)− ∆t2

εα
∇ ·
(
ρn+1e3

)
+ ρn+1 = ρn − Φ(ρn, un), (11)
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where the known expression Φ is given by

Φ(ρn, un) := ∆t∇ · qn + ∆t2∇2 :

(
q ⊗ q
ρ

)n
(12)

with : denoting the contracted product. Solving the elliptic equation (11) yields the
updated density ρn+1. The velocity un+1 can then be updated using (10), which
is now an explicit evaluation. Hence, the scheme (9)-(10) consists of solving the
elliptic equation (11), followed by an explicit evaluation of (10).

4. Asymptotic Preserving Property. A numerical scheme for a singular per-
turbation problem, such as the Euler system (1)-(2), may not resolve the existing
multiple scales in space and time. In addition, when the perturbation parameter
goes to zero, the scheme may approximate a completely different set of equations
than the actual limiting systems. An asymptotic preserving (AP) scheme is the one
which is consistent with the limiting set of equations in the singular limit; see [6]
for a review of AP schemes.

Theorem 4.1. The time semi-discrete scheme (9)-(10) for α = 0 is asymptotically
consistent with the low Mach number model as ε→ 0.

Proof. First, we apply the same ansatz (3) for all the dependent variables at times
tn and tn+1 in the semi-discrete scheme (9)-(10) and balance the like-powers of ε.
The lowest order terms gives ∇P (ρn+1

(0) ) = 0 and the equation of state P (ρ) = ργ

then yields that ρn+1
(0) is constant. Therefore, from the mass update (9) we get

−∇ · un+1
(0) =

ρn+1
(0) − ρn(0)

ρn+1
(0) ∆t

. (13)

We integrate the above equation (13) over a domain Ω and use Gauss’ divergence
theorem to obtain:

− 1

|Ω|

∫

∂Ω

un+1
(0) · νdσ =

ρn+1
(0) − ρn(0)

ρn+1
(0) ∆t

. (14)

Hence, the leading order density ρ(0) rises or falls only due to compressions or ex-
pansions at the boundary. The temporal variations in ρ(0) can produce nonzero
divergences in the leading order velocity u(0). It can be proved that the integral
on the left hand side of (14) vanishes under most of the physically relevant bound-
ary conditions. In this case, we obtain ρn+1

(0) = ρn(0) and this in turn enforces the

divergence constraint at tn+1 as

∇ · un+1
(0) = 0. (15)

Combining (15) and the O(1) terms in (10), we have the following limiting system:

un+1
(0) − un(0)

∆t
+∇ · (un(0) ⊗ un(0)) + pn+1

(2) = −e3, (16)

∇ · un+1
(0) = 0. (17)

The above system (16)-(17) is clearly a consistent discretisation of the low Mach
number limit system (4)-(5).

Theorem 4.2. The time semi-discrete scheme (9)-(10) for α = 1 is asymptotically
consistent with the Boussinesq model.
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Proof. The proof is similar to that of Theorem 4.1 and hence omitted.

5. L2 Stability Analysis of the Semi-discrete Scheme. The aim of this section
is to present the results of an L2-stability analysis of the semi-discrete scheme (9)-
(10). To this end, we consider the homogeneous linear wave equation system:

∂tρ+ (ū · ∇)ρ+ ρ̄∇ · u = 0, (18)

∂tu+ (ū · ∇)u+
ā2

ρ̄ε2
∇ρ = 0 (19)

as a simplified model of the Euler system (1)-(2). Here, (ρ̄, ū) is a linearisation state
and ā is a linearisation state for the sound velocity. Applying the AP methodology
introduced in (9)-(10) to (18)-(19) yields the semi-discrete scheme:

ρn+1 − ρn
∆t

+ (ū · ∇)ρn + ρ̄∇ · un+1 = 0, (20)

un+1 − un
∆t

+ (ū · ∇)un +
ā2

ρ̄ε2
∇ρn+1 = 0. (21)

In the following, we use a stability result due to Richtmyer; see e.g. [7, 8] for details.
Note that any difference scheme of the form B1U

n+1 = B2U
n, where B1, B2 are

p × p matrices, independent of t and x, and Un ∈ Rp is the approximation to the
original solution at time tn, can be reduced to Ûn+1 = G(∆t, ξ)Ûn in the Fourier
variable ξ. Here, G(∆t, ξ) is the Fourier transform of the matrix (B1)−1B2 and is
called the amplification matrix. The stability result due to Richtmyer states that

Theorem 5.1. A difference scheme given by B1U
n+1 = B2U

n is stable if

(i) the elements of G(0, ξ) are bounded for all ξ ∈ L, where L is a lattice where ξ
varies,

(ii) ‖G(0, ξ)‖ ≤ 1 and
(iii) G(∆t, ξ) is Lipschitz continuous at ∆t = 0 in the sense that

G(∆t, ξ) = G(0, ξ) +O(∆t) as ∆t→ 0.

Using the above theorem, we have the following stability result.

Theorem 5.2. The semi-discrete scheme (20)-(21) is L2-stable.

Proof. Taking the Fourier transform of (20)-(21) and re-arranging the terms gives

Ûn+1 = G(∆t, ξ)Ûn, (22)

where

G(∆t, ξ) = γ




1 −i∆tρ̄ξ1 −i∆tρ̄ξ2
−i∆tλξ1 1 + ∆t2ρ̄λξ2

2 −∆t2ρ̄λξ1ξ2
−i∆tλξ2 −∆t2ρ̄λξ1ξ2 1 + ∆t2ρ̄λξ2

1


 , (23)

λ =
ā2

ρ̄ε2
and γ =

1− i∆t(ū · ξ)
1 + ∆t2ρ̄ ā

2

ε2 |ξ|2
. (24)
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Now, G(0, ξ) reduces to the 3× 3 identity matrix and hence conditions (i) and (ii)
of Theorem 5.1 are automatically satisfied. Further,

G(∆t, ξ)−G(0, ξ)

= ∆t




−∆tρ̄λ|ξ|2+i(ū·ξ)
1+∆t2ρ̄λ|ξ|2 −iρ̄ξ1γ −iρ̄ξ2γ
−iλξ1γ −∆tρ̄λξ21+i(ū·ξ)(1+∆t2ρ̄λξ22)

1+∆t2ρ̄λ|ξ|2 −∆t2ρ̄λξ1ξ2γ

−iλξ2γ −∆t2ρ̄λξ1ξ2γ −∆tρ̄λξ22+i(ū·ξ)(1+∆t2ρ̄λξ21)
1+∆t2ρ̄λ|ξ|2


 .

(25)
Note that the matrix on the right hand side in (25) is bounded for every bounded
lattice L. Hence, by Theorem 5.1, the semi-discrete scheme (20)-(21) is L2-stable.

6. Numerical Experiments. We do not intend to discuss the space discretisation
in detail as we use employ standard techniques. We use a finite volume approach
to approximate the semi-discrete scheme (9)-(10). The explicit flux terms are ap-
proximated by a Rusanov-type flux whereas the implicit terms by simple central
differences. The nonlinear elliptic equation (11) is solved iteratively after discreti-
sation of the derivatives by central differences.

In the following, we consider a test problem in two dimensions to demonstrate
the AP property of the scheme. We take the well-prepared initial data given in [1]
which reads

ρ(0, x1, x2) = 1 + ε2 sin2(2π(x1 + x2)), (26)

q1(0, x1, x2) = sin(2π(x1 − x2)) + ε2 sin(2π(x1 + x2)), (27)

q2(0, x1, x2) = sin(2π(x1 − x2)) + ε2 cos(2π(x1 + x2)). (28)

The computational domain [0, 1]× [0, 1] is divided into 50× 50 mesh points and we
apply periodic boundary conditions on all four sides. The CFL number is set to
0.45 and we perform the computations up to a final time T = 1.0. The parameter
ε is set to 0.1. Note that our CFL condition is independent of ε.

In Figures 1 and 2 we plot the density, x1-velocity and the divergence of the ve-
locity at times t = 0 and t = 1, for the low Mach and Boussinesq cases, respectively.
It can be noted from the figures that in both the cases the density converges to the
constant value 1 and the divergence approach 0. This is in conformity with the AP
nature of the scheme in both the cases.

7. Conclusion. An AP semi-implicit time discretisation is proposed for the numer-
ical approximation of the isentropic Euler equations with gravity in the low Mach
number and Boussinesq limits. The schemes are theoretically shown to be asymp-
totically consistent as well as linearly stable. The results of numerical experiments
provide a justification to AP nature of the scheme.

Acknowledgement. The authors thank Arnab Das Gupta for several useful dis-
cussions on the topic.
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Abstract. In this paper, we propose a formal Chapman-Enskog expansion in
the context of mixtures of monoatomic and polyatomic gases. We start from a
Boltzmann model that is based on the Borgnakke-Larsen procedure ([4]) and
we derive a compressible Navier-Stokes system. In a last part, we perform
some explicit computations of the transport coefficients in the case of Maxwell
molecules for diatomic gases.

1. Introduction. This paper presents the perform a Chapman-Enskog expansion
developped in ([2], [3]) in a polyatomic setting starting from a collisional model ([5],
[9]). The kinetic model uses the unknown f (i)(t, x, v, I) as the number density of
the i − th species at time t, position x, velocity v and a one-dimensional internal
energy parameter I > 0. In particular, this modelling is necessary in order to treat
some physical situations ([14], [11], [15], [13]). For example, in [13], the authors
study different types of shock profiles by using the model proposed in ([1], [6]).
Moreover, the introduction of such a parameter allows to get a general energy law
at the fluid limit ([7], [9]). Remark that in some polyatomic models, the energy can
be described by a discrete energy variable ([10], [12]).

The paper is organised as follows. In section 2, the collision operators are de-
tailed. In section 3, the Chapman-Enskog expansion is performed and in section 4
the Navier-Sokes system is presented. Section 5 is devoted to the case when all the
cross sections are equal in the diatomic case.

2000 Mathematics Subject Classification. Primary: 82B40; Secondary: 35Q80.
Key words and phrases. Boltzmann equation equation, polyatomic, Chapman-Enskog

expansion.
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2. Boltzmann kernels. We define in this section the collision operators of the
kinetic model that is used to construct the Navier-Stokes system.
In the case of collisions between monoatomic molecules, we define (for f := f(v) ≥
0, g := g(v) ≥ 0):

Qij(f, g)(v) =
∫

R3

∫

S2

{
f(v′) g(v′∗)− f(v) g(v∗)

}
Bij

(
|v − v∗|,

v − v∗
|v − v∗|

· σ
)
dσdv∗,

(1)
with

v′ = mi v +mj v∗
mi +mj

+ mj

mi +mj
|v−v∗|σ, v′∗ = mi v +mj v∗

mi +mj
− mi

mi +mj
|v−v∗|σ.

(2)
In the case of collisions between polyatomic molecules, we define ([9], [2], [3]) (for
f := f(v, I) ≥ 0, g := g(v, I) ≥ 0):

Qij(f, g)(v, I) =
∫

R3

∫ ∞

0

∫

S2

∫ 1

0

∫ 1

0

{
f(v′, I ′) g(v′∗, I ′∗)− f(v, I) g(v∗, I∗)

}
(3)

×Bij
(√

E,R1/2 |v − v∗|,
v − v∗
|v − v∗|

· σ
)

(1−R)R1/2 ϕi(I)−1drdRdσdI∗dv∗,

with

v′ = mi v +mj v∗
mi +mj

+ mj

mi +mj

√
2RE
µij

σ, v′∗ = mi v +mj v∗
mi +mj

− mi

mi +mj

√
2RE
µij

σ,

(4)
I ′ = r (1−R)E, I ′∗ = (1− r) (1−R)E, (5)

where µij = mimj
mi+mj is the reduced mass, E = 1

2 µij |v − v∗|2 + I + I∗ is the total
energy of the two molecules in the center of mass reference frame, and r,R lie in
[0, 1].

In the case of collisions between polyatomic and monoatomic molecules, we define
([2], [3]) (for f := f(v, I) and g := g(v)):

Qij(f, g)(v, I) =
∫

R3

∫

S2

∫ 1

0

{
f(v′, I ′) g(v′∗)− f(v, I) g(v∗)

}

Bij

(√
E,R1/2 |v − v∗|,

v − v∗
|v − v∗|

· σ
)
R1/2 ϕi(I)−1dRdσdv∗, (6)

with

v′ = mi v +mj v∗
mi +mj

+ mj

mi +mj

√
2RE
µij

σ, v′∗ = mi v +mj v∗
mi +mj

− mi

mi +mj

√
2RE
µij

σ,

(7)
I ′ = (1−R)E, (8)

where µij = mimj
mi+mj is the reduced mass, E = 1

2 µij |v − v∗|2 + I is the total energy
of the two molecules in the center of mass reference frame, and the parameter R
lies in [0, 1].

We also define the symmetric operator (with the same cross section)

Qji(g, f)(v) =
∫

R3

∫ ∞

0

∫

S2

∫ 1

0

{
g(v′) f(v′∗, I ′∗)− g(v) f(v∗, I∗)

}
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×Bij
(√

E,R1/2 |v − v∗|,
v − v∗
|v − v∗|

· σ
)
R1/2 dRdσdv∗dI∗,

with

v′ = mj v +mi v∗
mi +mj

+ mi

mi +mj

√
2RE
µij

σ, v′∗ = mj v +mi v∗
mi +mj

− mj

mi +mj

√
2RE
µij

σ,

(9)
I ′∗ = (1−R)E, (10)

where µij = mimj
mi+mj and E = 1

2 µij |v − v∗|2 + I∗.

3. Chapman-Enskog expansion for a mixture of a mono-and polyatomic
gases.

3.1. Macroscopic quantities. Firstly we define the mass mi of a molecule of
species i, and recall the definition of macroscopic quantities:

The (macroscopic) mass of monoatomic species i ∈ {1, ..., A}:

ρ(i) = mi n
(i)(t, x) :=

∫

R3
f (i)(t, x, v)mi dv.

The (macroscopic) mass of polyatomic species i ∈ {A+ 1, ..., A+B}:

ρ(i) = mi n
(i)(t, x) :=

∫

R3

∫ ∞

0
f (i)(t, x, v, I)mi ϕi(I) dIdv.

The momentum of monoatomic species i ∈ {1, ..., A}:

mi n
(i)(t, x)u(i)(t, x) :=

∫

R3
f (i)(t, x, v)mi v dv.

The momentum of polyatomic species i ∈ {A+ 1, ..., A+B}:

mi n
(i)(t, x)u(i)(t, x) :=

∫

R3

∫ ∞

0
f (i)(t, x, v, I)mi v ϕi(I) dIdv.

The (macroscopic, internal) energy of monoatomic species i ∈ {1, ..., A}:

mi n
(i)(t, x) e(i)(t, x) :=

∫

R3
f (i)(t, x, v)mi

|v − u(i)(t, x)|2
2 dv.

The (macroscopic, internal) energy of polyatomic species i ∈ {A+ 1, ..., A+B}:

mi n
(i)(t, x) e(i)(t, x) :=

∫

R3

∫ ∞

0
f (i)(t, x, v, I)

(
mi
|v − u(i)(t, x)|2

2 +I

)
ϕi(I) dIdv.

3.2. Linearized Boltzmann operator. We first introduce the scalar product
that will be used throughout the paper. Given two vectors k = (k(1), ...,
k(A+B)) and l = (l(1), ..., l(A+B)), with k(1), ..., k(A), l(1), ..., l(A) functions of V , and
k(A+1), ..., k(A+B), l(A+1), ..., l(A+B) functions of V, J , we define

〈k| l〉 :=
A∑

i=1
n(i)

∫

R3

e−mi
|V |2

2

(2π/mi)3/2 k
(i)(V ) l(i)(V ) dV

+
A+B∑

i=A+1
n(i)

∫ ∞

0

∫

R3

e−(mi |V |2
2 +J)

(2π/mi)3/2 k(i)(V, J) l(i)(V, J) T ϕi(J T )
qi(T ) dV dJ. (11)

Next, we consider the linearized Boltzmann operator K that is obtained by lineariz-
ing the Boltzmann operator described in section 2 around its equilibrium states
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given in (17). It can also be proved that K is symmetric for the scalar product
(3.2).

The kernel K of K can easily be found (provided that all cross sections Bij
are strictly positive). It is constituted by the vectors l∆,j (j = 1, ..., A + B), lU,z
(z = 1, 2, 3) and lE ([9]), defined as

l∆,j =




l(1),∆,j

.

.

.
l(j),∆,j

.

.

.
l(A+B),∆,j




=




0
0
.
0
1
0
.
0
0




, (12)

lU,z =




l(1),U,z

.

.
l(A+B),U,z


 =




m1 Vz
.
.

mA+B Vz


 , (13)

lE =




l(1),E

.

.
l(A+B),E


 =




m1
V 2

2 + r1 J
.
.

mA+B
V 2

2 + rA+B J


 . (14)

3.3. Principle of the expansion. We first define the rescaled (w.r.t the Knudsen
number) system of Boltzmann equations

∂tf
(i) + v · ∇xf (i) = 1

ε

A+B∑

j=1
Qij(f (i), f (j)), i = 1, ..., A+B, (15)

where the operators Qij are defined by formulas (1), (6), (3).
We then look for solutions of the Boltzmann equation (15) under the form

f (i) = M (i)
ε (1 + ε g(i)

ε ), (16)

where M (i)
ε is a Maxwellian distribution of (number) density n(i)

ε := n
(i)
ε (t, x) ≥ 0,

macroscopic velocity uε := uε(t, x) ∈ R3, and temperature Tε := Tε(t, x) ≥ 0, that
is

M (i)
ε = n

(i)
ε

(2π Tε/mi)3/2 qi(Tε)
exp

(
− mi |v − uε|2 + 2 ri I

2Tε

)
, (17)

with ri = 0 for i = 1, ..., A and ri = 1 for i = A+ 1, ..., A+B.
In formula (17), qi(T ) = 1 for i = 1, ..., A and for i = A+ 1, ..., A+B,

qi(T ) =
∫ +∞

0
ϕi(I)e− I

T dI.

We also assume that the vector of perturbed distributions g = (g(1)
ε , ..., g

(A+B)
ε ),

with functions g(i)
ε := g

(i)
ε (t, x, v) ∈ R for i = 1, ..., A, and g(i)

ε := g
(i)
ε (t, x, v, I) ∈ R

for i = A+ 1, ..., A+B, satisfies
∀i = 1, ..., A+B, 〈g | l∆,i〉 = 0, (18)

290



CHAPMAN-ENSKOG ASYMPTOTICS FOR A POLYATOMIC MIXTURE

∀z = 1, ..., 3, 〈g | lU,z〉 = 0, (19)

〈g | lE〉 = 0, (20)
where 〈· | ·〉 is the scalar product defined in (3.2) and vectors l∆,i, lU,z, lE are
provided in (12, 13, 14). Taking f (i) as the Maxwellian distribution (16, 17) leads
to the compressible Euler system ([9]).

4. Navier-Stokes system.

4.1. Computation of the l.h.s of the linear equation. A straightforward com-
putation gives ([2], [3])

(M (i))−1 [∂tM (i) + v · ∇xM (i)] = k(i),W + k(i),P :
(∇xu+∇xuT

2

)

+ k(i),D (∇x · u) + k(i),Q · ∇xT√
T
, (21)

where k(i),W , k(i),D, k(i),Q = (k(i),Q,p)p∈{1;3}, k(i),P = (k(i),P,p,q)p,q∈{1;3} write

kP,p,q =




k(1),P,p,q

.

.
k(A+B),P,p,q


 =




Ppq(V )m1
.
.

Ppq(V )mA+B


 ,

kW =




k(1),W

.

.
k(A+B),W


 =




√
Tn d

(1)

n(1) · V
.
.√

Tn d
(A+B)

n(A+B) · V


 ,

kQ,p =




k(1),Q,p

.

.
k(A+B),Q,p


 =




Vp

(
m1
2 V 2 + r1 J − ( 5

2 + r1
E1
T )
)

.

.

Vp

(
mA+B

2 V 2 + rA+B J − ( 5
2 + rA+B

EA+B
T )

)



,

and

kD =




k(1),D

.

.

k(A+B),D


 =




2r1Λ(T )
(

E1
T

− J
)

+ 2
( 1

3 − Λ(T )
)(

m1
V 2

2 − 3
2

)
.

.

.

2rA+BΛ(T )
(

EA+B
T

− J
)

+ 2
( 1

3 − Λ(T )
)(

mA+B
V 2

2 − 3
2

)


 ,

with

P (v) = v ⊗ v − 1
3 |v|

2 Id, d(i) = ∇x(pi
p

) + (pi
p
− ρ(i)
∑A+B
j=1 ρ(j)

)∇xp
p

and

Ei = ηi(T )
qi(T ) , ηi(T ) =

∫ ∞

0
I ϕi(I) e−I/T dI, i ∈ {A+ 1, ..., A+B},

Λ(T ) =
∑A+B
j=1 n(j)

3
∑A+B
j=1 n(j) + 2

∑A+B
j=A+1 n

(j)
(
ηj
qj

)′
(T )

.
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Next, thanks to the Galilean invariance ([8]), we can write for i = 1, ..., A :

h(i),P,p,q(V ) = h̃(i),P (|V |)Ppq(V ),

h(i),Q,p(V ) = h̃(i),Q(|V |)Vp, h(i),D(V ) = h̃(i),D(|V |),
and for i = A+ 1, ..., A+B:
h(i),P,p,q(V, J) = h̃(i),P (|V |, J)Ppq(V ), h(i),Q,p(V, J) = h̃(i),Q(|V |, J)Vp,

h(i),D(V, J) = h̃(i),D(|V |, J).
Thanks to the computations (21), the previous definitions give

i = 1, ..., A g(i)(V
√
T + u) = h̃(i),P (|V |)P (V ) :

(∇xu+∇xuT
2

)
(22)

+ h̃(i),D(|V |)∇x · u+ h̃(i),Q(|V |)V · ∇xT√
T

+
√
T h(i),W (V ),

i = A+1, ..., A+B g(i)(V
√
T+u, J T ) = h̃(i),P (|V |, J)P (V ) :

(∇xu+∇xuT
2

)

(23)

+ h̃(i),D(|V |, J)∇x · u+ h̃(i),Q(|V |, J)V · ∇xT√
T

+
√
T h(i),W (V, J).

4.2. Navier-Sokes system. We begin by considering, for i = 1, ..., A and k =
1, ..., 3 the mass flux

D
(i)
k :=

∫

R3
M (i) g(i)mi vk dv. (24)

In the same way, for i = A+ 1, ..., A+B and k = 1, ..., 3, we get

D
(i)
k :=

∫ +∞

0

∫

R3
M (i) g(i)mi vk ϕi(I) dvdI.

We then consider the stress tensor Fkl, for k, l = 1, ..., 3,

Fkl :=
A∑

i=1

∫

R3
M (i) g(i)mi vk vl dv +

A+B∑

i=A+1

∫ ∞

0

∫

R3
M (i) g(i)mi vk vl ϕi(I) dvdI.

(25)
We finally consider (for k = 1, ..., 3)

Gk =
A∑

i=1

∫

R3
M (i) g(i)mi

|v|2
2 vk dv

+
A+B∑

i=A+1

∫ ∞

0

∫

R3
M (i) g(i)

(
mi
|v|2
2 + I

)
vk ϕi(I) dvdI.

(26)

We finally write down the Navier-Stokes system in the following semi-explicit
form:

i = 1, ..., A+B ∂t(mi n
(i)) +∇x · (mi n

(i)u) = −ε∇x ·D(i), (27)
while, for k = 1, 2, 3,

∂t

(A+B∑

i=1
mi n

(i) uk

)
+
∑

l

∂xl

(A+B∑

i=1
[mi n

(i) uk ul + n(i) T δkl]
)

= −ε
∑

l

∂xlFkl,

(28)
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∂t

( A∑

i=1
[mi n

(i) |u|2
2 + 3

2 n
(i) T ] +

A+B∑

i=A+1
[mi n

(i) |u|2
2 + n(i)

[
3
2 T + ηi(T )

qi(T )

]
]
)

(29)

+
∑

l
∂xl

(∑A

i=1
[mi n(i) |u|2

2 ul+ 5
2 n

(i) T ul]+
∑A+B

i=A+1
[mi n(i) |u|2

2 ul+n(i) ul
[

5
2 T+ ηi(T )

qi(T )

]
]

)

= −ε∇x ·G.
Introduce the specific enthalpy of the ith species hi by

hi = (5
2T + riEi)

1
mi

. (30)

In that case, Gk writes

Gk =
3∑

l=1
Fkl ul − λ∂xkT − p

A+B∑

i=1
θid

(i) +
A+B∑

i=1
hiD

(i)
k , (31)

with

θi := − T

n(i) 〈K
−1(kQ,k), ψDi〉, λ := −T 〈K−1(kQ,k), kQ,k〉. (32)

Next by using the definition hW and the symmetry of K−1, D(i)
k , it comes that

D
(i)
k = −ρiθi∂xk ln(T )−

A+B∑

j=1
Cjid

(j), (33)

with
Cji = −miT

n

nj
〈ψDj ,K−1(ψDi)〉.

The coefficients (θj) are the thermal diffusion coefficients whereas the terms Cji
correspond to the multicomponent flux diffusion coefficients.

5. Computation in the case of constant cross sections. Moreover, in order
to be coherent with the fact that in the air, the main polyatomic species (that is,
O2 and N2) are in fact diatomic, we have for i = A + 1, ..., A + B, ϕi(I) = 1, and
qi(T ) = T . Moreover, the quantities kW , kP , kD, and kQ can be written in the
following way:

k(i),W = s(i) V, k(i),P,p,q = mi Ppq(V ), k(i),Q,p =
(
mi
|V |2

2 − 5
2

)
Vp+ri (J−1)Vp,

k(i),D = (mi|V |2 − 3)
(

1
3 − Λ

)
− 2ri Λ (J − 1).

When the cross sections Bij are constant, the functions h(i),W , h̃(i),P , h̃(i),D and
h̃(i),Q may be cast in compact form, for i = 1, ..., A+B, as

h(i),W = miW
(i) · V, h̃(i),P = mi Π(i),

h̃(i),D = ∆(i)(mi|V |2 − 3
)

+ ri ∆̃(i)(J − 1),

h̃(i),Q = Q(i)(mi|V |2 − 5
)

+ ri Q̃
(i)(J − 1),

(34)

where the constant coefficients W (i), Π(i), ∆(i), ∆̃(i), Q(i), Q̃(i) fulfil suitable linear
systems. Hence we get

D
(i)
k = miW

(i)
k n(i) T, i = 1, ..., A+B. (35)
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Fkl may be cast as

Fkl = −µ
[∇xu+∇xuT

2 − 1
3 ∇x · u Id

]

kl

− κ∇x · u δkl ,

where

µ = − 2T
A+B∑

i=1
n(i) Π(i)

represents the shear viscosity and the bulk viscosity κ is provided by the formula

κ = − 2T
A+B∑

i=1
n(i) ∆(i) .

Finally, Gk can be written as

Gk =
3∑

l=1
Fkl ul − λ∂xkT +

A+B∑

i=1
hiD

(i)
k , λ = −T

A+B∑

i=1

n(i)

mi

(
5Q(i) + ri Q̃

(i)
)
.

Moreover, by comparison with (31), the Dufour and the Soret terms yield zero.
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Abstract. In multiple spatial dimensions linear hyperbolic systems have sta-

tionary states given by differential constraints. This paper shows that finite
volume discretizations of such systems typically introduce diffusion even if the

setup should remain stationary. Recently characterized schemes, called sta-

tionarity preserving, on the other hand keep stationary a discretization of all
the analytic stationary states. The behaviour of the two classes of schemes is

discussed in detail and their abilities compared in numerical simulations.

1. Introduction. This paper considers the initial value problem for linear hyper-
bolic n× n systems in d spatial dimensions in the following general form:

∂tq + (J · ∇)q = 0 q : R+
0 × Rd → Rn (1)

q(0,x) = q0(x) (2)

Each entry of the vector J is the Jacobian matrix into the corresponding direction;
e.g. in 3 spatial dimensions1:

J · ∇ = Jx∂x + Jy∂y + Jz∂z (3)

The system is hyperbolic if the linear combination k · J of the Jacobians is
diagonalizable with real eigenvalues for all k ∈ Rd. One or several eigenvalues can
vanish; such hyperbolic systems are of special interest here, for reasons explained
below.

Even linear hyperbolic systems (1) can have complicated properties in multiple
spatial dimensions that are hard to capture numerically. As an example consider

2000 Mathematics Subject Classification. MSC 35L40, MSC 65M06, MSC 65M08, MSC 39A70.
Key words and phrases. Stationarity preserving, linear acoustics, system wave equation, vor-

ticity preserving, involution.
The author acknowledges support of the German Academic Exchange Service (DAAD) with

funds from the German Federal Ministry of Education and Research (BMBF) and the European
Union (FP7-PEOPLE-2013-COFUND – grant agreement no. 605728).

1In this paper, boldface letters denote vectors with d components. Unless stated differently,

the components of the vector are given the same letter endowed with an index: e.g. in 3 spatial
dimensions k = (kx, ky , kz). Sometimes upper indices are used; nowhere in the paper does an

index denote a derivative. i is the imaginary unit.
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Figure 1. Stationary vortex setup for the acoustic equations (4)–
(5). Color coded is the absolute value of the velocity. Left : exact
stationary solution: constant pressure and divergencefree veloc-
ity. Center : Solution at time t = 2 with the upwind/Roe scheme.
Right : Solution at time t = 2 using the stationarity preserving
scheme (16) (see below).

linear acoustics

∂tv +∇p = 0 v : R+
0 × Rd → Rd q = (v, p) (4)

∂tp+ c2∇ · v = 0 p : R+
0 × Rd → R (5)

This system arises upon linearization of the Euler equations around a constant and
static state of the fluid.

If the initial data for (4)–(5) fulfill p = const and div v = 0, then they remain
stationary. This poses challenges to numerical methods. Numerical analysis seeks
discretizations of the differential operators which operate on only a finite set of
values of q. The discretization thus has access to only a reduced amount of in-
formation. p = const can be easily represented on a numerical grid, div v cannot.
Considering a numerical scheme for (4)–(5) the question is not whether it keeps sta-
tionary all vector fields whose divergence vanishes, but what “divergence” means
in the discrete. There are, for instance, many different discretizations of the di-
vergence. In [2] it has been shown that for many schemes no discrete divergence
exists that would lead to a discrete stationary state. Certain schemes, however, are
able to keep the initial data exactly stationary if some discrete divergence vanishes.
Such schemes are called stationarity preserving. In a sense, keeping stationary one
discretization of the divergence is the best one can hope for: stationary states of
(1) are governed by differential operators that cannot be evaluated exactly with the
limited information available in the discrete setting.

Figure 1 shows a vortex setup whose exact solution is stationary. Simulation
results of a stationarity preserving scheme and of a not stationarity preserving
scheme are shown. One clearly observes the superiority of the former.

There exist numerical schemes for (4)–(5) which do not keep any discrete di-
vergence stationary. It would be wrong to think, however, that they do not have
stationary states at all. The constant state q = const, for example, is easily cap-
tured by virtually any kind of numerical scheme. This is why in [2] trivial and
non-trivial stationary states are defined. The former are generally found not to
present particular numerical difficulties. To capture non-trivial stationary states is
more challenging. For the acoustic system for example, they are the ones related to
div v = 0.
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This paper aims at providing a detailed study of numerical stationary states for
(1) and giving insight into the difference between trivial and non-trivial stationary
states. The stationary states of numerical schemes are analyzed with techniques
from [2]. The theoretical statements are illustrated by careful measurements in
actual simulations. It is shown that the framework is able to explain details of the
behaviour of numerical simulations of (1).

The paper is organized as follows: in section 2 stationary states and their rela-
tion to involutions of (1) are discussed in the continuous setting. In section 3 the
behaviour of numerical schemes in the context of stationary states is discussed and
4 provides numerical experiments that illustrate the theory.

2. The relation between involutions and nontrivial stationary states. In
order to study (1) and also linear numerical schemes for (1) the Fourier transform
is of great help, as both the differential and the finite difference operators turn into
algebraic factors. One expresses q as

q(t,x) =

∫
dk q̂(t,k) exp(ik · x) (6)

and q̂ : R+
0 × Rd → Rn is referred to as the Fourier transform2 of q.

It is instructive to restrict the analysis first on just one Fourier mode q̂(t,k) exp(ik·
x) corresponding to some wave vector k. Such a Fourier mode is a solution of (1)
if it evolves according to

∂tq̂(t,k) + iJ · kq̂(t,k) = 0 (7)

A Fourier mode q̂(t,k) exp(ik · x) is a stationary solution of (1) if (J · k)q̂ = 0.
(Recall that J · k is a n× n matrix and q̂(t,k) ∈ Rn.)

Definition 2.1. The system (1) possesses non-trivial stationary states if for all k
there exists q̂(k) 6= 0 such that the Fourier mode q̂(k) exp(ik · x) is a stationary
solution of (1). If stationary modes can only be obtained by restricting k, then (1)
has only trivial stationary states.

Theorem 2.2. Non-trivial stationary states exist if det(k · J) = 0 ∀k.

The existence of non-trivial stationary states turns out to single out hyperbolic
systems with particular properties. For example, by taking the curl of (4) it follows
that the vorticity ∇× v is always stationary, even if the solution is not:

∂t(∇× v) = 0 (8)

Such a function generally is called involution (see e.g. [4]):

Theorem 2.3 (Involution). Iff (1) possesses non-trivial stationary states, then it
possesses an involution Ωq such that ∂t(Ωq) = 0 for any initial data, even if the
solution itself is not stationary.

Proof. See [2]. Note that in general Ω is a differential operator.

2This is to be understood in the sense of distributions (as in [3]). However, such an approach

would unnecessarily obscure the presentation. Here one thus has to restrict oneself to functions

q(t,x) which have a Fourier transform in the sense of functions.
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Example 1. In case of the acoustic equations (4)–(5) in two spatial dimensions
and writing q̂ = (û, v̂, p̂)T one finds

(J · k)q̂ =




ckxp̂
ckyp̂

c(kxû+ ky v̂)


 (9)

One can put conditions on k for this vector to vanish. For example, if kx = 0∧ v̂ =
0 ∧ p̂ = 0, i.e. the Fourier mode is stationary if u only depends on y and the
remaining components of q vanish.

However, if p̂ = 0 and (û, v̂) are chosen such that kxû+ ky v̂ = 0 (divergencefree)
then the mode is stationary for all k. Observe that J ·k has a zero eigenvalue, and
this choice is such that q̂ is parallel to the corresponding eigenvector

e0 = (ky,−kx, 0)T (10)

On the other hand, the left eigenvector (ky,−kx, 0)(J·k) = 0 implies ∂t(kyû−kxv̂) =
0 which is the Fourier transform of ∂t(∇× v) = 0. The involution of the acoustic
system is a stationary vorticity ∇× v.

3. Discrete stationary states and involutions. Having discussed the station-
ary states of hyperbolic systems, this section now focuses on their discretization.
Consider an equidistant Cartesian computational grid in two spatial dimensions3

with cell spacings ∆x, ∆y. The cells are indexed by integers i, j; qij(t) denotes the
value of q in cell (i, j) at time t, i.e. qij : R+

0 → Rn.
On an equidistant grid one can study the evolution of a discrete Fourier mode,

in 2-d given by

q̂(t,k) exp
(

i(kxi∆x+ kyj∆y)
)

(11)

Similarly to the continuous Fourier transform, the complete solution can be con-
structed by considering a linear combination of discrete Fourier modes with k chosen
from a countable set. For example the behaviour of the vortex shown in figure 1
can be understood as the combined evolution of individual discrete Fourier modes.

A semidiscrete (time-continuous) linear finite-difference scheme describing the
evolution of qij replaces the spatial derivatives by linear functions of the variables
{(r, s) ∈ Z2|qi+r,j+s} (in two spatial dimensions). Just as differential operators
become algebraic factors upon the (continuous) Fourier transform, shifts qi+r,j+s of
a Fourier mode qij can now be rewritten as exp(ir∆x + is∆x)qij . It is helpful to
introduce the shift operators

tx = exp(ikx∆x) ty = exp(iky∆y) for d = 2 (12)

Any linear scheme solving (1) consists of linear combinations of such shifts. As
upon the Fourier transform they become factors, for any such scheme there exists a
matrix E (called evolution matrix ) describing the evolution of a Fourier mode (11)
as

∂tq̂(t,k) + E q̂ = 0 (13)

This matrix is constructed explicitly in [2]. In general, it depends on tx, ty and thus
on k. It is the counterpart of ik · J in (7).

3The concepts are detailed in [2] for any number of dimensions but are expressed here in two

spatial dimensions for the ease of presentation.
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Example 2. Consider a directionally split semi-discrete upwind scheme for (1) in
two spatial dimensions

∂tqij +
1

2∆x

(
Jx(qi+1,j − qi−1,j)−Dx(qi+1,j − 2qij + qi−1,j)

)

+
1

2∆y

(
Jy(qi,j+1 − qi,j−1)−Dy(qi,j+1 − 2qij + qi,j−1)

)
= 0

(14)

with Dx = |Jx|, Dy = |Jy|. If scheme (14) is applied to the acoustic equations
(4)–(5), the Fourier mode (11) is evolving according to ∂tq̂ + E q̂ = 0 with

E =




− c(tx−1)2

2∆xtx
0 (tx−1)(tx+1)

2∆xtx

0 − c(ty−1)2

2∆yty

(ty−1)(ty+1)
2∆yty

c2(tx−1)(tx+1)
2∆xtx

c2(ty−1)(ty+1)
2∆yty

− c(tx−1)2

2∆xtx
− c(ty−1)2

2∆yty


 (15)

Example 3. Consider a multi-dimensional extension of (14)

∂tqij +
1

2∆x

(
Jx〈qi+1,· − qi−1,·〉j −Dx〈qi+1,· − 2qi,· + qi−1,·〉j

)

− 1

4∆y
SxJy

(
qi+1,j+1 − qi−1,j+1 − qi−1,j+1 + qi−1,j−1

)

+
1

2∆y

(
Jy〈q·,j+1 − q·,j−1〉i −Dy〈q·,j+1 − 2q·,j + q·,j−1〉i

)

− 1

4∆x
SyJx

(
qi+1,j+1 − qi−1,j+1 − qi−1,j+1 + qi−1,j−1

)
= 0

(16)

with Dx, Dy as in example 2 and

〈q·,j〉i :=
1

4
(qi+1,j + 2qij + qi−1,j) JxSx = |Jx| JySy = |Jy| (17)

For more details see [1]; applied to the acoustic equations (4)–(5), this scheme
appears in [6, 9, 7].

The Fourier mode (11) is evolving according to ∂tq̂ + E q̂ = 0 with

E =

(
1− Sx tx − 1

tx + 1
− Sy ty − 1

ty + 1

)
×

×
(
Jx

(tx − 1)(tx + 1)

2tx∆x
· (ty + 1)2

4ty
+ Jy

(ty − 1)(ty + 1)

2ty∆y
· (tx + 1)2

4tx

)

(18)
whose determinant vanishes identically whenever det(J · k) = 0 ∀k.

From here on, the argumentation concerning both the discrete involutions and
the discrete stationary states is exactly following that of section 2. Instead of ik · J
the analysis focuses on studying the zero eigenvalues of the evolution matrix E of
the scheme. This, e.g. leads to the necessary condition det E = 0 governing the
existence of non-trivial discrete stationary states.

Example 4. Consider scheme (14) solving (4)–(5). The determinant of its evolu-
tion matrix (15) is

det E =
c3(∆x+ ∆y)(tx − 1)2(ty − 1)2

2∆x2∆y2txty
(19)

It is thus only possible to find non-vanishing vectors q̂ with E q̂ = 0 if either tx = 1
or ty = 1. This restriction of k implies that all stationary states of (14) are trivial.
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In the context of the acoustic system, numerical schemes that keep stationary a
discretization of the vorticity are called vorticity preserving ([8, 6, 9]).

Section 4 compares numerical discretizations which have non-trivial stationary
states with those which do not. It is shown how in the latter case the evolution is
governed by a transition towards a trivial numerical stationary state.

4. Numerical evolution towards a discrete stationary state. Under explicit
time integration, for a numerical scheme for (1) stability in the von Neumann sense
means that no discrete Fourier mode is growing in time. For instance, scheme (14)
is stable for a CFL number c∆t

min(∆x,∆y) <
1
2 (e.g. [5]).

In order to demonstrate that the above theory leads to measurable predictions
and allows to understand in detail the behaviour of a numerical scheme, the following
setup shall be studied in more detail:

Setup 1. The acoustic system (4)–(5) shall be solved numerically on an equidistant
Cartesian grid covering [0, 1]2 with periodic boundaries. Forward Euler is used
to integrate forward in time. Numerical results are shown at the grid center as
functions of time.

The first example illustrates a trivial discrete stationary state.

Example 5 (Trivial stationary state). Consider the setup 1 with ty = 1, i.e.
ky = 0 solved with scheme (14). Then its evolution matrix E has an eigenvalue
zero and the corresponding eigenvector is (0, 1, 0)T. The discrete time evolution of
(0, 1, 0)T cos (2πx) is stationary, because the numerical fluxes vanish identically.

Turn now to the numerical evolution of a Fourier mode which, at PDE level, is a
stationary state of (1). It can be discretized by either a scheme which only has trivial
stationary states, or by a scheme with non-trivial stationary states (stationarity
preserving scheme).

Example 6 (Nontrivial stationary state). Consider the (numerical) time evolution
of

(
1,− 1

10
, 0

)T

cos (2πx+ 10 · 2πy) (20)

using setup 1. Here thus kx = 2π and ky = 20π. From (10) one deduces that (20)
is stationary at PDE level.

(i) First, the mode (20) is evolved with scheme (14). The Fourier mode (20) is
not a stationary state for this scheme; moreover the only stationary states of
scheme (14) are trivial (as shown in Example 4). In Figure 2 the correspond-
ing simulations show a rapid decay of the numerical solution (von Neumann
stability). The computations have been performed on two grids: 50 × 50 and
100× 100, which shows that the decay can be slowed down by choosing a finer
mesh, but the qualitative behaviour remains the same.

Note that the decay rate of the semi-discrete scheme can be computed from
the non-zero eigenvalues of E. The observed decay rate in an actual simulation
also contains the diffusion introduced by the time integration method.

(ii) Now, the mode (20) is evolved with scheme (16). Again, (20) is not a sta-
tionary mode of the scheme! However, (16) possesses non-trivial stationary
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states. The mode (20) can be decomposed into the basis of eigenvectors of the
evolution matrix E (18) of scheme (16):

(1,− 1

10
, 0)T ' −0.0867e0 + 0.0067e1 − 0.0067e2 (50× 50) (21)

(1,− 1

10
, 0)T ' −0.0968e0 + 0.0016e1 − 0.0016e2 (100× 100) (22)

with e0 =

(
−∆x(tx + 1)(ty − 1)

∆y(tx − 1)(ty + 1)
, 1, 0

)
the stationary eigenvector of E. On

finer grids (20) thus is moving closer to the stationary mode e0 of the numer-
ical scheme. This is observed in Figure 2: The stationarity preserving scheme
(16) settles on the stationary state of the numerical scheme. The discrete sta-
tionary state is approximating the exact stationary state the more closely, the
finer the grid is.

Figure 2. Time evolution of the first component of mode (20).
Blue curve: exact solution (stationary). Red and green curves:
numerical evolution using scheme (14). One observes a rapid decay
(top figure; bottom figure shows the decay in a logarithmic plot over
longer times). Cyan and purple curves: numerical evolution using
scheme (16). The numerical solution settles down on a discrete
stationary state after a short transition phase (inset).
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5. Conclusion and outlook. This paper presented the behaviour of numerical
schemes for linear hyperbolic systems in multiple spatial dimensions with a focus
on stationary states. Such systems possess stationary states characterized by dif-
ferential constraints. It is thus impossible for a numerical scheme to capture them
exactly with the limited information available on a computational grid.

On the other hand, virtually all numerical schemes possess stationary states, e.g.
the spatially constant state. Such states might be insufficient representatives of the
analytical stationary states though. It has been shown that this can be made precise
through the definition of trivial and non-trivial stationary states. When solving a
hyperbolic system with non-trivial stationary states, the numerical scheme should
also possess non-trivial stationary states (stationarity preserving). In this case its
discrete stationary states are a discretization of all the analytic stationary states.

In stationarity preserving schemes the stabilizing diffusion is added to certain
modes only, leaving enough room for discrete representations of all analytic station-
ary states, which are saved from decaying.

Already the case of linear systems is numerically challenging in multiple spatial
dimensions. Although Fourier transform methods are not applicable to nonlinear
conservation laws, the results presented here hopefully are a stepping stone towards
an understanding of discrete stationary states in more complex contexts.
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Abstract. A new hyperbolic softening model has been proposed for wave

propagation in damaged solids [Proc. R. Soc. A, 473 (2017), 20170024].

The linear elasticity becomes nonlinear through an additional internal variable.
This thermodynamically relevant model yields a dissipative energy. The 3× 3

nonlinear hyperbolic system so-obtained is totally linearly degenerate like the

well-known Kerr-Debye system. Existence of global smooth solutions is studied
here thanks to the Kawashima condition. Moreover, shocks never appear with

smooth initial data. Thus, the only possible blow-up of smooth solutions is the
blow-up in L∞ as for ODEs.

1. Introduction. The system of interest has been introduced in [2] to model non-
linear wave propagation in solids:

∂tε− ∂xv = 0, (1)

ρ0∂tv − ∂xσ = 0, (2)

∂tg =
1

τ
(W (ε)− φ′(g)), (3)

where the constants are ρ0 > 0 the density, E > 0 the Young modulus, τ > 0 the
relaxation time. The variables are ε > −1 the strain, v the velocity, σ = (1− g)E ε
the stress, W (ε) = 1

2Eε
2 the strain energy, g an internal variable representing

the damage. The system is completed with three initial data at time t = 0:
ε0(x), v0(x), 0 ≤ g0(x) < 1.

The storage function φ(g) has to satisfy φ′(0) = 0 (to preserve the equilibrium
(ε, g) = (0, 0) and to keep g ≥ 0), φ′ ≥ 0 and φ′′ > 0 (to ensure the stability of
constant equilibrium). Moreover, g < 1 is required since for g = 1 the solid is broken.
An example of function φ to ensure these constraints is φ(g) = − 1

2γ ln(1− g2) with
γ > 0.

2000 Mathematics Subject Classification. Primary: 35L45, 35B65; Secondary: 74D10, 74J30.
Key words and phrases. Damaged solids; nonlinear balance laws; linearly degenerate flux;

conservation law; finite-volume method.
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The initial-value problem for the system of balance laws (1)-(3) can be rewritten

in vectorial form with c = c(g) = c̄
√

1− g and c̄ =
√
E/ρ0:

∂tU + ∂xF (U) = G(U), (4)

U = (ε, v, g)>, F (U) = (−v,−c2ε, 0)>, G(U) =
1

τ
(0, 0,W (ε)− φ′(g))

>
.

The nonincreasing total energy E and the internal energy e are:

E := ρ0(v2/2 + e) = ρ0

(
v2/2 + (1− g)W (ε) + φ(g)

)
. (5)

For smooth solutions the dissipation of the energy is

d

dt

∫

R
Edx = −ρ0

τ

∫

R
(W (ε)− φ′(g))

2
dx = −ρ0τ

∫

R
(∂tg)

2
dx ≤ 0. (6)

It is a partially dissipative system [8, 1] which may ensure existence of global smooth
solutions [16] under the Kawashima condition [15].

In Section 2, the totally linearly degenerate 3× 3 homogeneous system deduced
from (4) is studied. The Kawashima condition for the full system with the source
term are directly related to the function φ in Section 3. The comparison with the
Kerr-Debye system and the non existence of shock wave for the system (4) are in
Section 4. Finally, numerical simulations of smooth solutions for the system (4)
conclude the paper in Section 5.

2. The linearly degenerate homogeneous system. Consider the system (4)
with no source: G = 0. The Jacobian matrix of the flux F has three eigenvectors
r−, r0, r+ associated to 3 linearly degenerate eigenvalues: −c, 0,+c in the hyperbolic
region g < 1:

A = DF (U) =




0 −1 0
−c2 0 ε c̄2

0 0 0


 , r± =




1
∓c
0


 , r0 =



ε c̄2

0
c2


 . (7)

Many things are known for 2× 2 totally linearly degenerate system [13, 14]. Less is
known for 3× 3 system except under special conditions as in [11].

The homogeneous version of (3) means simply g ≡ g0 thus the nonlinear sys-
tem (1)-(2) gives a linear wave equation with the variable sound speed c0(x) =

c̄
√

1− g0(x):

∂2
t ε− ∂2

x(c20(x)ε) = 0. (8)

Physically, it corresponds simply to the linear elasticity with a varying Young mod-
ulus depending only on the space variable x. Then a proof using the Riemann
invariants [9] of the elastodynamics yields the existence of global smooth solutions:

Proposition 1 (Global smooth solution for the homogeneous system).
Let us assume that the initial data at time t = 0: ε0(x), v0(x) belongs to the space
Liploc(R,R) of locally Lipschitz-functions, g0(x) ∈ Lip(R,R), supR g0(x) < 1 and
∂xg0 ∈ Liploc(R,R) . Then the homogeneous hyperbolic system admits a unique
global smooth solution (ε, v) with the same regularity in space as the initial data:

ε, v ∈ L∞loc([0,+∞[, Liploc(R,R)) ∩ C1([0,+∞[, L∞loc(R,R)).

A proof using the Riemann invariants of the 2×2 system of linear elastodynamics
is proposed. They are not Riemann invariants for the full 3×3 system, nevertheless
some computations are possible involving ∂xg. Since g(t, x) = g0(x) the term ∂xg
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is easily controlled by the Lipschitz initial datum g0(x). For the system with the
source term, the following proof fails because ∂xg cannot be estimated so easily.

Proof. The dimensionless 3×3 nonlinear system is simply rewritten as a linear 2×2
system with a variable coefficient:

∂tε− ∂xv = 0, (9)

∂tv − ∂x[(1− g0(x))ε] = 0, (10)

or in a short way:

∂tU + ∂xF (x, U) = 0, U = (ε, v)>, F (x, U) = (−v, (g0(x)− 1)ε)>.

Let A and G be the 2× 2 variable matrices which depend on the space variable x:

A(x) = ∂UF =

(
0 −1

g0(x)− 1 0

)
, G(x, U) = ∂xF =

(
0

(∂xg0(x)) ε

)
.

The gradient of the Riemann invariants ∇Uz± = (∓c0, 1) are the left eigenvectors
of the matrix A. Thus, the Riemann invariants are Z = (z+, z−)>. The system
(9)-(10) reads:

∂tU +A(x) ∂xU = −G(x, U), (11)

∂tz± ± c0 ∂xz± = −∇Uz± ·G(x, U) (12)

= − (∂xg0) ε

= − (∂xg0)
z− − z+

2c0 g0
.

Notice that ∇Uz±, c0 and g0 are only functions of x. The function σ is linear with
respect to ε, thus Lipschitz with respect to Z.

The system (11) with the variable U has been rewritten with the vector Z for
the 2 × 2 system (12), which variable coefficients are smooth while g0 < 1. Using
the characteristics X±(t, x) and the Riemann invariants evaluated along the char-
acteristics z±(X±(t, x), t), the 2 × 2 linear PDE system (12) becomes a family of
the 4 × 4 nonlinear ODE system parametrized by x ∈ R and involving changes of
variables:

dX±
dt

= ±c0(X±) = ±
√

1− g0(X±), X±(0, x) = x, (13)

dz±
dt

= −
(

(∂xg0)
z− − z+

2c0 g0

)
(X±, t), Z(x, 0) = Z0(x). (14)

This system is block triangular. The first two equations (13) are decoupled: the
characteristics are global smooth functions since g0 is globally Lipschitz and sup g0 <
1, so that the function c0 is also globally Lipschitz. The characteristics have at most
an exponential growth with respect to the time t.

Let us turn to the two coupled last equations (14). Notice that the coupling
involves change of variables between X− and X+: z∓(X±, t) instead of z±(X±).
This is classical [6, 7] and can be managed by a fixed point strategy. Then the
global existence follows.

For the full system with a source term the situation is more intricate.
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3. The (SK) condition for the complete system. The famous (SK) condi-
tion, defined by Shizuta and Kawashima in [15], yields existence of global smooth
solutions near an equilibrium [16].

Consider an equilibrium Ue of the system (4), that is a constant solution: G(Ue) =
0. The (SK) condition writes at Ue:

Ker DG(Ue) ∩ {eigenvectors of DF (Ue)} = {0}. (15)

The equilibrium Ue = (εe, ve, ge) for the system of interest is given by the equa-
tion W (εe) = φ′(ge). When ge > 0, there are two equilibrium (εe, ve, ge), with

εe = ±
√

2φ′(ge)/E (16)

and without restriction on ve. When ge = 0 the equilibrium is (0, ve, 0).
The linearized source term is a rank one matrix with the equation of the kernel,

τ DG(Ue) =




0 0 0
0 0 0
Eεe 0 −φ′′(ge)


 , E εe ε = φ′′(ge) g.

The eigenvectors r± of DF (Ue) associated to the eigenvalues ±ce do not belong
to Ker DG(Ue). The only problem remains for the eigenvector r0 in the kernel
of DF (Ue). It also belongs to Ker DG(Ue) if and only if E ε2

e = (1 − ge)φ′′(ge).
Replacing the left hand side thanks to (16) yields only one equation to check when
the (SK) condition is not fulfilled, (0 < ge < 1):

2φ′(ge) = (1− ge)φ′′(ge). (17)

Since φ′′ > 0 the case ge = 0 is excluded.
Let us consider the example φ(g) = − 1

2γ ln(1−g2). A simple computation yields

φ′(g) = γ
g

1− g2
, φ′′(g) = γ

1 + g2

(1− g2)2
≥ γ.

Thus, the (SK) condition is fulfilled except when ge =
√

2− 1 ' 0.414.
As a consequence of the previous study, with the condition φ′(0) = 0 and φ′′ > 0,

the (SK) condition is always fulfilled if and only if, ∀g ∈]0, 1[,

2φ′(g) < (1− g)φ′′(g). (18)

Lemma 3.1 (Loss of (SK) condition).
If lim
g→1

(1− g)φ(g) = 0 then the (SK) condition is not always satisfied.

Proof. Notice that inequality (18) is always satisfied near g = 0 since φ′(0) = 0 and
φ′′(0) > 0. Let g0 belong to ]0, 1[. It suffices to integrate the differential inequality
(18) to get for all g ∈]g0, 1[,

φ′(g) > φ′(g0)

(
1− g0

1− g

)2

, then φ(g) > φ(g0) + φ′(g0)
1− g0

1− g (g − g0).

Thus lim inf
g→1

(1−g)φ(g) > φ′(g0)(1−g0)2 > 0 and the lemma follows by contradiction.

A family of examples satisfying always the (SK) condition is given by φ(g) =
1
2γg

2(1− g)−α, with α > 1. The condition α > 1 is necessary and sufficient. The
proof is direct and needs only to check: φ′(0) = 0, φ′′ > 0 on [0, 1[ and (18).

As a direct consequence of (18) and the proof of Lemma 3.1, one gets the following
lemma.
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Lemma 3.2 (Not (SK) fulfilled on a continuum).
If the (SK) condition is not satisfied on an interval [g1, g2] then

φ(g) = φ(g1) + φ′(g1)
1− g1

1− g (g − g1).

4. Comparison with the Kerr-Debye model. In this section we compare the
system (1)-(3) to the Kerr-Debye system well-known in nonlinear optics. In the
latter system smooth initial data in the Sobolev space H2(R) yield global smooth
solutions. The system (1)-(3) can be rewritten in a similar form as the Kerre-Debye
system, except the source term which is modified. This modification prevents from
transfering all known results on Kerr-Debye system to our case. In particular, we
cannot deduce existence of global solutions. However, other results are known for
the modified Kerr-Debye system [5] ensuring that no discontinuity can appear in
finite time. The only catastrophe which can occur is a L∞ blow-up as for the
solutions of ODEs [12].

The Kerr-Debye model.

∂td+ ∂xh = 0, (19)

∂th+ ∂xe = 0, (20)

∂tχ =
1

τ

(
e2 − χ

)
, (21)

where d = (1 + χ)e and the initial condition (d, h, χ)(x, 0) = (d0, h0, χ0)(x). With
χ0 ≥ 0 it follows immediatly that χ ≥ 0. The semilinear behavior of solutions
of the system is proven in [4]. That means that a smooth solution is not global
only if the solution blows up in sup-norm [12]. The global existence of all smooth
solution is proven in [5]. This system is also endowed with a strictly convex partially
dissipative energy,

Ẽ =
d2

1 + χ
+ h2 +

χ2

2
,

d

dt

∫

R
Ẽdx = −τ

∫

R
(∂tχ)

2
dx ≤ 0 (22)

To prove (22) the system (19)-(21) is rewritten in variables W = (e, h, χ), to obtain
a symmetric system. The semilinear behavior is proven by energy estimates. More
precisely, if W is bounded in L∞([0, T ∗ [×R) then W is also bounded in L∞([0, T ∗
[, H2(R)) which is enough to prevent the blow up of the gradient i.e. shock-wave.

Our system rewritten in Kerr-Debye variables. Motivated by the previous
results on the Kerr-Debye system, the system (1)-(3) is rewritten in Kerr-Debye
variables:

d = ε, h = −v, d

1 + χ
= e = σ = (1− g)ε =⇒ 1 + χ =

1

1− g . (23)

Thus, χt = gt(1− g)−2 = (1 + χ)2gt = (1 + χ)2(d2/2 − φ′(g)) and our system
becomes with ρ0 = 1, E = 1 and τ = 1:

∂td+ ∂xh = 0, (24)

∂th+ ∂xe = 0, (25)

∂tχ = (1 + χ)2

(
d2

2
− φ′(g)

)
= (1 + χ)4 e

2

2
− ψ′(χ), (26)

where ψ′ is the increasing function defined by, ψ′(χ) = (1 + χ)2φ′
(
1 − (1 + χ)−1

)
.

Comparing (21) with (26), there appears only two changes, the weight (1 +χ)4 and
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the function ψ. Notice that ψ′ linear – as for the Kerr-Debye system – corresponds
to the following choice for φ′: φ′(g) = g(1 − g). For this choice, g < 1 for all
time since χ > 0 for all time. Unfortunately, this choice is not consistent with the
requirement on φ: φ′′ > 0.

Our model can be seen as a nonlinear generalization of the Kerr-Debye system.
The nonlinear generalization consists in the nonlinear relaxation with respect to the
variable χ. This additional nonlinearity prevents to obtain a global energy estimate
for the derivatives of the solutions of (1)-(3) as in [5].

The mapping, g 7→ χ is increasing, g = 0⇔ χ = 0, g = 1⇔ χ = +∞. Thus, the
constraint on g becomes a condition of no blow up for χ. The equation (26) yields
automatically the positivity of χ > 0 and then the constraint g < 1 required by our
model.

Moreover, the semilinear behavior for generalized Kerr-Debye systems is known,
Theorem 4.1 in [5]. Thus, our system enjoys a semilinear behavior. It means that
no schock can occur with smooth initial data:

Corollary 1 (No shock). Let ε0, v0, g0 belong to H2(R) and supR g0 < 1 then the
solution of the system (1)-(3) remains in H2 as soon as it remains in L∞.

The solution is then global smooth or blows up. The blow up means that ε or v
blow up in L∞ or g = 1 in finite time.

5. Numerical solution for the complete system. The system of balance laws
(4) is solved numerically. Following Sec. 4.2 of [3], an explicit time-stepping formula
is used, which involves the numerical flux of a finite-volume scheme (a flux-limiter
method based on the Roe scheme). The initial data is chosen as follows: v0(x) is
zero, g0(x) = ge is constant, while the strain ε0(x) = εe − 2V F (kx) has a smooth
waveform F (x) = 4

3
√

3

(
sin(x)− 1

2 sin(2x)
)
10≤x≤2π with fundamental wavelength

2π/k = 0.2 and amplitude V . The domain x ∈ [−5, 5] is discretized with 20 000
points and the Courant number is 0.95. Outflow conditions are implemented at the
boundaries of the domain, as presented in Sec. 7.2.1 of [10]. In this section, the
physical constants ρ0, E equal one, and τ , γ equal 10−4 (SI).

Numerical results at the time t = 4.5 are shown in Fig. 1 for εe = ge = 0. In
the small amplitude limit, the solution converges towards the solution obtained for
linear elasticity (g ≡ 0), where the initial data is transported at constant speed. As
amplitudes are increased, wavefront steepening is observed, along with a diminution
of the wave amplitude and of the speed of sound (delay). Nevertheless, the solution
keeps smooth.

At εe = ±
√
γ/E and ge =

√
2 − 1, the (SK) condition is no longer satisfied.

However, the stability of the equilibrium is verified numerically. This is illustrated
in Fig. 2, which displays the numerical solution for V = 0.001 at various times. The
dynamics of the system seems to be driven by its stable equilibrium points.
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Figure 1. Equilibrium εe = ge = 0. Numerical solution at t = 4.5
for several amplitudes V . (a) Normalized strain ε/V ; (b) normal-
ized velocity v/V and softening g/V 2.
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Abstract. Given d ≥ 1, T > 0 and a vector field b : [0, T ] × Rd → Rd, we
study the problem of uniqueness of weak solutions to the associated transport

equation ∂tu + b · ∇u = 0 where u : [0, T ] × Rd → R is a scalar function. In

the classical setting, the method of characteristics provides an explicit formula
for the solution of the PDE, in terms of the flow of b. However, when we

drop regularity assumptions on the velocity field, uniqueness is in general lost.

We present an approach to the problem of uniqueness based on the concept
of Lagrangian representation. This tool allows to represent a suitable class of

vector fields as superposition of trajectories: we then give local conditions to

ensure that this representation induces a partition of the space-time made up
of disjoint trajectories, along which the PDE can be disintegrated into a family

of 1-dimensional equations. We finally show that, if b is locally of class BV
in the space variable, the decomposition satisfies this structural assumption,

yielding a positive answer to the (weak) Bressan’s Compactness Conjecture.

1. Introduction. We present some recent advances (obtained in [12]) in the study
of two partial differential equations of the first order, namely the continuity equation{

∂tu+ div(ub) = 0, in [0, T ]× Rd

u(0, ·) = u(·) (1)

and the transport equation{
∂tu+ b · ∇u = 0, in [0, T ]× Rd

u(0, ·) = u(·) (2)

where b : [0, T ] × Rd → Rd is a given vector field, u : [0, T ] × Rd → R is a scalar
function and u : Rd → R is the initial datum.

The continuity and the transport equations are among the cardinal equations of
Mathematical Physics: for instance, the conservation of mass in Euler’s equations
of fluid-mechanics has the form of (1). In that case, a solution u to (1) can be
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Key words and phrases. Transport equation, continuity equation, renormalization, uniqueness,
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thought as the density of a continuous distribution of particles moving according
to the velocity field b; in other terms, the quantity u(t, x) represents the number of
particles per unit volume at time t ∈ [0, T ] and position x ∈ Rd. Notice, moreover,
that (1) and (2) are equivalent when div b = 0.

When b is sufficiently regular, existence and uniqueness results for (classical) so-
lutions to Problems (1) and (2) are well known. They rely on the so called method
of characteristics which establishes a deep connection between the “Eulerian” prob-
lems (1), (2) and their “Lagrangian” counterpart, given by the ordinary differential
equation driven by b:

{
∂tX(t, x) = b(t,X(t, x)), (t, x) ∈ [0, T ]× Rd

X(0, x) = x.
(3)

Under suitable regularity assumptions on b, it is well known (and goes under the
name of Cauchy-Lipschitz theory) that a flow exists, i.e. there is a smooth map
X solving (3). A simple observation yields that, if u is a solution to (2), then
the function t 7→ u(t,X(t, x)) has to be constant: this allows to conclude that the
unique solution u of (2) is the transport of the initial data u along the characteristics
of (3), i.e. along the curves [0, T ] 3 t 7→ X(t, x). Thus we end up with an explicit
formula for the solution u to (2):

u(t, x) = u
(
X(t, ·)−1(x)

)
.

Similarly one can obtain an explicit formula for solutions to (1).

However, in view of the applications to fluid-mechanics, one would like to deal
with velocity fields or densities which are not necessarily smooth. For instance, con-
tinuity equation and transport equation with non-smooth vector fields are related
to Boltzmann [23, 25] and Vlasov-Poisson equations [22], and also to hyperbolic con-
servation laws. In particular the Keyfitz and Kranzer system (introduced in [27]) is
a system of conservation laws that reads as

∂tu+ div
(
f(|u|)u

)
= 0 in [0, T ]× Rd, (4)

where the map f : R+ → Rd is assumed to be smooth. It has been shown in [5] that
(4) can be formally decoupled in a scalar conservation law for the modulus r = |u|
and a transport equation (with field f(r)) for the angular part ϑ = u/|u|:

{
∂tr + div (f(r)r) = 0,

∂tϑ+ f(r) · ∇ϑ = 0.

As it is well known, solutions to systems of conservation laws are in general non-
smooth, hence the vector field f(r) appearing in the transport equation is not
regular enough to apply the method of characteristics: we thus have to go beyond
the Cauchy-Lipschitz setting.

1.1. The classical approach: renormalized solutions. The exploration of the
non-smooth framework started with the paper of DiPerna and Lions [24]. They
realized that an interplay between Eulerian and Lagrangian coordinates could be
exploited to deduce well-posedness results for the ODE (3) from analogous results
on PDEs (1) and (2).

On the one hand, due to the linearity of the PDEs, the existence of weak solu-
tions to (1), (2) is always guaranteed under reasonable summability assumptions
on the vector field b and its spatial divergence; on the other hand, the problem of
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uniqueness turns out to be much more delicate. A possible strategy, introduced by
[24], to recover uniqueness, is based on the notions of renormalized solution and of
renormalization property.

Roughly speaking, a bounded function u ∈ L∞([0, T ] × Rd) is said to be a
renormalized solution to (2) if for all β ∈ C1(R) the function β(u) is a solution to
the corresponding Cauchy problem:
{
∂tu+ b · ∇u = 0,

u(0, ·) = ū
=⇒

{
∂t(β(u)) + b · ∇(β(u)) = 0

β(u(0, ·)) = β(ū(·)) for every β ∈ C1(R).

This can be interpreted as a sort of weak “Chain Rule” for the function u, saying
that u is differentiable along the flow generated by b. In [24] it is shown that the
validity of this property for every β ∈ C1(R) implies, under general assumptions,
uniqueness of weak solutions for (2). Moreover, when this property is satisfied by
all solutions, this can be transferred into a property of the vector field itself, which
will be said to have the renormalization property.

The problem of uniqueness of solutions is thus shifted to prove the renormaliza-
tion property for b: this seems to require some regularity of vector field (tipically
in terms of spatial weak differentiability), as counterexamples by Depauw [21] and
Bressan [17] show. With an approximation scheme, in [24] the authors proved that
renormalization property holds under Sobolev regularity assumptions on the vec-
tor field; some years later, Ambrosio [4] improved upon this result, showing that
renormalization holds for vector fields which are of class BV (locally in space) with
absolutely continuous divergence.

From the Lagrangian point of view, the uniqueness of the solution to the trans-
port equation (2) translates into well-posedness results of the so-called Regular La-
grangian Flow of b, which is the by-now standard notion of flow in the non-smooth
setting. This concept was introduced by Ambrosio in [4]: in a sense, among all
possible integral curves of b passing through a point, the Regular Lagrangian Flow
selects the ones that do not allow for concentration, in a quantitative way with
respect to some reference measure (usually the Lebesgue measure L d in Rd). It
is worth pointing out that a number of recent papers are devoted to the study of
its properties, in particular we mention [6] where a purely local theory of Regular
Lagrangian Flows has been proposed, thus establishing a complete analogy with the
Cauchy-Lipschitz theory.

1.2. Bressan’s Compactness Conjecture. As we have seen, the theory devel-
oped by DiPerna-Lions-Ambrosio settles the Sobolev and the BV case, when the
divergence of b does not contain singular terms (with respect to L d). However, in
connections with applications to conservation laws, it would be interesting to cover
also the case in which b is of bounded variation in the space, but its divergence may
contain non-trivial singular terms: indeed the natural assumption at the level of the
divergence of b seems to be not really absolute continuity with bounded density,
as considered in Ambrosio [4], but rather the existence of a nonnegative density ρ
transported by b, with ρ uniformly bounded from above and from below away from
zero. Such vector fields are called nearly incompressible, according to the following
definition.

Definition 1.1. A locally integrable vector field b : (0, T ) × Rd → Rd is called
nearly incompressible if there exists a function ρ : (0, T ) × Rd → R (called density
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of b) and a constant C > 0 such that 0 < C−1 ≤ ρ(t, x) ≤ C for Lebesgue almost
every (t, x) ∈ (0, T )× Rd and

∂tρ+ divx(ρb) = 0 in the sense of distributions on (0, T )× Rd.

Notice that no assumption is made on the divergence of b; on the other hand, it
is rather easy to see (for instance, by mollifications) that if div b is bounded then b
is nearly incompressible.

Nearly incompressible vector fields are strictly related to a conjecture, raised by
A. Bressan (studying the well-posedness of the Keyfitz and Kranzer system (4)),
predicting the strong compactness of a family of flows associated to smooth vector
fields:

Conjecture 1 (Bressan’s Compactness Conjecture - Lagrangian formulation). Let
bk : [0, T ] × Rd → Rd, k ∈ N, be a sequence of smooth vector fields and denote by
Xk the associated flows, i.e. the solutions of

{
∂tXk(t, x) = bk(t,Xk(t, x))

Xk(0, x) = x.

Assume that the quantity ‖bk‖∞ + ‖∇bk‖L1 is uniformly bounded and assume fur-
thermore that there exists C > 0 such that for every k ∈ N it holds

1

C
≤ det (∇xXk(t, x)) ≤ C, ∀(t, x) ∈ [0, T ]× Rd.

Then the sequence {Xk}k∈N is strongly precompact in L1
loc([0, T ]× Rd).

By standard compactness arguments, it is readily seen that Conjecture 1 deals
essentially with an ordinary differential equation, driven by a nearly incompressible,
BV vector field. From the Eulerian point of view, one can thus expect that Conjec-
ture 1 is proved as soon as one can show well posedness at the PDE level for a vector
field of class BV and nearly incompressible, extending the well-posedness result of
Ambrosio [4]. This is indeed the case: as it has been proved in [5], Conjecture 1
would follow from the following one:

Conjecture 2 (Bressan’s Compactness Conjecture - Eulerian formulation). Any
nearly incompressible vector field b ∈ L1([0, T ]; BVloc(Rd)) has the renormalization
property.

The main result is the following Theorem, which answers affirmatively to the
conjectures above.

Main Theorem. Bressan’s Compactness Conjecture holds true.

More precisely, we prove Conjecture 2. It is important to mention various ap-
proaches that have been tried in the recent years, also at a purely Lagrangian level:
for instance, explicit compactness estimates have been proposed in [10, 19] (and
further developed in [16]; see also [26, 18]).

Before presenting the techniques we use to prove the Main Theorem we briefly
discuss a particular setting, namely the two-dimensional one, where finer results are
availble in view of the Hamiltonian structure.
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2. The two-dimensional case. The problem of uniqueness of weak solutions to
the transport equation (2) in the two dimensional (autonomous) case is addressed in
the papers [3], [2] and [15]. In two dimensions and for divergence-free autonomous
vector fields, renormalization theorems are available under quite mild assumptions,
because of the underlying Hamiltonian structure. Indeed, if div b = 0 in R2, then
there exists a Lipschitz Hamiltonian H : R2 → R such that b = ∇⊥H, where
∇⊥ = (−∂2, ∂1). Heuristically it is readily seens that level sets of H are invariant
under the flow of b, since

d

dt
H(γ(t)) = ∇H(γ(t)) · γ̇(t) = ∇H(γ(t)) · b(γ(t)) = 0

as b and ∇H are orthogonal. This suggests the possibility of decomposing the two-
dimensional transport equation into a family of one-dimensional equations, along
the level sets of H. By means of this strategy, and building on a fine description of
the structure of level sets of Lipschitz maps (obtained in the paper [2]), in [3], the
authors characterize the autonomous, divergence-free vector fields b on the plane
for which uniqueness holds, within the class of bounded (or even merely integrable)
solutions. The characterization they present relies on the so called Weak Sard
Property, which is a (weaker) measure theoretic version of Sard’s Lemma and is used
to separate the dynamic where b 6= 0 from the regions in which b = 0. An extension
of these Hamiltonian techniques to the two-dimensional nearly incompressible case
was obtained in [14], whose main result is the following:

Theorem 2.1 ([14]). Every bounded, autonomous, compactly supported, nearly
incompressible BV vector field on R2 has the renormalization property.

However, that in the general d-dimensional case, with d > 2, the Hamiltonian
approach cannot be applied, as there are not enough first integrals of the ODE
(which is to say, bounded divergence-free vector fields in Rd do not admit in general
a Lipschitz potential).

3. The chain rule approach. We now come back to the general d-dimensional
setting and we briefly discuss an approach towards Bressan’s Conjecture 2 that has
been tried.

In [9], the authors proposed to face the conjecture by establishing a Chain rule
formula for the divergence operator. Given a bounded, Borel vector field b : Rd →
Rd, a bounded, scalar function ρ : Rd → R, one would like to characterize (compute)
the distribution div(β(ρ)b), for β ∈ C1(R;R), in terms of the quantities div b and
div(ρb). In the smooth setting one can use the standard chain rule formula to get

div(β(ρ)b) = β′(ρ) div(ρb) + (β(ρ)− ρβ′(ρ)) div b (5)

In the general case, however, the r.h.s. of (5) cannot be written in that form,
being only a distribution. In the case the vector field b ∈ BV(Rd), it can be
shown that div(β(ρ)b) is a measure, controlled by div b but, as noted in [9], the
main problem is to give a meaning to the r.h.s. of (5) when the measure div b is
singular and ρ is only defined almost everywhere with respect to Lebesgue measure.
To overcome this difficulty, in the BV setting, the authors split the measure div b
into its absolutely continuous part, jump part and Cantor part and treat the cases
separately.
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Figure 1. Example of [15]: the tangential set of the vector field b
(only the integral curves have been drawn here) is a Cantor like set
of dimension 3/2. Notice that each trajectory γ meets the tangen-
tial set in exactly one point, at time tγ : the density ρ, computed
along the curve, is piecewise constant, having a unique jump of size
1 in tγ .

The absolutely continuous part. Their first result ([9, Thm. 3]) is that in all
Lebesgue points of ρ the formula (5) holds (possibly being div b singular), where ρ
is replaced by its Lebsgue value ρ̃. This is achieved along the same techniques of [4],
which are in turn a (non-trivial) extension of the ones employed in [24]: essentially,
an approximation argument via convolution is performed (leading to the study of
the so called commutators). One can control the singular terms by taking suitable
convolution kernels which look more elongated in some directions.

The jump part. By exploiting properties of Anzellotti’s weak normal traces for
measure divergence vector fields (see [11]), Ambrosio, De Lellis and Malý managed
to settle also the jump part: they obtain an explicit formula (in the spirit of (5)),
involving the traces of b and ρb along a H d−1-rectifiable set (see also [8] for an
extension of these results to the BD case).

The Cantor part. In order to tackle the Cantor part, a “transversality condition”
between the vector field and its derivative is assumed in [9]: it is shown that, if in
a point (t̄, x̄) one has (Db · b)(t̄, x̄) 6= 0 (where b(t̄, x̄) is the Lebesgue value of b in
(t̄, x̄)) then the point (t̄, x̄) is a Lebesgue point for ρ.

From the analysis of [9], it thus remains open the case of tangential points, i.e.
the set of points at which Db · b vanishes, which make up the so called tangential
set. This is actually relevant, as shown in [15]: answering negatively to one of the
questions in [9], in [15] the authors exhibited an example of BV, nearly incompress-
ible vector field with non empty tangential set. Even worse, the tangential set is a
Cantor-like set of non integer dimension but, at level of the density ρ, one sees a
pure jump. This severe pathology is depicted in Figure 1 and we refer the reader
to [15] for a detailed construction.
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4. A new approach. We now want to present in more details our main contribu-
tion, discussing briefly the theorems we obtained in [12] and the strategy leading
to their proofs. The starting point of our approach is the notion of Lagrangian
representation η of the Rd+1-valued vector field ρ(1, b), defined in the subsequent
paragraph.

4.1. Lagrangian representations. In the general non-smooth setting, one could
recover a link between the continuity equation (1) and the ODE (3) thanks to
the so called Superposition Principle, which has been established by Ambrosio in
[4] (see also [28]). Roughly speaking, it asserts that, if the vector field is globally
bounded, every non-negative (possibly measure-valued) solution to the PDE (1) can
be written as a superposition of solutions obtained via propagation along integral
curves of b, i.e. solutions to the ODE (3).

More generally, let us consider a locally integrable vector field b ∈ L1
loc((0, T )×

Rd) and let ρ be a non-negative solution to the balance law

∂tρ+ div(ρb) = µ, µ ∈M ((0, T )× Rd). (6)

with ρ ∈ L1
loc((1 + |b|)L d+1) (so that a distributional meaning can be given). For

simplicity, we will often write (6) in the shorter form

divt,x
(
ρ(1, b)

)
= µ. (7)

Let us denote the space of continuous curves by

Υ :=
{

(t1, t2, γ) ∈ R+ × R+ × C(R+,Rd), t1 < t2
}

and let us tacitly identify the triplet (t−γ , t
+
γ , γ) ∈ Υ with γ, so that we will simply

write γ ∈ Γ . We say that a finite, non negative measure η over the set Υ is a
Lagrangian representation of the vector field ρ(1, b) if the following conditions hold:

1. η is concentrated on the set of characteristics Γ , defined as

Γ := {(t1, t2, γ) ∈ Υ : γ characteristic of b in (t1, t2)} ;

we explicitly recall that a curve γ is said to be a characteristic of the vector
field b in the interval Iγ if it is an absolutely continuous solutions to the ODE

γ̇(t) = b(t, γ(t)),

in Iγ , which means that for every (s, t) ⊂ Iγ we have
ˆ

Γ

∣∣∣∣γ(t)− γ(s)−
ˆ t

s

b(τ, γ(τ)) dτ

∣∣∣∣ η(dγ) = 0.

2. The solution ρ can be seen as a superposition of the curves selected by η, i.e.
if (I, γ) : Iγ → Iγ × Rd denotes the map defined by t 7→ (t, γ(t)), we ask that

ρL d+1 =

ˆ

Γ

(I, γ)]L
1 η(dγ);

3. we can decompose µ, the divergence of ρ(1, b), as a local superposition of
Dirac masses without cancellation, i.e.

µ =

ˆ

Γ

[
δt−γ ,γ(t−γ )(dt dx)− δt+γ ,γ(t+γ )(dt dx)

]
η(dγ),

|µ| =
ˆ

Γ

[
δt−γ ,γ(t−γ )(dt dx) + δt+γ ,γ(t+γ )(dt dx)

]
η(dγ).
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The existence of such a decomposition into curves is a consequence of general
structural results of 1-dimensional normal currents (see [28] and, for the case µ = 0,
[7, Thm. 12]). The non-negativity assumption on ρ ≥ 0 (i.e. the a-cyclicity of
ρ(1, b) in the language of currents) plays here a role, allowing to reparametrize the
curves in such a way they become characteristic of b, i.e. they satisfy Point (1).

4.2. Restriction of Lagrangian representations and proper sets. One prob-
lem we face immediately lies in the fact that η is a global object, thus it is not
immediate to relate suitable local estimates with η: in other words, in general, η
cannot be restricted to a set, without losing the property of being a Lagrangian
representation. If we are given an open set Ω ⊂ Rd+1 and a curve γ, we can write

γ−1(Ω) =
∞⋃

i=1

(ti,−γ , ti,+γ )

and then consider the family of curves

RiΩγ := γx(ti,−γ ,ti,+γ ).

We can now define

ηΩ :=
∞∑

i=1

(RiΩ)]η. (8)

In general, the series in (8) does not converge. Moreover, even if the quantity in (8)
is well defined as a measure, since η satisfies Points (1) and (2) of the definition of
Lagrangian representation given above, it certainly holds

ρ(1, b) L d+1xΩ=

ˆ

Γ

(I, γ)]
(
(1, γ̇)L 1

)
ηΩ(dγ).

but, in general, Point (3) is not satisfied by ηΩ (more precisely the second formula):
in other words, ηΩ might not be a Lagrangian representation of ρ(1, b)L d+1xΩ:
the key point is that the sets of γ which are exiting from or entering in Ω are not
disjoint.

Thus the first question we have to answer to is to characterize the open sets
Ω ⊂ Rd+1 for which ηΩ is a Lagrangian representation of ρ(1, b)L d+1xΩ. It turns
out that there are sufficiently many open sets Ω with this property: apart from
having a piecewise C1-regular boundary and assuming that H dx∂Ω-a.e. point is
a Lebesgue point for ρ(1, b), the fundamental fact is that there are two Lipschitz
functions φδ,± such that

1Ω ≤ φδ,+ ≤ 1Ω+Bd+1
δ (0), 1Rd+1\Ω ≤ φδ,− ≤ 1Rd+1\Ω+Bd+1

δ (0)

and

lim
δ→0

ρ|(1, b) ·∇φδ,±| L d+1 = ρ|(1, b) ·n|H dx∂Ω in the sense of measures on Rd+1,

which essentially mean that ρ(1, b)H dx∂Ω is measuring the flux of ρ(1, b) across
∂Ω. We call these set ρ(1, b)-proper (or just proper for shortness) and we study
carefully their properties: we show that there are sufficiently many proper sets and
that they can be perturbed in order to adapt to the vector field under study.
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4.3. Cylinders of approximate flow. Once we are able to localize the problem
in a proper set, we can start studying which are the pieces of information on the
local behavior of the vector field that one needs in order to deduce global uniqueness
results.

Given a proper set Ω ⊂ Rd+1, we assume we can construct locally cylinders of
approximate flow as follows:

Assumption 4.1. There are constants M, $ > 0 and a family of functions
{φ`γ}`>0,γ∈Γ such that:

1. for every γ ∈ Γ, ` ∈ R+, the function φ`γ : [t−γ , t
+
γ ] × Rd → [0, 1] is Lipschitz,

so that it can be used as a test function;
2. the shrinking ratio of the cylinder φ`γ is controlled in time, preventing it col-

lapses to a point: more precisely, for t ∈ [t−γ , t
+
γ ] and x ∈ Rd,

1γ(t)+Bd
`/M

(0)(x) ≤ φ`γ(t, x) ≤ 1γ(t)+Bd
M`(0)(x);

3. we control in a quantitative way the flux through the “lateral boundary of the
cylinder” (compared to the total amount of curves starting from the “base of
the cylinder”) with the quantity $: more precisely, denoting by

Flux`(γ) :=
flux of the the vector field ρ(1, b)

across the “boundary of the cylinder” φ`γ

=

¨

(t−γ ,t
+
γ )×Rd

ρ(t, x)
∣∣(1, b) · ∇φ`γ(t, x)

∣∣L d+1(dx dt),

σ`(γ) := amount of curves starting from the base of the cylinder φ`γ
and

ηin
Ω := ηΩx{curves entering in Ω}

we ask that
ˆ

Γ

1

σ`(γ)
Flux`(γ) ηin

Ω (dγ) ≤ $. (9)

We decided to call cylinders of approximate flow the family of functions {φ`γ}`>0,γ∈Γ :

indeed, if γ is a characteristic of the vector field b, the function φ`γ can be thought

as generalized, smoothed cylinder centered at γ. Notice that the measure ηin
Ω makes

sense if Ω is a proper set, in view of the above analysis. Thus the ultimate meaning
of the assumption is that one controls the ratio between the flux of ρ(1, b) across the
lateral boundary of the cylinders and the total amount of curves entering through
its base in a uniform way (w.r.t. `), as the cylinder shrinks to a trajectory γ. A
completely similar computation can be performed backward in time, by considering
ηΩ restricted to the exiting trajectories and adopting suitable modifications.

4.4. Passing to the limit via transport plans. At this point, one would like
to determine what the cylinder estimate (9) yields in the limit ` → 0. In order to
perform this passage to the limit, we borrow some tools from the Optimal Trans-
portation Theory. The language of transference plans is particularly suited for our
purposes: we define

Γ cr(Ω) :=
{
γ ∈ Γ : γ(t±γ ) ∈ ∂Ω

}
, Γ in(Ω) :=

{
γ ∈ Γ : γ(t−γ ) ∈ ∂Ω

}

and we consider plans between ηcr
Ω := ηΩxΓ cr(Ω) and the entering trajectory measure

ηin
Ω . Notice that ηcr

Ω is concentrated, by definition, on the set of trajectories entering
in and exiting from Ω (crossing trajectories).
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In the correct estimate one has to take into account also of trajectories which
end inside the set Ω and this, in view of Point 3 of the definition of Lagrangian
representation, is estimated by the negative part µ− of the divergence µ, defined in
(7). Thus one obtains the following

Proposition 1. Let Ω ⊂ Rd+1 be a proper set and η be a Lagrangian representation
of ρ(1, b). If Assumption 4.1 holds then there exist N1 ⊂ Γ cr(Ω), N2 ⊂ Γ in(Ω) such
that

ηcr
Ω (N1) + ηin

Ω (N2) ≤ inf
C>1

{
2$ + C$ +

µ−(Ω)

C − 1

}

and for every (γ, γ′) ∈ (Γ cr \N1)× (Γ in \N2)

either clos Graph γ′ ⊂ clos Graph γ or clos Graph γ, clos Graph γ′ are disjoint.
(?)

Proposition 1 gives essentially a uniqueness result (from the Lagrangian point of
view) at a local level, namely inside a proper set Ω: it says that, under Assumption
4.1, up to removing a set of trajectories whose measure is controlled, one gets a
family of essentially disjoint trajectories (meaning that are either disjoint or one
contained in the other).

4.5. Untangling of trajectories. It seems at this point natural to try to perform
some “local-to-global” argument, seeking a global analog of Proposition 1. In order
to do this, we introduce the following untangling functional for ηin, defined on the
class of proper sets as

f in(Ω) := inf
{
ηcr

Ω (N1)+ηin
Ω (N2) : ∀(γ, γ′) ∈ (Γ\N1)×(Γ\N2) condition (?) holds

}

and, in a similar fashion, one can define an untangling functional for the trajectories
that are exiting from the domain Ω. In a sense, these functionals are measuring
the minimum amount of curves one has to remove so that the remaning ones are
essentially disjoint, i.e. they satisfy condition (?). The main property of these
functionals is that they are subadditive with respect to the domain Ω, meaning
that

f in(Ω) ≤ f in(U) + f in(V),

whenever U,V ⊂ Rd+1 are proper sets whose union Ω := U ∪ V is proper. The
subadditivity suggests the possibility of having a local control in terms of a measure
$τ , whose mass is τ > 0, replacing the constant $ in Proposition 1 with $τ (Ω).
In view of Proposition 1 one has to combine $τ with the divergence and this can

be done by introducing a suitable measure ζτC ≈ C$τ + |µ|C on Rd+1. If Assumption
4.1 is satisfied locally by a suitable family of balls, then one can show, by means
of a non-trivial covering argument, the following fundamental proposition, which is
the global analog of Proposition 1.

Proposition 2. There exists a set of trajectories N ⊂ Γ such that

η(N) ≤ CdζτC(Rd+1)

and for every (γ, γ′) ∈ (Γ \N)2 it holds

either Graph γ ⊂ Graph γ′ or Graph γ′ ⊂ Graph γ
or Graph γ,Graph γ′ are disjoint (up to the end points).

(??)

321



BRESSAN’S COMPACTNESS CONJECTURE

The interesting situation is when the measure ζCτ can be taken arbitrarily small,
i.e. when τ → 0: in that case η is said to be untangled, i.e. it is concentrated on a
set ∆ such that for every (γ, γ′) ∈ ∆×∆ the condition (??) holds (see also Figure
2).

γ̇(t) = b(t, γ(t))

x

t

(a) Initial configuration: the curves ay
intersect several times, overlap and bi-

furcate.

γ̇(t) = b(t, γ(t))

x

t

(b) Final configuration: after the un-
tangling, the curves are disjoint, thus

forming a partition {℘a}a of Rd+1 up
to a ρLd+1-negligible set.

Figure 2. Visual effect of the untangling of trajectories: we start
by removing locally a set of curves, whose η measure is controlled,
in such a way that the curves are disjoint in a small ball. Iterating
this step - thanks to subadditivity - we end up with a family of
disjoint, untangled trajectories.

4.6. Partition via characteristics and Lagrangian uniqueness. The untan-
gling of trajectories is the core of our approach and it encodes, in our language, the
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uniqueness issues and the computation of the chain rule. Indeed, once the untan-
gled set ∆ is selected, we can construct an equivalence relation on it, identifying
trajectories whenever they coincide in some time interval: this gives a partition of
∆ into equivalence classes Ea := {℘a}a, being A a suitable set of indexes. This,
in turn, induces a partition of Rd+1 (up to a set ρL d+1-negligible) into disjoint
trajectories (that we still denote by ℘a): both partitions admit a Borel section (i.e.
there exist Borel functions f : Rd+1 → A and f̂ : ∆→ A such that ℘a = f−1(a) and
f̂−1(a) = Ea for every a ∈ A): hence a disintegration approach can be adopted,
like in the two-dimensional setting. One reduces the PDE (7) into a family of one-
dimensional ODEs along the trajectories {℘a}a∈A: we are thus recovering a sort of
method of the characteristic in the weak setting.

To formalize this disintegration issue, we propose to call a Borel map g : Rd+1 →
A a partition via characteristics of the vector field ρ(1, b) if:

• for every a ∈ A, g−1(a) coincides with Graph γa, where γa : Ia → Rd+1 is a
characteristic of b in some open domain Ia ⊂ R;

• if ĝ denotes the corresponding map ĝ : ∆ → A, ĝ(γ) := g(Graph γ), setting
m := ĝ]η and letting wa be the disintegration

ρL d+1 =

ˆ

A

(I, γa)](waL
1)m(da)

then
d

dt
wa = µa ∈M (R), (10)

where wa is considered extended to 0 outside the domain of γa;
• it holds

µ =

ˆ

(I, γa)]µam(da) and |µ| =
ˆ

(I, γa)]|µa|m(da).

We will say the partition is minimal if moreover

lim
t→t̄±

wa(t) > 0 ∀t̄ ∈ Ia.

In view of the discussion above, the family of equivalence classes {℘a}a∈A arising
from the untangled set ∆ constitutes a partition via characteristics. Since the func-
tion wa is a BV function on R, in view of (10), we can further split the equivalence
classes so that it becomes a minimal partition via characteristics of ρ(1, b). Fur-
thermore, if we take u ∈ L∞((0, T )×Rd) such that div(uρ(1, b)) = µ′ is a measure,
we can repeat the computations for the vector field (2‖u‖∞ + u)ρ(1, b) obtaining
that the same partition via characteristics works also for uρ(1, b). This yields the
following uniqueness result, which is the core of our work:

Theorem 4.1 ([12]). If η is untangled, then there exists a minimal partition via
characteristics f of ρ(1, b). Furthermore, if u ∈ L∞((0, T ) × Rd) is a solution to
div(uρ(1, b)) = µ′, then map f is a partition via characteristics of uρ(1, b) as well.

In particular, by disintegrating the PDE div(uρ(1, b)) = µ′ along the character-
istics ℘a = f−1(a), we obtain the one-dimensional equation

d

dt

(
u
(
t, ℘a(t)

)
wa(t)

)
= µ′a.

At this point, an application of Volpert’s formula for one-dimensional BV functions
allows an explicit computation of d

dt (β(u ◦ ℘a)wa), i.e. of div(β(u)ρ(1, b)) thus
establishing the Chain rule in the general setting.
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t

γ

Rd
Bdr (0)

p

(a) In the absolutely contin-

uous part of Db the cylinders
evolve under a constant ma-

trix A, which will be taken
close to Dab.

t

y1

y⊥

Q̄

Q(t)

γp

(b) The singular case:

the cylinders shrink (if
div b < 0) in a controlled

way, their sides being graph
of monotone Lipschitz func-

tions which solve suitable

differential equations.

Figure 3. Approximate cylinders of flow in the BV (nearly in-
compressible) case.

4.7. The BV nearly incompressible case and Bressan’s Compactness Con-
jecture. To conclude the proof of the Main Theorem, establishing Bressan’s Com-
pactness Conjecture, it remains to show how we can construct cylinders of approx-
imate flow satisfying Assumption 4.1, for a vector field of the form ρ(1, b), with
ρ ∈ (C−1, C) and b ∈ L1((0, T ); BVloc(Rd)). In view of Theorem 4.1, without loss
of generality, we can assume ρ = 1 so that the vector field under consideration is
exactly (1, b): as usual, we denote by Db the derivative of b and we split it into the
absolutely continuous part and the singular part.

In a Lebesgue point (t̄, x̄) of the absolutely continuous part, the construction of
the cylinders is rather easy: essentially, one replaces the real evolution under the
flow of b of a ball Bd` (0) with an ellipsoid, obtained by letting everything evolve
under a fixed matrix A (compare with Figure 3a). Some standard computations
show that the difference between the two evolutions can be made arbitrarily small,
when compared to the volume of Bd` (0), by taking A to be the Lebesgue value of
Db in the point (t̄, x̄).

The estimates for the singular part are more delicate and depend heavily on the
shape of the approximate cylinders of flow. Here the geometric structure of BV
functions (Alberti’s Rank-One Theorem [1, 20]) plays a role, as in the original proof
of [4]. The main idea is to choose properly the (non-transversal) sides’ lenghts of
the cylinders, in such a way to cancel the effect of the divergence. Indeed, by Rank
One Theorem, we can find a suitable (local) coordinate system y = (y1, y

⊥) ∈ Rd
in which the derivative Db is essentially directed toward a fixed direction (without
loss of generality, the one given by e1). Accordingly, we define the (section at time
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t of the) cylinder

Q = Q`±1,γ ,`
(t) := γ(t) +

{
y = (y1, y

⊥) : −`−1 (t, y⊥) ≤ y1 ≤ `+1 (t, y⊥), |y⊥| ≤ `
}
,

(11)
where ` > 0 is a real number and `±1,γ are suitable functions to be chosen, Lipschitz

in y⊥ and monotone in t. This is indeed a crucial step: we show it is possible to
adapt locally the cylinders of approximate flows, by imposing that the sides’ lengths
`±1,γ(t) are monotone functions satisfying suitable differential equations (see Figure

3b). In a simplified setting, i.e. if the level set of b1(t) were exactly of the form
y1 = constant, then we would impose

d

dt
`+1,γ(t) = (Db1)

(
γ(t), γ(t) + `+1,γ(t)

)
(12)

(and an analogous relation for `−1,γ). Plugging the solution of (12) into the definition

of the cylinder (11), we can show that the flux of b through the lateral boundary of
Q is under control. Actually, a technical variation of this is needed in order to take
into account the fact that the level sets are not of the form y1 = constant: to do
this we exploit Coarea Formula and a classical decomposition of finite perimeter sets
into rectifiable parts (relying ultimately on De Giorgi’s Rectifiability Theorem). We
show that, up to a |Dsingb|-small set, one can find Lipschitz functions y1 = Lt,h(y⊥)
in a fixed set of coordinates (y1, y

⊥) ∈ R×Rd+1, whose graphs cover a large fraction
of the singular part DsingbxBd+1

r (t̄,x̄). We can at this point reverse the procedure,

i.e. we construct a vector field starting from the level sets: this yields a BV vector
field U(t) whose component U1 can be put into the right hand side of (12) and we
can now perform the precise estimate of the flux of b through the lateral boundary
of Q.

By an application of the Radon-Nikodym Theorem, it follows that on large com-
pact set it holds that the flow integral (9) is controlled by τ |Dsingb|(Bd+1

r (t̄, x̄)).
Finally a covering argument implies that the measure ζCτ can be taken, in the BV
case, to be τ |Db|: in view of the discussion above this is enough to conclude finally
the proof of the Main Theorem.

5. Further developments of the untangling . In a work in progress (that will
appear in a forthcoming paper [13]) we study some possible refinements of the
concept of untangling. In particular, by imposing a control on the intersection of
the curves only forward in time some estimates and propositions of the approach
presented above simplify. More precisely, we define a Lagrangian representation η
of ρ(1, b), with div(ρ(1, b)) = µ ∈M ([0, T ]×Rd), to be forward untangled when it
is concentrated on a set ∆forward of curves which may intersect, but if they do then
they remain the same curve in the future. In a sense, this means that trajectories
can bifurcate only in the past.

This formulation arises naturally when one translates well-posedness of the ODEs
in terms of Lagrangian representations: restricting for simplicity to the case in which
µ = 0 one would like to replace Assumption 4.1 with the following one:

Assumption 5.1. Let η be a Lagrangian representation of ρ(1, b) in (0, T ) × Rd.
Let $ > 0 and assume that for all R > 0 there exists r = r(R) > 0 such that

ˆ

Γ

1

σr(γ)
η
({
γ′ ∈ Γ : |γ(0)− γ′(0)| ≤ r, |γ(T )− γ′(T )| ≥ R

})
η(dγ) ≤ $.
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where now

σr(γ) := amount of curves starting from the ball or radius r > 0 around γ(0).

Assumption 5.1 has the advantage of making more transparent and easier some
of the proofs used in the approach presented above. One can repeat the general
scheme presented above: first one formulates Assumption 5.1 locally, in a proper set
and shows that - up to a set of curves whose measure is controlled - the (restricted)
Lagrangian representation η is forward untangled. In this way, one obtains a simpler
proof of Theorem 1, avoiding the introduction of the crossing trajectories. Then
one introduces the forward untangling functional, which turns out to be subadditive
as well, exactly as in the setting above, allowing the usual local-to-global argument.
Using this formulation of the untangling, we are able to recover in our setting
the results of [16], where the authors considered vector fields whose derivative can
be written as convolution between a singular kernel and a L1 function and we also
derive a quantitative stability estimate for a class of vector fields satisfying a suitable
weak Lp bound on the gradient.
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Abstract. Scalar conservation laws ∂tu + ∂xf (t, x, u) = 0 where the flux f
is discontinuous w.r.t. the time and space variables t, x arise in many appli-

cations, related to physical models in rough media. Typical examples include

traffic flow with variable road conditions and polymer flooding in porous media.
An extensive body of recent literature has dealt with fluxes that are discontin-

uous along a finite number of curves in the t-x plane. Here we are interested

in the existence and uniqueness of solutions obtained via vanishing viscosity
approximations i.e. solutions to ∂tu + ∂xf (t, x, u) = ε∂xxu when ε → 0+, for

more general discontinuous fluxes.
We first give a definition of regulated functions in two variables. After

recalling some results about parabolic equations with discontinuous coefficients,

we show how the knowledge of the existence and uniqueness of the vanishing
viscosity limit for fluxes with a single discontinuity at x = 0 can be used as a

building block to prove the existence and uniqueness of the vanishing viscosity

limit for regulated fluxes.

1. Introduction. We consider the Cauchy problem for a scalar conservation law
of the form {

ut + f(t, x, u)x = 0,

u(0, x) = ū(x) ∈ L1 (R) ,
(1)

where the flux function f is smooth w.r.t. the unknown u but can be discontinuous
w.r.t. both variables t and x. Our main concern is the convergence of the viscous
approximations uε, which solve{

ut + f(t, x, u)x = ε uxx,

u(0, x) = ū(x) ∈ L1 (R) ,
(2)

to a unique weak solution u to (1), as the viscosity parameter ε→ 0+.
Starting with the works by N. Risebro and collaborators (see [2, 9, 10, 14] and

references therein) scalar conservation laws with discontinuous coefficients have now
become the subject of an extensive literature also including some multi-dimensional
cases (see [1, 2, 7, 12, 13, 17] and references therein).

Results on the uniqueness and stability of vanishing viscosity solutions have been
obtained mainly in the case where the flux f is piecewise smooth with discontinuities
located on finitely many smooth curves on the (t, x) plane. Aim of this note is
to describe an alternative approach, introduced in [3, 11], based on comparison

2000 Mathematics Subject Classification. 35L65, 35R05.
Key words and phrases. Nonlinear semigroups of contractions. Conservation law with discon-

tinuous flux, regulated flux function, vanishing viscosity, Hamilton-Jacobi equation, existence and

uniqueness of solutions.
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estimates for solutions to the corresponding Hamilton–Jacobi equation. This yields
the uniqueness of the vanishing viscosity limit under the more general assumption
that f(t, x, ω) = F (v(t, x), ω) where F is a smooth function and v(t, x) is a regulated
function of the two variables t and x, as in Definition 1.1 below.

We recall that a function of a single variable v : R 7→ R is regulated if it admits
left and right limits at every point. This is true if and only if, for every interval
[x1, x2] and every ε > 0, there exists a piecewise constant function χ such that
‖χ − v‖L∞([x1,x2]) ≤ ε . We extend this concept to functions of two variables, as
follows.

Definition 1.1. (see Fig. 1) We say that a bounded function v = v(t, x) is regu-
lated if, for every intervals [x1, x2] and [0, T ], and any ε > 0, the following holds.

There exist finitely many disjoint subintervals [ai, bi] ⊆ [0, T ], Lipschitz continu-
ous curves γi,1(t) < · · · < γi,Ni(t), t ∈ [ai, bi] , and constants αi,0, . . . , αi,Ni such
that

(i) For every t ∈ [ai, bi], the step function

χi(t, x)
.
=





αi,0, if x < γi,1(t),

αi,k, if γi,k(t) < x < γi,k+1(t), k = 1, 2, . . . , Ni − 1,

αi,Ni , if γi,Ni(t) < x,

(3)

satisfies ‖χi(t, ·)− v(t, ·)‖L∞([x1,x2]) ≤ ε .

(ii) For every i, k, the time derivative γ̇i,k(t) = d
dtγi,k(t) coincides a.e. with a

regulated function.
(iii) The intervals [ai, bi] cover most of [0, T ], namely T −∑i(bi − ai) ≤ ε.

We remark that, if v = v(x) is independent of time, then it satisfies Definition 1.1
if and only if it is a regulated function in the usual sense.

-
x

6t

a1

b1

a2

b2=T

0 x1 x2

γ1,1

γ2,1

γ1,2 γ1,3

γ2,2

Figure 1. According to Definition 1.1, a regulated function of two
variables v = v(t, x) can be approximated by a piecewise constant func-
tion, with jumps along finitely many Lipschitz curves γi,k. The time
derivatives γ̇i,k are regulated functions.

Let T > 0 be given and consider the open domain Ω
.
= ]0, T [ × R. For future

use, we collect here some assumptions that will be imposed on the flux function
f : Ω× R 7→ R, at various stages of the analysis.

(F1): The function f satisfies:
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(i) For each fixed ω ∈ R, the map (t, x) 7→ f(t, x, ω) is in L∞(Ω).
(ii) The map ω 7→ f(t, x, ω) is twice continuously differentiable for any (t, x) ∈

Ω and there exists a constant L ≥ 0 such that
∣∣f(t, x, ω1)− f(t, x, ω2)

∣∣ ≤ L |ω1 − ω2| ∀ω1, ω2 ∈ R, (t, x) ∈ Ω. (4)

(iii) There exists a constant L1 ≥ 0 such that,
∫
R
∣∣f(t, x, 0)

∣∣ dx ≤ L1, ∀t ∈
]0, T [.

(F2): For every (t, x) ∈ Ω, the function f satisfies f(t, x, 0) = 0 and f(t, x, 1) =
h(t) for some h ∈ L∞ (]0, T [ ,R).

(F3): The flux f has the form f(t, x, ω) = F
(
v(t, x), ω

)
, where F (α, ω) is Lip-

schitz continuous w.r.t. α and twice continuously differentiable w.r.t. ω sat-
isfying F (α, 0) = 0 and F (α, 1) = h1 ∈ R for any α ∈ R, moreover v is a
regulated function.

(F4): The flux f has the following form

f (x, ω) =

{
fl (ω) if x ≤ 0,

fr (ω) if x > 0,

where fl and fr are smooth functions satisfying fl(0) = fr(0) = 0 and fl(1) =
fr(1).

2. Parabolic equations with discontinuous coefficients. If f is smooth, under
mild hypotheses on the growth of the solution, the Cauchy problem (2) is equivalent
to the integral equation u = Pεu, where the transformation Pε is defined by

(Pεu) (t, x)
.
=

∫

R
Gε(t, x− y) ū(y) dy−

∫ t

0

∫

R
Gεx(t− s, x− y)f

(
s, y, u(s, y)

)
dy ds.

(5)

For t > 0, the functions G(t, x)
.
= 1√

4πt
e−x

2/4t and Gε(t, x)
.
= 1√

4επt
e−x

2/4εt are

the standard Gauss kernels. Observe that the equation u = Pεu is meaningful even
when f is discontinuous. Following [16], we say that u = u(t, x) is a mild solution
to the Cauchy problem (2) if it is a fixed point for of the transformation Pε. The
following facts about mild solutions to (2) are proved in [3].

Theorem 2.1. Consider the Banach space YT
.
= C0([0, T ], L1(R)) endowed with

the supremum norm ‖u‖T .
= supt∈[0,T ] ‖u(t)‖L1(R) . Let the flux function f satisfy

(F1). Then there exists a unique mild solution u ∈ YT to the Cauchy problem (2).
If u and v are two mild solutions of the parabolic equation in (2), with initial data
ū, v̄ ∈ L1(R). Then the following properties hold.

(i) The total mass is conserved in time:
∫
R u(t, x) dx =

∫
R ū(x) dx, ∀t ∈ [0, T ].

(ii) A comparison principle holds: ū ≤ v̄ =⇒ u(t, ·) ≤ v(t, ·), ∀t ∈ [0, T ].
(iii) The L1 distance between the two solutions is non-increasing in time:

∫

R
|u(t, x)− v(t, x)| dx ≤

∫

R
|ū(x)− v̄(x)| dx for all t ≥ 0. (6)

We now consider a second Cauchy problem with different flux and initial data:
{
ut + f ](t, x, u)x = εuxx ,

u(0, x) = ū](x) ∈ L1 (R) .
(7)
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The following theorem is based on comparison estimates for solutions to the re-
lated Hamilton–Jacobi equation. It provides a comparison between two solutions
corresponding to not only different initial data, but also possibly different fluxes.
Theorem 2.2. [3, Theorem 2.3] Let u and u] be solutions to (2) and (7), re-
spectively. Assume that both fluxes f and f ] satisfy (F1). Let U and U ] be the
integrated functions:

U(t, x) =

∫ x

−∞
u (t, ξ) dξ, U ](t, x) =

∫ x

−∞
u] (t, ξ) dξ. (8)

Then the following comparison property holds.

Let I be an interval containing the range of u](t, x) and assume that, for some
η ∈ L∞

(
[0, T ]

)
and some constant η̄ ≥ 0, one has

{
f ](t, x, ω) ≤ f(t, x, ω) + η(t) for all (t, x, ω) ∈ ]0, T [×R× I,
U(0, x) ≤ U ](0, x) + η̄ for all x ∈ R.

(9)

Then, for all t ∈ [0, T ] and x ∈ R, one has

U(t, x) ≤ U ](t, x) + η̄ +

∫ t

0

η(s) ds . (10)

3. The unique weak vanishing viscosity limit. Without further hypotheses
on the flux f , the solution to (2) could blow up as ε → 0+. Indeed consider the
following linear example,

{
uεt + [Θ(x)]x = εuεxx,

u (0, ·) = 0,
where Θ(x) =

{
0 for x ≤ 0,

1 for x > 0.

Its mild solution is given by

uε(t, x) = −t 1√
εt
Φ

(
x√
εt

)
, where Φ (y) = 2G (1, y)− |y|

∫ +∞

|y|
G (1, ξ) dξ.

Since uε
∗
⇀ −tδ0(x) as ε→ 0+, it does not converge to any function even in a weak

sense.
This motivates the introduction of Hypothesis (F2) that allows us to apply

the maximum principle (namely, (ii) in Theorem 2.1) to the mild solutions to the
parabolic equation (2). Indeed, let f = f(t, x, ω) be a flux function satisfying (F1),
(F2), and consider the domain

D .
=
{
u ∈ L1(R) ; u(x) ∈ [0, 1] for all x

}
. (11)

Let an initial data ū ∈ D be given. Since the constant functions u∗(t, x) = 1 and
u∗(t, x) = 0 are solutions to the parabolic equation in (2) for any ε > 0, by a
standard comparison argument the solution uε(t, x) to (2) satisfies u(t, ·) ∈ D for
all t ∈ [0, T ].

The bound in L∞ gives weak∗ compactness of the sequence of functions, but the
uniqueness of the limit as ε→ 0+ requires additional analysis. Our main goal is to
find a general class F of flux functions for which the vanishing viscosity limits are
unique, for any fixed initial data in D. As a starting point, by Theorem 5.2 in [11] we
know that this class contains all fluxes f = f(x, u) having one single discontinuity at
x = 0. Next, we prove that this class is closed under certain elementary operations
and suitable limits. By repeatedly applying these operations and taking limits,
we conclude that all flux functions of the form f(t, x, u) = F (v(t, x), u), with F
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Lipschitz and v regulated, as in (F3), lie in this class. Hence, for these fluxes the
weak solutions obtained as vanishing viscosity limits are unique.

Definition 3.1. We denote by F[a,b] the family of all fluxes f = f(t, x, u) that
satisfy (F1), (F2) for t ∈ [a, b] (instead of [0, T ]), and for which the following
property holds. For any initial data ū ∈ D, calling uε the solutions to the viscous
Cauchy problem {

ut + f(t, x, u)x = ε uxx,

u(a, x) = ū(x) ∈ L1 (R) ,
(12)

as ε→ 0+ the integrated functions

Uε(t, x) =

∫ x

−∞
uε (t, y) dy

converge uniformly in [a, b]× R to a unique limit.

Since uniform convergence of the integrated function Uε corresponds to weak
convergence of uε (see [3, Lemma 3.1]), if f ∈ F[0,T ], then as ε→ 0+ the solutions

uε(t, ·) to (2) converge weakly to a unique limit u(t, ·) in the weak topology of L1 (R)
for any fixed t ∈ [0, T ]. Our eventual goal is to show that F[0,T ] contains all the
flux functions satisfying (F3). The following result, proved in [3] with the help of
Theorem 2.2, describes the uniform limit under which F[a,b] is closed.

Theorem 3.2. Consider a flux f = f(t, x, ω) defined in [0, T ]×R× [0, 1], satisfying
(F1) and (F2). Assume that, for any δ > 0, there exists times 0 < a1 < b1 < · · · <
aN < bN < T and flux functions fi ∈ F[ai,bi] such that T −∑N

i=1(bi − ai) < δ ,

|f (t, x, ω)− fi (t, x, ω)| < δ, ∀ (t, x, ω) ∈ [ai, bi]× R× [0, 1] , i = 1, . . . , N. (13)

Then f ∈ F[0,T ].

The classical result by Kruzhkov [15] implies that the vanishing viscosity limit
exists and is unique for conservation law with smooth flux. Consequently, smooth
fluxes belong to F[0,T ]. An extensive body of more recent literature has dealt
with fluxes satisfying hypothesis (F4). In this case, one can again conclude that
f ∈ F[0,T ], for every T > 0.

A detailed proof, based on the theory of nonlinear semigroups [4, 6, 5], can be
found in [11]. Our approach avoids the technicalities in previous literature such
as traces, Riemann problems, interface conditions, compensated compactness and
entropy inequalities etc. , which generally require some additional hypotheses. Con-
sequently the results in [11] holds under the general assumption (F4). Theorems 3.4
and 5.2 in [11] can be restated in the following form.

Theorem 3.3. Under hypothesis (F4), the parabolic equation in (2) generates a
unique continuous semigroup of contractions Sεt : D → D whose trajectories Sεt ū
are the unique mild solutions to (2). Moreover, as ε → 0+, for any ū ∈ D, Sεt ū
converges in L1 (R) to Stū uniformly on bounded t intervals, where St : D → D
is a continuous semigroup of contractions whose trajectories are weak solutions to
the Cauchy problem (1). Consequently if the flux f satisfies hypotheses (F4), then
f ∈ F[0,T ].

By a change of variables it can be proved that the existence and uniqueness of
the weak limit also holds when the interface between the two fluxes varies in time,
under mild regularity assumptions.
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Lemma 3.4. ([3, Lemma 3.5]) Let f satisfy (F4). Let γ : [0, T ] 7→ R be a Lipschitz
function whose derivative γ̇ coincides a.e. with a regulated function. Then the flux
function f̃ defined by f̃(t, x) = f̃ (x− γ(t)) belongs to F[0,T ].

Thanks to the finite speed of propagation, the functions in F[0,T ] can be patched
together horizontally, provided that they coincide on an intermediate domain.

Lemma 3.5. ([3, Lemma 3.6]) Consider two flux functions f1, f2, both satisfying
(F1) and (F2). Assume that f1, f2 ∈ F[0,T ] and that there exists α < β such that
f1(t, x, ω) = f2(t, x, ω) for all t ∈ [0, T ], x ∈]α, β[ , and ω ∈ [0, 1]. Then the flux f
defined by

f (t, x, ω)
.
=

{
f1 (t, x, ω) if x < β

f2 (t, x, ω) if x > α
(14)

belongs to F[0,T ].

Lemma 3.6. ([3, Lemma 3.8]) Let f = f(t, x, ω) be a flux function satisfying (F1),
(F2). Assume that, for every bounded interval [x1, x2] the function

f̂(t, x, ω) =





f(t, x1, ω) if x < x1 ,

f(t, x, ω) if x ∈ [x1, x2] ,

f(t, x2, ω) if x > x2 ,

(15)

lies in F[0,T ]. Then f ∈ F[0,T ] as well.

Combining the previous results, the main theorem can be proved.

Theorem 3.7. Let f = f(t, x, ω) be a flux function satisfying (F3). Then f ∈
F[0,T ].

Proof. By the assumption (F3), the flux function f satisfies (F1) and (F2).
Fix an interval [x1, x2]. Let δ > 0 be given. Since v is regulated we can find

disjoint intervals [ai, bi], Lipschitz continuous curves γi,k and constants αi,k such
that all conditions (i)–(iii) in Definition 1.1 hold.

For each i, let the piecewise constant function χi(t, x) be as in (3). Applying
Lemma 3.5 and Lemma 3.4, by induction we show that the flux function

fi(t, x, ω)
.
= F (χi(t, x), ω) = F (αi,0, ω)χ{x<γi,1(t)}

+

Ni−1∑

k=1

F (αi,k, ω)χ{γi,k(t)<x<γk+1,1(t)}

+ F (αi,Ni , ω)χ{x>γi,Ni (t)}
lies in F[ai,bi]. In turn, an application of Theorem 3.2 shows that the function f̂
in (15) lies in F[0,T ]. Since the interval [x1, x2] is arbitrary, by Lemma 3.6, the flux
function f lies in F[0,T ] as well.

4. The strong vanishing viscosity limit. In this section, we assume (F3).
Moreover we consider the following additional hypotheses.

(V1): v(t, x) is a bounded measurable function whose total variation w.r.t. x is
integrable. More precisely, for every rectangular domain of the form [0, T ] ×
[x1, x2] one has

∫ T

0

(Tot.Var. {v (t, ·) ; [x1, x2]}) dt < +∞. (16)
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(V2): For each α ∈ R the partial derivative ω 7→ Fω (α, ω) is not constant on
any open interval.

Under (V1), the unique weak limit found in the previous section is a solution to
the conservation law

ut + f (t, x, u)x = 0. (17)

Moreover, if we assume (V2) as well, the convergence of uε is in L1 ([0, T ]× R).
These results can be obtained using a well established compensated compactness
argument [8, 18].

Theorem 4.1. ([3, Theorem 4.2]) Let the flux f satisfy (F1), (F2), (F3) and
(V1), and choose an initial data ū ∈ D. Let uε be the solution to the Cauchy
problem (2). Then the unique weak viscosity limit u(t, ·) = limε→0 u

ε (t, ·) is a weak
solution to the conservation law (2).

Moreover if the flux satisfies (V2) as well, then the convergence uε → u is in
L1 (Ω) endowed with its strong topology.
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Abstract. To observe the dynamic formation of black holes in general rela-

tivity, one essentially needs to prove that closed trapped surfaces form during
evolution from initial data that do not already contain trapped surfaces. We

discuss the recent development of the construction of such admissible initial
data for matter models. In addition, we extend known results for the Ein-

stein equations coupled to perfect fluids in spherical symmetry and with linear

equation of state to unbounded domains. Polytropic equations of state and reg-
ularity issues with the direct application of the singularity theorems in general

relativity are discussed briefly.

1. Introduction. The Einstein equations in general relativity, with speed of light
and Newton’s gravitational constant normalized to 1, read

Gµν = 8πTµν , (1)

where the left hand side, the so-called Einstein tensor, is given in terms of the Ricci
curvature and scalar curvature, Gµν = Rµν + 1

2Rgµν , and the right hand side is the
energy-momentum tensor of a particular matter model. Solutions to this equation
are four-dimensional manifolds M with Lorentzian metric tensors g, describing how
light and particles travel in our universe. The first results on the local existence
and uniqueness of solutions (for the vacuum equations) have been obtained in 1952
by Choquet–Bruhat [18]. Ever since, the global behavior of solutions is in the focus
of attention.

Singular solutions are known since the discovery of the Schwarzschild solution
in 1916, however, only several decades later the systematic study of singularities
and black holes has taken off. According to Penrose’s Singularity Theorem from
1965 (see, e.g., [20, 28]), a spacetime (M, g) is null geodesically incomplete if the
following three conditions are met:

(i) RµνX
µXν ≥ 0 for all null vectors Xµ,

(ii) there is a non-compact Cauchy surface in M , and
(iii) there is a closed trapped surface in M .

The first two conditions are met by any reasonable matter model, as the first
condition is tied to the strong energy condition. The third condition, although
tangible, is difficult to verify in general circumstances. It is therefore necessary

2000 Mathematics Subject Classification. Primary: 83C05; Secondary: 83C57, 83C75, 35A01,

35D30, 35L60, 76N10.
Key words and phrases. General relativity, perfect fluid, trapped surface, singularity, black

hole, initial data, static solution, spherical symmetry.
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to have some control over the parameters that illustrate trapping throughout the
spacetime, initially as well as during evolution. We briefly examine how this was
achieved for certain matter models. We will not discuss the vacuum case here, as
it differs significantly from the treatment for matter models (spherically symmetry
cannot be employed due to Birkhoff’s Theorem) and an excellent review has already
been written by Bieri [6].

The first time gravitational collapse was observed in the homogeneous spherically
symmetric dust model by Oppenheimer and Snyder in 1939. Initially, the dust
collapses into a region r < 2M , and then the scalar curvature at the singularity in
the center blows up. Only later, however, singularities came into the picture and
the term black hole was coined by Wheeler.

In a series of papers in the 1990s, Christodoulou considered global existence,
uniqueness and regularity of solutions to the Einstein equations coupled to a mass-
less scalar field in spherical symmetry. In [11] he provided conditions on the initial
data that guaranteed the formation of trapped surfaces during evolution, and also
proved the weak cosmic censorship conjecture in this case [15]. The large accumu-
lation of mass in a controlled annular region guaranteed the existence of a trapped
surface, even if the initial conditions were far from containing a trapped surface
(though more time is required in case the initial data are close to flat). The ini-
tial conditions are specified on a future null cone and stated in terms of the mass
function m and radius r.

In a more realistic setting, Rendall [27] and more explicitly Andréasson, Kunze
and Rein [3] considered the gravitational collapse of collision gas modeled by the
Vlasov equation in Schwarzschild coordinates. In astrophysics this model is used
to describe galaxies and globular clusters. The solutions of the Einstein–Vlasov
system are smooth, and no singularities occur for small initial data. Andréasson and
Rein proved the formation of trapped surfaces in generalized Eddington–Finkelstein
coordinates later in [4]. The benefit of the latter coordinates is that they can be used
to cover the whole spacetime and do not break down at the event horizon. With
the advanced null coordinate v and area radius r, dynamical spherically symmetric
spacetimes are of the form

g = −a(v, r)b2(v, r)dv2 + 2b(v, r)dvdr + r2(dθ2 + sin2 θdϕ2). (2)

Asymptotic flatness is tied to the condition

lim
r→∞

a(v, r) = lim
r→∞

b(v, r) = 1. (3)

A trapped surface {v•} × S2(r•) is present if a(v•, r•) < 0. Overall similar to
the work of Christodoulou, the authors constructed suitable initial data leading to
the formation of trapped surfaces out of spherically symmetric steady states at the
center that are surrounded by a shell of matter moving inwards. The particle density
was the key property that was adjusted to achieve this. Weak cosmic censorship
holds for these data due to the work of Dafermos and Rendall [16, 17].

In the universe, black holes are expected to form when very massive stars collapse.
In general relativity, stellar objects are described by a perfect fluid and modelled
by the Einstein–Euler equations (1), where Tµν is the energy-momentum tensor of
a perfect fluid, given in terms of the pressure p, density ρ and velocity vector field
uµ, i.e.,

Tµν = (ρ+ p)uµuν + p gµν .
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One of the major difficulties still is to describe the matter-vacuum boundary during
evolution [7, 24]. In order to avoid this difficulty at first, LeFloch and the author
studied the gravitational collapse of (spherically symmetric) perfect fluids with a
priori infinite extent [10]. More precisely, the linear equation of state,

p = k2ρ,

for k ∈ (0, 1) representing the (normalized) speed of sound, was employed. In [10] it
was shown that spherically symmetric steady states can be perturbed in an annular
region by manipulating the normalized velocity in a way that while the initial data
did not contain trapped surfaces, during the evolution trapped surfaces form. This
approach also made use of the generalized Eddington–Finkelstein coordinates (2),
however, (3) was not (could not) be used due to the unknown asymptotic behavior
of static solutions. Thus rather than integrating from spatial infinity the analysis
had to be restricted to an (albeit arbitrarily large but nevertheless) compact region.
Only in recent work of Andersson and the author [2] on spherically symmetric static
solutions of the Einstein–Euler equations, it became ultimately clear that perfect
fluid solutions with linear equation of state are not asymptotically flat and how
(3) needed to be modified in order to describe common perfect fluid solutions with
infinite extent globally. The situation is different for equations of state that are
only piecewise linear, e.g., as studied in the work of Christodoulou [12, 13, 14]
and Fournodavlos and Schlue [19], however, no results on the formation of trapped
surfaces are known in this setting and we will not discuss it further.

On the following pages, we employ the geometric description derived in [2] to
extend the trapping results for perfect fluids of [10] to unbounded domains. We focus
here on constructing admissible initial data, since the remaining local existence and
trapping analysis based on a generalized random choice scheme and control during
evolution can be carried over directly from [10].

2. Construction of admissible initial data. The crucial step in [10] is the con-
struction of admissible initial data, that is, initial data that do not contain trapped
surfaces but will evolve into solutions that do contain trapped surfaces during their
time of existence. The nonexistence of trapped surfaces in the initial data is—in
theory—easy to achieve, since it only requires to check that a(v0, r) > 0 at the ini-
tial time v0 for all r in question. In general, a can be computed using the integral
representation

a(v, r) = 1− 4π(1+k2)
r

∫ r

0

b(v,r′)
b(v,r) M(v, r′)(2k2|V (v, r′)|+ 1)r′2 dr′, (4)

where M = b2ρu0u0 is a normalized mass and V = u1

bu0 − a
2 is a normalized ve-

locity [10, Sec. 2.3]. In practice, however, obtaining this positivity control on a is
nontrivial. We investigate this problem in detail.

As mentioned in the Introduction, the idea to obtain admissible initial data is to
construct static solutions and then introduce a large but localized perturbation to
initiate trapped surface formation. Static solutions satisfy

Vstatic = −astatic2 ,

and do not contain trapped surfaces. The latter property should be preserved, to
some extend, even with a large perturbation. Around the center r = 0 the sign of a
is clearly positive due to the integral representation in (4), however, this property
may not hold for large r. This problem did not occur in the work of Andréasson
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and Rein [4, Sec. 5], because due to the asymptotically flat model they used, the
ADM mass M was finite and they could simply integrate a from spatial infinity.
For

a(v, r) = 1− 2m(r)
r ,

their integral representation [4, Eq. (5.2)] from infinity is determined by

m(v, r) = M
b(v,r) − 1

2

∫ ∞

r

4πη2(T11 + S)e−
∫ r
η

4πρT11 dσ dη, (5)

where S depends on the density, the conserved angular momentum and canonical
momenta corresponding to the coordinates (v, r, θ, ϕ).

In the setting of perfect fluids with linear equation of state an analogous inte-
gral representation of a is not possible due to the infiniteness of the ADM mass
of the static solution. Therefore, in [10], we restricted our attention to solutions
on a bounded domain. Recently, Andersson and the author investigated the as-
ymptotic behavior of the static solutions to perfect fluids models with linear and
polytropic-type equations of state in more detail. In [2, Thm. 1.2] was established
that the solutions for linear equations of state are, in fact, asymptotically conical

with deficit angle1 α = 4k2

(1+k2)2+4k2 depending solely on the normalized speed of

sound k. In a spacetime version, this behavior fits into the quasi-asymptotically
set-up of Nucamendi and Sudarsky [23] (see also [5]), for which an alternative no-
tion of ADM mass has been defined. This so-called ADMα mass is coordinate
invariant and thus represents a geometric invariant, however, neither an analogue
of the Positive Mass Theorem nor the fact that is constant over time have yet
been established. A reasonable premise when dealing with perfect fluids with linear
equation of state in general relativity would be to simply assume that the solutions
are quasi-asymptotically flat. For the kind of initial data we are interested in, this
assumption is satisfied due to [2, Thm. 1.2] (compact perturbations do not change
the asymptotic behavior) and we can replace the use of the integral representation
(5) in the Vlasov case involving the ADM mass M by employing the deficit angle
α in a suitable way.

2.1. Asymptotic behavior for static solutions revisited. In order to under-
stand quasi-asymptotic flatness in terms of the metric representation in coordinates
(v, r, θ, ϕ) we rewrite the static solution in these coordinates.

Lemma 2.1 (Static solutions in generalized Eddington–Finkelstein coordinates).
Static spherically symmetric solutions of the Einstein–Euler equations for linear
equations of state p = k2ρ are of the form

g = −a(r)b2(r)dv2 + 2b(r)dvdr + r2(dθ2 + sin2 θdϕ2) (6)

with a(r) = 1 − 2m(r)
r for the mass function m, conical angle α = 4k2

(1+k2)2+4k2 and

decay

lim
r→∞

a(r) = 1− α, (7)

lim
r→∞

r
− 2k2

1+k2 b(r) =
(

2ρ0
πα

) k2

1+k2 1√
1−α , (8)

1Note that in the notation of [2] the squared (normalized) speed of sound is denoted by K = k2.
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Proof. According to [2, Cor. 2.6] and [2, Cor. 3.6] solutions are of the form

g = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 sin2 θdϕ2)

with

e2Λ := lim
r→∞

e2λ(r) = lim
r→∞

(
1− 2m(r)

r

)−1

= (1+k2)2+4k2

(1+k2)2 = (1− α)−1

and ν′(r) = O(r−
1
2 ) as r →∞. We set

v := t+

∫ r

0

eλ(s)−ν(s) ds.

Note that the integral converges because, as r → 0 the asymptotic behavior is the

metric coefficients is eλ(r) =
(

1− 2m(r)
r

)− 1
2 ∼ 1√

1−r2 → 1 and eν(r) =
(
ρ0
ρ(r)

) k2

1+k2 ∼
(
ρ0
ρ0

) k2

1+k2
= 1 (cf. [2, (3.3) and Sec. 3.1]). Thus

dv = dt+ eλ(r)−ν(r)dr,

and therefore

e2ν(r)dt2 = e2ν(r)dv2 − 2eλ(r)+ν(r)dvdr + e2λ(r)dr2.

The metric g in coordinates (v, r, θ, ϕ) thus is of the form

g = −e2ν(r)dv2 + 2eλ(r)+ν(r)dvdr + r2(dθ2 sin2 θdϕ2),

which for

b(r) = eλ(r)+ν(r) and a(r) = e−2λ(r) = 1− 2m(r)
r (9)

yields the desired form (6). By the above and by [2, Cor. 3.6] we obtain

lim
r→∞

a(r) = lim
r→∞

1− 2m(r)
r = 1− α,

lim
r→∞

r
− 2k2

1+k2 b(r) = lim
r→∞

r
− 2k2

1+k2
(
ρ0
ρ(r)

) k2

1+k2
(

1− 2m(r)
r

)− 1
2

=
(

2ρ0
πα

) k2

1+k2 1√
1−α .

Remark 1. The proof of the asymptotic behavior as r → ∞ is based on the
analysis in [2]. An explicit, so-called singular, solution of the static Einstein–Euler
equations in spherical symmetry exists, to which all other solutions are asymptotic
as r → ∞. The density of this solution blows up at the center, hence the name
“singular solution”. In [9] we have shown that this solution is, although singular,
still surprisingly well-behaved in a way that it satisfies the second Bianchi identity
weakly. The stability of this solution may be studied using metric convergence,
e.g., in the sense of Gromov–Hausdorff convergence or Sormani–Wenger intrinsic
flat convergence [1, 6, 22, 29, 30].

In a general dynamic setting for the spherically symmetric Einstein–Euler equa-
tions with linear equation of state, one can reasonably assume that the initial
data have the same asymptotic behavior as that obtained for static solutions in
Lemma 2.1. Since we ore only interested in initial data based on static solutions
with a compact perturbation, this is not a restriction for our set-up in the next
Section.
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2.2. Construction of admissible initial data. The idea is to construct admis-
sible initial data for trapped surface formation on an unbounded domain. The pre-
sentation is inspired by [10, Sec. 6.2], where an analogous result has been obtained
for arbitrarily large but bounded domains.

Let us recall the set-up of [10] for constructing admissible initial data for the
spherically symmetric Einstein–Euler equations. The main goal was to observe the
dynamic formation of trapped surface from untrapped initial data. The property
that initial data do not contain trapped surfaces requires that

a(v0, r) > 0 for all r ≥ 0 (10)

initially. In order to observe the formation of trapped surfaces, which corresponds
to a sign change, i.e.,

a(v•, r•) < 0 for some v•, r• > 0,

we need to make sure that the initial data, in addition to (10), also satisfy

av(v0, r)� 0 for r ∈ [r∗ − δ, r∗ + δ] ⊆ [0,∞),

meaning that the derivative is large and negative in a small region. In [10] we
proved (10) for arbitrarily large domains [0, r∗+ ∆]. The following result, based on
on the asymptotic analysis of static solutions in Section 2.1, generalizes it to all of
[0,∞). We start with a definition.

Definition 2.2. Let (M (0), V (0), a(0), b(0)) be a static solution of the spherically
symmetric Einstein–Euler equations with linear equation of state and central density
ρ0 > 0. Let r∗ > 0, ∆ ∈ (0, r∗) and δ ∈ (0,∆) and h > 0 be given. We consider a
perturbation of the normalized fluid velocity, defined by a step function

V (1)(r) =





0 r < r∗ − δ,
V (0)(r)

h r∗ − δ ≤ r ≤ r∗ + δ,

0 r > r∗ + δ.

We call (M0, V0, a0, b0) the (r∗, δ, h)-perturbed initial data if

M0 = M (0), V0 = V (0) + V (1), b0 = b(0), (11)

and a0 is given by the integral (cf. [10, Eq. (6.9)])

a0(r) = 1− 4π(1+k2)
r

∫ r

0

b0(s)
b0(r)M0(s)

(
2 1−k2

1+k2 |V0(s)|+ 1
)
s2 ds

= 1− 4π(1+k2)
r

∫ r

0

b(0)(s)
b(0)(r)

M (0)(s)
(

1 + 1−k2
1+k2

(
1 + 1

hχ[r∗−δ,r∗+δ]
)
a(0)(s)

)
s2 ds.

(12)

Theorem 2.3. Let (M0, V0, a0, b0) be a (r∗, δ, h)-perturbed initial data set to the
spherically symmetric Einstein–Euler equations with linear equation of state p =
k2ρ, k ∈ (0, 1) and central density ρ0 > 0. Then there exist constants C1, C2, C3, C4

> 0 depending on r∗ > 0 and a fixed2 ∆ ∈ (0, r∗) such that for all δ, h > 0 with

2We can also simply choose, for instance, ∆ = r∗
2

in order to avoid another parameter.
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δ
h ≤ 1

C1
the following holds:

0 < a0(r) ≤ a(0)(r), r ≥ 0,

∂va0(r)





= 0 0 ≤ r < r∗ − δ,
< 0 r > r∗ − δ,
≤ −C2

δ
h3 r∗ − δ ≤ r ≤ r∗ + δ,

≤ −C4
1
h2 r∗ − δ ≤ r ≤ r∗ + δ,

≤ −C3
δ
h r ∈ (r∗ + δ, r∗ + ∆].

In particular, this initial data set does not contain trapped surfaces and ∂va0 � 0
for suitably chosen δ and h.

Proof. We proceed as in the proof of [10, Prop. 6.1]. The major difference is Step
1, and we also generalize Step 2 and add an additional Step 5. Steps 3 and 4 can
be obtained in the same fashion for a fixed ∆ ∈ (0, r∗) (or simply ∆ := r∗

2 ).

Step 1. Positivity of a0. Static solutions do not contain trapped surfaces, and
thus a(0) is positive throughout. Due to (12), this immediately implies that

a0(r) = a(0)(r) > 0 for all r < r∗ − δ.
Let r ≥ r∗ − δ. Then, by (12) and for a(1) := a0 − a(0),

a0(r) = a(0)(r) + a(1)(r)

= a(0)(r)− 4π(1−k2)
rh

∫ min(r,r∗+δ)

r∗−δ

b(0)(s)
b(0)(r)

M (0)(s)a(0)(s)s2 ds

≥ a(0)(r)− 4π(1−k2)
rh

∫ r∗+δ

r∗−δ

b(0)(s)
b(0)(r)

M (0)(s)a(0)(s)s2 ds, (13)

since M (0), b(0), a(0) > 0. By Lemma 2.1, and the fact that a is monotonically
decreasing (cf. [10, Sec. 4.]) we know that

a(0)(r) > 1− α > 0, for all r ≥ 0,

where α = 4k2

(1+k2)2+4k2 is a constant strictly less than 1 for all k ∈ [0, 1]. It thus

remains to be shown that the integral term in (13) is less than 1 − α. We show
that this can be achieved for certain ratios of δ and h. Since, as r → ∞, b(0) ≥ 1
is increasing and ρ0 ≥ ρ(0) = a(0)M (0) > 0 (cf. [10, Eq. (4.5)]) is monotonically
decreasing by [10, Thm. 4.3]) we obtain that

0 < −a(1)(r) ≤ 4π(1−k2)
rh b(0)(r∗ + δ)a(0)(r∗ − δ)M (0)(r∗ − δ)

[
r3

3

]r∗+δ
r∗−δ

≤ 8π(1−k2)
3

δ
h
δ2+3r2∗
r∗−δ b

(0)(r∗ + δ)ρ0.

Without loss of generality we may assume that δ ≤ min{ r∗2 ,∆}, hence
δ2+3r2∗
r∗−δ ≤

13r∗
2 , so that we obtain

0 < −a(1)(r) ≤ 52π(1−k2)
3 ρ0 r∗b

(0)
(

3r∗
2

)
δ
h

Thus for δ
h sufficiently small, more precisely, for δ

h ≤ 1
C1

with C1(r∗, ρ0, k) :=
52π(1−k2)

3 ρ0 r∗b(0)
(

3r∗
2

)
(1− α)−1, we thus obtain that

−a(1)(r) ≤ 1− α.
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Therefore, for any r ≥ r∗ − δ, we have

a0(r) = a(0)(r) + a(1)(r) > 1− α− (1− α) = 0.

Thus
a0(r) > 0 for all r ≥ 0,

and hence the initial datum does not contain trapped surfaces.

Step 2. Negativity of ∂va0. By [10, Eq. (3.3)] we know that a must satisfy

av(v0, r) = 2πrb(0)(r)M (0)(r)(a2
0(r)− 4V 2

0 (r)).

By [10, Thm. 4.3], static solutions satisfy 0 < a(0) = −2V (0) ≤ 1. Then (12)
implies3, for any r ≥ 0,

av(v0, r) = 2πrb(0)(r)M (0)(r)
(
(a(0)(r) + a(1)(r))2 −

[
a(0)(r)(1 + 1

hχ[r∗−δ,r∗+δ](r))
]2)

=2πrb(0)(r)M(0)(r)
(
a(1)(r)(a0(r)+a(0)(r))−χ[r∗−δ,r∗+δ](a

(0)(r))2
2h+1
h2

)
. (14)

Since a(0) and a0 are positive for all r > 0 by Step 1, and a(1) is negative for
r > r∗ − δ by construction, we have that

av(v0, r) < 0, for all r > r∗ − δ.
Step 3 and 4. Bounds for ∂va0. One can proceed as in [10, Prop. 6.1] to

obtain these bounds.

Step 5. Additional bound for ∂va0 on [r∗ − δ, r∗ + δ]. As in Step 4 of [10]
one obtains

av(v0, r) ≤ −2πrb(0)(r)M (0)(r)(a(0)(r))2 2h+1
h2 .

Since b(0) ≥ 1 is increasing and ρ(0) = M (0)a(0) is decreasing, and a(0) ≥ 1− α,

av(v0, r) ≤ −2π(r∗ − δ)ρ(0)(r∗ + δ)(1− α) 2h+1
h2

≤ −C4

h2 , for all r ∈ [r∗ − δ, r∗ + δ],

where C4 depends on r∗, δ (or ∆, r∗),k, and ρ0.

Compared to [10, Prop. 6.1], the above Theorem 2.3 establishes three additional
properties. We have shown that

(i) a0 is positive for all r ≥ 0 (and not just up to some r∗ + ∆),
(ii) av < 0 for all r > r∗ − δ (and not just up to some r∗ + ∆),

(iii) av ≤ −C4
1
h2 for r ∈ [r∗ − δ, r∗ + δ] holds (in addition to av ≤ −C3

δ
h3 ).

Property (i), in particular, shows that admissible initial data can be constructed
that do not contain trapped surfaces on the unbounded domain R3. All other
properties of [10, Prop. 6.1] are preserved, so that the same procedure as in [10,
Sec. 6 and 7] establishes the dynamic formation of trapped surfaces. The above
Theorem 2.3 thus generalizes [10] to unbounded domains. For an exact formulation
with all assumptions we refer the reader to [10, Thm. 6.4].

Corollary 1. The initial value problem for the spherically symmetric Einstein–
Euler equations with linear equation of state for a class of (r∗, δ, h)-perturbed ini-
tial data sets, prescribed on an unbounded Cauchy surface, leads to solutions with
bounded variation with the following properties:

(i) The spacetime is a spherically symmetric, future development of the initial
data set.

3Note that the calculation [10, Eq. (6.13)] contains two minor typos.
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(ii) The initial hypersurface does not contain trapped surfaces.
(iii) The spacetime does contain trapped surfaces.

Remark 2 (Generalization to other equations of state). While no analysis on the
formation of trapped surfaces for perfect fluid models have yet been performed
for equations of state other than the linear one (even in spherical symmetry), the
asymptotic behavior of static solutions w.r.t. polytropic-type equations of state,

that is, equations of state of the form p = Kρ
n+1
n with polytropic index n > 5, has

also been described by Andersson and the author in [2]. These static solutions also
have infinite extend and are also not asymptotically flat. Eventually, of course, one
would be interested to study the formation of trapped surfaces for bounded fluid balls
(models of stars). At the moment, this seems out of reach, as no suitable setting is
yet available to study such evolution problems with a fluid–vacuum boundary, but
may become available in the future [24].

3. From trapped surfaces to black holes. While the Penrose Singularity The-
orem discussed in the Introduction would yield a singularity based on the existence
of a closed trapped surface, this result requires a metric regularity of C2 (and also
a generalization requires at least C1,1 [21]). In [10] solutions of bounded variation
have been obtained which do not guarantee this regularity for all available deriva-
tives. As such, the Singularity Theorems known today are not directly applicable.
It may be possible to either extend the Singularity Theorems or to improve the
regularity along the lines of [25, 26] of the solutions obtained in [10].
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[3] H. Andréasson, M. Kunze and G. Rein, The formation of black holes in spherically symmetric
gravitational collapse, Math. Ann. 350 (2011), no. 3, 683–705.
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Abstract. We discuss some results concerning dispersive properties of the
Dirac dynamics on non-flat geometries: in particular we present some local

smoothing estimates for asymptotically flat and warped products manifolds,

and local Strichartz estimates for spherically symmetric manifolds. These re-
sults are obtained in collaboration with Anne-Sophie de Suzzoni and are con-

tained in the papers [7], [8].

1. Introduction. The study of the dynamics of dispersive PDEs on curved man-
ifolds is a subject that has attracted increasing interest in the last years, and has
seen several striking contributions and breakthroughs. It is indeed now quite well
understood how several parameters of a manifold, as e.g. compactness, presence
of ”trapping components”, spherical symmetry, asymptotic behaviour of the coeffi-
cients, can affect the dispersion of dispersive flows. Attempting a detailed discus-
sion of the state-of-the art of the theory is out of the scope of this note; we limit
to mention the fact that the vast majority of the available results deal with the
most celebrated models of the Schrödinger and wave equations in various geometri-
cal contexts (compact, asymptotically flat, asymptotically conic manifolds...). The
purpose of this note is to review some recent results in this direction concerning the
Dirac equation for which, despite its huge interest in relativistic quantum mechan-
ics and its relevance in several fields of applications, to the best of our knowledge
nothing is known.

First of all, we recall that the Dirac equation on R1+3 is written as

iut +Du+mβu = 0 (1)

where u : Rt ×R3
x → C4, m ≥ 0 is called the mass, the Dirac operator is defined as

D = i−1
n∑

k=1

αk
∂

∂xk
= i−1(α · 5),

and the 4× 4 Dirac matrices can be written as

αk =

(
0 σk
σk 0

)
, k = 1, 2, 3, β =

(
I2 0
0 −I2

)
(2)

2000 Mathematics Subject Classification. Primary: 35Q41; Secondary: 37L50.
Key words and phrases. Dispersive PDEs, Dirac equation, Smoothing estimates, Strichartz

estimates, curved spacetimes.
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in terms of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

The first problem one has to face is the definition of the Dirac operator on a
manifold. This is somehow a classical procedure, and requires the use of the so
called vierbein, that roughly speaking are a set of matrices that ”connect” the
curved spacetime to the Minkowski one. It turns out that the Dirac operator on a
manifold with given metric gjk takes the form

D = iγaeµaDµ (4)

where the matrices γ0 = β and γj = γ0αj for j = 1, 2, 3, ej is a vierbein and Dj

is the covariant derivative for fermionic fields. We refer to [14] and [7] for all the
details. We stress the fact that such a construction is considerably more delicate
than the one of the Laplace-Beltrami operator, that represents the counterpart of
the generalization of the Laplacian to curved spaces: this fact is ultimately due to
the rich algebraic structure of the Dirac operator.

In order to deal with more familiar objects, we consider metrics gjk that decouple
space and time, i.e. that have the following structure

gjk =





φ−2(t) if j = k = 0
0 if jk = 0 and j 6= k
−hjk(−→x ) otherwise.

(5)

The function φ is assumed to be strictly positive for all t and can in fact be assumed
to be 1 after a change of variables in time. Within this setting, the Dirac equation
can be written in the convenient form

iφ∂tu−Hu = 0 (6)

where H is an operator such that H2 = −∆h + 1
4Rh + m2, and ∆h and Rh are

respectively the Laplace-Beltrami operator and the scalar curvature associated to
the metrics h.

The rest of this note will be devoted to a brief presentation of the results contained
in [7] and [8], and in particular to the discussion of the linear estimates associated to
the flow of equation (6). More precisely, in section 2 we will present local smoothing
estimates in the case of asymptotically flat and warped products manifolds, in
section 3 local Strichartz estimates in the case of spherically symmetric mainfolds.

2. Local smoothing estimates: the multiplier method. The multiplier
method has been widely used to prove local smoothing (or Morawetz) estimates for
linear perturbations of dispersive flows in many different frameworks. Indeed, the
main advantage of this technique is in its flexibility, which allows to deal with some-
how rough objects and domains, and the ”simple” nature of the calculations, that
ultimately rely on integration by parts, that typically provide explicit conditions
(smallness, positivity...) on the perturbations that may directly be checked. In the
framework of the Dirac equation, we should mention at least [2] and [4] in which
this strategy is developed to prove dispersive estimates for the electromagnetic Dirac
equation in respectively 3D and higher space dimensions.

The first result we prove in [7] is a local smoothing estimate for asymptotically flat
manifolds, that is manifolds (M, g) with g having the form (5) and the symmetric
matrix h(x) = [hjk(x)]nj,k=1 satisfying the following standard assumptions:
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Assumptions (A1).

• ν|ξ|2 ≤ hjk(x)ξjξk ≤ N |ξ|2 for some ν,N ∈ R+ and for every x, ξ ∈ R3;

• |h(x)− I|+ |x||h′(x)|+ |x|2|h′′(x)|+ |x|3|h′′′(x)| ≤ Ch〈x〉−σ for some Ch small
enough and σ ∈ (0, 1).

With this set of assumptions, we have the following result.

Theorem 2.1. Let u be a solution to (6) with initial condition u0, with g satisfying
(5), and assume that h satisfies Assumptions (A1) with the constants involved small
enough. Then for η1, η2 > 0, there exists Cη1,η2 > 0 independent from u such that

‖〈x〉−3/2−η1u‖L2
φL

2
x

+ ‖〈x〉−1/2−η2 5 u‖L2
φL

2
x
≤ Cη1,η2‖Hu0‖2L2(Mh)

. (7)

Remark 1. The spaces L2
φ and L2(Mh) are defined in a standard way as

‖u‖2L2
φ

=

∫ +∞

0

|u(t)|2
φ(t)

dt, ‖f‖2L2(Mh)
=

∫

D(h)

|f(x)|2
√

det(h(x))dx.

where D(h) is the set where h is defined. Also, we will need the norm

‖f‖2L2(Mg)
=

∫

R×D(h)

|f(t, x)|2
√

det(g(t, x))dxdt

Remark 2. We should mention that this result is close in spirit to [5] and [6],
in which similar calculations are developed in a different contest, i.e. the one of
the Helmholtz equation, to obtain weighted estimates and the limiting absorption
principle in the same setting.

The second main result proved in [7] deals with the setting of warped products
manifolds: beyond (5), we require on h the additional structure

h11 = 1, h1i = hi1 = 0 if i 6= 1, hij = ϕ(x1)ωij(x
2, x3) (8)

where ω is a 2 × 2 metric. In what follows we will use the more intuitive notation
r = x1. Notice that the choice ϕ(r) = r2 and ω the metrics on the sphere S2
retrieves the flat case. With this condition, we get the following result.

Theorem 2.2. Let u be a solution to (6) with initial condition u0, with g satisfying
(5) and h as in (8). Then the following results hold.

• (Hyperbolic-type metrics). Take ϕ(r) = er/2 in (8) and assume that for all
(x2, x3)

Rω(x2, x3) > 0, m2 >
3

32
.

Let η1, η2 > 0. There exists Cη1,η2 > 0 such that for all u solution of the linear
Dirac equation, we have

‖e−r/4〈r〉−(1+η1)u‖2L2(Mg)
+‖e−r/4〈r〉−(1/2+η2)5hu‖2L2(Mg)

≤ Cη1,η2‖Hu0‖L2(Mh).

(9)
• (Flat-type metrics). Take ϕ(r) = r2 in (8) and assume that for all (x2, x3),

Rω ≥ 2, m > 0.

Let η1, η2 > 0. There exists Cη1,η2 > 0 such that for all u solution of the linear
Dirac equation, we have

‖〈r〉−(3/2+η1)u‖2L2(Mg)
+ ‖〈r〉−(1/2+η2) 5h u‖2L2(Mg)

≤ Cη1,η2‖Hu0‖L2(Mh). (10)
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• (Sub-flat type metrics) Take ϕ(r) = rn in (8) with n ∈]2 −
√

2, 4/3]. There
exists Cn > 0 such that if for all (x2, x3), Rω ≥ Cn, then for all η1, η2 >
0, there exists Cη1,η2,n > 0 such that for all u solution of the linear Dirac
equation, we have

‖〈r〉−(3/2+η1)u‖2L2(Mg)
+ ‖〈r〉−(1/2+η2)5h u‖2L2(Mg)

≤ Cη1,η2,n‖Hu0‖L2(Mh). (11)

Remark 3. The various assumptions of positivity on the curvature and the mass
are somehow technical, and are due to the nature of the mutiplier method, that
ultimately requires to rely on the positivity of the various terms.

3. Weighted Strichartz estimates in the spherically symmetric case. The
problem of proving Strichartz estimates, which typically represent the main tool in
nonlinear applications and thus represent the ultimate goal to be proved in linear
analysis, is considerably more complicated: indeed, as mentioned, the standard trick
of relying on the available estimates on R3, Duhamel formula and local smoothing
can not be applied as we are not dealing with zero-order perturbations, even in the
asymptotically flat case. Anyway, it is possible to rely on some ”radial structure”
of the Dirac operator and on the so called partial wave decomposition to obtain
some results in the case of spherically symmetric manifolds. We mention that our
strategy is strongly inspired by [1], in which the authors develop the same argument
for the Schrödinger equation. We assume indeed to have a manifold (M, g) defined
by M = Rt × Σ where Σ = Rx × S2θ,φ equipped with the Riemannian metrics

dσ = dr2 + ϕ(r)2dω2
S2 (12)

where dω2
S2 = (dθ + sin2 θdφ) is the Euclidean metrics on the 2D sphere S2. This

of course is a special case of (8). Notice that taking ϕ(r) = r reduces Σ to the
standard 3D euclidean space, and therefore M to be the standard Minkowski space.
We assume the following set of hypothesis on ϕ(r), that are fairly natural in this
contest.

Assumptions (A2) Take ϕ(r) ∈ C∞(R+) strictly positive on (0,+∞), such
that

ϕ(0) = ϕ(2n)(0) = 0, ϕ′(0) = 1,
|ϕ′(r)|
ϕ(r)

≤ C for|x| ≥ 1. (13)

With these assumptions, we are able to rely on some radial version of the Dirac
operator: a crucial role in our analysis will be played indeed by the so called partial
wave decomposition, for the details of which we refer to [15]. For the purpose of
this note, we only limit to recall the existence of an isomorphism

L2(R3)4 ∼=
⊕

j,mj ,kj

L2((0,+∞), ϕ2(r)dr)⊗Hj,mj ,kj

where the spaces Hj,mj ,kj , the so called partial wave subspaces, are 2-dimensional
Hilbert spaces.

The main result we get is the following

Theorem 3.1. Let g be as in (5), h having the structure (12) and satisfying As-
sumptions (A2). Then for all bounded intervals I = (0, T ), T > 0, there ex-
ists a constant CT such that the solutions u to (6) with initial condition u0 ∈
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Hs((0,+∞)ϕ(r)2dr) ⊗ Hj,mj ,kj for any admissible triple (j,mj , kj), with s = 2/p
or s = 1/p if m > 0, for a fixed triple n satisfy estimates

∥∥∥∥∥u
(
ϕ(r)

r

)1− 2
q

∥∥∥∥∥
Lpt (I)L

q(M)

≤ CT 〈kj〉‖u0‖Hs(M) (14)

provided that 2
p + 2

q = 1 and p ∈]2,∞] but also
∥∥∥∥∥u
(
ϕ(r)

r

)1− 2
q

∥∥∥∥∥
Lpt (I)L

q(M)

≤ CT 〈kj〉‖u0‖Hs(M) (15)

provided that m 6= 0, 2
p + 3

q = 3
2 and p ∈ [2,∞].

Remark 4. It is interesting to compare this result with the one obtained for the
Schrödinger equation in the same setting. Indeed, in [1] the authors were able to
obtain global Strichartz estimates for the dynamics, while we are here only able
to obtain local ones. The reason for this difference is the following. The main
idea of the proof in [1] relies on using radial coordinates to reduce the problem to
a second order ODE (for radial initial data), then introduce a weighted function
that roughly speaking transforms the equation in a Schrödinger equation on RN ,
with N > 3, perturbed by an electric potential V (r). Such a potential, in general,
shows a scaling critical decay at infinity, i.e. it behaves as r−2 for r large. Then,
the existing theory on the Schrödinger equation with potentials (see [3]) can be
exploited directly to obtain Strichartz estimates for the ”weighted function”, and
so to obtain, after a re-change of variables, weighted Strichartz estimates for the
original dynamics. Such a strategy can be transferred to the Dirac equation, but has
some severe problems: first of all, the Dirac operator does not preserve radiality,
and therefore one needs to rely on this much more sophisticated 2-dimensional
decomposition mentioned above. Then, and this is the major difficulty, Strichartz
estimates for the Dirac equation with scaling critical perturbations are not known,
and therefore one can not rely on existing theory as in the Schrödinger case. Indeed,
the problem of proving Strichartz estimates for the Dirac equation perturbed with
critical potentials (e.g. the Coulomb potential) in the Euclidean setting is a major
open problem of independent interest. To the best of our knowledge, the only results
available are some local smoothing estimates obtained in [11] for the Dirac-Coulomb
model and in [10] for the Dirac equation in Aharonov-Bohm field.

Theorem 3.1 can be extended to generic initial conditions, provided one intro-
duces Sobolev spaces with angular regularity. The spaces Ha,b for a, b ∈ R are
defined by the norms

‖f‖Ha,b =
[ ∑

j,mj ,kj ,±

(
〈kj〉2b‖fj,mj ,kk,±‖2Ha(ϕ2(r)dr) + ‖fj,mj ,kk,±‖2Ha(ϕ2(r)dr)

)]1/2

where

fj,mj ,kj ,± = 〈f,Φ±mj ,kj 〉L2(S2)

with {Φ+
mj ,kj

,Φ−mj ,kj} an orthonormal basis of Hj,mj ,kj . In other words, we are

taking a derivatives in radial coordinates, b derivatives in angular coordinates, and
the L2 norm on the whole manifold. We mention that spaces of this form are
widely used in the contest of nonlinear dispersive PDEs. Then, one can deduce the
following
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Corollary 1. Let g be as in (5), h having the structure (12) and satisfying As-
sumptions (A2). Let p, q ∈ [2,∞] and a, b ≥ 0. Assume either p > 2, b > 4

p ,
1
p + 1

q = 1
2 and 2

pa + 2
pb < 1 or m 6= 0, b ≥ 3

p , 2
p + 3

q = 3
2 and 1

pa + 2
pb ≤ 1. Then

for all bounded intervals I = (0, T ), T > 0, there exists a constant CT such that the
solutions u to (6) with initial condition u0 such that u0 ∈ Ha,b satisfy the estimates

∥∥∥∥∥u
(
ϕ(r)

r

)1− 2
q

∥∥∥∥∥
Lpt (I,L

q)

≤ CT ‖u0‖Ha,b . (16)

Corollary 1 can be now exploited, in a more or less standard way, to obtain a
well-posedness result for some nonlinear equations. The result is the following

Theorem 3.2. Let g be as in (5), h having the structure (12) and satisfying As-
sumptions (A2). Let r > 0, r′ = max(r, 2) and let s1 = 3

2 − 3
r′ . Let a, b > s1 such

that a < 2 and
2

r′

( 1

a− s1
+

1

b− s1

)
< 1 and b >

1

r′
+

3

2
.

Then, for all R ≥ 0 there exists T (R) > 0 such that for all u0 ∈ Ha,b with
‖u0‖Ha,b ≤ R, the Cauchy problem

{
i∂tu−Hu = |〈βu, u〉| r2 u,
u(0, x) = u0(x) ∈ Ha,b

(17)

has a unique solution in C([−T, T ], Ha,b) and the flow hence defined is continuous
in the initial datum.

Perspectives. The results presented above represent only the first steps in the
understanding of the (rich) dynamics of the Dirac equation on manifolds, and many
questions and open problems naturally arise. A first one, which is of independent
interest, is the study of dispersive dynamics of the Dirac equation with scaling-
critical potential perturbations, and in particular of the Dirac-Coulomb equation,
which naturally appears in many physical applications: a good understanding of the
long time behaviour of it would allow to describe the dynamics of several interesting
nonlinear models (see e.g. [9]). Then, it would be important to understand whether
global Strichartz estimates for the Dirac equation on symmetric manifolds under
assumptions (A2) hold or not; this might be done first for metrics that coincide
with the flat one in some ball large enough, and then is asymptotically flat, or
hyperbolic, or of some prescribed polynomial growth. This would allow to give also
a global analog of Theorem (3.2), at least for small initial data.
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Abstract. This paper focuses on the numerical approximation of a class of
non-local systems of conservation laws in one space dimension, arising in traffic

modeling, proposed by [F. A. Chiarello and P. Goatin. Non-local multi-class

traffic flow models. Networks and Heteroge-neous Media, 14(2), 371-387, 2019].
We present the multi-class version of the Finite Volume WENO (FV-WENO)

schemes [C. Chalons, P. Goatin, and L. M. Villada. High-order numerical

schemes for one-dimensional non-local conservation laws. SIAM Journal on
Scientific Computing, 40(1), A288–A305, 2018], with quadratic polynomial

reconstruction in each cell to evaluate the non-local terms in order to obtain

high-order of accuracy. Simulations using FV-WENO schemes for a multi-class
model for autonomous and human-driven traffic flow are presented for M = 3.

1. Introduction. We consider the following class of non-local systems of M con-
servation laws in one space dimension, introduced in [5] to model multi-class traffic
dynamics:

∂tρi(t, x) + ∂x (ρi(t, x)vi((r ∗ ωi)(t, x))) = 0, i = 1, ...,M, (1)

where

r(t, x) :=
M∑

i=1

ρi(t, x), (2)

vi(ξ) := vmax
i ψ(ξ), (3)

(r ∗ ωi)(t, x) :=

∫ x+ηi

x

r(t, y)ωi(y − x) dy , (4)

where ρi is the density of vehicles belonging to the i-th class, vi is the class-specific
mean velocity and ηi is proportional to the look-ahead distance.

2000 Mathematics Subject Classification. Primary: 35L65, 90B20; Secondary: 65M08.
Key words and phrases. System of conservation laws, non-local flux, macroscopic traffic flow

models, multi-class model, finite volume schemes, weighted essentially non-oscillatory scheme.
∗ Corresponding author: Luis Miguel Villada.
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We assume that the following hypotheses hold:

(H1) The convolution kernels ωi ∈ C1([0, ηi];R+), ηi > 0, are non-increasing func-
tions with interaction strength Ji :=

∫ ηi
0
ωi(y) dy.

We set W0 := maxi=1,...,M ωi(0).
(H2) vmax

i are the maximal velocities, with 0 < vmax
1 ≤ vmax

2 ≤ . . . ≤ vmax
M .

(H3) ψ : R+ → R+ is a smooth non-increasing function such that ψ(0) = 1 and
ψ(r) = 0 for r ≥ 1.

We couple (1) with an initial datum

ρi(0, x) = ρ0
i (x), i = 1, . . . ,M. (5)

Model (1) is a generalization of the n-population model for traffic flow described
in [1] and it is a multi-class version of the one dimensional scalar conservation
law with non-local flux proposed in [2]. The term “non-local” refers to the speed
functions vi evaluated on a neighborhood of x ∈ R defined by the downstream con-
volution between the weight functions ωi and the sum of the densities r. This is
intended to describe the reaction of drivers that adapt their velocity to the down-
stream traffic, assigning greater importance to closer vehicles, see also [7, 8]. We
consider different anisotropic discontinuous kernels for each equation of the system.

The model takes into account the distribution of heterogeneous drivers and ve-
hicles characterized by their maximal speeds and look-ahead visibility in a traffic
stream. It is worth to point out that in multi-class dynamic faster vehicles can
overtake slower ones and slower vehicles slow down the faster ones, avoiding one
of the biggest limitations of the standard LWR traffic flow model [9, 10], i.e. the
first-in-first-out rule.

The computation of numerical solutions for (1) is challenging due to the high
non-linearity of the system and the dependence of the flux function on integral
terms. First and second order finite volume schemes for (1) were proposed and
analyzed in [5, 6]. In this paper, a high-order finite-volume WENO (FV-WENO)
scheme is proposed to solve the non-local multi-class system (1). The procedure
proposed in [4] is used and extended to the multi-class cases in order to evaluate
the non-local term that appears in the flux functions.

The paper is organized as follows. First, in Section 2, we describe the implemen-
tation of the high-order FV-WENO scheme for the non-local system (1). In Section
3, we provide a couple of numerical test in the case of three populations (M = 3)
and convergence studies for third, fifth and seventh accuracy order.

2. Finite Volume WENO schemes. In this section, we solve the non-local sys-
tem of conservation laws (1) by using a high-order finite volume WENO scheme
[11, 12]. First we consider {Ij}Mj=1 as a partition of [−L,L] and the points xj are

the center of the cells Ij = [xj− 1
2
, xj+ 1

2
], with length |Ij | = ∆x = 2

M . We denote

the unknowns by ρi,j(t), the cell average of the exact solution ρi(t, ·) in the cell Ij :

ρi,j(t) :=
1

∆x

∫

Ij

ρi(t, x)dx.

We extend ωi(x) = 0 for x > ηi, and set

ωki :=
1

∆x

∫ k∆x

(k−1) ∆x

ωi(x) dx , k ∈ N∗, (6)
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so that ∆x
∑+∞
k=1 ω

k
i =

∫ ηi
0
ωi(x) dx = Ji (the sum is indeed finite since ωki = 0 for

k ≥ Ni sufficiently large). Moreover, we set rj(t) :=
∑m
i=1 ρi,j(t) and define the

convolution term in the form Ri(t, x) := (r ∗ ωi)(t, x). Integrating (1) over Ij we
obtain

d

dt
ρi,j(t) = − 1

∆x

(
fi(t, xj+1/2)− fi(t, xj−1/2)

)
, i = 1, . . . ,M, ∀j ∈ Z,

where fi(t, xj+1/2) := ρi(t, xj+ 1
2
)vi(Ri(t, xj+ 1

2
)). This equation is approximated by

the semi-discrete conservative scheme

d

dt
ρi,j(t) = − 1

∆x

(
fi,j+ 1

2
− fi,j− 1

2

)
, i = 1, . . . ,M, ∀j ∈ Z, (7)

where fi,j+ 1
2

is a consistent approximation of flux ρivi(Ri) at interface xj+1/2. Here,

we consider the multi-class version of the Godunov scheme [5]

fi,j+ 1
2

:= f(ρli,j+ 1
2
, ρri,j+ 1

2
) = ρli,j+ 1

2
vi(R

r
i,j+1/2), (8)

where ρl
i,j+ 1

2

and ρr
i,j+ 1

2

are some left and right high-order WENO reconstructions

of ρi(t, xj+ 1
2
) obtained from the cell averages {ρi,j(t)}j∈Z. In this work, we consider

the classical WENO scheme proposed in [11, 12]. Rri,j+1/2 is the right approximation

of Ri(t, x) at the interface xj+1/2. Since Ri is defined by a convolution, we naturally
set Rri,j+1/2 = Ri(t, xj+1/2) := Ri,j+1/2(t).

In order to compute the integral Ri,j+1/2, we use the technique proposed in [4],
i.e., we consider a reconstruction of ρi(x, t) on Ij by taking advantage of the high-
order WENO reconstructions ρr

i,j− 1
2

and ρl
i,j+ 1

2

at the boundaries of Ij , as well

as the approximation of the cell average ρni,j . We consider a quadratic polynomial
pi,j(x) defined on Ij such that

pi,j(xj− 1
2
) = ρri,j− 1

2
, pi,j(xj+ 1

2
) = ρli,j+ 1

2
,

1

∆x

∫

Ij

pi,j(x)dx = ρni,j .

In particular, we take

pi,j(x) := ai,j,0v
(0)(ξj(x)) + ai,j,1v

(1) (ξj(x)) + ai,j,2v
(2) (ξj(x)) , x ∈ Ij , (9)

with

v(0)(y) = 1, v(1)(y) = y, v(2)(y) =
1

2

(
3y2 − 1

)
, ξj(x) =

x− xj
∆x/2

.

Coefficients in (9) can be easily computed as

ai,j,0 = ρni,j , ai,j,1 =
1

2

(
ρli,j+ 1

2
− ρri,j− 1

2

)
, ai,j,2 =

1

2

(
ρli,j+ 1

2
+ ρri,j− 1

2

)
− ρni,j .

Now, summing for i = 1, . . . ,M , we have

Pj(x) :=
M∑

i=1

pi,j(x) = âj,0v
(0)(ξj(x)) + âj,1v

(1) (ξj(x)) + âj,2v
(2) (ξj(x)) , x ∈ Ij ,

with

âj,0 :=
M∑

i=1

ai,j,0 = rj , âj,1 :=
M∑

i=1

ai,j,1, âj,2 :=
M∑

i=1

ai,j,2.
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With this polynomial Pj(x), we can compute Ri,j+ 1
2

as

Ri,j+ 1
2

=
M∑

k=1

∫

Ij+k

Pj+k(y)ωi(y − xj+ 1
2
)dy

=
N∑

k=1

∫

Ij+k

ωi(y − xj+ 1
2
)

2∑

l=0

âj+k,lv
(l)(ζj+k(y))dy (10)

=

M∑

k=1

2∑

l=0

âj+k,l

∫

Ij+k

ωi(y − xj+ 1
2
)v(l)(ζj+k(y))dy

=
M∑

k=1

2∑

l=0

âj+k,l
∆x

2

∫ 1

−1

ωi

(
∆x

2
y + (k − 1

2
)∆x

)
v(l)(y)dy

︸ ︷︷ ︸

=
M∑

k=1

2∑

l=0

âj+k,lΓi,k,l,

where the coefficients Γi,k,l are computed exactly or using a high-order quadrature
approximation.

The utilization of the quadratic polynomial on each cell to evaluate the convo-
lution term suggests the following algorithm to approach the solution of non-local
system (1):

Algorithm: FV-WENO scheme for non-local multi-class traffic models.
Given ρni,j for j ∈ Z, i = 1, . . . ,M , approximation of the cell averages of ρi(x, t) at
tn.

1. Compute ρl
i,j+ 1

2

and ρr
i,j+ 1

2

, the left and right high-order WENO approxima-

tions for j ∈ Z and i = 1, . . . ,M ;
2. Calculate Ri,j+ 1

2
for j ∈ Z and i = 1, . . . ,M ;

3. Calculate the Godunov numerical flux (8) for j ∈ Z and i = 1, . . . ,M ;
4. Use a high-order accurate Runge-Kutta method to solve the semi-discrete

system (7), with the CFL condition

∆t

∆x
vmax
M ‖ψ‖∞ ≤

1

2
. (11)

In this paper, we use the WENO method of third (WENO3), fifth (WENO5)
and seventh (WENO7) accuracy order proposed by [11, 12]. For the temporal
discretization, in order to match the order of spatial accuracy, fifth or seventh
explicit Runge-Kutta schemes are used [3].

3. Numerical tests. In the following numerical tests, we solve (1) numerically in
the intervals x ∈ [−1, 1] and t ∈ [0, 2]. We propose two tests in order to illustrate
the dynamics of the model (1) for autonomous and human-driven vehicles, using
FV-WENO5 scheme with 1/∆x = 400. For each integration, we set ∆t to satisfy
the CFL condition (11).

To test the accuracy order of the proposed method, since we cannot compute
the exact solution explicitly, we use a reference solution ρref obtained using FV-
WENO7 on a refined mesh (1/∆x = 6400). The L1-error for the cell average is
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given by

L1(∆x) =
M∑

i=1


 1

N

N∑

j=1

|ρi,j − ρrefi,j |


 ,

where ρi,j and ρrefi,j are the cell averages of the numerical approximation and the

reference solution respectively. The Experimental Order of Accuracy (E.O.A.) is
naturally defined by

γ(∆x) = log2

(
L1(∆x)/L1(∆x/2)

)
.

3.1. Test 1, circular road. The aim of this test is to study the possible impact
of the presence of Connected Autonomous Vehicles (CAVs) on road traffic perfor-
mances, as proposed in [7, Section 4.2]. Let us consider a circular road modeled
by the space interval [−1, 1] with periodic boundary conditions at x = ±1. The
interaction radius of CAVs is much grater than the one of human-driven cars. More-
over, we can assign a constant convolution kernel to CAVs, since we assume that
the information they get about surrounding traffic is transmitted through wireless
connections and its degree of accuracy does not depend on distance. We consider
the following initial data and parameters

ρ1(0, x) = αp(x), ω1(x) =
1

η1
, η1 = 0.3, vmax

1 = 0.8, (12)

ρ2(0, x) = β p(x), ω2(x) =
1

η2
, η2 = 0.3, vmax

2 = 1.2, (13)

ρ3(0, x) = γ p(x), ω3(x) =
2

η3

(
1− x

η3

)
, η3 = 0.05, vmax

3 = 1.2, (14)

where p(x) = 0.5+0.3 sin(5πx) is the total initial density, α, β, γ ≥ 0 and α+β+γ =
1. Above, ρ1 represents the density of autonomous trucks, ρ2 is the density of
autonomous cars and ρ3 is the density of human-driven cars. In Figure 1(a) we
consider the penetration rates

α = 0.5, β = 0.3, γ = 0.2,

and we can compare the total density r = ρ1 + ρ2 + ρ3 with that one in Figure 1(b)
where we have no human-driven cars:

α = 0.5, β = 0.5, γ = 0.

We observe that oscillations are reduced if only autonomous vehicles are present.
Finally, we compute the E.O.A. for the FV-WENO schemes. We consider pa-

rameters α = 0.5, β = 0.3, γ = 0.2 , and compute the L1-error at T = 0.2 in Table
1. As expected, we obtain the correct order.

3.2. Test 2, stretch of straight road. In this test case, we consider a stretch
of road populated by cars and trucks as in the example proposed in [5, Section
4.2]. The space domain is given by the interval [−1, 1] and we impose absorbing
conditions at the boundaries. The dynamics is described by the equation (1) with
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(a) (b)

Figure 1. (t, x)−plots of the total density r(t, x) = ρ1(t, x) +
ρ2(t, x) + ρ3(t, x) computed with the FV-WENO5 scheme, corres-
ponding to different penetration rates of autonomous and non-
autonomous vehicles: (a) α = 0.5, β = 0.3, γ = 0.2, mixed au-
tonomous / human-driven traffic, (b) α = 0.5, β = 0.5, γ = 0.
fully autonomous traffic.

FV-WENO3 FV-WENO5 FV-WENO7

1/∆x L1-err γ(∆x) L1-err γ(∆x) L1-err γ(∆x)

100 1.51e-03 – 1.09e-04 – 5.64e-05 –

200 1.38e-04 3.44 9.44e-06 3.53 1.54e-06 5.19

400 1.20e-05 3.53 4.01e-07 4.56 1.58e-08 6.61

800 1.27e-06 3.24 1.26e-08 4.99 1.68e-10 6.55

1600 1.05e-07 3.01 3.60e-10 5.12 4.71e-12 5.15

Table 1. E.O.A. Test 1, initial condition (12)-(14), with α = 0.5,
β = 0.3, γ = 0.2 and final time T = 0.2. The reference solution is
computed with FV-WENO7 scheme for 1/∆x = 6400.

M = 3, and the following initial conditions and parameter values

ρ1(0, x) = 0.5χ[−0.6,−0.1](x), ω1(x) =
2

η1

(
1− x

η1

)
, η1 = 0.1, vmax

1 = 0.8,

(15)

ρ2(0, x) = α1χ[−0.9,−0.6](x), ω2(x) =
1

η2
, η2 = 0.5, vmax

2 = 1.3,

(16)

ρ3(0, x) = β1χ[−0.9,−0.6](x), ω3(x) =
2

η3

(
1− x

η3

)
, η3 = 0.05, vmax

2 = 1.3.

(17)

In this setting, ρ1(t, x) describes the density of human-driven trucks, ρ2(x, t) the
density of autonomous cars and ρ3(x, t) is density of human driven cars. We have
a red traffic light located at x = −0.1, which turns green at the initial time t = 0.

In Figure 2(a) we consider the rates

α1 = 0.25, β1 = 0.25,
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(a) (b)

Figure 2. (t, x)−plots of the total density r(t, x) = ρ1(t, x) +
ρ2(t, x) + ρ3(t, x) computed with FV-WENO5 scheme, corres-
ponding to different penetration rates of autonomous and non-
autonomous vehicles. (a) α1 = 0.25, β1 = 0.25, (b) α1 = 0, β1 =
0.5.

and we can compare the space-time evolution of the total density r = ρ1 + ρ2 + ρ3

with the one in Figure 2(b), where

α1 = 0, β1 = 0.5.

In this case, the presence of autonomous cars in a heterogeneous traffic of human-
driven vehicles induces higher vehicle densities during the overtaking phase, but for
shorter time. In Figure 3 we display the density profiles of ρ1, ρ2 and ρ3 computed
with different FV-WENO schemes at time t = 0.5 in the same setting of Test 2(a).
We can appreciate the efficiency of FV-WENO schemes in presence of discontinuities
in comparison with the finite volume Godunov type scheme.

(a) (b) (c)
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Figure 3. Test 2(a). (a) Profile of ρ1, (b) profile of ρ2, (c) profile
of ρ3, computed with different numerical schemes at time=0.5 and
1/∆x = 400. The reference solution is computed with 1/∆x =
3200.

4. Conclusions. In this paper, we applied high-order finite volume WENO sche-
mes to the non-local multi-class traffic flow model proposed in [5]. We used qua-
dratic polynomial reconstructions in each cell to evaluate the non-local terms in
order to obtain high order of accuracy. The numerical results of the accuracy test
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show that the proposed schemes maintain the correct order of accuracy. Besides,
the considered examples allow to illustrate the interaction dynamics of mixed traffic
consisting of both autonomous and human-driven vehicles.
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Abstract. In this work we deal with the selection problem of flows of an
irregular vector field. We first summarize an example from [4] of a vector
field b and a smooth approximation bε for which the sequence Xε of flows
of bε has subsequences converging to different flows of the limit vector field
b. Furthermore, we give some heuristic ideas on the selection of a subclass of
flows in our specific case.

1. Introduction and notations. Consider the system of ordinary differential
equations 




d

dt
X(t, x) = b(t,X(t, x)),

X(0, x) = x,
(1.1)

where (t, x) ∈ (0, T ) × Rd are the independent variables, with T < ∞, b : (0, T ) ×
Rd → Rd is a given vector field and X : (0, T ) × Rd → Rd is the unknown. A
solution X of (1.1) is called flow of b. The well posedness of (1.1) is a well known
result when the vector field b is globally Lipschitz in space uniformly in time. The
system (1.1) is strictly connected to the Cauchy problem for the linear transport
equation {

∂tu+ b · ∇u = 0,

u|t=0 = u0,
(1.2)

since in a smooth setting, the unique solution of (1.2) is given by the formula
u(t, x) = u0((X(t, ·))−1(x)), where X is the unique flow of b.

2000 Mathematics Subject Classification. 34A12, 34A36, 34A45.
Key words and phrases. Ordinary differential equations with non smooth vector fields; trans-

port and continuity equations; regular Lagrangian flow; selection problem; smooth approximation.
This research has been supported by the ERC Starting Grant 676675 FLIRT.
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Besides the theoretical interest, due to applications to several equations from
mathematical physics the setting of smooth vector fields is too restrictive and a
theory under assumptions of lower regularity was developed in the last years. Ex-
ploiting the connection between (1.2) and (1.1), DiPerna and Lions in [8] proved the
well posedness of (1.2) under hypotesis of Sobolev regularity for the vector field and
bounded divergence. As a consequence of their result, they proved well posedness of
(1.1) under the same hypothesis. Similarly, Ambrosio in [1] improved the result of
[8] to the case of BV regularity and bounded divergence for b. On the other hand,
a well posedness theory based only on a priori estimates of the flow was developed
in [5] for W 1,p vector field with p > 1 and in [3, 6] for the case p = 1 and vector
fields which gradient is given by a singular integral of a L1 function. This latter is a
class of interest in the context of 2D Euler equations. More recently Nguyen in [9]
improved the result to vector fields which can be represented as singular integral of
a function in BV .

Various counterexamples show that weak differentiability assumptions on the
vector field are in general necessary in order to obtain well posedness, see for in-
stance [7, 8]. For a general survey on this topic, we refer to [2]. The aim of this
note is to discuss the selection problem for solutions of (1.1) in a low regularity
setting. To better explain what we mean by selection, let us first recall some pre-
liminary notations and definitions. We denote by L d the Lebesgue measure on Rd.
If f : Rd → R is a Borel map we denote by f#L d the push forward, that is, the
measure defined by the following relation

f#L d(E) = L d(f−1(E)) for every Borel set E ⊂ Rd.

The definition of flow of a vector field b, when b is not smooth, is the following:

Definition 1.1. Let b ∈ L1((0, T );L1
loc(Rd;Rd)) be given. We say that X : (0, T )×

Rd → Rd is a regular Lagrangian flow associated to b if
1. for a.e. x ∈ Rd the map t 7→ X(t, x) is an absolutely continuous integral

solution of the ordinary differential equation




d

dt
X(t, x) = b(t,X(t, x)),

X(0, x) = x,
(1.3)

2. there exists a constant L indipendent of t such that

X(t, ·)#L d ≤ LL d. (1.4)

If the vector field is divergence-free, L can be taken to be 1 and (1.4) is an
equality. This means that the flow X is measure preserving. Condition (1.4) is
a first selection: we only consider among all solutions of (1.1) those that do not
“compress” too much the Lebesgue measure. This selection is necessary in the theory
since it is not known if there is uniqueness in the class of flows that can compress
the Lebesgue measure, even under assumptions of weak differentiability and zero
divergence for the vector field. The paper is divided as follows. In Section 2 we give
a precise statement for the selection problem and we give an example of a vector
field and of an approximation for which the selection is not true. In Section 3 we
characterize a class of flows through measure preserving maps of the unit circle.
Finally in Section 4 we introduce a new question about the selection of a subset of
the set of all flows and we give some ideas and heuristics about what we can expect.
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2. The problem of selection. Let us consider a weakly differentiable vector field
b which falls into the class of well-posedness like those discussed in the introduction.
To prove the existence of solutions of (1.1), the natural approach is to rely on a
compactness argument for an approximating sequence Xε. This latter is usually
constructed as the (unique) flow of a smooth approximation bε of b, see [2]. Consider,
instead, a vector field b that has more than one regular Lagrangian flow and let bε
be a smooth approximation of b. Consider the solution Xε of the ODE relative to
bε and assume that Xε converges to a regular Lagrangian flow X of b. We wonder
if for every approximation bε the corresponding flows Xε can converge to only one
regular Lagrangian flow: if this were true, this procedure could be considered as a
selection principle for the flows of an irregular vector field. We can summarize the
previous discussion in the following: question
(Q1) Does the approximation procedure obtained by smoothing the vector field select

a unique solution of (1.1)?
In [4] we give a negative answer to the previous question showing a counterexample.
Precisely, we consider this vector field, which is a 3D analogous of an example of
DiPerna and Lions [8]:

b(x, y, z) =





(
−sgn(z)

x

|z|2 ,−sgn(z)
y

|z|2 ,−
2

|z|

)
if x ∈ P,

(0, 0, 0) otherwise,

(2.1)

where P ⊂ R3 denotes the set

P = P+ ∪ P− = {(x, y, z) ∈ R3 : x2 + y2 ≤ z} ∪ { (x, y, z) ∈ R3 : x2 + y2 ≤ −z},
the union of two symmetric paraboloids.

The vector field b is divergence-free and it is out of the class of uniqueness of
solutions of (1.1). In particular, observe that b is not in any Sobolev spaceW 1,p(R3)
or in BV (R3).

We want to define two different regular Lagrangian flows X̄, X̃ of b and, since
we are considering flows defined almost everywhere, we need to define X̄, X̃ only
on R3 \ {0}. We start for x ∈ R3 \ P : in this region the vector field is identically 0

so that we define X̄, X̃ simply as

X̄(t,x) = x = X̃(t,x) ∀t ≥ 0.

If x = (x, y, z) ∈ P− we define X̄, X̃ as




X̄1(t, x, z) = X̃1(t, x, z) =
x√−z

4
√
z2 + 4t

X̄2(t, y, z) = X̃2(t, y, z) =
y√−z

4
√
z2 + 4t

X̄3(t, z) = X̃3(t, z) = −
√
z2 + 4t

∀ t ≥ 0. (2.2)

Finally, when x = (x, y, z) ∈ P+ define the flows as




X̄1(t, x, z) = X̃1(t, x, z) =
x√
z

4
√
z2 − 4t

X̄2(t, y, z) = X̃2(t, y, z) =
y√
z

4
√
z2 − 4t

X̄3(t, z) = X̃3(t, z) =
√
z2 − 4t

for t ∈
[
0,
z2

4

]
. (2.3)
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At time t = z2

4 the trajectories reach the origin and then one possible way to extend
them for later times is





X̄1(t, x, z) =
x√
z

4
√

4t− z2 cos Θ− y√
z

4
√

4t− z2 sin Θ

X̄2(t, y, z) =
x√
z

4
√

4t− z2 sin Θ +
y√
z

4
√

4t− z2 cos Θ

X̄3(t, z) = −
√

4t− z2

t ≥ z2

4
, (2.4)

while




X̃1(t, x, z) =
x√
z

4
√

4t− z2 cos Φ− y√
z

4
√

4t− z2 sin Φ

X̃2(t, y, z) =
x√
z

4
√

4t− z2 sin Φ +
y√
z

4
√

4t− z2 cos Φ

X̃3(t, z) = −
√

4t− z2

t ≥ z2

4
, (2.5)

where Θ,Φ ∈ (0, 2π] and Θ 6= Φ. An easy computation shows that X̄, X̃ are two
different regular Lagrangian flows of b. We call those kind of solutions respectively
XΘ, XΦ, where Θ and Φ represent a rotation in the xy plane. Heuristically, we
can define this kind of flows as a consequence of the fact that the trajectories once
they reach the origin can come out arbitrarily. In [4] one of our main results is the
following:

Theorem 2.1. There exists a sequence of vector fields bn ∈ C∞(R3) such that:
• bn is divergence-free;
• bn → b in L1

loc(R3);
• the sequence Xn of regular Lagrangian flows of bn has two different sub-
sequences converging in L∞((0, T );L1

loc(R3))) to two different regular Lag-
rangian flows of b.

x y

z

Figure 1. An example of solution XΘ
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In the proof of Theorem 2.1, given Θ,Φ ∈ (0, 2π] with Θ 6= Φ, we construct an
explicit approximation which has two different subsequences converging respectively
to XΘ and XΦ. The strategy of the approximation is based on smoothing b nearby
the origin and forcing the trajectories to rotate very fast along a given helix. We
basically modify b in a small region with contains the singularity and leave the rest
unchanged.

Figure 2. The figure represents an approximated trajectory in
the construction of the proof of Theorem 2.1

The theorem answers question (Q1) in the negative. However with our approach
we are able to obtain only solutions of the form XΘ. Indeed, note that another
possible way to define a flow for x ∈ P+ is the following:





X1(t, r, θ, z) =
r√
z

4
√
z2 − 4t cos θ

X2(t, r, θ, z) =
r√
z

4
√
z2 − 4t sin θ

X3(t, z) =
√
z2 − 4t

for t ∈
[
0,
z2

4

]
, (2.6)

and 



X1(t, r, θ, z) =
r√
z

4
√

4t− z2 cosψ(θ)

X2(t, r, θ, z) =
r√
z

4
√

4t− z2 sinψ(θ)

X3(t, z) = −
√

4t− z2

for t ≥ z2

4
, (2.7)
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where the map ψ : [0, 2π] → [0, 2π] is arbitrary and (r, θ, z) denote the cylindrical
coordinates in R3. It is easy to check that the map in (2.6),(2.7) is a solution of
the ODE relative to b; we call Xψ such a map. It will turn out to be useful the
flow on P \ {0} and not only in P̊ although we deal with functions defined almost
everywhere with respect to the 3D Lebesgue measure. The reason for that lies in
the fact that for our purpose we will compute X on ∂P \ {0}; this would not make
sense without a suitable definition of X on the boundary of P . Such definition
is made accordingly to the everywhere definition of b. In the next section we will
discuss the conditions that the map ψ has to satisfied in order for Xψ to be a regular
Lagrangian flow of b.

3. Regular Lagrangian flows and measure preserving map on the circle.
In this section we prove that solutions of the form Xψ are regular Lagrangian flows
of b when ψ is a measure preserving map. Before doing this, note that the map Xψ

associated to ψ(θ) = α, where α ∈ (0, 2π] is fixed, is a solution of the ODE but it
does not preserve the 3D Lebesgue measure and then it is not a regular Lagrangian
flow.

Now we recall the definition of a mesure preserving map on the unit circle.

Definition 3.1. Let ψ : S1 → S1 be a measurable map, where S1 = R/2πZ is the
unit circle with the 1D Lebesgue measure. The map ψ is called measure preserving
if

ψ#L 1 = L 1.

We identify S1 ∼ [0, 2π] and we define the set M as

M := {ψ : [0, 2π]→ [0, 2π] : ψ satisfies Definition 3.1}.
Moreover, define the maps

I± : θ ∈ [0, 2π]→ (cos θ, sin θ,±1) ∈ R3.

Proposition 3.2. Given a regular Lagrangian flow X there exists ψ ∈M such that
X = Xψ. Viceversa given ψ ∈M there exists a unique regular Lagrangian flow X
such that X = Xψ.

Proof. Consider a regular Lagrangian flow X(t,x) and define

ψ(θ) = I−1
−

(
X

(
1

2
, I+(θ)

))
θ ∈ [0, 2π].

We need to show that such a map preserves the 1D Lebesgue measure: consider a
Borel set E ⊆ [0, 2π] and define E as the set

E = {(ρ, θ, z) : θ ∈ E, ρ ∈ [0,
√
z], z ∈ [−1, 0]}.

A straightforward computation shows that

X−1

(
1

2
, ·
)

(E) = {(ρ, θ, z) : θ ∈ ψ−1(E), ρ ∈ [0,
√
z], z ∈ [1,

√
2]}

and

L 1(ψ−1(E)) = 4L 3

(
X−1

(
1

2
, ·
)

(E)

)
= 4L 3(E) = L 1(E), (3.1)

hence ψ is measure preserving.
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We now prove the other implication. Consider a measure preserving map ψ, a
point x ∈ S1 × {1} and solve the system





Ẋ(t,x) = b(X(t,x)),

X(0,x) = x,

X
(

1
2 ,x
)

= I−
(
ψ(I−1

+ (x))
)
.

(3.2)

It is easy to see that (3.2) admits a unique solution Xψ. We have to prove that Xψ

is measure preserving. A computation like (3.1) shows that Xψ(t,E)#L 3 = L 3(E)
for all sets E of the form

E = {(r, θ, z) : θ ∈ E1, r ∈ [0,
√
z], z ∈ E2}, (3.3)

where E1 ⊂ [0, 2π], E2 ⊂ R. Sets of the form (3.3) are a basis for the Borel σ-
algebra, hence Xψ preserve the 3D Lebesgue measure on Borel sets. Since Xψ maps
null sets into null sets, it follows that it is a regular Lagrangian flow.

4. Some ideas and heuristics on possible extensions. Consider the maps

ψ1(θ) =

{
θ if θ ∈ [0, π),

3π − θ if θ ∈ [π, 2π],

and

ψ2(θ) =

{
2θ if θ ∈ [0, π),

2(θ − π) if θ ∈ [π, 2π].

The map ψ1 leaves half a circle fixed and flips the other half, while the map ψ2

rotates twice around S1. Since the strategy of the proof of Theorem 2.1 produces
in the limit only solutions of the form XΘ, we wonder if it is possible to obtain,
as limit of a suitable approximation, the flows Xψ1

, Xψ2
associated to ψ1, ψ2 as in

the proof of Proposition 3.2. This is a concrete example of the following general
question:

(Q2) Does the approximation procedure obtained by smoothing the vector field select
a subset of the flows of b?

The strategy of [4] selects the regular Lagrangian flows corresponding to measure
preserving map of the form ψ(θ) = θ+Θ mod 2π. These flows are in a sense “better”
than the others for the following reasons:

• the flows XΘ self intersect only in the origin, while this is not true for Xψ2
,

which is not even a.e. invertible;
• the Jacobian of XΘ does not change sign, while this is the case for Xψ1 .

Consider a general smooth approximation bε of the vector field b; the corresponding
Cauchy problem admits a uniquely defined sequence of flows Xε and one can ask
to which Xψ the sequence Xε may converge. It is not clear to us if it is possible to
construct an approximation of b in such a way that the approximated flow converge
to Xψ1

or Xψ2
, especially if we want to approximate b only close to the singularity

at the origin. We can however provide some heuristics motivating why it is not
trivial to exclude the possibility of getting Xψ1 in the limit just by arguing on the
base of “topological obstructions”. In fact, we can approximate the flow Xψ1

with
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maps Xε of the form:

Xε(t,x) =





X(t,x) for 0 ≤ t ≤ tε1 := z2−ε2
4 ,

t−tε1
tε2−tε1

I−
(
ψ1(I−1

+ (x))
)

+
tε2−t
tε2−tε1

X(tε1,x) for tε1 ≤ t ≤ tε2 := z2

4 + ε2

4 ,

X
(
t− tε2, I−

(
ψ1(I−1

+ (x))
))

for tε2 ≤ t <∞,
where x ∈ P+. Each Xε is a well-defined map, which is however not a flow a vector
field. Therefore, this does not answer our question. However, this example tells us
that an answer in the positive to our question could not just rely on topological
properties of the approximating flows.
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Abstract. We provide an informal overview of recent developments concern-

ing the singular local limit of nonlocal conservation laws. In particular, we
discuss some counterexamples to convergence and we highlight the role of nu-

merical viscosity in the numerical investigation of the nonlocal-to-local limit.

We also state some open questions and describe recent related progress.

1. Introduction. We consider the nonlocal conservation law

∂tu+ ∂x
[
uV (u ∗ η)

]
= 0. (1)

In the previous expression, the unknown is the function u : R+ × R → R, the
function V : R → R is Lipschitz continuous and the term u ∗ η is the convolution,
computed with respect to the space variable x only, of the solution u with the
convolution kernel η : R → R. For the time being we assume that η satisfies the
following assumptions:

η ∈ C1
c (R), η ≥ 0,

∫

R
η(x)dx = 1, (2)

but actually the regularity assumptions on η can be relaxed, as we will see in §4.
Nonlocal equations in the form (1) have been extensively studied in recent years
owing to the applications to (among others) models of sedimentation and pedestrian
and vehicular traffic, see for instance [2, 3, 5, 9, 10] and the references therein.

Consider the Cauchy problem posed by coupling (1) with the initial datum

u(0, x) = ū(x). (3)

2000 Mathematics Subject Classification. Primary: 35L65, 65M08.
Key words and phrases. nonlocal conservation law, traffic model, downstream traffic density,

numerical viscosity, singular limit, local limit.
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Existence and uniqueness results have been obtained in various frameworks by sev-
eral authors, see among others [3, 10, 11, 14].

In this note we review some recent progress in the analysis of the singular local
limit of (1), which is defined as follows. Fix a parameter ε > 0, consider the rescaled
function ηε(x) := η(x/ε)/ε and note that, owing to the third condition in (2), when
ε→ 0+ the family ηε converges weakly∗ in the sense of measures to the Dirac delta.
By plugging ηε into (1),(3) we arrive at the family of Cauchy problems

{
∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= 0

uε(0, x) = ū(x).
(4)

We now consider the limit ε→ 0+: since ηε converges to the Dirac delta, from the
equation at the first line of (4) we formally recover the nonlinear conservation law

∂tu+ ∂x
[
uV (u)

]
= 0. (5)

The above derivation is completely formal, and whether or not it can be rigorously
justified is the object of the following question, which was originally posed in [1].

Question 1. Does uε, solution of (4), converge (in some suitable topology) to the
entropy admissible solution of (3),(5) as ε→ 0+?

We refer to [12] for the definition of entropy admissible solution of (3),(5). In
this work we overview some recent developments concerning Question 1. The ex-
position is organized as follows: in §2 we show that, notwithstanding numerical
evidence suggesting the opposite, the answer to Question 1 is in general negative.
In §3 we discuss a possible explanation of the reason why the numerical evidence
provides the wrong intuition. Finally, in §4 we introduce Question 3, which is a
refinement of Question 1 in a more specific setting motivated by the applications
to vehicular traffic models. Question 3 is still open, but recent progress has been
recently achieved and we discuss it in §4.

2. The nonlocal-to-local limit. Question 1 was originally motivated by numeri-
cal evidence. More precisely, in [1] the authors exhibit numerical experiments where
the solution of the nonlocal Cauchy problem (4) gets closer and closer to the en-
tropy admissible solution of (3),(5) as ε → 0+, thus suggesting a positive answer
to Question 1. This was later confirmed by other numerical experiments, see for
instance [3].

Another positive partial answer to Question 1 is provided by [19, Proposition
4.1], which loosely speaking states that the answer to Question 1 is positive pro-
vided that the convolution kernel η is even (i.e. η(x) = η(−x), for every x) and the
limit solution u is smooth. The rationale underpinning [19, Proposition 4.1] is basi-
cally the following. Assume that the initial datum ū is smooth and say compactly
supported, then there is a time interval [0, T ] where the entropy admissible solution
of (3),(5) is smooth, i.e. it is a classical solution. Proposition 4.1 in [19] states that
on the interval [0, T ] the family uε converges to u, in the uniform C0 norm.

Despite the above mentioned results, the answer to Question 1 is, in general,
negative. More precisely, in [8] we exhibit three counterexamples that rule out
the possibility that the family uε solving (4) converge to the entropy admissible
solution of (3),(5). The counterexamples are completely explicit and rule out not
only strong convergence, but also i) weak convergence and ii) the possibility of
extracting from uε a (strongly or weakly) converging subsequence. In one case we
even manage to rule out the possibility that uε converges to a distributional solution
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of (3),(5), i.e. we do not need to require that the limit u is entropy admissible to
rule out convergence. The counterexamples are constructed in [8, §5.1,§5.2,§5.3]
and at the beginning of each of §5.1, §5.2 and §5.3 the basic ideas underpinning
the construction of the counterexample are overviewed. Loosely speaking the very
basic mechanism is that in each of the counterexamples we manage to single out a
property that i) is satisfied by the solution uε of (4), for every ε > 0; ii) is stable
under weak or strong convergence, i.e. it passes to the weak or strong limit; iii)
is not satisfied by the entropy admissible solution of (3),(5). The exact property
verifying conditions i), ii) and iii) is different in each counterexample: in the first one
it is the fact that the integral over R− is constant in time, in the second one the fact
that uε is identically 0 at positive values of x. Finally, in the third counterexample
we single out a functional that is constant in time when evaluated at uε(t, ·) and
strictly decreasing when evaluated at u(t, ·).

3. Numerical experiments and viscosity. We now go back to the numerical
experiments in [1], which as we have seen provide the wrong intuition concerning
Question 1. A possible explanation of the reason why the numerical evidence is not
reliable is given by the following argument.

The numerical results in [1] have been obtained by relying on a Lax-Friedrichs
type scheme. The Lax-Friedrichs scheme is a finite volume scheme which is very
commonly used to construct numerical solutions of conservation laws, see [17] for
an exhaustive discussion. The Lax-Friedrichs scheme contains a large amount of
what is called numerical viscosity : very loosely speaking, the numerical viscosity is
a collection of finite difference terms which are the numerical counterpart of some
analytical viscosity, i.e. of some second order term. In other words, the presence
of the numerical viscosity implies that the model equation for the Lax-Friedrichs
scheme for the conservation law (5) is actually the viscous conservation law

∂tu+ ∂x
[
uV (u)

]
= ν∂2

xxu, (6)

where the viscosity coefficent ν > 0 is of the same order of the space mesh, see [17].
When the Lax-Friedrichs scheme is applied to the nonlocal conservation law (1),
the presence of the numerical viscosity implies that the model equation is

∂tu+ ∂x
[
uV (u ∗ η)

]
= ν∂2

xxu. (7)

This in turn implies that in order to get some insight on the discrepancy between
the numerical evidence in [1] and the analytic counterexamples in [8] it might be
useful to consider the family of Cauchy problems1

{
∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= ν ∂2

xxuε
uε(0, ·) = ū

(8)

and pose the following “viscous counterpart” of Question 1.

Question 2. Does uε, solution of (8), converge to the solution of (3),(6) as
ε → 0+?

The answer to Question 2 is largely positive, and it is given by the following
result.

1Existence and uniqueness results for the Cauchy problem (8) can be obtained by combining a

fixed point argument with fairly standard parabolic estimates, see [8, §2.1]
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Theorem 3.1. Assume (2), fix ν > 0 and T > 0 and assume that the function
V : R→ R is Lipschitz continuous. If ū ∈ L1(R)∩L∞(R), then the solution of (8)
converge to the solution of (3),(6) strongly in L2([0, T ]× R) as ε → 0+.

The proof of Theorem 3.1 is provided in [8], actually yields a slightly stronger
result and applies in greater generality to the case of several space dimensions:
we refer to [8, Theorem 1.1] for the precise statement. Note furthermore that
Theorem 3.1 was established in [4] under the additional assumptions that the initial
datum ū is regular and that V (u) = u.

We can now consider the family of Cauchy problems (8), keep the nonlocal pa-
rameter ε > 0 fixed, vary the viscosity parameter ν and consider the inviscid limit
ν → 0+. In this way we recover the inviscid nonlocal problem (4): more precisely,
[8, Proposition 1.2] states that the solutions of (8) converge to the solution of (4)
when ν → 0+. Finally, we recall that a celebrated result by Kružkov [16] states
that the solutions of (3),(6) converge to the entropy admissible solution of (3),(5)
when ν → 0+.

We now put together all the previous convergence results and we combine them
with the counterexamples mentioned in §2. We denote by uεν the solution of the
viscous nonlocal equation at the first line of (8) to stress that it depends on both
the nonlocal parameter ε and the viscosity parameter ν. We arrive at the following
diagram:

∂tuεν+∂x
[
uενV (uεν ∗ ηε)

]
=ν ∂2

xxuεν
ε→0+

−−−−−−−−−−−→
Theorem 3.1

∂tuν+∂x
[
uνV (uν)

]
=ν ∂2

xxuν

ν→0+

y [8, Proposition 1.2] ν→0+

yKružkov [16]

∂tuε + ∂x
[
uεV (uε ∗ ηε)

]
= 0

ε→0+

−−−−−−−−−−−→
False in general

∂tu+ ∂x
[
uV (u)

]
= 0

We can now go back to the numerical evidence erroneously suggesting a positive
answer to Question 1. A possible explanation is the following: the numerical experi-
ments were designed to test the convergence of uε to the entropy admissible solution
u. However, owing to the numerical viscosity, what the numerical experiments were
actually testing was the convergence of uεν to uν , which holds true owing to Theo-
rem 3.1. In other words, the numerical schemes were designed to provide an answer
to Question 1, but as a matter of fact they provide an answer to Question 2. Since
the two questions have opposite answers, the numerical schemes provide the wrong
intuition. This explanation is validated by recent numerical experiments collected
in [6]. In particular, in [6], we have used the Lax-Frierichs type scheme to test the
nonlocal-to-local limit from (4) to (3),(5) in the case of the counterexamples men-
tioned in §2. More precisely, we have computed the numerical solution of (4) in the
case where (4) is the same as in the counterexamples. Next, we have computed the
L1 norm (evaluated at a given positive time t > 0) of the difference between the nu-
merical solution of (4) and the numerical entropy admissible solution of (3),(5). In
Figure 1 we display some of the results concerning one of the counterexamples, more
precisely the one discussed in [8, §5.1]. The blue line refers to the L1 error between
the numerical solutions obtained by the Lax-Frierichs type scheme and strongly
suggests that the L1 error is converging to 0 as ε→ 0+, i.e. it erroneously suggests
a positive answer to Question 1. The red line refers to the L1 error between the
numerical solutions obtained by a Godunov type scheme. Godunov type schemes
for the nonlocal conservation law (1) were introduced in [5, 13] and the reason why
we used them to test the nonlocal-to-local limit is because the Godunov scheme
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Figure 1. L1-error at t = 2, for different values of ε, comparing
the solution of (4) to the entropy admissible solution of (3),(5)
computed with Lax-Friedrichs and Godunov type schemes in the
case where (4) is the same as in [8, §5.1]. The space mesh is fixed
and it is h = 0.001.

Figure 2. L1-error at t = 2, for different values of ε, between the
solutions of the nonlocal equations (4) and the entropy solution
of (3),(5) computed with Godunov and Lax Friedrichs schemes in
the case where (4) is the same as in [8, §5.2]. The space mesh h
depends on ε and the relation is ε = 1000h2. The time step k
decreases linearly with the mesh size, satisfying the CFL condition
k/h = 1/6. The L1 error of the Godunov scheme is much larger
for small values of ε.

is known to have a smaller amount of numerical viscosity than the Lax-Friedrichs
scheme, see [18]. In the example studied in Figure 1, the numerical results obtained
with both the Godunov and the Lax-Friedrichs scheme erroneously suggest conver-
gence in the nonlocal-to-local limit. However, in other cases there is a difference
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between the two schemes. For instance, Figure 2 displays some of the numerical
results concerning the counterexample discussed in [8, §5.2]: there is a remarkable
difference between the Lax-Friedrichs and the Godunov scheme. Indeed, the nu-
merical results obtained with the Lax-Friedrichs type scheme erroneously suggest
convergence, whereas the numerical results obtained with the Godunov type scheme
are more consistent with the analytic results, which rule out convergence. This is
consistent with the fact that the Godunov scheme contains less numerical viscosity
than the Lax-Friedrichs scheme, see [18].

4. Anisotropic traffic models: total variation blow up and open ques-
tions. In recent years, several authors have been focusing on (1) in the case where
the function V is decreasing, V ′ < 0, the initial datum ū is nonnegative and the
convolution kernel η in equation (5) is supported on ]−∞, 0]. This case is extremely
relevant for the applications to vehicular traffic models. Indeed, in these models u
represents the density of cars (and is therefore nonnegative) and V their speed. The
function V is evaluated at u ∗ η because the model postulates that drivers regulate
their speed based on the density of cars ahead of them. The fact that the function
V is decreasing is a classical assumption in traffic models and takes into account
the fact that drivers tend to slow down when the traffic is congested, and conversely
to speed up when the traffic is light. If the convolution kernel is supported on the
interval ]−∞, 0], then the convolution kernel u∗η evaluated at the point x only de-
pends on the value of u on the interval [x,+∞[. In other words, choosing this kind
of convolution kernels aims at modeling the fact that drivers only look forward, not
backward, and hence their speed only depends on the downstream traffic density.

To avoid some technicalities, in the following we focus on the case

V (u) = 1− u, η = 1[−1,0], 0 ≤ ū ≤ 1, (9)

but as a matter of fact the following discussion applies to more general cases
than (9). In the previous formula, 1[−1,0] denotes the characteristic function of
the interval [−1, 0]. Note that, strictly speaking, the regularity assumptions on the
function η given in (2) are violated when η = 1[−1,0]. Notwithstanding the lack of
regularity, in [3, 14] the authors established existence and uniqueness results for the
Cauchy problem (1),(3). By exploiting the anisotropy of the kernel, the analysis
in [3] establishes better a-priori estimates on the solution than those available in the
smooth case (2). In particular, they established a maximum principle: under (9),
the solution of (1),(3) satisfies 0 ≤ u ≤ 1. To complete the picture, we point out
that the counterexamples exhibited in [8] do not apply in the case (9).

Summing up, the case (9) is very relevant from the modeling viewpoint, stronger
analytic results apply and the counterexamples do not work. This yields the fol-
lowing refinement of Question 1.

Question 3. Does uε, solution of (4), converge to the entropy admissible solution
of (3),(5) as ε→ 0+, provided (9) holds true?

Question 1 is presently open and it is the object of current investigation. How-
ever, some progress have been recently achieved in [7]. Before discussing the results
in [7], we need some preliminary considerations.

Assume (9), then, owing to the maximum principle, the solution of the Cauchy
problem (4) satisfies the uniform bound

‖uε‖L∞ ≤ 1, for every ε > 0.
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This yields compactness in the weak-∗ topology and implies that we can extract
a subsequence that converges to some limit function w weakly-∗ in L∞(R+ × R).
Note however that, owing to the nonlinear nature of the problem, nothing a priori
tells us that the limit w is a distributional solution (let alone entropy admissible)
of the conservation law (3),(5). A natural strategy to establish a positive answer to
Question 2 is hence to look for compactness in some strong topology. A fairly clas-
sical argument to establish strong L1 compactness combines the Helly-Kolmogorov
Compactness Theorem with a uniform bound on the total variation, i.e. an estimate
like

TotVaruε(t, ·) ≤ C, for every t > 0, ε > 0 and for some constant C > 0. (10)

This yields the following question:

Question 4. Assume (9) and that TotVar ū is finite. Does uε, solution of (4),
satisfy the uniform bound (10)?

Before addressing Question 4 we make some preliminary remarks. First, the
semigroup of entropy admissible solutions of (3),(5) is total variation decreasing,
i.e.

TotVaru(t, ·) ≤ TotVar ū, for every t > 0, (11)

provided TotVar ū is finite. In other words, the entropy admissible solution of (3),(5)
satisfies estimate (10) with C = TotVar ū. Second, numerical experiments discussed
in [3] suggest that, under (9), the semigroup of solutions of (4) is also total variation
decreasing, and hence in particular that the answer to Question 4 is positive. Third,
by combining the maximum principle with the monotonicity preserving property
established in [3] one can show that, under (9), if the initial datum ū is mono-
tone, then the total variation does not increase in time, i.e. (10) is satisfied with
C = TotVar ū. In other words, we know that the answer to Question 4 is positive
provided the initial datum is monotone, see [15].

Notwithstanding the numerical evidence and the positive answer in the case
of monotone data, a counterexample constructed in [7] shows that the answer to
Question 4 is in general negative. More precisely, there is an initial datum ū such
that TotVar ū is finite and the solution of the Cauchy problem (4) satisfies

sup
ε>0

TotVaruε(t, ·) = +∞, for every t > 0,

which in particular implies that (10) cannot be true.
The fact that the answer to Question 4 is negative does not by any mean imply

that the answer to Question 3 is also negative. However, it rules out the most clas-
sical and natural strategy to achieve an hypothetical positive answer to Question 3.
Note, furthermore, that the initial datum ū in [7] has finite total variation and at-
tains values in the physical range 0 ≤ ū ≤ 1, but it is also highly oscillating and it
is unlikely to describe a realistic initial density of vehicles in some real-word appli-
cations. In principle it might be possible that, under (9), the uniform bound (10)
holds true provided ū is an initial datum with finite total variation which satisfies
some further condition making it more “realistic”. Even if this were true, however,
the counterexample in [7] would provide some useful information because it implies
that (10) cannot be established by relying only on the maximum principle and on
the boundedness of TotVar ū. To establish (10) in the case of “realistic” initial data
one should likely rely on some more refined information on the structure of the
solution, which is in general harder to obtain.
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Abstract. We consider a control problem where some controllers aim at con-

fining or directing a multitude of individuals in a given target region. A non–
anticipative feedback strategy devoted to this task is defined and tested by

means of numerical integrations.

1. Introduction. A group of k leaders aims at gathering a multitude of individuals
towards a target region T , which is a given subset of Rn. The leaders are described
through their positions, say P1, . . . , Pk in Rn, while the many individuals are
determined through their density ρ = ρ(t, x), t being the time variable and x the
space coordinate. For simplicity, we assume throughout that n = 2, i.e., that leaders
and individuals move in R2, although the case of higher dimensional spaces also fit
in the same theoretical framework.

A natural tool to describe the evolution of individuals in the present setting is
given by the continuity equation

∂tρ+ divx (ρ v (t, x, P1(t), . . . , Pk(t))) = 0 ,

where the speed v describes the individuals’ movement and, in particular, how the
leaders exert their influence on the individuals. The common goal of all the leaders
is formalized through the minimization of the quantity

J =

∫

R2

ρ(T, x) ψ(x) dx (1)

where T is the terminal time and ψ is a cost function. Typically, ψ(x) is d(x, T ) =
infy∈T ‖x− y‖, i.e. the Euclidean distance between the position x and the target
T , with T ⊂ R2. The leader Pi aims at minimizing J through a careful choice of
its speed, say ui, reasonably constrained to ‖ui‖ ≤ Ui, for given positive U1, . . . , Uk.
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The resulting framework consists of (1) together with the following mixed ODE –
PDE system
{
∂tρ+ divx (ρ v(t, x, P1(t), . . . , Pk(t))) = 0

ρ(0, x) = ρ̄(x)
where

{
Ṗi = ui(t)

Pi(0) = P̄i
i = 1, . . . , k , (2)

so that J in (1) has to understood as a function of the controls u1, . . . , uk. The
function ρ̄ and the points P̄i respectively describe the initial distribution of the
individuals and the initial positions of the agents.

Here, we only mention that the strategy introduced below can be exploited also
when different controllers have different targets, so that (1)–(2) turns into a game
rather being a control problem. The current literature offers a variety of results to
related problems, see for instance [1, 3, 5, 6, 7, 10, 11].

The next section presents an analytic framework where (1)–(2) can be effectively
formalized and studied. Then, the feedback strategy introduced in [4] is presented
and in Section 3 some of its properties are shown by means of numerical integrations.
The last section contains the conclusions.

2. The Feedback Strategy. Throughout, we keep the terminal time T fixed. For
xo ∈ R2 and r > 0, B(xo, r) stands for the open ball centered at xo with radius r.

Under natural assumptions on the map v, the well posedness of (2) is well known,
see for instance [2, 9]. The existence of a strategy (u1, . . . , uk) ∈ L∞([0, T ];B(0, U))
that minimizes (1) then follows by a standard compactness argument, see [4, Propo-
sition 2.1]. However, such a strategy requires the controller Pi to have at any time
t ∈ [0, T ] a complete knowledge of the evolution described by (2) also beyond time
t, a perfect coordination among the controllers is also necessary. Not always these
features are acceptable or realistic: the behavior of individuals might be unpre-
dictable to the leaders and communications among leaders might be impossible or
difficult.

To this aim, seeking the strategy of the i-th controller, we set P = Pi, u = ui,
P̄ = P̄i and comprise within the time dependence of v all other strategies uj , for
j 6= i, obtaining the problem

{
∂tρ+ divx (ρ v(t, x, P (t))) = 0
ρ(0, x) = ρ̄(x)

where

{
Ṗ = u(t)
P (0) = P̄ .

(3)

For a positive (suitably small) ∆t, we seek the best choice of a speed w ∈ B(0, U)
on the interval [t, t+ ∆t] such that the solution ρw = ρw(τ, x) to

{
∂τρw + divx (ρw v(t, x, P (t) + (τ − t)w)) = 0
ρw(t, x) = ρ(t, x)

τ ∈ [t, t+ ∆t] (4)

is likely to best contribute to decrease the value of J . Remark that the dependence
of v on t in (4) is frozen at time t. It is this choice that will later lead to a non
anticipative strategy. A proof that (4) is well posed is provided in [4, Lemma 4.6].
Note also that this auxiliary control problem reduces to the original one, choosing t
as the initial time, t+∆t as the final time, and considering only one leader. Letting
∆t→ 0, this construction produces the so called myopic strategy.

In the case of the functional (1), a natural choice for the agent P at time t is
then to choose on the time interval [t, t+∆t] a speed w, with ‖w‖ ≤ U , to minimize
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the quantity

Jt,∆t : R2 → R

w →
∫

R2

ρw(t+ ∆t, x) ψ(x) dx .
(5)

The following result, proved in [4], provides an effective hint on a non anticipative
optimal choice of w.

Theorem 2.1. Fix T > 0 and U > 0. Let v ∈ C0,1([0, T ] × R2 × R2;R2) and
ψ ∈ L∞(R2;R). As initial data in (3), choose a boundedly supported ρ̄ ∈ L1(R2;R)
and a P̄ ∈ R2. Define ρ as the solution to (3) and ρw as the solution to (4), for a

w ∈ B(0, U).
Then, for any t ∈ [0, T [ and ∆t ∈ ]0, T − t] the map (5) is well defined and

Lipschitz continuous.
Moreover, if v ∈ C2([0, T ]× R2 × R2;R2), the map (5) admits the expansion

Jt,∆t(w + δw) = Jt,∆t(w) + gradw Jt,∆t(w) · δw + o(δw) as δw → 0 (6)

where, as ∆t→ 0,

gradw Jt,∆t(w) =

=
(∆t)2

2

∫

R2

[
gradx ρ(t, x)DP v(t, x, P (t))−ρ(t, x) gradP divx v(t, x, P (t))

]
ψ(x) dx

+ o(∆t)2.

(7)

On the basis of Theorem 2.1, the definition of an effective non anticipative strat-
egy for Pi can be easily achieved as follows. Split the interval [0, T ] in smaller
portions [t`, t`+1[, where t` = `∆t. On each of these intervals, define ui(t) = w`,

where w` minimizes on B(0, U) the cost Jt`,∆t defined in (5). The leading term in
the right hand side of (7) is independent of w, so that for ∆t small it is reasonable
to choose −w` as

U

∫

R2

[
gradx ρ(t`, x) DP v (t`, x, Pi(t`))− ρ(t`, x) gradP divx v (t`, x, Pi(t`))

]
ψ(x) dx

∥∥∥∥
∫

R2

[
gradx ρ(t`, x) DP v(t`, x, Pi(t`))−ρ(t`, x) gradP divx v(t`, x, Pi(t`))

]
ψ(x) dx

∥∥∥∥
as long as the denominator above does not vanish, in which case we set w` = 0.
Remark that, through the term ρ`, the right hand side above depends on all the
past values w0, . . . , w`−1 attained by ui.

3. Numerical Simulations. Below we consider a few sample integrations of (2)
where the controllers P1, . . . , Pk use the strategy based on Theorem 2.1. The differ-
ent cases considered here fit in the well posedness result in [4, Lemma 4.6], which
requires the Lipschitz continuous dependence of the speed v on its arguments. To
this aim, we use the following regularized, that is Lipschitz continuous, normaliza-
tion in R2:

N (x) =
x

max {ε, ‖x‖} with ε = 0.01 . (8)

The numerical algorithm employed is the usual Lax–Friedrichs method, see [8,
§ 3.1], with uniform mesh, in a numerical domain which is, typically, a square. This
algorithm, as is well known, is conservative so that the total mass of the numerical
solutions is conserved. Nevertheless, in the integrations below the support of ρ can
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be significantly both shrunk or enlarged, due to the lack of an a priori upper bound
on ρ independent of the initial datum, see [4] for further details.

3.1. A Single Attractive Controller Coping with an Obstacle. We first show
that, in spite of its myopic nature, a leader following the strategy based on Theo-
rem 2.1 is able to drive individuals around an obstacle.

Consider (3) in the numerical domain Ω = [−10, 10]× [−10, 10], with

k= 1 ,
v(t, x, P ) =−e−0.05 ‖x−P‖2N (x− P ) ,

U = 4 ,

ρ̄=χ
B((−7,0),1)

,

P̄1≡ (−5,−5),

T = {(7, 0)} ,
T = 35 ,

(9)

where N is as in (8). The attraction of the leader has unbounded support, but
decreases exponentially with the square of the distance between the leader and the
individuals. Initially, the individuals are uniformly distributed in the ball centered

Figure 1. Integration of (2) with the choices (9). Note that,
in spite of the myopic nature of the strategy suggested by Theo-
rem 2.1, the leader first heads towards the mass of individuals, then
succeeds in bypassing the obstacle.

at (−7, 0) with radius 1 and the target where the leader has to concentrate ρ is the
point (7, 0).

In the central part of the domain, the square S with vertices at points (−5, 0),
(0, 5), (0,−5) and (5, 0) is forbidden to all individuals. This feature is accomplished
through an ad hoc penalization of the distance function appearing in (1), in the
sense that we use the cost

J =

∫

R2

ρ(T, x)ψ(x) dx where ψ(x) = 50χS(x) + (x1 − 7)2 + x2
2 . (10)

Note that the analytical results in [4] comprehend also this setting.
We now compute the solution to (2) with u piecewise constant given by the

above strategy based on (7), piecewise constant on the intervals [j∆t, (j + 1) ∆t],
where ∆t = 0.1. The resulting solution, obtained by means of the Lax–Friedrichs [8]
algorithm on a numerical grid of nx×ny = 2000×2000 cells, is displayed in Figure 1.

The strategy relying on Theorem 2.1 is myopic by its very definition, in the
sense that it is based on an optimization over a short time interval, namely from t
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Figure 2. Integration of (2) with the choices (9). Left, the value
of the cost (1) as a function of time: the lower corner of the obstacle
is bypassed at about t ≈ 16.5. Right, the trajectory followed by
the leader: first it moves towards the individuals, then it drives
them around the obstacle to the target.

to t+ ∆t. However, remarkably, in the present case the leader P1 first approaches
the individuals and then moves along a side of the obstacle. Note also that the speed
of the leader increases after passing the lower vertex of the obstacle, see Figure 2,
right. The resulting cost (1) vanishes before the final time, see Figure 2, left. Here,
we also remark the sharp decrease in the cost at about time t ≈ 16.5, corresponding
to the controller passing the lower corner of the obstacle.

3.2. Three Cooperating Repulsive Controllers. We now use (3) to describe
three agents whose aim is to push a multitude of individuals out of a given region.
More precisely, in the numerical domain Ω = [−8, 8] × [−8, 8], we consider k = 3
controllers, initially located at the positions P̄i and with maximal speeds Ui, where

P̄1 ≡ (0,−5) , P̄2 ≡ (5, 0) , P̄3 ≡ (−1, 3) ,
U1 = 5 , U2 = 3 , U3 = 1 .

(11)

The initial individuals’ density is

ρ̄ = 0.25 ∗ χ
B((1,1),1)

+ 0.5 ∗ χ
B((1,2),1.5)

+ 0.75 ∗ χ
B((−1,−1),0.75)

. (12)

Each controller is repulsive, since the individuals’ speed v is given by

v(t, x, P1, P2, P3) = −e−0.1 ‖x‖2 N (x) +
3∑

i=1

e−0.1 ‖x−Pi‖2 N (x− Pi) , (13)

where N is as in (8). The first summand in v describes how the individuals tend
to move towards the origin while, at the same time, the latter summand models a
repulsive interaction between individuals and each of the leaders P1, P2, and P3.
The target for each agent is the complement in R2 of the ball centered at the origin
with radius 4, i.e., in (1) we have

T = R2 \B(0, 4) so that ψ(x) = max
{

0, 16− ‖x‖2
}
, (14)

and the time at which this goal has to be obtained is T = 20.
The resulting solution, obtained on a numerical grid of nx×ny = 2000×2000 cells,

is displayed in Figure 3. In this computation, the solution to (2) is obtained with u
piecewise constant given by the strategy (7), constant on intervals [j∆t, (j+1) ∆t],
where ∆t = 0.1.

At about t = 12, the cost vanishes and the controllers succeed in keeping the
individuals in T , i.e. outside B(0, 4), up to the final time T = 20. The controllers’
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Figure 3. Integration of (2) with the choices (11)–(12)–(13).
Already at time t = 12.04 (bottom left picture), the individuals’
density ρ is supported almost completely in the target, i.e., outside
B(0, 4). The black circle represents the boundary of B(0, 4).

Figure 4. Integration of (2) with the choices (11)–(12)–(13).
Left, the value of the cost (1)–(14) as a function of time: coherently
with Figure 3, B(0, 4) is emptied approximately by time t = 12.
Right, the trajectories followed by the controllers: first they move
towards the origin, then they move repelling the individuals to-
wards the target R2 \B(0, 4).

trajectories first are direct towards the origin, then they apparently cover the sphere
B(0, 4) to maintain the individuals within the target.

3.3. Grouping Many Individuals. We now display an example where repulsive
and attracting leaders cooperate. Three controllers (k = 3) are initially located at
P̄i, for i = 1, 2, 3 and have the same maximal speed U , where

P̄1 ≡ (5,−5) , P̄2 ≡ (−9,−9) , P̄3 ≡ (9, 9) and U = 3 , (15)

while the speed in (2), which describes the individual–leader interactions, is

v(t, x, P1, P2, P3) = −e−0.05 ‖x−P1‖2 N (x− P1) + e−0.05 ‖x−P2‖2 N (x− P2)

+ e−0.05 ‖x−P3‖2 N (x− P3)
(16)

with N is as in (8). P1 is attractive while P2 and P3 are repulsive. All controllers
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Figure 5. Integration of (2) with the choices (15)–(16)–(17)–
(18). The two repulsive controllers, initially near to opposite cor-
ners of the numerical domain, surround the individuals, while the
attractive controller moves directly to the origin.

have the same target, i.e., to bring the individuals near to the origin, so that

T = {(0, 0)} and ψ(x) = ‖x‖2 . (17)

The initial individuals’ distribution ρ̄ is uniform over [−6, 6]× [−6, 6], so that

ρ̄ = χ
[−6,6]×[−6,6]

. (18)

Figure 6. Integration of (2) with the choices (15)–(16)–(17)–
(18). Left, the value of the cost (1)–(17) as a function of time. The
combined strategy of the three controllers is rather effective, see the
diagram of the cost on the left. Right: the different trajectories of
the 3 controllers.

The numerical domain is Ω = [−10, 10]× [−10, 10]. The resulting integration, see
Figure 5, shows that the three controllers successfully cooperate. Indeed, P1, the
attractive leader, heads directly towards the target T , reaches it at about t ≈ 2.5
and remains there attracting the individuals, see also Figure 6, right. In the mean
time, the two repulsive controllers encircle the individuals, cut their escape route
towards the top left corner and help getting the full confinement. The resulting cost
at time t = 10, although positive, is about J = 52.8, which shows a remarkable
improvement with respect to its value at t = 0, see Figure 6, left.
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4. Conclusions. The numerical simulations presented in Section 3 show that the
myopic strategy is, at least in some cases, effective. However, the theoretical frame-
work currently available, essentially based on [4], is not yet sufficient to provide
rigorous results ensuring the efficacy of this strategy. Quantitative estimates on
how far this strategy is from optimality are also, to our knowledge, unavailable.

The framework presented above naturally leads to consider also competing con-
trollers. Again, the strategy above was proved to be effective in [4], at least in some
cases, but no rigorous result has ever been provided. Currently, in the game theo-
retic framework, completely open natural questions concern the existence of Nash
equilibria and their characterization.
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Abstract. We consider the approximation of adjoint-based derivatives for

discontinuous solutions of the Cauchy problem associated to one-dimensional

nonlinear non-conservative hyperbolic systems. We first derive the adjoint
equations in strong form with a discontinuous primal solution together with the

associated jump relations across the discontinuity. The adjoint solution may

be discontinuous at the discontinuity in contrast to the case of conservative
systems. Then, we consider first-order finite volume (FV) approximations to

the primal problem and show that, using the Volpert path family of schemes,

the discrete adjoint solution is consistent with the strong form adjoint solution.
Numerical experiments are shown for a nonlinear 2×2 system with a genuinely

nonlinear (GNL) field and a linearly degenerate (LD) field associated to the

non-conservative product.

1. Introduction. The discussion in this paper focuses on the adjoint analysis of
the Cauchy problem for nonlinear hyperbolic systems in non-conservative form:

∂tu + A(u)∂xu = 0 in Ω := R× (0, T ), (1a)

u(·, 0) = u0(·) in R, (1b)

where u(x, t) is the vector of unknowns with values in the set of states Ωa ⊂ Rm
and A : Ωa 3 u 7→ A(u) ∈ Rm×m is a smooth matrix-valued function with entries
aij(u), 1 ≤ i, j ≤ m. We assume that (1a) is strictly hyperbolic over Ωa. In the
general case where A is not the Jacobian of a flux function, the works in [11, 4]
generalize the notion of weak solutions from conservation laws to (1) and allow
to define the non-conservative product A(u)∂xu at a point of discontinuity of the
solution for functions of bounded variations. The definition is based on a family of
consistent and Lipschitz paths φ : [0, 1]×Ωa ×Ωa → Ωa. Across a discontinuity of
speed σ, the non-conservative product is thus defined as the unique Borel measure
defined by the so-called generalized Rankine-Hugoniot (RH) relations on Σ:

σ[[u]] = Aφ(u−,u+) :=

∫ 1

0

A
(
φ(s,u−,u+)

)
∂sφ(s,u−,u+)ds, (2)

where [[u]] = u+ − u−, and u± are the limits of u at Σ (see section 2).
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Key words and phrases. Non-conservative hyperbolic systems, adjoint equations, finite volume

method.
∗ Corresponding author: florent.renac@onera.fr.
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In this work, we consider the adjoint equations of (1). Methods based on adjoint
equations are widely used for shape optimization, control, receptivity-sensitivity-
stability analyses, data assimilation, error analysis, etc. These methods are often
used for the linear analysis of nonlinear conservation laws where the adjoint is
defined as the dual to the linearized equations around a given primal solution, u.
In the case of hyperbolic equations, this raises the question of the validity of this
linearization around discontinuities in u because the adjoint equations are linear
with discontinuous coefficients for which the Cauchy problem is not well posed
in general. The analysis must include the linearization of the jump relations at
the discontinuity [6] which leads to a so-called interior boundary condition for the
adjoint variables [10]. Existence, uniqueness and stability of backward solutions to
scalar equations have been established in [1] with Lipschitz initial condition and
OSLC coefficients [9]. The interior condition at the shock has been shown to be
satisfied by such backward solutions [10]. In the case of systems of conservation laws,
well-posedness of the adjoint problem with GNL and LD fields has been shown in
[2], while the interior boundary condition is satisfied at the discrete level providing
that the primal and adjoint solutions are vanishing viscosity limits of regularized
problems [8].

In § 2, we first derive the adjoint equations associated to the primal equations
in strong form and then derive the adjoint equations associated to a first-order FV
approximation in § 3. We prove consistency of the discrete adjoint equations for the
Volpert path family of schemes for which the consistency condition can be expressed
in closed form. An example of a 2× 2 system with GNL and LD fields is provided
in § 4 and numerical experiments are given in § 5.

2. Adjoint formulation of linearized perturbations. We are interested in
Fréchet differentiable tracking-type output functionals of the form

J(u) =

∫

R
j
(
u(x, T )

)
dx, (3)

where j : Ωa → R is a smooth function. We assume that the solution admits
one isolated discontinuity along the curve Σ :=

{
(xs(t), t) : 0 < t < T

}
in Ω

(see figure 1) and consider infinitesimal perturbations imposed on the solution,
u(x, t)+ψ(x, t), and on the location of the discontinuity, xs(t)+ζs(t) with ζs(0) = 0,
(see figure 1), which may follow from perturbations of the initial condition (1b).
Setting j′(u) =

(
∂uij(u)

)
1≤i≤m, linear perturbations on J(u) read [10]

J ′(u;ψ, ζs) =

∫

R\xs(T )

j′
(
u(x, T )

)
·ψ(x, T )dx− ζs(T )[[j

(
u
(
xs(T ), T

))
]].

The speed of the discontinuity in (2), σ = x′s(t), may be expressed in terms of

components of the normal to Σ, n = (nx, nt)
> =

(
1 + x′s(t)

2
)−1/2(

1,−x′s(t)
)>

:
σ = − nt

nx
. Linearized perturbations in the speed of the discontinuity read

ζ ′s(t)
x′s(t)

=
δnt
nt
− δnx
nx

, (4)

so we get nxds = nx
√
dxs(t)2 + dt2 = dt with s(t) the curvilinear coordinate. The

traces at Σ in the direction n are u± = limε↓0 u(xs(t)± εnx, t± εnt), and the jump
relations (2) now read

nt[[u]] + nxAφ(u−,u+) = 0 on Σ. (5)
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Figure 1. Discontinuity curve Σ in the space-time domain Ω:
(left) definitions of traces and normal to Σ, (right) perturbation
of Σ.

The adjoint formulation of linearized perturbations is obtained by introducing
the following Lagrangian functional

L(u; z, zs, z0) = J(u)−
∫

Ω\Σ
z ·
(
∂tu + A(u)∂xu

)
dxdt

−
∫

Σ

zs ·
(
nt[[u]] + nxAφ(u−,u+)

)
ds−

∫

R
z0 ·

(
u(·, 0)− u0

)
dx,(6)

where the adjoint variables z(x, t) : Ω\Σ → Rm, zs(x, t) : Σ → Rm, and z0(x) :
R → Rm are Lagrange multipliers associated to constraints (1a), (5), and (1b).
Linearizing formally L in the perturbation direction around a state u, we obtain

L′(u;ψ, ζs, z, z
s, z0) = J ′(u;ψ, ζs) (7a)

−
∫

Ω\Σ
z ·
(
∂tψ +

(
A′(u)ψ

)
∂xu + A(u)∂xψ

)
dxdt (7b)

+

∫

Σ

nxζs[[z ·
(
∂tu + A(u)∂xu

)
]]ds (7c)

−
∫

Σ

zs ·
(
nt[[ψ]] + nx

(
∂u−Aφ(u−,u+)ψ−

+∂u+Aφ(u−,u+)ψ+
))
ds (7d)

−
∫

Σ

ζs zs ·
(
nt[[∂xu]] + nx∂xAφ(u−,u+)

)
ds (7e)

−
∫

Σ

zs ·
(
δnt[[u]] + δnxAφ(u−,u+)

)
ds (7f)

−
∫

R
z0 ·ψ(·, 0)dx, (7g)

and the adjoint variables are defined as stationary points of L in (6):

z, zs, z0 : L′(u;ψ, ζs, z, z
s, z0) = 0 ∀ψ, ζs. (8)

Theorem 2.1 (Adjoint problem). Let u be the solution of the nonlinear Cauchy
problem (1) satisfying the generalized RH relations (5) at an isolated discontinuity
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Σ ⊂ Ω. Then, the adjoint solutions to (8) satisfy the following problem

∂tz + A(u)>∂xz +
((

A′(u)> −B(u)
)
∂xu

)
z = 0 in Ω\Σ, (9a)

z(·, T ) = j′
(
u(·, T )

)
in R, (9b)

together with the jump relations across Σ:
(
ntI + nxA(u±)>

)
z± =

(
ntI± nx∂u±Aφ(u−,u+)

)
zs, (10)

z0(·) = z(·, 0) in R, and the equation for zs:

[[u]] · dtzs +
(
∂xAφ(u−,u+)− [[A(u)∂xu]]

)
· zs = 0 on Σ, (11a)

(
[[u]] · zs(T )− [[j(u)]]

)
xs(T )

= 0. (11b)

The tensor operators in (9a) are defined by

A′(u)>ijk = ∂ukaji(u), B(u)ijk = ∂uiajk(u), 1 ≤ i, j, k ≤ m, (12)

and B satisfies ψ>(B(u)∂xu)z = z>(A′(u)ψ)∂xu, for all ψ in Rm and u in Ωa.

Proof. First, (7c) vanishes due to (1a). Integration by parts in (7b) gives

(7b) =

∫

Ω\Σ
ψ ·
(
∂tz + ∂x

(
A(u)>z

))
− z
(
A′(u)ψ

)
∂xudxdt

+

∫

Σ

[[ψ(nt + nxA(u)>)z]]ds+

∫

R
ψ(x, 0) · z(x, 0)−ψ(x, T ) · z(x, T )dx.

Then, using (5) and (4), we get δnt[[u]] + δnxAφ(u−,u+) = −nxζ ′s(t)[[u]]. Using
again (1a), the term in (7e) may be be recast into

nt[[∂xu]] + nx∂xAφ(u−,u+) = [[nt∂xu− nx(∂tu + A(u)∂xu)]] + nx∂xAφ(u−,u+)

= −nxdt[[u]] + nx
(
∂xAφ − [[A(u)∂xu]]

)
,

where dt ≡ ∂t + x′s(t)∂x and using integration by parts we get

(7e)+(7f) =

∫

Σ

zs ·
(
dt
(
ζs[[u]]

)
− ζs

(
∂xAφ − [[A(u)∂xu]]

))
nxds

= −
∫ T

0

ζs

(
[[u]] · dtzs+

(
∂xAφ−[[A(u)∂xu]]

)
·zs
)
dt+ζs(T )zs(T )·[[u]]xs(T ),

where we have used dt = nxds and ζs(0) = 0. We thus obtain

L′(u;ψ, ζs, z, z
s, z0) =

∫

R\xs(T )

j′
(
u(x, T )

)
·ψ(x, T )dx− ζs(T )[[j

(
u
(
xs(T ), T

))
]]

+

∫

Ω\Σ
ψ ·
(
∂tz + ∂x

(
A(u)>z

))
− z
(
A′(u)ψ

)
∂xudxdt

+

∫

Σ

[[ψ(nt + nxA(u)>)z]]ds−
∫

R

[
ψ(x, t) · z(x, t)

]T
t=0

dx

−
∫

Σ

zs ·
(
nt[[ψ]] + nx

(
∂u−Aφψ

− + ∂u+Aφψ
+
))
ds

−
∫ T

0

ζs

(
[[u]] · dtzs +

(
∂xAφ − [[A(u)∂xu]]

)
· zs
)
dt

+ ζs(T )zs(T ) · [[u]]xs(T ) −
∫

R
z0 ·ψ(·, 0)dx.

Then, collecting terms against ψ and ζs, we obtain the desired results.
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2.1. The case of conservative systems. We now consider the particular case
where (1a) reduces to a conservation law, i.e., A(u) = f ′(u). Assuming that the flux
f is a C2 function, its Hessian is symmetric. Hence ∂ukaij = ∂ujaik, 1 ≤ i, j, k ≤ m,

which is equivalent to A′(u)> = B(u) from (12), so (9a) reduces to the classical
adjoint equation of first-order conservation laws:

∂tz + A(u)>∂xz = 0 in Ω\Σ.
Then, for all paths in (2), we have Aφ(u−,u+) = [[f(u)]], so we obtain

∂u±Aφ(u−,u+) = ±A(u±), ∂xAφ(u−,u+) = [[A(u)∂xu]],

and the jump relations (10) now read
(
ntI + nxA(u±)>

)
(z± − zs) = 0 on Σ.

For a non-characteristic discontinuity, the matrices ntI + nxA(u±) are nonsingular
and we obtain the so-called interior boundary condition on Σ [10]: z± = zs.

3. Space-time discretization.

3.1. Finite volume method. The nonlinear problem (1) is discretized with a
first-order FV method and explicit time stepping. The degrees-of-freedom are

uh(x, t(n)) = Un
i , ∀x ∈ κi = (xi− 1

2
, xi+ 1

2
), i ∈ Z, 0 ≤ n ≤ N,

with xi+ 1
2

= i∆x, t(n) = n∆t, ∆x > 0 and ∆t = T
N > 0 the space and time steps.

The numerical scheme reads (see [7] and references therein)

Un+1
i −Un

i + ∆t
∆x

(
D−
i+ 1

2

+ D+
i− 1

2

)
= 0, i ∈ Z, 0 ≤ n < N, (13)

with smooth fluctuation fluxes D±
i+ 1

2

= D±(Un
i ,U

n
i+1) satisfying consistency: D±(u,

u) = 0 for all u in Ωa. The initial condition is projected onto the space grid:

U0
i = 〈u0〉i :=

1

∆x

∫

κi

u0(x)dx, i ∈ Z. (14)

3.2. Discrete adjoint solution. We now consider the adjoint solution to the dis-
crete nonlinear problem and look again for a piecewise constant discrete solution:

zh(x, t(n)) = Zni , ∀x ∈ κi, i ∈ Z, 0 ≤ n ≤ N.
We introduce the discrete Lagrangian functional containing an approximation of
the output functional (3) and the multipliers to the constraints (13) and (14):

Lh(uh; zh) =
∑

i∈Z
∆x j(UN

i )−
∑

i∈Z

N−1∑

n=1

∆x Zni ·
(
Un+1
i −Un

i + ∆t
∆x (D−

i+ 1
2

+ D+
i− 1

2

)
)

−
∑

i∈Z
∆x Z0

i · (U0
i − 〈u0〉i). (15)

Linearizing (15) around uh and looking for stationary solutions give the discrete
adjoint equations which again constitute a backward problem in time:

Zn−1
i − Zni + ∆t

∆x

(
∂u−D−>

i+ 1
2

Zni + ∂u+D−>
i− 1

2

Zni−1

+∂u−D+>
i+ 1

2

Zni+1 + ∂u+D+>
i− 1

2

Zni

)
= 0, 0 < n ≤ N, (16a)

ZNi = j′(UN
i ). (16b)
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3.3. The Volpert path family of schemes. Let us consider fluctuation fluxes
based on linear paths [11] of the form D±(u−,u+) = A±(u−,u+)[[u]], where the
consistency relation now reads

A+(u,u) + A−(u,u) = A(u), ∀u ∈ Ωa. (17)

Theorem 3.1 (Adjoint consistency). The discrete adjoint scheme (16) with the
Volpert path family of fluxes is a consistent approximation of the adjoint problem
(9) at points (xi, t

(n)) with xi = 1
2 (xi− 1

2
+ xi+ 1

2
).

Proof. We use an usual finite difference analysis. Let u and z be smooth solutions
to the primal and adjoint equations. Use Taylor expansions in time to show that
1

∆t

(
Zn−1
i −Zni

)
= −∂tz(xi, t

(n))+O(∆t). Setting a±ij(u
−,u+) = A±(u−,u+)ij and

differentiating (17), we get for 1 ≤ i, j, k ≤ m:

∂u−
k
a+
ij(u,u)+∂u+

k
a+
ij(u,u)+∂u−

k
a−ij(u,u)+∂u+

k
a−ij(u,u) = ∂ukaij(u), u ∈ Ωa. (18)

Now, we decompose the space terms in (16) into R1 +R2 with

R1(xi, t
(n)) = − 1

∆x

(
A−>
i+ 1

2

Zni −A−>
i− 1

2

Zni−1 + A+>
i+ 1

2

Zni+1 −A+>
i− 1

2

Zni

)
,

R2(xi, t
(n)) =

1

∆x

((
∂u−A−

i+ 1
2

[[u]]i+ 1
2

)>
Zni +

(
∂u+A−

i− 1
2

[[u]]i− 1
2

)>
Zni−1

+
(
∂u−A+

i+ 1
2

[[u]]i+ 1
2

)>
Zni+1 +

(
∂u+A+

i− 1
2

[[u]]i− 1
2

)>
Zni

)
.

We thus obtain from (17) and (18)

R1(xi, t
(n))k = − 1

∆x

∑

l

(
a−lk(Un

i ,U
n
i+1)Zl,ni − a−lk(Un

i−1,U
n
i )Zl,ni−1

+ a+
lk(Un

i ,U
n
i+1)Zl,ni+1 − a+

lk(Un
i−1,U

n
i )Zl,ni

)

= −
∑

l,m

(
(∂u+

m
a−lk + ∂u−

m
a−lk + ∂u+

m
a+
lk + ∂u−

m
a+
lk)∂xum

)n
i
Zl,ni

−
∑

l

(a−lk + a+
lk)∂xZ

l,n
i +O(∆x)

= −
(
A(u)>∂xz +

(
A′(u)>∂xu

)
z
)
k
(xi, t

(n)) +O(∆x),

and similarly R2(xi, t
(n))k =

(
(B(u)∂xu)z

)
k
(xi, t

(n)) +O(∆x) from (18).

4. Non-conservative product associated to a LD field. Let us introduce the
following nonlinear hyperbolic system [7] typical of two-phase flow models where
the characteristic LD field plays the role of an interface velocity [3]:

∂tu+ g(u)∂xu = 0, ∂tv + ∂xf(u) = 0, (19)

with g(u) = u + v and f(u) = v2−u2

2 . The eigenvalues are g(u) associated to the
LD field and v associated to a GNL field so the system is strictly hyperbolic over
Ωa = {(u, v)> ∈ R2 : u > 0}. The generalized RH relations (5) read

nt[[u]]xs(t) + nxGφ(u−,u+) = 0, [[ntv + nxf(u)]]xs(t) = 0 on Σ,

where Gφ(u−,u+) :=
∫ 1

0
g
(
φ(θ; u−,u+)

)
∂θφu(θ; u−,u+)dθ, so for a linear path

Gφ(u−,u+) = u+ v[[u]], where a = a−+a+

2 denotes the average operator. Let us
stress that the LD field g(·) is continuous across a contact discontinuity, so the
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generalized RH relations are independent of the choice of path which motivates the
choice of a linear path.

The adjoint equations for z = (y, z)> read

∂ty − u∂xz + (u+ v)∂xy + (∂xu)y = 0, ∂tz + v∂xz − (∂xu)y = 0 in Ω\Σ, (20)

together with the jump relations on Σ
(
nt + nx(u± + v±)

)
y± −

(
nt + nx(u± + v)

)
ys − nxu±(z± − zs) = 0, (21a)

−nx2 [[u]]ys ±
(
nt + nxv

±)(z± − zs) = 0, (21b)

and the equation for zs:

[[u]]xs(t) · dtzs +
(

[[u]]∂x(u+ v)− [[u+ v]]∂xu
)
xs(t)

ys(t) = 0 in (0, T ). (22)

The above relations at Σ may be simplified in the following two cases:

• isolated non-characteristic shock ([[u]] = 0 and nt + vnx = 0):

y± = 2u
2u±[[v]]y

s, z± = zs, zs(·) ≡ [[j(u)]]xs(T )

[[v]]xs(T )
;

• isolated characteristic contact ([[u+ v]] = 0 and nt + (u± + v±)nx = 0):

z± = zs ± [[v]]ys

2u± , zs = uz
u , zs(·)− ys(·) ≡ [[j(u)]]xs(T )

[[v]]xs(T )
.

5. Numerical experiments. We consider Riemann problems for (19) with initial
conditions u0(x) = uL if x < 0, and u0(x) = uR if x > 0:

test problem left state uL right state uR T

RP1 shock
(

3
2 , 3
)> (

3
2 , 1
)>

0.1

RP2 shock
(

1
2 , 3
)> (

1
2 , 1
)>

0.1

RP3 contact
(
1, 3
)> (

2, 2
)>

0.05

The output functional reads J(u) = 1
2

∫
R u(x, T )2dx which imposes z(·, T ) =

u(·, T ) as final condition. We compute approximate solutions with a numerical flux
described in [7] that falls into the family of Volpert schemes. Figure 2 compares the
numerical solution in dashed lines with the exact solution in continuous lines and
displays the characteristics of both primal and adjoint problems in Ω. The exact
solutions are obtained from the method of generalized characteristics [5, 1, 10], the
adjoint equations (20) and jump relations (21). Results are obtained on a very fine
mesh to check the consistency of the discrete adjoint method. In particular, it may
be checked that the adjoint solutions satisfy the RH relations derived in § 4.
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Abstract. We consider an advection-diffusion equation whose diffusivity can

be negative. This equation arises in the modeling of collective movements,
where the negative diffusivity simulates an aggregation behavior. Under suit-

able conditions we prove the existence, uniqueness and qualitative properties
of traveling-wave solutions connecting states where the diffusivity has opposite

signs. These results are extended to end states where the diffusivity is positive

but is negative in between. The vanishing-viscosity limit is also considered.
Examples from real-world models are provided.

1. Introduction. We consider the advection-diffusion equation

ρt + f(ρ)x = (D(ρ)ρx)x , t ≥ 0, x ∈ R, (1)

where ρ ∈ [0, 1]. Our main assumptions are that, for some α ∈ (0, 1),

(f) f ∈ C1[0, 1], f(0) = 0;
(D1) D ∈ C1[0, 1], D(ρ) > 0 for ρ ∈ (0, α) and D(ρ) < 0 for ρ ∈ (α, 1).

We refer to Figure 1 for two possible plots of D and f . Even if in the following
examples, discussed in Section 3, we have f ≥ 0 and D(0) = D(1) = 0, as depicted
for simplicity, we emphasize that these conditions are not required in our general
results.

Condition (D1) makes (1) a forward-backward parabolic equation. These equa-
tions, which arise in a natural way in several physical [11, 18] and biological [17]
models, are unstable in the backward regime, where also uniqueness is lost for non-
smooth solutions [16].

Equation (1) also arises in the modeling of vehicular traffic flows or crowds dy-
namics, where ρ(x, t) represents the normalized density at time t and place x of
vehicules or pedestrians. In this case the corresponding flow is q(ρ) = f (ρ) = ρv(ρ),
where the velocity v is an assigned function. In the famous inviscid LWR model
proposed in [22, 28] the density-flow pairs lie on a curve (the graph of q) in the
(ρ, q)-plane. However, experimental data clearly show that such pairs usually cover

2000 Mathematics Subject Classification. Primary: 35K65, 35C07; Secondary: 35K55, 35K57.
Key words and phrases. Degenerate parabolic equations, negative diffusivity, traveling-wave

solutions, collective movements.
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Figure 1. (a): a diffusivity D satisfying assumption (D1); (b):
the flux function f .

a two-dimensional region. To reproduce this effect, either one considers second-
order models [1, 34] or, as in this paper, introduces a diffusive term. In the latter
case the physical (or parabolic) flow is qp = f(ρ) − D(ρ)ρx; if we assume that ρx
varies in an interval [−a, a], then qp can be understood as a perturbation of q and
the density-flow pairs cover a full two-dimensional region around the curve q = q(ρ)
in the (ρ, q)-plane. The introduction of D also avoids the appearance of shock waves
and then the occurrence of an infinite acceleration. We refer to [4, 6] for several
models where the diffusivity D can vanish but otherwise remains positive. The neg-
ativity of D simulates an aggregative behavior; it occurs, for instance, in vehicular
flows for high car densities and limited sight distance ahead [26].

We recall that the introduction of viscosity in traffic flow models has been crit-
icized since the famous paper [10], because it could yield negative velocities of the
cars. It is not difficult to reject this objection. The contribution to the equation
of viscosity, either deduced from asymptotic expansions or by physical motivations,
is indeed much smaller than the corresponding contribution due to the velocity v,
see [8]. Moreover, in almost every model known in the literature [8], the diffusivity
degenerates and is required to vanish where v does, namely, at 1. This means that
even at the maximum density where v vanishes, cars do not move backward because
of the parabolic term.

A general framework for the study of equation (1), in the case f = 0, has been
proposed in [12, 27]. The “correct” solutions to (1), in the sense of Young measures,
are characterized as limits for→ε0 of the solutions of a pseudo-parabolic third-order
equation ρεt = (D(ρε)uεx)x + εψ(ρε)xxt. In this case, solutions of (1) satisfy some
entropy conditions, in analogy with the hyperbolic setting. We refer to [25, 29, 30]
and references there. We do not follow this approach: first, the case f 6= 0 is still
an outstanding open problem; second, the above third-order approximation has no
clear meaning for collective movements; third, we are interested in traveling-wave
solutions and in the vanishing-viscosity limit to the conservation law.

More precisely, we are concerned with traveling-wave solutions ρ(x, t) = φ(x−ct).
Then the profile φ satisfies the differential equation

(D(φ)φ′)
′
+ (cφ− f(φ))′ = 0. (2)

We require that φ connects a state `− with D(`−) > 0 to a state `+ with D(`−) < 0:

φ(−∞) = `−, φ(+∞) = `+. (3)
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More general cases are also studied. Traveling-wave solutions in the case f = 0, but
then equation (1) is endowed of a source term g, have been considered in [2, 3, 13, 20,
23, 24] for different nonpositive D. Traveling-wave solutions in the case f 6= 0 have
also been considered in [11, 33] for a model of infiltration through porous media;
in these latter papers the unstable region is bypassed by inserting in the solution a
shock wave, which is uniquely determined by a higher-order regularization (either
of pseudo-parabolic or of Cahn-Hilliard type), analogously to the aforemontioned
approach in [12, 27]. The case of solutions of the form u(x, t) = φ(x/

√
t) that enter

the unstable region has been considered in [15] in the case f = 0.
Our results give necessary and sufficient conditions for the existence of wavefronts

when D changes sign once or twice. We also study the smoothness of the profiles
and the vanishing-viscosity limit to discontinuous (nonentropic) solutions to the
hyperbolic conservation law

ρt + f(ρ)x = 0. (4)

As a byproduct, we show that some nonclassical shock waves [21], considered in [7]
in the modeling of panic situation in crowds dynamics, admit a viscous profile. Full
details are provided in [8].

2. Main results. Traveling-wave solutions are meant in the weak sense [14]; in
particular ϕ ∈ C(I) and D(ϕ)ϕ ′ ∈ L1

loc(I) for some interval I ⊂ R. A traveling-
wave solution is global if I = R, classical if ϕ is differentiable and D(ϕ)ϕ′ is abso-
lutely continuous, sharp at ` if there exists ξ` ∈ I, φ(ξ`) = `, with φ classical in
I \{ξ`} and not differentiable at ξ`. A global, bounded traveling-wave solution with
a monotonic, non-constant profile φ satisfying (3) with `−, `+ ∈ [0, 1] is said to be
a wavefront solution from `− to `+. The line joining (`−, f(`−)) with (`+, f(`+)) is
denoted by s`± = s`±(ρ), see Figure 1(b).

If D > 0 in (0, 1), then profiles are uniquely determined up to a shift [14]; the
loss of uniqueness is more severe under (D1). Indeed, assume that (1) admits a
wavefront solution with profile φ connecting `− ∈ [0, α) with `+ ∈ (α, 1]. Then,
after a suitable shift, there is a unique ξ1 ≥ 0 such that

φ(0) = α and φ(ξ) < α for ξ < 0, φ(ξ1) = α and φ(ξ) > α for ξ > ξ1. (1)

We refer to Figure 2 for the case ξ1 > 0. It is then clear that a linear change of the
parameter ξ1 provides another profile. For simplicity, we focus on the case

ξ1 = 0. (2)

-ξ

6
φ

`−

`+

α

..

..

..

..

..

ξ1

Figure 2. Under (D1), a profile φ in the case ξ1 > 0.
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Theorem 2.1. Assume (f), (D1), `− ∈ [0, α), `+ ∈ (α, 1]. Equation (1) has a
wavefront solution whose profile φ satisfies (3) if and only if the following three
conditions are satisfied:

f(α)− f(`−)

α− `− =
f(`+)− f(α)

`+ − α =: c`± , (3)

f(ρ) > s`±(ρ) for all ρ ∈ (`−, α), f(ρ) < s`±(ρ) for all ρ ∈ (α, `+), (4)

D(ρ)

f(ρ)− s`±(ρ)
∈ L1(Iα), (5)

for some neighborhood Iα of α. The wave speed is c`± and f ′(α) ≤ c`± . Under
(1)–(2) the profile φ is unique; moreover, φ ′(ξ) > 0 when `− < φ(ξ) < `+, ξ 6= 0,
while

lim
ξ→0

φ′(ξ) =

{
f ′(α)−c`±
D ′(α) if D ′(α) < 0,

∞ if D ′(α) = 0 and f ′(α)− c`± < 0.
(6)

We refer to Figure 1(b) for the geometric meaning of conditions (3), (4) and to [8,
Th. 2.1] for the proof of the theorem. Condition (5), see [14, Th. 9.1], guarantees
the existence of profiles that reach α for a finite value of ξ; it is needed only in case
f ′(α) = c`± , i.e., when the line s`± is tangent to the graph of f at (α, f(α)).

The results of Theorem 2.1 can be extended either to the case when the sign of
D is opposite to the one considered in (D1), or to the case when D satisfies

(D2) D ∈ C1[0, 1], D(ρ) > 0 for ρ ∈ (0, α) ∪ (β, 1) and D(ρ) < 0 for ρ ∈ (α, β).

We refer to Figure 3(a) for a possible plot of a diffusivity D satisfying (D2) and to
[8] for a precise statement.
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Figure 3. (a): the diffusivity D in case (D2); (b): the flux func-
tion f .

At last, we consider the family of equations

ρt + f(ρ)x = (εD(ρ)ρx)x , t ≥ 0, x ∈ R, (7)

for ε ∈ (0, 1]. About the convergence of solutions ρε of (7) to a solution ρ of (4),
if D > 0, a positive answer is provided in [19]; see [9, §6] for more information.
The case D ≥ 0 was first considered in [32]. We provide now a convergence result
concerning wavefronts when D changes sign. For sake of simplicity, we suppose

D ′(α) < 0. (8)
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Theorem 2.2. Assume (f), (D1) and `− ∈ [0, α), `+ ∈ (α, 1]; also assume (3)–(5)
and (8). Let φε be the unique profiles of wavefront solutions to (7) satisfying (3)
and (2). Then

lim
ε→0+

φε(ξ) =: φ0(ξ) =

{
`− if ξ < 0,

`+ if ξ > 0.
(9)

The convergence is uniform in every interval (−∞,−δ) and (δ,+∞) with δ > 0.

We refer to [8, Th. 2.3] for the proof. Because of Theorem 2.2 we can briefly
comment the previous results from the hyperbolic point of view. First of all, notice
that the function ρ0(x, t) = φ0(x− c`±t) is a weak solution to equation (4) because
the Rankine-Hugoniot conditions are satisfied. Conditions analogous to (4) are well
known in the hyperbolic setting [5, Thm. 4.4]. However the discontinuous solution
ρ0 is not entropic: referring to the case depicted in Figure 1(b), the Lax inequality
f ′(`−) > c`± is satisfied while c`± > f ′(`+) fails: the shock is compressive on the left
and undercompressive on the right. However, even if ρ0 is not entropic, Theorem 2.1
shows that it has a viscous profile, where “viscous” refers to a negative diffusivity
in the nonentropic part of the solution; such a wave is unstable in the sense of
[5, Rem. 4.7]. Notice that the one-sided sonic case c`± = f ′(`+) 6= f ′(`−) (or
c`± = f ′(`−) 6= f ′(`+)) has been considered in [7] in the framework of nonclassical
shocks.

The proof of Theorem 2.1 exploits, and extends to the case of negative diffu-
sivities, some results of [14]; then, a suitable pasting of the profiles thus obtained
leads to the above result. The same strategy is used with case (D2). The proof of
Theorem 2.2 makes use of an approximation technique to cope with the degeneracy
of the diffusivity at α.

3. Applications to collective movements. In the case of collective movements,
assumption (f) specializes to [22, 28]

(fcm) f(ρ) = ρv(ρ), with v ∈ C1[0, 1], v(ρ) ≥ 0 for ρ ∈ [0, 1) and v(1) = 0.

From a modeling point of view, the velocity v vanishes at 1 and is decreasing at least
in a right neighborhood of 0. About D, we focus on case (D1) and the properties
D(0) = D(1) = 0 would be desirable [4, 6]. We refer to [8] for a list of the diffusivities
proposed in the literature; here, we only consider two cases. The case

D(ρ) = −ρv′(ρ)
(
hv2(ρ) + τρv′(ρ)

)
(1)

has been proposed in [26] for vehicular flows. In the case of pedestrian flows one
may consider [6, Figure 4]

D(ρ) = −ρv′(ρ) (hv(ρ) + τρv′(ρ)) . (2)

Here τ > 0 is a reaction time and h > 0 a proportionality parameter.

We first consider case (1). In order that D(1) = 0 holds, we need v vanishes at
second order at ρ = 1; then, we consider

v(ρ) = v(1− ρ)2, (3)

for v > 0. We have

D(ρ) = 2hv3ρ(1− ρ)2
[
(1− ρ)3 − σρ

]
, σ := 2τ/(hv) > 0. (4)

397



ANDREA CORLI AND LUISA MALAGUTI

Lemma 3.1. Let v be given by (3) and D by (1) with τ > 0, see (4). Then D
satisfies (D1) for any positive v, h, τ such that α = α(v, h, τ) is the unique root in
(0, 1) of

(1− α)3 = σα. (5)

The function α(v, h, τ) covers the interval (0, 1) for τ, h, v ∈ (0,∞). If τ, h, v are
such that α(v, h, τ) ∈ (1/2, 1), then there are infinitely many pairs (`−, `+) such
that (3)–(5) hold.

For the proof, see [8, Lemma 3.3]. We refer to Figure 4 for an illustration of the
example in the case of real-world data [26]. There, we use dimensional variables.
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Figure 4. Plots of flows and diffusivities; the end states are de-
picted with diamonds. Here v(ρ) = v(1− ρ

ρ )2, D as in (1), ρ = 150

cars/km, v = 130 km/h, τ = 2 s, h = 1/15800 h2/km, see [26]. An
empty circle localizes α ∼ 88, an asterisk the inflection point of f ,
which is 100. For `+ = 147 we find `− ∼ 65.

Second, we consider case (2) together with the velocity [31]:

v(ρ) =

{
v if ρ ≤ a,
veγ

a−ρ
1−ρ if ρ > a,

(6)

where γ > 0, v > 0 and 0 ≤ a < 1 is a critical density that separates free from
congested flow, aγ < 2. Then f is strictly concave (convex) in [a, ρ̃) (in (ρ̃, 1]) for a
suitable ρ̃ ∈ (a, 1). In this case, for real-world data, conditions (3), (4) are satisfied
(in [a, 1]) if a and τ are sufficiently small; plots analogous to those in Figure 4 can
be shown [8]. About (5), it can be easily shown to be generically satisfied.
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F-31077 Toulouse, France

Emmanuel Franck

INRIA Nancy-Grand Est, TONUS team and IRMA
UMR CNRS 7501, Université de Strasbourg
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Abstract. This article deals with the linear stability of an implicit vectorial

kinetic relaxation scheme with a central velocity used to solve numerically some
multi-scale hyperbolic systems.

1. Introduction. Hyperbolic systems are often used to model complex physical
phenomena such as multi-scale problems. In such problems, characteristic waves do
not propagate with the same speed: fast waves interact with slower waves.
Discretizing such physical phenomena is still an open issue. Explicit methods are
prohibited due to their very restrictive CFL condition imposed by fastest scales and
implicit methods are computational time-consuming and memory cost-consuming
due to the inversion of ill-conditioned nonlinear systems. In order to better grasp
numerically these multi-scale problems, an alternative is to use kinetic relaxation
methods.
The key idea of these kinetic relaxation methods is to consider the unknown of the
hyperbolic system as the macroscopic moment of a kinetic distribution function.
The main advantage is that the distribution function satisfies a mesoscopic kinetic
equation, which is easier to process because it is composed of an advection equation
(at constant speeds) combined with a relaxation term, often chosen of Bhatnagar-
Gross-Krook type (in short BGK) [2]. The relaxation term enables kinetic equation
to tend toward hyperbolic system for an asymptotically small relaxation parameter.

An important degree of freedom in the kinetic relaxation methods is the choice
of the number and the values of the constant advection speeds for the distribution
function. We follow here the vectorial kinetic relaxation method, introduced in
[7, 1], which consists of fixing the same (small) set of advection speeds for each
component of the unknown of the hyperbolic system. A suitable choice for multi-
scale problems is the one introduced in [4] and mainly developed in [5], where
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three advection speeds λ−, λ0, λ+ are associated to each of the components of the
unknown of the hyperbolic system. The central speed λ0 is added to treat the
slowest scale of the physical phenomenon.

From numerical point of view, vectorial kinetic relaxation models are often dis-
cretized with numerical schemes which split the advection part from the relax-
ation term. There seems to be widespread agreement that the relaxation term is
treated numerically as a source term. The noticeable difference between numerical
schemes mainly comes from the numerical processing of the advection part. It may
be treated, for example, by an Exact discrete Transport, as in [6] or by a Semi-
Lagrangian method as in [5], which has the advantage to avoid matrices storage
and CFL condition. The properties of such a numerical scheme are detailed in [5],
particularly for the consistency. The stability analysis is much more difficult and is
rather sketchy.
The aim of this current paper is precisely to review all results on that stability
property. For simplicity, we restrict our study to the notion of linear stability (or
L2-stability). Note that other notions of stability such as entropic one is briefly
discussed in [5]. The outline of the current paper is constructed as follow. Section 2
gathers the notations of the splitting scheme associated to the vectorial kinetic re-
laxation model with a central velocity. Section 3 is a brief reminder of the notion of
L2-stability. This linear stability issue is raised in Section 4 for a Semi-Lagrangian
method for the advection part and in Section 5 for an Exact discrete Transport
method.

2. The vectorial kinetic relaxation scheme. Let us consider a 1D linear hy-
perbolic system ∂tU + ∂xF (U) = 0, with U(t, x) ∈ RN . The flux F is assumed to
be linear : F (U) = AU with the square matrix A ∈MN (R) .
The kinetic relaxation representation. By following the notations introduced
in [5], a fixed set of velocities {λ−, λ0, λ+} with λ− < λ0 < λ+ is associated to
each of the N components of U . Then, U is considered as a macroscopic moment
of a kinetic distribution function f ∈ R3N , which satisfies the following kinetic
relaxation equation

∂tf + Λ∂xf =
1

ε
(feq (U)− f) . (1)

According to the choice of the advection speeds set, we decompose f such as

f =
(
f−,f0,f+

)t
, with f j = (fj,k)k∈{1,...,N} ∈ RN for j ∈ {−, 0,+}. The

left hand side of (1) consists on the advection part with the diagonal matrix
Λ = diag (λ−Id, λ0Id, λ+Id) , which contains all the advection speeds (Id is the
N -identity matrix). The right hand side of (1) consists on the BGK relaxation
part with ε > 0 the relaxation parameter and feq = (feq− ,f

eq
0 ,f

eq
+ )t the equilibrium

vector, which is a function of U and which satisfies some consistency properties.
In order to determine feq− , feq0 and feq+ , we perform the decentered flux vector
splitting detailed in [5]. It consists to decompose the hyperbolic flux F into three
parts, which commute each other: F (U) = F−0 (U) +F+

0 (U) + λ0U . In the linear
case, the hyperbolic flux F writes F (U) = AU with A a diagonalizable square
matrix (because F is hyperbolic) and the previous decomposition is also linear:
there exist two commuting diagonalizable square matrices A±0 such that

AU = A−0 U +A+
0 U + λ0U . (2)
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Decomposition (2) together with U =
∑
j∈{−,0,+} f j (since U is the macroscopic

moment of f) enable to define each feqj for j ∈ {−, 0,+} as follow, where Id is the

identity matrix, (for more details, see [5])




feq− (U) = − 1

λ0 − λ−
A−0

(
f− + f0 + f+

)
,

feq0 (U) =

[
Id−

(
1

λ+ − λ0
A+

0 −
1

λ0 − λ−
A−0

)] (
f− + f0 + f+

)
,

feq+ (U) =
1

λ+ − λ0
A+

0

(
f− + f0 + f+

)
.

(3)

The numerical scheme. As in [5], we fix ∆t > 0 and ∆x > 0 the time and space

steps and denote fn =
(
fnj,k

)
j∈{−,0,+},k∈{1,...,N}

the distribution vector at time

tn = n∆t ∈ [0, T ]. The numerical scheme chosen to discretize (1) is the following
splitting scheme: fn+1 = Rε(∆t,∆x, θ) ◦ T (∆t,∆x)fn.
For convenient, we denote f∗ = T (∆t,∆x)fn.
• The transport step, named T (∆t,∆x), may be either a Semi-Lagrangian scheme
(SL hereafter), defined by

f∗j,k(x) = I∆x

(
fnj,k
)

(x− λj∆t), ∀j ∈ {−, 0,+} and ∀k ∈ {1, .., N}, (4)

where, for any g : R 7→ R, I∆x(g) is a piecewise polynomial interpolation of the
values taken by g on the mesh points, or an Exact discrete Transport scheme (ET
hereafter), defined by I∆x = Id (the identity map)

f∗j,k(x) = fnj,k(x− λj∆t), ∀j ∈ {−, 0,+} and ∀k ∈ {1, .., N}. (5)

Remark 1. Assuming an Exact discrete Transport scheme, as Relation (5), leads

to a CFL condition since it makes
λj∆t
∆x be an integer, for all j ∈ {−, 0,+}.

• The relaxation step, named Rε(∆t,∆x, θ), consists on a θ-scheme, with θ ∈ [ 1
2 , 1],

defined by fn+1−f∗

∆t = θ
feq(Un+1)−fn+1

ε + (1− θ)f
eq(U∗)−f∗

ε .

Since Un+1 = U∗ during the relaxation step, cf [5], it may be rewritten in the form:

fn+1 = f∗ + ω (feq (U∗)− f∗) with ω =
∆t

ε+ θ∆t
∈ [0, 2]. (6)

The final numerical scheme is thus obtained by combining (4)-(6) for the Semi-
Lagrangian choice (or (5)-(6) for the Exact discrete Transport choice).

3. Linear stability. We restrict our study to a linear (or L2) stability, by a von
Neumann analysis.

3.1. A review of L2-stability. Let G be the amplification matrix of a one-step
linear scheme (S) : fn+1 = G(∆t,∆x)fn. We recall the notion of L2-stability in
the following definition.

Definition 3.1. The scheme (S) is L2-stable if there exists a constant K > 0 such
that, for all ∆t and ∆x small enough (and possibly satisfying a CFL condition), for
all n ≥ 0 such that n∆t ≤ T , one has ||fn+1||`2 ≤ (1 +K∆t)||fn||`2 .

In terms of amplification matrix, the L2-stability notion translates into the follow-

ing necessary and sufficient condition :
√
ρ
(
[G(∆t,∆x)]

∗
G(∆t,∆x)

)
≤ 1 + K∆t,
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CLÉMENTINE COURTÈS AND EMMANUEL FRANCK

with, for a square matrix G, ρ(G) the spectral radius of G and G∗ the adjoint ma-
trix of G. This necessary and sufficient condition is not always easy to verify so we
focus only to the sufficient condition of the following proposition.

Proposition 1. Sufficient condition : In space Fourier variables f̂n(ξ) with
ξ ∈ [0, 2π

∆x ], a sufficient condition to ensure the L2-stability is as follow:
sup

ξ∈[0, 2π
∆x ]

ρ (G(∆t, ξ)) < 1, or sup
ξ∈[0, 2π

∆x ]

ρ (G(∆t, ξ)) = 1 and the eigenvalues of G(∆t, ξ)

with modulus equal to 1 are simple.

3.2. Amplification matrix for the vectorial kinetic relaxation scheme. To
deal with the L2-stability, we have to first compute the amplification matrix.
Reformulation of the relaxation step in the linear case. Since A−0 and A+

0

commute and are both diagonalizable, they are diagonalizable in the same basis to
obtain A±0 = B0D

±
0 B
−1
0 with D±0 the diagonal matrices

D±0 = diag
(
λk(A±0 )

)
k∈{1,..,N} and B0 an invertible matrix. The diagonal term

λk(A±0 ) corresponds to the kth eigenvalue of A±0 .
Relaxation step (6) is thus rewritten under the following bloc matrices form:



fn+1
−
fn+1

0

fn+1
+


 = B0Rε(∆t, ω)B−1

0



f∗−
f∗0
f∗+


 (7)

with B0 = diag(B0, B0, B0), B−1
0 = diag(B−1

0 , B−1
0 , B−1

0 ) and Rε(∆t, ω) the relax-
ation amplification matrix defined by blocs by

Rε(∆t, ω) = diag(Id, Id, Id) + ωR̃ε(∆t),

with R̃ε(∆t) =



− 1
λ0−λ−

D−
0 − Id − 1

λ0−λ−
D−

0 − 1
λ0−λ−

D−
0

Id−
(

1
λ+−λ0

D+
0 − 1

λ0−λ−
D−

0

)
− 1
λ+−λ0

D+
0 + 1

λ0−λ−
D−

0 Id−
(

1
λ+−λ0

D+
0 − 1

λ0−λ−
D−

0

)

1
λ+−λ0

D+
0

1
λ+−λ0

D+
0

1
λ+−λ0

D+
0 − Id


 .

Fourier analysis. We introduce the Fourier variable (in space) f̂n in L2([0, 2π
∆x ])

defined by f̂n(ξ) =
∑
x∈{mesh points} f

n(x)eixξ, ∀ξ ∈ [0, 2π
∆x ].

With this Fourier decomposition, transport step of the scheme rewrites :


f̂∗−(ξ)

f̂∗0(ξ)

f̂∗+(ξ)


 =



T−(∆t, ξ) 0

T0(∆t, ξ)
0 T+(∆t, ξ)






f̂n−(ξ)

f̂n0 (ξ)

f̂n+(ξ)


 ,

with
• Tj(∆t, ξ) = TSLj (∆t, ξ) the amplification factor of the Semi-Lagrangian scheme (4),

• or Tj(∆t, ξ) = eiλj∆tξId in the case of an Exact discrete Transport scheme (5).
Since relaxation step does not depend on the space, Relation (7) is also true with

f̂n+1 (resp. f̂∗) instead of fn+1 (resp. f∗).
Eventually, the total amplification matrix is equal to

G(∆t, ξ, ε, ω) = B0Rε(∆t, ω)B−1
0



T−(∆t, ξ) 0

T0(∆t, ξ)
0 T+(∆t, ξ)


 , (8)
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with Tj(∆t, ξ) = TSLj (∆t, ξ) for the scheme (4)-(6), or with Tj(∆t, ξ) = eiλj∆tξId
for the scheme (5)-(6), for j ∈ {−, 0,+}.

4. Linear stability for the Semi-Lagrangian step. Let us ensure our first
linear stability result.

Proposition 2. Let the hyperbolic flux F be linear and be decomposed into F (U) =
AU = A−0 U + A+

0 U + λ0U , with A+
0 and A−0 two commuting and diagonalizable

matrices.
The numerical scheme (4)-(6) with the advection speeds set {λ−, λ0, λ+}N , with
λ− < λ0 < λ+ and equilibrium (3) is L2-stable on the following conditions :

• ω ∈ [0, 1],

• Id−
(

1
λ+−λ0

A+
0 − 1

λ0−λ−
A−0

)
is a positive semidefinite matrix,

• A+
0 (resp. A−0 ) is a positive (resp. negative) semidefinite matrix.

Remark 2. Note that here a matrix is said to be positive semidefinite (resp. neg-
ative semidefinite) if all its eigenvalues are nonnegative (resp. nonpositive).

Remark 3. Sufficient conditions which involve in Proposition 2 are exactly the
same as the ones required for the entropy stability property, proved in [5].

To prove Proposition 2, we follow the main guidelines of [6] which suggest to
study the Gershgorin discs of the amplification matrix, for more details see [9].

Definition 4.1. Let G = (gij)i,j ∈MN (C) be a complex square matrix. The kth-
Gershgorin disc corresponds to the discDk = {z ∈ C, |gkk−z| ≤

∑
j 6=k |gjk|}, for k ∈

{1, ..., N}.
Theorem 4.2 (Gershgorin’s theorem). Let G = (gij)i,j ∈ MN (C) be a complex
square matrix. Every eigenvalue of G belongs at least to one Gershgorin disc of G.

Proof of Proposition 2. As the Semi-Lagrangian step is unconditionally stable [3],
we may omit the Semi-Lagrangian amplification factors TSLj (∆t, ξ) for j ∈ {−, 0,+}
in our study. It only remains to consider eigenvalues of Rε(∆t, ω).

Let λ be an eigenvalue of Rε(∆t, ω) = (rε,ij)i,j∈{1,...,3N}. According to Theorem

4.2, there exists k̄ ∈ {1, ..., 3N} such that |rε,k̄k̄ − λ| ≤ ∑j 6=k̄ |rε,jk̄|. Then by a

triangular inequality, |λ| ≤ |rε,k̄k̄ − λ|+ |rε,k̄k̄| ≤
∑3N
j=1 |rε,jk̄|. However, one has

• for k̄ ∈ {1, ..., N}
3N∑

j=1

|rε,jk̄| =
∣∣∣∣1− ω

λk̄(A−0 )

λ0 − λ−
− ω

∣∣∣∣+

∣∣∣∣ω − ω
(
λk̄(A+

0 )

λ+ − λ0
− λk̄(A−0 )

λ0 − λ−

)∣∣∣∣+

∣∣∣∣ω
λk̄(A+

0 )

λ+ − λ0

∣∣∣∣ ,

• for k̄ ∈ {N + 1, ..., 2N}
3N∑

j=1

|rε,jk̄| =
∣∣∣∣−ω

λk̄(A−0 )

λ0 − λ−

∣∣∣∣+
∣∣∣∣1− ω + ω

(
1−

(
λk̄(A+

0 )

λ+ − λ0
− λk̄(A−0 )

λ0 − λ−

))∣∣∣∣+
∣∣∣∣ω
λk̄(A+

0 )

λ+ − λ0

∣∣∣∣ ,

• for k̄ ∈ {2N + 1, ..., 3N}
3N∑

j=1

|rε,jk̄| =
∣∣∣∣−ω

λk̄(A−0 )

λ0 − λ−

∣∣∣∣+
∣∣∣∣ω − ω

(
λk̄(A+

0 )

λ+ − λ0
− λk̄(A−0 )

λ0 − λ−

)∣∣∣∣+
∣∣∣∣1 + ω

λk̄(A+
0 )

λ+ − λ0
− ω

∣∣∣∣ .
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Hypotheses of Proposition 2 enable to remove modulus in the previous relations

and to obtain for all k̄ ∈ {1, ..., 3N}, ∑3N
j=1 |rε,jk̄| = 1.

Hence, all eigenvalues of Rε(∆t, ω) have a modulus smaller than 1 which implies
the L2- stability of the numerical scheme (4)-(6).

Example 1. Here is a non-exhaustive list of flux decompositions which enable to
obtain a L2-stable scheme for scalar case when F (u) = au = a−0 u+ a+

0 u+ λ0u:
• (Rusanov) We choose λ− ≤ min(0, a), λ0 = 0 and max(0, a) ≤ λ+ and we define

a+
0 = λ+

(
a−λ−
λ+−λ−

)
and a−0 = −λ−

(
a−λ+

λ+−λ−

)
. A particular Rusanov decomposition

consists to choose −λ− = λ+ = |a|.
• (Upwind) We choose λ− ≤ min(λ0, a) and max(λ0, a) ≤ λ+ and we define a+

0 =
1a>λ0

(a− λ0) and a−0 = 1a<λ0
(a− λ0), with 1 the indicator function.

• (Lax-Wendroff) We choose −λ− = λ+ = λ > 0 with
√
α|a| ≤ λ ≤ α|a| and λ0 = 0

and we define a±0 = 1
2

(
a± αa2

λ

)
with α ∈ [1, 2].

For more details about these flux decompositions, we refer the readers to [5].

Remark 4. Proposition 2 is also valid for the scheme (5)-(6) (with an Exact discrete
Transport step). However, the following section improves those results.

5. Linear stability for the Exact discrete Transport step. For simplicity, we
focus only on the scalar linear case: ∂tu + a∂xu = 0 with u(t, x) ∈ R and a ∈ R,
which implies B0 = 1 in (8). The Exact discrete Transport step enables to improve
sufficient conditions of Proposition 2, in particular in the range of admissible ω.

Proposition 3. Let the scalar hyperbolic flux F be linear and be decomposed into
F (u) = au = a−0 u+ a+

0 u+ λ0u.
The numerical scheme (5)-(6) with the advection speeds set {λ−, λ0, λ+}, with λ− <
λ0 < λ+ and equilibrium (3) is L2-stable on the following conditions :

• ω ∈ [0, 2],

• 1−
(

a+
0

λ+−λ0
− a−0

λ0−λ−

)
≥ 0,

• a+
0 ≥ 0 and a−0 ≤ 0,

• One of the three following equalities is satisfied : a+
0 = 0 or a−0 = 0 or

1−
(

a+
0

λ+−λ0
− a−0

λ0−λ−

)
= 0.

Remark 5. As the scalar case is considered here, condition 1−
(

a+
0

λ+−λ0
− a−0

λ0−λ−

)
≥

0 may be written in the simplest form: λ− ≤ a ≤ λ+. In deed, in the scalar case,

1−
(

a+
0

λ+ − λ0
− a−0
λ0 − λ−

)
=

λ+ − a
λ+ − λ0

+
a−0 (λ+ − λ−)

(λ+ − λ0)(λ0 − λ−)
=

a− λ−
λ0 − λ−

− a+
0 (λ+ − λ−)

(λ+ − λ0)(λ0 − λ−)
.

The nonnegativity of this quantity together with the hypotheses λ− < λ0 < λ+,
a+

0 ≥ 0 and a−0 ≤ 0 implie that λ− ≤ a ≤ λ+.

Instead of using Gershgorin discs to prove Proposition 3, we need a more specific
tool to localize the eigenvalues and we use Rouché’s theorem, as suggested in [8].

Theorem 5.1 (Rouché’s theorem). Let γ be a closed simple path in Ω ⊂ C and
assume that γ has an interior. Let f and g be holomorphic (analytic) on Ω and
|f(ζ)− g(ζ)| < |f(ζ)| for all ζ on γ. Then f and g have the same number of zeros
in the interior of γ.
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Proof of Proposition 3. Let us define A+
0 =

a+
0

λ+−λ0
and A−0 =

a−0
λ0−λ−

. In the scalar

case, the amplification matrix writes G(∆t, ξ, ε, ω) =



(
1− ωA−

0 − ω
)
eiλ−∆tξ −ωA−

0 e
iλ0∆tξ −ωA−

0 e
iλ+∆tξ

ω
(
1−

(
A+

0 −A−
0

))
eiλ−∆tξ

(
1− ω

(
A+

0 −A−
0

))
eiλ0∆tξ ω

(
1−

(
A+

0 −A−
0

))
eiλ+∆tξ

ωA+
0 e

iλ−∆tξ ωA+
0 e

iλ0∆tξ
(
1 + ωA+

0 − ω
)
eiλ+∆tξ


 .

The characteristic polynomial of G is as follow: χ(X) = µ0+µ1X+µ2X
2−X3, with

µ0 = (1− ω)2ei(λ++λ0+λ−)∆tξ,

µ1 = (1− ω)
[
(−1− ωA−0 )ei(λ0+λ+)∆tξ + (−1 + ωA+

0 )ei(λ0+λ−)∆tξ

+(−1 + ω(1−A+
0 +A−0 ))ei(λ++λ−)∆tξ

]
,

µ2 = (1− ω + ωA+
0 )eiλ+∆tξ + (1− ω + ω(1−A+

0 +A−0 ))eiλ0∆tξ

+ (1− ω − ωA−0 )eiλ−∆tξ.

In the three particular studied cases, the previous characteristic polynomial writes

χ(X) =
{

(1− ω)eiν1∆tξ −X
}
χ̃(X), (9)

where χ̃(X) = (1−ω)ei(ν2+ν3)∆tξ−Xei(
ν2+ν3

2 )∆tξ [(2− ω) cos(Ξ) + iωη sin(Ξ)]+X2,
with

• Case a+
0 = 0 : ν1 = λ+, ν2 = λ0, ν3 = λ−, Ξ = λ0−λ−

2 ∆tξ, η = 1+2
a−0

λ0−λ−
,

• Case a−
0 = 0 : ν1 = λ−, ν2 = λ0, ν3 = λ+, Ξ = λ0−λ+

2 ∆tξ, η = 1−2
a+

0

λ+−λ0
,

• Case 1 − a
+
0

λ+−λ0
+

a
−
0

λ0−λ−
= 0 : ν1 = λ0, ν2 = λ+, ν3 = λ−, Ξ =

λ+−λ−
2 ∆tξ, η =

a+
0

λ+−λ0
+

a−0
λ0−λ−

.

Particular cases ω = 0 or ω = 2: In these two cases, the three roots are

transparent:
{
eiν1∆tξ, [cos(Ξ)± i sin(Ξ)] ei(

ν2+ν3
2 )∆tξ

}
=
{
eiν1∆tξ, eiν2∆tξ, eiν3∆tξ

}

for ω = 0 and

{
−eiν1∆tξ,

[
±
√

1− η2 sin2(Ξ) + iη sin(Ξ)

]
ei(

ν2+ν3
2 )∆tξ

}
for ω = 2.

Equality (2) in the scalar case enables to simplify η: η = −ν2−2a+ν3

ν2−ν3
. Conditions

λ− < λ0 < λ+, λ− ≤ a ≤ λ+, a−0 ≤ 0 and a+
0 ≥ 0 imply that η ∈ [−1, 1].

Thus, the square root
√

1− η2 sin2(Ξ) is well defined. If −1 < η < 1, the roots

are simple since 1 − η2 sin2(Ξ) 6= 0. Otherwise, the roots for ω = 2 simplify into{
−eiν1∆tξ, eiν2∆tξ,−eiν3∆tξ

}
if η = 1 and

{
−eiν1∆tξ,−eiν2∆tξ, eiν3∆tξ

}
if η = −1.

To conclude with ω ∈ {0, 2}, all these roots have a modulus equal to 1 and are
simple.
General case ω ∈]0, 2[: Obviously, according to (9), one of the three roots of χ is
(1− ω)eiν1∆tξ which has a modulus strictly smaller than 1 if ω ∈]0, 2[. We have to
determine the two other roots.
• If Ξ ≡ 0[π], χ̃ writes χ̃±(X) := (1− ω)ei(ν2+ν3)∆tξ ± [2− ω]ei(

ν2+ν3
2 )∆tξX +X2.

The roots of χ̃− are (2−ω)±ω
2 ei(

ν2+ν3
2 )∆tξ and those of χ̃+ are −(2−ω)±ω

2 ei(
ν2+ν3

2 )∆tξ.
They are all simple and their modulus are equal to 1 or to |1−ω| < 1 since ω ∈]0, 2[.

• If Ξ 6≡ 0[π], we define ψ such as ψ(X) := χ̃(X) for ω = 1, which gives

ψ(X) = X
[
−ei(

ν2+ν3
2 )∆tξ [cos(Ξ) + iη sin(Ξ)] +X

]
.
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The key point is to compare the zeros of both χ̃ and ψ in the unit ball, as in [8].

Roots of ψ. The roots of ψ are X1 = 0 and X2 = e
i
(
ν2+ν3

2

)
∆tξ

[cos(Ξ) + iη sin(Ξ)] .

The modulus of X2 is |X2|2 = cos2(Ξ)
[
1− η2

]
+ η2 ∈

[
η2, 1

[
, since η ∈ [−1, 1].

Since Ξ 6≡ 0[π], |X2| does not be equal to 1. The function ψ has thus two roots
strictly contained in the open unit ball.
Comparison between χ̃ and ψ on the unit circle. For θ ∈ R, one has

|χ̃(eiθ)−ψ(eiθ)| = |1−ω|
∣∣∣ei(ν2+ν3)∆tξ − ei(θ+( ν2+ν3

2 )∆tξ) [cos(Ξ)− iη sin(Ξ)]
∣∣∣ .

Multiplying by | − e−i(θ+( ν2+ν3
2 )∆tξ)| and taking the complex conjugate give

|χ̃(eiθ)− ψ(eiθ)| = |1− ω|
∣∣∣−e−i(

ν2+ν3
2 )∆tξ+iθ + [cos(Ξ) + iη sin(Ξ)]

∣∣∣ .

Computation of ψ on the unit circle. One has |ψ(eiθ)| =∣∣∣−ei(
ν2+ν3

2 )∆tξ [cos(Ξ) + iη sin(Ξ)] + eiθ
∣∣∣ =

∣∣∣cos(Ξ) + iη sin(Ξ)− e−i(
ν2+ν3

2 )∆tξ+iθ
∣∣∣ .

The latest equality is obtained by a multiplication by | − e−i(
ν2+ν3

2 )∆tξ|.
Use of Rouché’s theorem 5.1. One chooses the closed simple path γ be equal
to the unit circle. Since ω ∈]0, 2[, one has |χ̃(eiθ) − ψ(eiθ)| = |1 − ω||ψ(eiθ)| <
|ψ(eiθ)| for all θ ∈ R. By Rouché’s theorem 5.1, χ̃ has the same number of roots
in the open unit ball than ψ.

All in all, each case of ω leads to three roots of χ with modulus strictly less than
1 or equal to 1 and simple. The L2-stability is thus a consequence of Proposition 1.

Example 2. The three first flux decompositions of Example 1 satisfy hypotheses of
Proposition 3. They are also satisfied by the Lax-Wendroff decomposition only with the
extremal choice |a| = λ/α or |a| = λ/

√
α. (Note that the L2-stability may be proved

by a directe computation with α = 1 and λ ≥ |a| in the particular choice ω = 1).
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Abstract. In this article, we derive a posteriori error estimator for the patch-

wise local projection (PLP) stabilized conforming finite element method for
convection-diffusion-reaction problems. The present a posteriori error analysis

builds on the general approach of Verfürth which exploits the generic equiv-

alence of error and residual, and get explicit and computable bounds for er-
rors. The considered PLP stabilized method is a composition of the standard

Galerkin finite element method, the patch-wise local projection stabilization,

and weakly imposed Dirichlet boundary conditions on the discrete solution.
Therefore in a posteriori estimates, the main issues are to deal with the con-

sistency error arising due to non-consistent PLP stabilization term and weakly
imposed boundary conditions. We present numerical results to validate the

performance of the adaptive estimator.

1. Introduction. Convection-dominated diffusion equations arise in many appli-
cations like pollutant transport, Navier-Stokes equations and oil recovery models.
The standard Galerkin finite element method (FEM) fails to provide a stable and
non-oscillatory solution for these cases. Therefore, there is a wide range of sta-
bilized FEMs has been proposed and analyzed in the literature (see [5, 6, 7] and
the reference therein). It is well understood that the standard Galerkin method
fails due to the presence of interior or boundary layers in the solution and these
are not adequately resolved by this method. These layers cause high gradient of
the solution in some small subregions of the domain. Although stabilized methods
provide non-oscillatory solutions, it is essential to identify the critical regions in the
domain where these layers occur and then to adopt a local refinement strategy to
increase the accuracy of the finite element solution. Robust reliable and efficient
adaptive error estimator and adaptive algorithms can play a vital role in this sce-
nario. Therefore, investigating robust a posteriori error estimator for the stabilized
FEMs is an active research area (see [7, 9, 8] and the references given there).

2000 Mathematics Subject Classification. Primary: 65N30, 65N12.
Key words and phrases. A posteriori error analysis, local projection stabilized, Convection-

diffusion problems.
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In this article, our aim is to derive a posteriori error estimator for the conforming
patch-wise local projection (PLP) stabilized finite element method for convection-
diffusion equations, described in [3]. To obtain a posteriori error estimator for
convection-diffusion problems, Verfürth [7, 9] has proposed a general abstract frame-
work which is based on the equivalence of the error and the associated residual. This
equivalence is completely independent of the discretization. The PLP stabilized dis-
crete formulation comprises the standard finite element method, PLP stabilization,
and the Nitsche’s technique for boundary condition (see [1, 3, 4] for more details).
This formulation lacks the Galerkin orthogonality and also has weakly imposed
boundary conditions in the discrete solution. Due to this, while deriving a posteri-
ori error estimator for PLP method, in addition to Verfürth approach, we need to
control two consistency errors by some computable estimators.

A posteriori estimator derived in this paper has four sub-estimators: first two
are the standard residuals over the triangles and the jump of normal gradient over
the edges which are obtained by the standard adaptive estimator approach, the
third estimator is a patch-wise estimator arising from consistency error due to PLP
stabilization term and the last estimator is a boundary integral due to weakly
imposed boundary conditions in the formulation.

The paper is organized as follows. Section 2 recalls the convection-diffusion
problem and the conforming PLP stabilized finite element method. Section 3 inves-
tigates a posteriori error estimator for PLP stabilization method. Finally, Section 4
presents numerical results of the adaptive algorithm using the proposed estimator
in Section 3.

We conclude the introductory section with some notation used throughout this
paper. Standard notation applies to Lebesgue and Sobolev spaces. The L2(Ω)
and L∞(Ω) norms are respectively denoted by ‖ · ‖ and ‖·‖∞, and ‖ · ‖k(k ≥ 1)
denotes the standard norm on the Sobolev space Hk(Ω). The L2(Ω) inner-product
is denoted by (·, ·). The notation a . b abbreviates a ≤ Cb, where C denotes a
generic constant, which may depend on the shape-regularity of the triangulation
but is independent of the mesh-size and diffusion parameter ε.

2. Convection-diffusion equations.

2.1. Variational Problem. Consider the following convection-diffusion-reaction
problem with homogeneous Dirichlet boundary conditions

−ε∆u+ b · ∇u+ a0u = f in Ω, u = 0 on Γ, (1)

where Ω ⊂ R2 is a bounded polygonal domain with boundary Γ. We make the
following assumptions on the data: (1) The force function f ∈ L2(Ω), (2) The
coefficient ε is a positive constant, b ∈ [W 1

∞(Ω)]2 and a0 ∈ L∞(Ω) are given. The
problem is convection dominated, that is, ε � |b|, (3) There exist two constants
β > 0 and cb ≥ 0 such that (a0 − div b/2) ≥ β > 0 and ‖a0‖∞ ≤ cbβ.

Let V be the standard H1
0 (Ω) space which is defined by H1

0 (Ω) := {v ∈ H1(Ω) :
γ(v) = 0 on Γ}, where γ : H1(Ω)→ H1/2(Γ) is the trace operator. A weak formu-
lation of the model problem (1) consists of finding u ∈ V such that

a(u, v) = 〈`, v〉 for all v ∈ V, (2)

where a(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (a0u, v) and 〈`, v〉 := (f, v).
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A use of integration by parts yields that

a(v, v) ≥ |||v|||2 ∀ v ∈ V, where |||v|||2 := ε‖∇v‖2 + β‖v‖2. (3)

The corresponding dual norm on H−1(Ω) = (H1
0 (Ω))∗ is defined by

|||φ|||∗ = sup
v∈H1

0 (Ω)/{0}

〈φ, v〉
|||v||| , (4)

where 〈·, ·〉 denotes the corresponding duality pairing. We have for all v, w ∈ H1
0 (Ω)

from [7, Proposition 4.17],

a(v, w) ≤ max{cb, 1}{|||v|||+ |||b · ∇v|||∗} |||w||| , (5)

inf
v∈H1

0 (Ω)/{0}
sup

w∈H1
0 (Ω)/{0}

a(v, w)

(|||v|||+ |||b · ∇v|||∗) |||w|||
≥ 1

2 + max{cb, 1}
. (6)

Hence, the problem (2) admits a unique solution u ∈ H1
0 (Ω) for every right-hand

side ` ∈ H−1(Ω) and

|||`|||∗ . |||u|||+ |||b · ∇u|||∗ . |||`|||∗ . (7)

Here, the constants are independent of ε and β.

2.2. Discrete Problem with Conforming Elements. Let Th be a locally quasi-
uniform and regular triangulation of Ω into triangles. The set of all interior (resp.
boundary) vertices of Th are denoted by N i

h (resp. N b
h). Set Nh := N i

h ∪ N b
h. For

any z ∈ Nh, we denote by ωz (patch of z) the union of all the triangles that share
the vertex z. Let Eh := E ih ∪ Ebh, where E ih (resp. Ebh) is the set of all interior (resp.
boundary) edges in Th. Let ne be the unit outward normal vector along the edge e.
Let hT := |T |1/2, where |T | is the area of the element T and h := max{hT : T ∈ Th}.
The length of any edge e is denoted by he. Also let hz be the diameter of ωz and |ωz|
be the area of ωz. Let |v| be the modulus function of v and define v	 := 1

2 (|v| − v).
We introduce the mesh-functions hT defined by hT |T = hT and hE defined by

hE |T = he . We also use following notation: for s ∈ R and k ≥ 0

‖hsT v‖k =
( ∑

T∈Th
h2s
T ‖v‖2Hk(T )

)1/2

for all v ∈ Hk(Th).

Let k ≥ 0 be an integer and Pk(T ) be the space of polynomials of degree at most k
over the element T . The broken polynomial space Pk(Th) is defined as

Pk(Th) := {v ∈ L2(Ω) : ∀T ∈ Th, v|T ∈ Pk(T )}.
Define the discrete space for the conforming finite element approximation by

Vh := {v ∈ H1(Ω) : ∀T ∈ Th, v|T ∈ P1(T )}.
For any z ∈ Nh, define the fluctuation operator Sz : H1(ωz)→ L2(ωz) by

Sz(v) := b · ∇v −
 

ωz

b · ∇v dx, where

 

ωz

v dx =
1

|ωz|

ˆ

ωz

v dx.

For each z ∈ Nh, let δz := δhz and δ ≥ 0. Define the bilinear form Fh of fluctuations
by

Fh(w, v) :=
∑

z∈Nh
δz

ˆ

ωz

Sz(w)Sz(v) dx. (8)

410



ASHA K. DOND AND THIRUPATHI GUDI

The patch-wise local projection stabilized conforming finite element method is de-
fined as follows: find uh ∈ Vh such that

Ah(uh, vh) = 〈`, vh〉 for all vh ∈ Vh, (9)

where the bilinear form Ah is defined by

Ah(w, v) := ah(w, v) + dh(w, v) + Fh(w, v) and 〈`, vh〉 := (f, vh), (10)

the discrete bilinear forms ah and dh are defined by

ah(w, v) := ε(∇w,∇v)−
∑

e∈Ebh

ˆ

e

ε
∂w

∂ne
v ds−

∑

e∈Ebh

ˆ

e

ε
∂v

∂ne
w ds+

∑

e∈Ebh

ˆ

e

εσ

he
wv ds,

(11)

dh(w, v) := (b · ∇w, v) + (a0w, v) +
∑

e∈Ebh

ˆ

e

(b · ne)	wv ds, (12)

where σ is a positive constant, it is the penalty parameter for weakly imposed
boundary condition. The choice of σ comes through the coercivity results [3, Lemma
3.5]. The well-posedness of the discrete stabilized formulation (9) has been discussed
in [3].

3. A posteriori error analysis. In this section, we derive a posteriori error esti-
mator for the considered problem. The current analysis utilizes the approach from
Verf̈ruth [9] which is based on the equivalence of the error to the associated residual.
Let u ∈ V and uh ∈ Vh be the unique solutions of problems (2) and (9), respectively.
Here, note that uh ∈ Vh 6⊂ H1

0 (Ω), hence in order to use equivalence estimates (7)
for the error equation a(u − uh, v) = (f, v) − a(uh, v), we need to find some com-
panion ũh ∈ Vh ∩ V of uh. Then, a posteriori error estimator can be found in the
two steps: first step will be the estimation of error u − ũh using the equivalence
and second step will be the estimation of uh− ũh in the corresponding norms. This
kind of approach can be found in [2, Section 3] and references therein.

The error u− ũh solves the variational problem (2), that is, for every v ∈ H1
0 (Ω)

a(u− ũh, v) = (f, v)− a(ũh, v), (13)

with ` replaced by the residual R̃ which is defined by 〈R̃, v〉 = (f, v)− a(ũh, v). We
have the following equivalence of error and residual from (7)

∣∣∣
∣∣∣
∣∣∣R̃
∣∣∣
∣∣∣
∣∣∣
∗
. |||u− ũh|||+ |||b · ∇(u− ũh)|||∗ .

∣∣∣
∣∣∣
∣∣∣R̃
∣∣∣
∣∣∣
∣∣∣
∗
. (14)

The approximation ũh ∈ Vh ∩ V is defined as ũh(z) := 1
#Th(z)

∑

T∈ωz
uh|T for all

interior nodes z ∈ N i
h and ũh(z) = 0 for the boundary nodes z ∈ N b

h, here #Th(z)
denotes the cardinality of triangles that sharing node z. This approximation has
following properties (for more details see [2, Theorem 5.1])

∥∥h−1
T (uh − ũh)

∥∥
L2(Ω)

.
∥∥∥h−1/2
E [uh] |E

∥∥∥
L2(Eh)

. min
v∈V
‖∇uh −∇u‖ . (15)

Since uh ∈ P1(Th) ∩H1(Ω) is a continuous function, ũh(z) = uh(z), for all z ∈ N i
h

and the jumps of uh over the interior edges E ih are zero. Hence (15) become
∥∥h−1
T (uh − ũh)

∥∥
L2(Ω)

.
∥∥∥h−1/2
E uh

∥∥∥
L2(Ebh)

. (16)
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Let Ih : H1
0 (Ω)→ P1(Th)∩H1

0 (Ω) be the quasi-interpolation operator [9, (3.22)]
which satisfies for T ∈ Th and e ∈ Eh the following local approximation properties
([9, proposition 3.33], [8, Lemma 3.2])

‖v − Ihv‖L2(T ) . hT ‖∇v‖L2(ωT ) . αT |||v|||L2(ωT ) ,

‖v − Ihv‖L2(T ) . hT ‖∇v‖L2(ωT ) , ‖∇(v − Ihv)‖L2(T ) . ‖∇v‖L2(ωT ) , (17)

‖v − Ihv‖L2(e) . h1/2
e ‖∇v‖L2(ωe)

. ε−1/4α1/2
e |||v|||L2(ωT ) ,

where αs := min{ε−1/2diam(s), β−1/2}, and ωT and ωe denote the union of all
elements in Th sharing at least a point with T and e, respectively.

3.1. A reliable a posteriori error estimator. This subsection discovers a pos-
teriori error estimator. The complete adaptive estimator has four parts: first two
are the standard residual over the triangles and the jump of normal gradient over
the edges

η2
T :=α2

T ‖f + ε∆uh − b · ∇uh − aouh‖2L2(T ) ,

η2
E :=

1

2

∑

e∈ET
αeε
−1/2 ‖[ε∇uh · ne]‖2L2(e) ,

where ET is the set of edges of triangle T and αs := min{ε−1/2diam(s), β−1/2}.
Let NT be the set of vertices of the triangle T . Since the PLP stabilized discrete
formulation is not consistent, there is also the following PLP estimator term:

η2
PLP =

∑

z∈NT
αz inf

qz∈P0(ωz)
‖b · ∇uh − qz‖2L2(T ) .

The estimator due to use of Nitsche’s or weakly imposed boundary conditions

η2
B =

∑

e∈Ebh

max{ε, α2
e}

1

he
‖uh‖2L2(e) .

The complete adaptive estimator ηh is defined by

η2
h :=

∑

T∈Th

{
η2
T + η2

E + η2
PLP + η2

B

}
. (18)

The following theorem derives the reliable estimator ηh.

Theorem 3.1. Let u ∈ V and uh ∈ Vh be the unique solutions of problems (2) and
(9), respectively. Then, it holds

|||u− uh|||+ |||b · ∇(u− uh)|||∗ ≤ Cηh.

Proof. Let ũh be the connecting companion as defined in (15). We rewrite error
as

|||u− uh|||+ |||b · ∇(u− uh)|||∗ ≤ |||u− ũh|||+ |||b · ∇(u− ũh)|||∗
+ |||ũh − uh|||+ |||b · ∇(ũh − uh)|||∗ . (19)

The first two error terms on the right-hand sides of (19) can be estimated using the

equivalence relation (14). In that, to estimate the residual
∣∣∣
∣∣∣
∣∣∣R̃
∣∣∣
∣∣∣
∣∣∣
∗

we need

〈R̃, v〉 = (f, v)− a(ũh, v) = (f, v)− a(uh, v) + a(uh − ũh, v) for all v ∈ H1
0 (Ω).
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Let 〈R, v〉 := (f, v) − a(uh, v). The boundedness property (5) of the bilinear form
a(·, ·) implies

a(uh − ũh, v) ≤ max{cb, 1}{|||uh − ũh|||+ |||b · ∇(uh − ũh)|||∗} |||v||| . (20)

From the combination of (19)-(20) and the definition (4), it is clear that in the proof
we have to estimate 〈R, v〉 and |||ũh − uh|||+ |||b · ∇(ũh − uh)|||∗.
Step I. Let us start with 〈R, v〉. Introduction of the quasi-interpolation Ih as
defined in (17) yields,

〈R, v〉 ≤ 〈R, v − Ihv〉+ 〈R, Ihv〉 for all v ∈ H1
0 (Ω). (21)

The standard procedure of deriving a posteriori error estimates [8, Section 4], [9,
Theorem 3.57] yields the following upper bound for the dual norm of the residual

〈R, v − Ihv〉
|||v||| .

( ∑

T∈Th
(η2
T + η2

E)
)1/2

.

In the second term on the right-hand side of (21), use of the weak formulation (2)
and (9), and the fact Ihv ∈ H1

0 (Ω) result in

〈R, Ihv〉 = (f, Ihv)− a(uh, Ihv)

= (f, Ihv)− ε(∇uh,∇Ihv)− (b · ∇uh, Ihv)− (a0uh, Ihv)

= −
∑

e∈Ebh

ˆ

e

ε
∂Ihv

∂ne
uh ds+ Fh(uh, Ihv). (22)

Consider the first term on the right-hand side of (22) over an edge e ∈ Ebh. A use
the Cauchy-Schwarz inequality and the trace inequality result in

ˆ

e

ε
∂Ihv

∂ne
uh ds ≤ ε

∥∥∥∥
∂Ihv

∂ne

∥∥∥∥
L2(e)

‖uh‖L2(e) ≤ ε ‖∇Ihv‖L2(e) ‖uh‖L2(e)

≤ ε1/2

h
1/2
e

‖uh‖L2(e) ε
1/2 ‖∇Ihv‖L2(T ) .

The sum over all boundary edges and the fact ε1/2 ‖∇Ihv‖ ≤ ε1/2 ‖∇v‖ ≤ |||v||| result
in

∑

e∈Ebh

ˆ

e

ε
∂Ihv

∂n
uh ds ≤

( ∑

e∈Ebh

ε

he
‖uh‖2L2(e)

)1/2

ε1/2 ‖∇Ihv‖

≤
( ∑

e∈Ebh

ε

he
‖uh‖2L2(e)

)1/2

|||v||| . (23)

The second term on the right-hand side of (22) can be bounded as

Fh(uh, Ihv) =
∑

z∈Nh
δz

ˆ

ωz

(
b · ∇uh −

 

ωz

b · ∇uh dx
)(
b · ∇Ihv −

 

ωz

b · ∇Ihv dx
)
dx

≤
∑

z∈Nh
δz

∥∥∥∥b · ∇uh −
 

ωz

b · ∇uh dx
∥∥∥∥
L2(ωz)

∥∥∥∥b · ∇Ihv −
 

ωz

b · ∇Ihv dx
∥∥∥∥
L2(ωz)

.

(24)
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For any qz ∈ P0(ωz), qz −
ffl

ωz
qz = 0. The boundedness of the averaging operator

implies
∥∥∥∥b · ∇uh −

 

ωz

b · ∇uh dx
∥∥∥∥
L2(ωz)

=

∥∥∥∥(b · ∇uh − qz)−
 

ωz

(b · ∇uh − qz) dx
∥∥∥∥
L2(ωz)

. ‖b · ∇uh − qz‖L2(ωz) . (25)

The boundedness of operator and the inequality ‖∇Ihv‖L2(ωz) ≤ h−1
z αz |||v|||L2(ωz)([9,

Section 3.8]) show

δz

∥∥∥∥b · ∇Ihv −
 

ωz

b · ∇Ihv dx
∥∥∥∥
L2(ωz)

. δz ‖b · ∇Ihv‖L2(ωz) . hz ‖b‖∞ ‖∇Ihv‖L2(ωz)

. hzh
−1
z αz |||v|||L2(ωz) . (26)

The substitution of (25) and (26) in (24) implies

Fh(uh, Ihv) .
∑

z∈Nh
αz ‖b · ∇uh − qz‖L2(ωz) |||v|||L2(ωz)

.
( ∑

z∈Nh
α2
z ‖b · ∇uh − qz‖2L2(ωz)

)1/2

|||v||| . (27)

Since qz is arbitrary, we have

Fh(uh, Ihv) .
( ∑

z∈Nh
inf

qz∈P0(ωz)
α2
z ‖b · ∇uh − qz‖2L2(ωz)

)1/2

|||v||| .

The final step is the rearrangement of summations, that is,
∑

z∈Nh
αz inf

qz∈P0(ωz)
‖b · ∇uh − qz‖2L2(ωz) =

∑

z∈Nh

∑

T∈ωz
αz inf

qz∈P0(ωz)
‖b · ∇uh − qz‖2L2(T )

=
∑

T∈Th

( ∑

z∈NT
αz inf

qz∈P0(ωz)
‖b · ∇uh − qz‖2L2(T )

)
. (28)

The substitution of consistent error (23) and (27) in (22), and (28) result in

〈R, Ihv〉
|||v||| .

( ∑

e∈Ebh

ε

he
‖uh‖2L2(e)

)1/2

+
( ∑

z∈Nh
α2
z inf
qz∈P0(ωz)

‖b · ∇uh − qz‖2L2(ωz)

)1/2

.

Step II In the second part, we have to estimate |||uh − ũh|||+ |||b · ∇(uh − ũh)|||∗. In
the first term, a use of (16) and the inverse inequality result in

|||uh − ũh|||2 = ε ‖∇(uh − ũh)‖2 + β ‖uh − ũh‖2 . ε
∥∥h−1
T (uh − ũh)

∥∥2
+ β ‖uh − ũh‖2

. ε
∥∥∥h−1/2
E uh

∥∥∥
2

L2(Ebh)
+ β

∥∥∥hT h−1/2
E uh

∥∥∥
2

L2(Ebh)
. 2 max{ε, βh2

T }
∥∥∥h−1/2
E uh

∥∥∥
2

L2(Ebh)
.

Note that, ε ≤ hT and he ≤ αe, so the final coefficient of the edge estimator will be
α2
e. The second term

|||b · ∇(uh − ũh)|||∗ = sup
v∈H1

0 (Ω)/{0}

〈b · ∇(uh − ũh), v〉
|||v||| . (29)

The Cauchy-Schwarz inequality, (16) and ‖v‖ ≤ β−1/2 |||v||| imply

〈b · ∇(uh − ũh), v〉 ≤ ‖b · ∇(uh − ũh)‖ ‖v‖ . β−1/2
∥∥∥h−1/2
E uh

∥∥∥
L2(Ebh)

|||v||| . (30)
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Also, by an integration by parts and using data assumption (2), (16) and the fact
that ε < β we have

〈b · ∇(uh−ũh), v〉 = −(uh − ũh,∇ · (bv)) = −(uh − ũh, b∇v + divb v)

. ‖uh − ũh‖ (‖v‖+ ‖∇v‖) = ‖uh − ũh‖
( 1

β1/2
β1/2 ‖v‖+

1

ε1/2
ε1/2 ‖∇v‖

)

. ε−1/2
∥∥∥hT h−1/2

E uh

∥∥∥
L2(Ebh)

|||v||| . (31)

From (30) and (31), we obtain

〈b · ∇(uh − ũh), v〉 . min{ε−1/2hT , β
−1/2}

∥∥∥h−1/2
E uh

∥∥∥
L2(Ebh)

|||v|||

. αe

∥∥∥h−1/2
E uh

∥∥∥
L2(Ebh)

|||v||| .

Altogether, (19), Step I and Step II lead to the final estimator (18), this concludes
the proof.

4. Computational Results. This section presents some numerical experiments
to substantiate the above theoretical results. The standard adaptive algorithm
has used in the numerical experiments, which contains the loop of the four-steps
Solve-Estimates-Mark-Refine (see [9, Algorithm 1.1]).

Example 4.1. Consider the PDE (1) with coefficients ε = 10−8, b = (2, 3) and
a0 = 1 with homogeneous Dirichlet boundary condition on the domain Ω = (0, 1)2,
and the exact solution

u(x, y) = x3(1− x)y(1− y4).

This example has convection-dominated coefficients and a smooth polynomial
solution. The numerical simulation initializes on the criss-cross mesh. After ap-
plying several successive adaptive iterations, resulting adaptive mesh and discrete
solution are shown in Figure 1. It can be seen that the mesh is more refined near
the boundary x = 1 and y = 1. This is because the solution has large variation near
the boundary and this is nicely captured by the estimator. Figure 2 depicts the
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Figure 1. Adaptive mesh and discrete solution of Example 4.1

convergence results for errors and estimator with respect to the number of degrees
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Figure 2. Convergence plot: NDOF Vs Error and estimator of
Example 4.1

of freedom (NDOF). In the error plots, we have considered the L2 and H1-norms
of the error (u − uh) and the complete estimator. The observations are that the
H1-error and estimator have convergence rate NDOF1/2 which is the almost linear
in terms of mesh-size. For the L2-error, we have observed the optimal convergence
rate, that is, order one for both uniform and adaptive refinement with respect to
NDOF.

Example 4.2. (Circular internal layer) Consider the PDE (1) with coefficients
ε = 10−8, b = (2, 3) and a0 = 2 with the domain Ω = (0, 1)2. The exact solution is

u(x, y) = 16x(1− x)y(1− y)
(1

2
+

tan−1(200(0.252 − (x− 0.5)2 − (y − 0.5)2)

π

)
.

The right-hand side function f is chosen according to the exact solution u. This
problem is a homogeneous Dirichlet boundary problem. The solution possesses a
circular internal layer on the circumference of the circle, centered at (0.5,0.5) with
radius 0.25, in the unit square domain. In the numerical experiment, we observed
that the adaptive algorithm with the derived adaptive estimator has successfully
refined the right elements which are the part of the interior layer of the solution.
Figure 3 shows the adaptive-refined meshes, which are generated through the adap-
tive refinements. Figure 4 (left) shows the discrete solution with the adaptive
refinements. Figure 4 (right) depicts the convergence rates. Since the adaptive re-
finement are more concentrated at the circular region, the adaptive method achieves
optimal convergence rate in a few iterations, while in the uniform case, it requires
more numbers of refinements. From the error plots, it is visible that the adaptive
refinements give more accurate solution compared to uniform refinements.

5. conclusions. We have derived a reliable a posteriori error estimator for PLP
stabilized conforming FEM. In the numerical experiment, we have shown that the
derived a posteriori estimator captures inner-layer. Further, the adaptive algorithm
achieves the optimal convergences rates. In the case of boundary layer problems,
the PLP stabilization provides a non-oscillatory solution, but do not resolve the
boundary layer (see [3, Example 5.2 ]). It will be interesting to look at the perfor-
mance of the adaptive algorithm with the current estimator over boundary layer
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Figure 3. Adaptive meshes at 1314 and 5312 NDOF of Example 4.2
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Figure 4. Discrete solution and convergence rates of Example 4.2

problems. Further, proving the efficiency of the presented adaptive estimators will
be part of the interest of future work.
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Abstract. In this paper we generalize the Lighthill-Witham-Richards model
for vehicular traffic coupled with moving bottlenecks to the case of road net-

works. Such models can be applied to study the traffic evolution in the presence

of a slow-moving vehicle, like a bus. At last, a numerical experiment is shown.

1. Introduction. In this paper we study the Lighthill-Witham-Richards (LWR)
model for vehicular traffic coupled with moving bottlenecks on road networks. We
recall that the LWR model was introduced in [16, 17] and gave rise to macroscopic
modelling of traffic flow. A moving bottleneck models the presence of a slow vehicle,
like a bus or a truck, which causes the reduction of the road capacity at its position
and thus generates a moving constraint for the traffic flow. From the analytical
point of view our model is the natural generalization to the case of a network of the
LWR model with moving constraint on a single road developed in [8], which in turn
can be considered as a generalization of the fixed in space point constraint on the
flow theory, see [2, 5], [18, Chapter 6]. For completeness we mention that a 2 × 2
system of conservation laws coupled with a fixed in space point constraint on the
flow has been studied in [1, 11, 12] in the case of a single road, while the case of a
phase transition model coupled with a fixed in space point constraint on the flow
has been studied in [6].

We describe the evolution of the traffic in presence of a slow-moving vehicle by
the strongly coupled PDE-ODE system (1) introduced in [8, 14], where the PDE

2000 Mathematics Subject Classification. Primary: 35L65 ; Secondary: 90B20 .
Key words and phrases. scalar conservation laws, traffic flow, networks, Riemann solver, mov-

ing bottleneck.
∗ Corresponding author: N. Dymski.
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(1a) consists of a scalar conservation law which models the evolution of traffic,
while the ODE (1b) describes the trajectory of the slow-moving vehicle. The study
of coupled PDE-ODE systems is not new in the conservation laws framework, we
refer the reader to [3, 7, 8, 9, 11, 15].

The paper is organized as follows. In the next section we consider the case of a
single unidirectional road. The case of a network is then considered in Section 3.
Finally, in Section 4, we compare the solutions of the standard model with that
with moving constraint for the same Riemann problem.

2. A single unidirectional road. We consider a single road parametrized by the
coordinate x ∈ R and assume that the vehicles move in the direction of increasing
x with maximal speed V > 0. Let y = y(t) ∈ R be the position of the bus and
ρ = ρ(t, x) ∈ [0, 1] be the mean (normalized) density of cars at time t ≥ 0 and
position x ∈ R. The resulting model is expressed by the following system

∂tρ+ ∂xf(ρ) = 0 (t, x) ∈ R+ × R, (1a)

ẏ(t) = ω
(
ρ(t, y(t)+)

)
t ∈ R+, (1b)

f
(
ρ(t, y(t))

)
− ẏ(t)ρ(t, y(t)) ≤ α

4V

(
V − ẏ(t)

)2
t ∈ R+. (1c)

Above, the flux f ≥ 0 is defined by f(ρ) := ρv(ρ), where v(ρ) is the mean velocity
of the cars. We let v : [0, 1] → R+ be the strictly decreasing function defined
by v(ρ) := V (1 − ρ). Clearly f : [0, 1] → R+ is a strictly concave function such
that f(0) = f(1) = 0, f(1/2) = maxρ∈[0,1] f(ρ) and sign(ρ − 1/2)f ′(ρ) < 0 ∀ρ ∈
[0, 1] \ {1/2}. We stress that v(1) = 0 and v(0) = V . If the bus has maximal speed
Vb ∈ [0, V [, then it moves with velocity ω(ρ) := min{v(ρ), Vb}. As a result, the
trajectory of the bus is given by the function y : R+ → R satisfying (1b). Notice
that if the road is sufficiently congested, then v(ρ) < Vb and the speed of the bus
coincides with the speed of the cars. Condition (1c) can be derived as follows. By
setting X = x − y(t) we obtain the bus reference frame, where the velocity of the
bus is zero and the conservation law (1a) becomes

∂tρ+ ∂X
(
f(ρ)− ẏρ

)
= 0.

The presence of the bus hinders the maximum flow at X = 0 according to the rule

f(ρ)− ẏρ ≤ α

4V

(
V − ẏ

)2
,

where the constant coefficient α ∈ ]0, 1[ is the reduction rate of the road capacity due
to the presence of the bus. Notice that a higher velocity of the bus ẏ corresponds
to a lower capacity of the road at its position and that

α

4V

(
V − ẏ

)2 ∈
[
α

4V

(
V − Vb

)2
,
αV

4

]
.

We augment system (1) with an initial datum for the density of the form of a
Heaviside function with a jump at the initial bus position, which is assumed to be
x = 0, that is

ρ(0, x) =

{
ρ` if x < 0,
ρr if x ≥ 0,

(2a)

y(0) = 0, (2b)

where ρ`, ρr ∈ [0, 1] are fixed constants. We consider solutions of the problem (1),
(2) that are self-similar, hence the bus velocity ẏ(t) is assumed to be constant.
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Let RS : [0, 1]2 → L1
loc(R; [0, 1]) be the standard Riemann solver for (1a), (2a),

which is described for instance in [4]. We point out that the associated self-
similar weak solution (t, x) 7→ RS(ρ`, ρr)(x/t) does not always satisfy the con-
straint condition (1c). For this reason we define below the constrained Riemann
solver RSα : [0, 1]2 → L1

loc(R; [0, 1]) for the Riemann problem (1), (2), see [8]. First,
see Figure 1, we need to introduce the density values ρ̌α and ρ̂α defined by

ρ̌α = min{ρ ∈ [0, 1] : f(ρ) = ρVb+Fα}, ρ̂α = max{ρ ∈ [0, 1] : f(ρ) = ρVb+Fα},

where Fα := α
4V

(
V − Vb

)2
.

Figure 1. Fundamental diagram with constraint. Left: Fixed
reference frame. Right: Bus reference frame.

Definition 2.1. The constrained Riemann solver RSα : [0, 1]2 → L1
loc(R; [0, 1]) is

defined as follows:

1. If f
(
(RS(ρ`, ρr)(Vb)

)
≤ VbRS(ρ`, ρr)(Vb) + Fα, then

RSα(ρ`, ρr)(x/t) = RS(ρ`, ρr)(x/t) and y(t) = ω(ρr)t.

2. If f
(
(RS(ρ`, ρr)(Vb)

)
> VbRS(ρ`, ρr)(Vb) + Fα, then

RSα(ρ`, ρr)(x/t) =

{
RS(ρ`, ρ̂α)(x/t) if x < Vbt,
RS(ρ̌α, ρr)(x/t) if x ≥ Vbt, and y(t) = Vbt.

Notice that if constraint condition (1c) is not satisfied by the standard weak solution
(t, x) 7→ RS(ρ`, ρr)(x/t), then the weak solution (t, x) 7→ RSα(ρ`, ρr)(x/t) has a
single undercompressive shock (ρ̂α, ρ̌α) moving with speed of propagation equal to
Vb, according to the Rankine-Hugoniot condition.

3. Networks. In this section we introduce the LWR model with moving constraint
on road networks. As in [13], we define a network as a directed graph (I,J ), that
is a pair consisting of a finite set I of unidirectional roads and a finite set J of
junctions. For the rest of the work, if it is not stated differently, a junction is placed
at x = 0.

Below we consider a node J ∈ J having n incoming roads Ii = ]−∞, 0[∈ I for i ∈
I := {1, . . . , n} and m outgoing roads Ij = ]0,∞[∈ I for j ∈ J := {n+1, . . . , n+m}.
Let fh(ρ) := Vhρ(1− ρ) be the flux corresponding to the road Ih, for h ∈ H = I∪ J.
Assume that at time t = 0 the bus is at the junction, that is y(0) = 0. Let Ik, k ∈ J,
be the road corresponding to the route of the bus. A constrained Riemann problem
at the node J is the following system of scalar conservation laws with constant
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initial datum on every road, augmented by the ODE for the bus trajectory and the
constraint inequality:

{
∂tρi + ∂xfi(ρi) = 0
ρi(0, x) = ρ0

i
(t, x) ∈ R+ × Ii, i ∈ I,

{
∂tρj + ∂xfj(ρj) = 0
ρj(0, x) = ρ0

j
(t, x) ∈ R+ × Ij , j ∈ J,

{
ẏ(t) = ω(ρk(t, y(t)+)),
y(0) = 0,

fk
(
ρk(t, y(t))

)
− ẏ(t)ρk(t, y(t)) ≤ αk

4Vk

(
Vk − ẏ(t)

)2
t ∈ R+,

(3)

for some αk depending on the k-th road characteristics. Before stating the con-
strained Riemann solver at the junction for (3), we define the admissible solutions.

Definition 3.1. An admissible constrained Riemann solver at the junction J ∈ J
for (3) is a map RSJαk : [0, 1]n+m → [0, 1]n+m such that for any (ρ0

1, . . . , ρ
0
n+m) ∈

[0, 1]n+m we have that (ρ̄1, . . . , ρ̄n+m) := RSJαk(ρ0
1, . . . , ρ

0
n+m) satisfies the following

properties:

• For every i ∈ I, RSi(ρ0
i , ρ̄i) has only waves with negative speed.

• For every j ∈ J \ {k}, RSj(ρ̄j , ρ0
j ) and RSαk(ρ̄k, ρ

0
k) have only waves with

positive speed.

• The mass through the junction is conserved, that is :
n∑
i=1

fi(ρ̄i) =
n+m∑
j=n+1

fj(ρ̄j).

• RSJαk is consistent, that is: RSJαk(ρ̄1, . . . , ρ̄n+m) = (ρ̄1, . . . , ρ̄n+m).

The last condition above says that the vector of traces at junction of an admissible
solution is a fixed point for RSJαk . We propose below the possible traces and their
maximal fluxes. To reach this goal, we need first to define the following function.

Definition 3.2. For any h ∈ H, the function τh : [0, 1]→ [0, 1] is such that

• fh(τh(ρ)) = fh(ρ) for every ρ ∈ [0, 1];
• τh(ρ) 6= ρ for every ρ ∈ [0, 1] \ {1/2}.

The function τh is well defined, continuous and satisfies

0 ≤ ρ ≤ 1/2 ⇐⇒ 1/2 ≤ τh(ρ) ≤ 1, 1/2 ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τh(ρ) ≤ 1/2.

In next propositions, we show the range of admissible fluxes for a given initial
datum.

Proposition 1. Let i ∈ I and ρ0
i be the initial datum on the incoming road Ii. The

set of reachable fluxes fi(ρ̄i) is

Ωi(ρ
0
i ) =

{
[0, fi(ρ

0
i )] if ρ0

i ∈ [0, 1/2],
[0, fi(1/2)] if ρ0

i ∈ ]1/2, 1].

Proof. Since the constraint does not affect an incoming road, we can apply the
construction done in [13, Proposition 4.3.3]. For definiteness, we consider the case
ρ0
i ∈ [0, 1/2]; the case ρ0

i ∈ ]1/2, 1] is analogous. We stress that RSi(ρ0
i , ρ̄i) must

have only waves with negative speed. If ρ̄i ∈ {ρ0
i } ∪ ]τi(ρ

0
i ), 1] then RSi(ρ0

i , ρ̄i) is
either constant or has a single shock with negative speed. On the other hand, if
ρ̄i ∈ [0, τi(ρ

0
i )] \ {ρ0

i } then RSi(ρ0
i , ρ̄i) is either a rarefaction or a single shock, but

in both cases with non negative speed, which concludes the proof.
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A direct consequence of the above proposition is the following

Corollary 1. The maximal flow of the incoming road Ii at the junction J is

γmax
i (ρ0

i ) =

{
fi(ρ

0
i ) if ρ0

i ∈ [0, 1/2],
fi(1/2) if ρ0

i ∈ ]1/2, 1].

Additionally, there exists a unique ρ̄i ∈ [0, 1] such that the admissible solution of
the Riemann problem with initial datum (ρ0

i , ρ̄i) consists of waves with only negative
speed and the condition fi(ρ̄i) = γmax

i (ρ0
i ) holds.

Proposition 2. Let j ∈ J and ρ0
j be the initial datum on the outgoing road Ij. The

set of reachable fluxes fj(ρ̄j) is

Ωj(ρ
0
j ) =





{
[0, fj(1/2)] if ρ0

j ∈ [0, 1/2] and j 6= k,

[0, fj(ρ
0
j )] if ρ0

j ∈ ]1/2, 1] and j 6= k,{
[0, fk(ρ̂αk)] if ρ0

k ∈ [0, ρ̂αk ],

[0, fk(ρ0
k)] if ρ0

k ∈ ]ρ̂αk , 1].

Proof. The proof for j 6= k is analogous to proof of Proposition 1. The only differ-
ence is that RSj(ρ̄j , ρ0

j ) must have only waves with positive speed. Let j = k and

ρ0
k ∈ [0, ρ̂αk ]. We observe that ρ̄k ∈ [0, ρ̌αk ] can be connected with ρ0

k by a classical
waves. For ρ̄k ∈ ]ρ̌αk , τk(ρ̂αk)[ ∪ {ρ̂αk} the RSk(ρ̄k, ρ

0
k) consists of a possibly null

shock (ρ̄k, ρ̂αk), followed by a non-classical shock (ρ̂αk , ρ̌αk) and a shock (ρ̌αk , ρ
0
k).

Notice that ρ̄k ∈ [τ(ρ̂αk), ρ̂αk [ cannot be joined with ρ̂αk by a wave with positive
speed. The case j = k and ρ0

k ∈ ]ρ̂αk , 1] is analogous to the situation when j 6= k
and ρ0

j ∈ ]1/2, 1].

Corollary 2. The maximal flow of the outgoing road Ij at the junction J is

γmax
j (ρ0

j ) =





{
fj(1/2) if ρ0

j ∈ [0, 1/2] and j 6= k,

fj(ρ
0
j ) if ρ0

j ∈ ]1/2, 1] and j 6= k,{
fk(ρ̂αk) if ρ0

k ∈ [0, ρ̂αk ],

fk(ρ0
k) if ρ0

k ∈ ]ρ̂αk , 1].

Additionally, there exists a unique ρ̄j ∈ [0, 1] such that the admissible solution of
the Riemann problem with initial datum (ρ̄j , ρ

0
j ) consists of waves with only positive

speed and the condition fj(ρ̄j) = γmax
j (ρ0

j ) holds.

For each junction we consider a traffic distribution matrix, i.e. a matrix repre-
senting the distribution of cars among the roads.

Definition 3.3. A distribution matrix Am×n for the junction J ∈ J is given by

Am×n =



αn+1,1 · · · αn+1,n

...
. . .

...
αn+m,1 · · · αn+m,n


 ,

where αj,i ≥ 0 for every i, j and
∑n+m
j=n+1 αj,i = 1 for every i.

A distribution matrix Am×n gives the percentage of cars from each incoming road
Ii choosing the outgoing road Ij . In other words, if C is the amount of cars coming
from road Ii, then Cαj,i is the amount of cars moving towards road Ij from Ii.

The construction of the admissible solution at the junction J corresponding to
the initial datum (ρ0

1, . . . , ρ
0
n+m) ∈ [0, 1]n+m is the following:
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1. Fix a distribution matrix Am×n by choosing m × n non-negative constants

αj,i such that
∑n+m
j=n+1 αj,i = 1 for every i ∈ I.

2. Define the closed, convex and non-empty sets of admissible fluxes

Ω = {(γ1, . . . , γn) ∈ Ω1 × . . .× Ωn : A · (γn+1, . . . γn+m)T ∈ Ωn+1 × . . .× Ωn+m},
where Ωi(ρ

0
i ) = [0, γmax

i (ρ0
i )] and Ωj(ρ

0
j ) = [0, γmax

j (ρ0
j )] are respectively de-

fined in Propositions 1 and 2, see also Corollaries 1 and 2.
3. Compute a vector (γ̄1, . . . , γ̄n) ∈ Ω such that

n∑

i=1

γ̄i = max
(γ1,...,γn)∈Ω

n∑

i=1

γi. (4)

Then by Corollary 1 there exists unique ρ̄i ∈ [0, 1] such that fi(ρ̄i) = γ̄i.
4. Compute the vector (γ̄n+1, . . . , γ̄n+m) such that

γ̄j =
n∑

i=1

αj,iγ̄i.

Then by Corollary 2 there exists unique ρ̄j ∈ [0, 1] such that fj(ρ̄j) = γ̄j .

5. Finally, let RSJαk(ρ0
1, . . . , ρ

0
n+m) = (ρ̄1, . . . , ρ̄n+m).

Remark 1. The maximization problem (4) may admit more than one solution.
Additional assumptions are in general required to get uniqueness of the Riemann
solver. This can be obtained either imposing further conditions on the distribution
matrix A, see [13, Section 5.1], or introducing a priority vector as in [10].

4. A case study. We consider a junction with two incoming (n = 2) and two
outgoing (m = 2) roads. Let Vh = 4, namely fh(ρ) = 4ρ(1− ρ), h ∈ {1, . . . , 4}. Fix
constant initial density (ρ0

1, . . . , ρ
0
4) ∈ [0, 1]4, see Figure 2, center, such that

0 < ρ0
1 < 1/2, 1/2 < ρ0

2 < 1, 1/2 < ρ0
3 < 1, 1/2 < ρ0

4 < 1,

f(ρ0
1) = 1/2, f(ρ0

2) = 2/5, f(ρ0
3) = 7/10, f(ρ0

4) = 1/2.

The parameter α3 is suitably chosen to obtain f(ρ̂α3) = 7/20 and we take the
distribution matrix

A =

(
1/2 1/3
1/2 2/3

)
.

Figure 2. Left: the set Ω. Center: the fundamental diagram with
initial datum. Right: the set Ωb.
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We consider two cases: the case a slow vehicle with maximal velocity Vb = 1/6
enters road I3 and the case there is no slow vehicle at the junction. According to
Propositions 1 and 2, the sets of admissible fluxes at the junction are

Ω1 = Ω4 = [0, 1/2], Ω2 = [0, 1], Ωb3 = [0, 7/20], Ω3 = [0, 7/10],

where Ωb3 and Ω3 are the sets of admissible fluxes on I3 in case the bus is present
or not, respectively. In the case without the bus we let

Ω = {(γ1, γ2) ∈ Ω1 × Ω2 : A · (γ1, γ2)T ∈ Ω3 × Ω4},
and find that the maximal admissible flow through junction max(γ1,γ2)∈Ω(γ1 + γ2)
is reached at the point Q = (1/2, 3/8), see Figure 2, left, hence the solution for the
fluxes of this problem is (γ̄1, . . . , γ̄4) = (1/2, 3/8, 3/8, 1/2). In the case with the bus,
we let

Ωb = {(γ1, γ2) ∈ Ω1 × Ω2 : A · (γ1, γ2)T ∈ Ωb3 × Ω4},
and find that the maximal admissible flow through the junction max(γ1,γ2)∈Ω̂b(γ1 +

γ2) is reached at the point Qb = (2/5, 9/20), see Figure 2, right, therefore

1/2 < ρ̄1 < 1, 1/2 < ρ̄2 < 1, ρ̄3 = ρ̂α3
, ρ̄4 = ρ4,0,

f(ρ̄1) = 2/5, f(ρ̄2) = 9/20, f(ρ̄3) = 7/20, f(ρ̄4) = 1/2.

The solution of the Riemann problem at the junction is completely determined. For
better understanding the solution behavior, we display in Figure 3 the two solutions
at time t = 1/5. The blue line describes the density profile without the bus, while
the red line represents the solution in the presence of the bus. We notice that a
shock wave arises on road I1, on road I2 we observe a rarefaction wave instead of a
shock wave, on road I3 the undercompressive shock is visible in the situation with
the bus. Only the solution on road I4 is the same in both cases.
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Abstract. We consider the discretization of a semilinear damped wave equa-
tion arising, for instance, in the modeling of gas transport in pipeline networks.

For time invariant boundary data, the solutions of the problem are shown to

converge exponentially fast to steady states. We further prove that this decay
behavior is inherited uniformly by a class of Galerkin approximations, includ-

ing finite element, spectral, and structure preserving model reduction methods.
These theoretical findings are illustrated by numerical tests.

1. Introduction. The propagation of pressure waves through a network of pipes
can be described by a semilinear hyperbolic system on each pipe together with
appropriate coupling conditions [4, 10]. Due to friction at the pipe walls, the kinetic
energy of the gas flow gets damped resulting in a dissipative behavior and, as a
consequence, the system relaxes to steady states exponentially fast; see [8]. While
structure preserving model reduction methods [9] allow to guarantee the dissipative
nature also after discretization, the rates of the exponential decay in the discretized
models may in general degenerate with the discretization parameter; see e.g. [13].

In this work we extend our previous results [7] to problems with nonlinear damp-
ing and make the following contributions: First, we prove the exponential decay for
the infinite dimensional problem in a form that can be extended to pipe networks.
Second, we analyze a class of Galerkin discretizations which inherit the exponential
decay behavior uniformly in the discretization parameter.

2. Analytical results. We consider the semilinear instationary wave propagation
problem

∂tp(x, t) + ∂xm(x, t) = f̄(x), x ∈ (0, 1), t ∈ [0, T ], (1)

∂tm(x, t) + ∂xp(x, t) + d(m(x, t)) = ḡ(x), x ∈ (0, 1), t ∈ [0, T ], (2)

p(x, t) = h̄(x), x ∈ {0, 1}, t ∈ [0, T ], (3)
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with nonlinear damping function d satisfying the following assumptions.

Assumption 2.1. d ∈ C1(R) with d(0) = 0, d′(m) > d0, and |d′(m)| ≤ d1 +d2|m|p
for some constants d0 > 0 and d1, d2, p ≥ 0.

These conditions allow us to prove the well-posedness of the above problem. As
a preparatory step, let us consider corresponding stationary problems of the form

∂xm̃(x) = f̃(x), x ∈ (0, 1), (4)

∂xp̃(x) + d̃(m̃(x)) = g̃(x), x ∈ (0, 1), (5)

p̃(x) = h̃(x), x ∈ {0, 1}. (6)

Note that solutions of 4–6 with (d̃, f̃ , g̃, h̃) = (d, f̄ , ḡ, h̄) are steady states (p̄, m̄)
for the system 1–3. Using Assumption 2.1 and results about nonlinear variational
problems under constraints [12, Proposition 2.3], we obtain the following.

Lemma 2.2. Let Assumption 2.1 hold. Then for any f̃ , g̃ ∈ L2(0, 1) and h̃ ∈ R2

the system 4–6 has a unique solution (p̃, m̃) ∈ H1(0, 1) ×H1(0, 1) and there exists

a constant c > 0 independent of d̃ and of f̃ , g̃, h̃, such that

‖m̃‖H1 ≤ c

d0
(‖g̃‖L2 + |h̃|1 + d1‖f̃‖L2 + d2‖f̃‖p+1

L2 ) + c‖f̃‖L2 := M

‖p̃‖H1 ≤ c (‖g̃‖L2 + |h̃|1 + d1M + d2M
p+1).

Let us now return to the instationary problem. Using the previous result and
energy estimates, we can show the following a-priori bounds.

Lemma 2.3. Let (p,m) be a smooth solution of 1–3. Then

‖∂tp(t)‖L2 + ‖∂tm(t)‖L2 + ‖m(t)‖H1 ≤ c (‖f̄‖L2 , ‖ḡ‖L2 , |h̄|1, ‖p(0)‖H1 , ‖m(0)‖H1)

with a constant c depending only on f̄ , ḡ, h̄, p(0),m(0) but not on times t and T .

Here and below, we interpret p and m as functions of time with values in a
Hilbert space, and write p(t) and m(t) for the corresponding functions of x at time
t.

Proof. Subtracting equations 4–6 for (f̃ , g̃, h̃) = (f̄ , ḡ, h̄) from 1–3 yields a problem
of the form 1–3 for the functions (p(t)− p̄,m(t)− m̄) with f̄ , ḡ, h̄ = 0 and damping
term d(m) replaced by d(m(t))− d(m̄). By testing this problem with the functions
(p(t)−p̄,m(t)−m̄) and noting that (d(m)−d(m̄),m−m̄) ≥ 0 due to Assumption 2.1,
one can see that

‖p(t)− p̄‖2L2 + ‖m(t)− m̄‖2L2 ≤ ‖p0 − p̄‖2L2 + ‖m0 − m̄‖2L2 .

Differentiation of 1–3 with respect to time, testing with (∂tp(t), ∂tm(t)), and using
that d′(m) > 0 by Assumption 2.1, further shows that

‖∂tp(t)‖2L2 + ‖∂tm(t)‖2L2 ≤ ‖∂tp(0)‖2L2 + ‖∂tm(0)‖2L2 .

The right-hand side in this estimate can be bounded using 1–3 for t = 0. Then the
splitting ‖m(t)‖ ≤ ‖m(t)−m̄‖+‖m̄‖ and ‖∂xm(t)−∂xm̄‖ = ‖∂tp(t)‖ together with
the bounds of Lemma 2.2 and the previous estimates implies the result.

We are now in the position to show well-posedness of the instationary problem.

Lemma 2.4. Let Assumption 2.1 hold. Then for any f̄ , ḡ ∈ L2(0, 1), any h̄ ∈ R2,
and any p0,m0 ∈ H1(0, 1) there exists a unique solution (p,m) ∈ C(0, T ;H1×H1)∩
C1(0, T ;L2 × L2) of the system 1–3 with initial value p(0) = p0 and m(0) = m0.
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Proof. By Assumption 2.1, the nonlinear damping term d(m) in equation 2 is locally
Lipschitz continuous, and existence of a unique solution (p,m) local in time thus
follows by semigroup theory; cf. [11, Theorem 6.1.4]. The uniform a-priori estimates
of Lemma 2.3 allow to extend the solution globally in time.

We can now state our first main result, i.e. the exponential decay of the energies

E(q, v) := 1
2‖q‖2L2 + 1

2‖v‖2L2

for the two choices (q, v) = (p(t)− p̄,m(t)− m̄) and (q, v) = (∂tp(t), ∂tm(t)).

Theorem 2.5. Let (p,m) be a solution of 1–3 provided by Lemma 2.4. Then

E(p(t)− p̄,m(t)− m̄) ≤ ce−γt and E(∂tp(t), ∂tm(t)) ≤ c′e−γt,
for 0 ≤ t ≤ T with c, c′, γ > 0 only depending on ‖f̄‖L2 , ‖ḡ‖L2 , |h̄|2, ‖p0‖H1 , ‖m0‖H1 .

The proof follows in the same way as that of Theorem 3.5 given below, and is
therefore omitted. Similar results can also be found in [2, 8, 14].

3. Galerkin discretization in space. Let Qh ⊂ L2(0, 1) and Vh ⊂ H1(0, 1) and
consider the following Galerkin approximation of the stationary problem 4–6: Find
(p̃h, m̃h) ∈ Qh × Vh such that

(∂xm̃h, qh) = (f̃ , qh), (7)

−(p̃h, ∂xvh) + (d̃(m̃h), vh) = (g̃, vh)− h̃vh|10, (8)

for all qh ∈ Qh and vh ∈ Vh. For convenience we write (·, ·) := (·, ·)L2 in the
sequel. We will assume that the spaces Qh, Vh satisfy the following compatibility
conditions.

Assumption 3.1. Qh ⊂ L2(0, 1) and Vh ⊂ H1(0, 1) are finite dimensional and

Qh = ∂xVh and ker(∂x) ⊂ Vh. (9)

Well-posedness of the discretized stationary problem 7–8 now follows with the
same arguments as used in Lemma 2.2 for the analysis on the continuous level.

Lemma 3.2. Let Assumptions 2.1 and 3.1 hold. Then for any f̃ , g̃ ∈ L2(0, 1) and

h̃ ∈ R2 there exists a unique solution (p̃h, m̃h) ∈ Qh × Vh of the system 7–8 and a

constant c > 0 independent of d̃, of f̃ , g̃, h̃ and of the space Qh, Vh, such that

‖m̃h‖H1 ≤ c

d0
(‖g̃‖L2 + |h̃|1 + d1‖f̃‖L2 + d2‖f̃‖p+1

L2 ) + c‖f̃‖L2 := M

‖p̃h‖H1 ≤ c (‖g̃‖L2 + |h̃|1 + d1M + d2M
p+1).

The corresponding discretization of the instationary problem 1–3 reads as follows:
Find (ph,mh) ∈ H1(0, T ;Qh × Vh) such that

(∂tph(t), qh) + (∂xmh(t), qh) = (f̄ , qh), (10)

(∂tmh(t), vh)− (ph(t), ∂xvh) + (d(mh(t)), vh) = (ḡ, vh)− h̄vh|10, (11)

for all qh ∈ Qh and vh ∈ Vh, and for 0 ≤ t ≤ T . In addition, we require that

ph(0) = ph,0 and mh(0) = mh,0, (12)

where (ph,0,mh,0) solves problem 7–8 with (f̃ , qh) = (∂xm0, qh) and (g̃, vh) =
(d(m0), vh)−(p0, ∂xvh). By Lemma 3.2, ph,0,mh,0 and ∂tph,0, ∂tmh,0 can be bounded
in terms of the data of the continuous problem. In order to prove the existence of
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a global solution, we proceed similarly as on the continuous level. We denote by
(p̄h, m̄h) the steady states of the system 10–11, which correspond to the solution of

7–8 with (d̃, f̃ , g̃, h̃) = (d, f̄ , ḡ, h̄), and obtain the following a-priori bounds.

Lemma 3.3. Any solution (ph,mh) ∈ H1(0, T ;Qh×Vh) of 10–12 with initial values
ph,0 and mh,0 as described above, satisfies

‖∂tph(t)‖L2 + ‖∂tmh(t)‖L2 + ‖mh(t)‖H1 ≤ c (‖f̄‖L2 , ‖ḡ‖L2 , |h̄|1, ‖p0‖H1 , ‖m0‖H1)

with a constant c > 0 depending only on f̄ , ḡ, h̄, p0,m0 but not on t, T , or Qh, Vh.

By the Picard-Lindelöf theorem, one then obtains the existence of a unique so-
lution.

Lemma 3.4. Let the conditions of Lemma 2.4 and Assumption 3.1 hold. Then
there exists a unique solution (ph,mh) ∈ H1(0, T ;Qh × Vh) of problem 10–12.

We are now in the position to prove the main result of our paper.

Theorem 3.5. Under the assumptions of Lemma 3.2 and 3.4, there holds

E(ph(t)− p̄h,mh(t)− m̄h) ≤ ce−γt and E(∂tph(t), ∂tmh(t)) ≤ c′e−γt,
for all 0 ≤ t ≤ T with constants c, c′, γ > 0 depending only on the data.

In particular, the estimate is independent of T and the choice of the spaces
Qh, Vh.

Proof. For any t ∈ [0, T ] the difference (p̃h, m̃h) := (ph(t)− p̄h,mh(t)−m̄h) satisfies

7–8 with f̃ = ∂tph(t), g̃ = ∂tmh(t), and damping d̃(m̃h) := d(m̃h + m̄h) − d(m̄h).

From Assumption 2.1, one can deduce that d̃′(m) ≥ d0 > 0 and

|d̃′(m)| = |d′(m+ m̄h)| ≤ d1 + d2|m+ m̄h|p ≤ d̃1 + d̃2|m|p,
for some constants d̃1, d̃2 depending only on d1, d2, p and the norm of the steady
state m̄h, which is bounded uniformly by Lemma 3.2 in terms of the data. Therefore,
the a-priori estimates of Lemma 3.2 apply and we can further estimate the terms
‖f̃‖pL2 and Mp appearing in the estimate of Lemma 3.2 by Lemma 3.3. As a
consequence

‖ph(t)− p̄h‖L2 + ‖mh(t)− m̄h‖L2 ≤ c (‖∂tph(t)‖L2 + ‖∂tmh(t)‖L2) (13)

with some constant c independent of t, T , and of the spaces Qh, Vh. Let us define
a modified energy E1

h,ε := E(∂tph, ∂tmh) + ε(∂tmh,mh − m̄h)L2 and note that

1
2E(∂tph, ∂tmh) ≤ E1

h,ε ≤ 3
2E(∂tph, ∂tmh) (14)

for all parameters 0 ≤ ε ≤ ε∗ sufficiently small, i.e., the two energies are equivalent.
From 10–11, one can further deduce that

d

dt
E1
h,ε =

d

dt
E(∂tph, ∂tmh) + ε‖∂tmh‖2L2 + ε(∂ttmh,mh − m̄h)L2

≤ −(d0 − ε)‖∂tmh‖2L2 + ε(∂ttmh,mh − m̄h)L2 .

The second term in this estimate can be bounded by

(∂ttmh,mh − m̄h)L2 = (∂tph, ∂x(mh − m̄h))L2 − (d′(mh)∂tmh,mh − m̄h)L2

≤ −‖∂tph‖2L2 + c‖∂tmh‖L2‖mh − m̄h‖L2

≤ − 1
2‖∂tph‖2L2 + c̃‖∂tmh‖2L2 ,
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where the global a-priori bounds in Lemma 3.3, equation 13, and the assumptions
on d were used. By choosing ε∗ > 0 sufficiently small, we can conclude that

d

dt
E1
h,ε ≤ −εE(∂tph, ∂tmh) ≤ − 2ε

3 E
1
h,ε, for all 0 < ε ≤ ε∗.

By integration in time, this yields E1
h,ε(t) ≤ e−

2ε
3 E1

h,ε(0), and using the equivalence
of the two energies 14, we obtain the second estimate of the theorem. With the
help of inequality 13, we also obtain the first estimate.

Remark 1. In the next section, we will make use of the following simple obser-
vation: Let (·, ·)h be a semi inner product which is equivalent to (·, ·)L2 on Vh,
i.e.,

1
2‖vh‖L2 ≤ ‖vh‖h ≤ 3

2‖vh‖L2 for all vh ∈ Vh. (15)

Then the assertions of Theorem 3.5 remain valid when replacing (∂tmh(t), vh)
and (d(mh(t)), vh) in problem 10–12 by the approximations (∂tmh(t), vh)h and
(d(mh(t)), vh)h, which can be verified by a close inspection of the previous proof.
This modification may substantially simplify the numerical solution.

4. Approximation schemes. After a basis is chosen for Qh and Vh, the dis-
cretized system 10–11 reads

Mp∂tp(t) + Gm(t) = f(t),

Mm∂tm(t)−GTp(t) + D(m(t))m(t) = g(t)−Bh(t).

Here p,m are the coordinate vectors for the functions ph, mh. Following Remark 1,
we define quadrature points ξn and weights ωn, and we set

(v, ṽ)h :=
N∑

n=0

ωnv(ξn)ṽ(ξn), for v, ṽ ∈ H1. (16)

We now discuss some typical choices for the subspaces Qh, Vh for method 10–11.

Example 4.1 (Finite element method). Let Th be a uniform mesh with nodes
xn = nh, h = 1/N , and let Pp(Th) be the space of piecewise polynomials of order
p. We set Qh = P0(Th) and Vh = P1(Th) ∩ H1 and note that Assumption 3.1 is
satisfied. We further choose ξn = xn and ω0 = ωN = h/2 and ωn = h for 0 < n < N
for 16, which corresponds to numerical quadrature with the trapezoidal rule, and
note that 15 is fulfilled. Moreover, the matrices Mp,Mm, and D(m) are all diagonal
and approximation order h2 can be expected for sufficiently smooth solutions.

Example 4.2 (Spectral method). For Qh = Pp−1(0, 1) and Vh = Pp(0, 1) ∩ H1,
Assumption 3.1 holds as well. Now let ξn and ωn, 0 ≤ n ≤ p, be the quadrature
points and weights for the Gauss-Lobatto quadrature rule on [0, 1], then also norm
equivalence 15 is valid; cf. [5], When choosing the Lagrange polynomials for the
points {ξn}n as basis for Vh and the Legendre polynomials as basis for Qh, the
matrices Mp,Mm, and D(m) are again diagonal. Here exponential convergence in
p can expected for smooth solutions [5].

Example 4.3 (Projection based model reduction). Let Qh, Vh, ωn, ξn be chosen as
in Example 1 for small h and let QH ⊂ Qh, VH ⊂ Vh be constructed by a structure
preserving model reduction approach [3], together with the modifications proposed
in [7]. Then Assumption 3.1 holds and Mp, Mm are diagonal for an appropriate
choice of basis. Note that the evaluation of the nonlinear term D(m(t)) via 16 still

431



H. EGGER, T. KUGLER AND B. LILJEGREN-SAILER

has the complexity of the high dimensional space Vh. Replacing 16 by a quadrature
rule with fewer quadrature points may be used to further reduce the complexity
[1]. Let us note that uniform exponential stability can still be guaranteed for this
complexity-reduction approach, as long as 15 is valid.

5. Numerical illustration. Let us note that our results and methods of proof can
be generalized almost verbatim to networks; see [6]. This will be illustrated now by
some numerical tests, for which we utilize the network in Fig. 1. The topology of

v1 v2

v3

v4

v5 v6
e1

e2

e
3
e
4

e
5

e6

e7

Figure 1. Network used for numerical tests.

the network is represented by a directed graph (V, E) with vertices V = {v1, . . . , v6},
divided into interior and exterior vertices V0 = {v2, . . . , v5} and V∂ = {v1, v6},
and edges E = {e1, . . . , e7} ⊂ V × V. We denote by E(v) = {e = (v, ·) or e = (·, v)}
the set of edges adjacent to the vertex v and define ne(v) = −1 for ingoing and
ne(v) = 1 for the outgoing pipes.

We then consider the following problem on the network: For every pipe e ∈ E ,
the solution (pe,me) restricted to the pipe should satisfy 1–2 with data f̄ , ḡ ≡ 0,
and damping function d(me) = |me|me. At the interior vertices of the network, the
solution is required to satisfy the coupling conditions

pe(v, t) = pe
′
(v, t), for all e, e′ ∈ E(v), v ∈ V0, t > 0,

∑

e∈E(v)
ne(v)me(v, t) = 0, for all v ∈ V0, t > 0,

and we prescribe time dependent boundary conditions

p(v1, t) = 90 + 10 max{(1− t), 0} and p(v6, t) = 70.

As initial conditions p(0), m(0), we choose the stationary solutions for the boundary
data at time t = 0. The time discretization is chosen sufficiently accurate such that
time integration errors can be neglected. For T = 50, we depict in Table 1 the
exponential convergence of all methods. The POD method with nsv singular values
is trained by an h-FEM method with h = 10−3 and the correct boundary data. We
choose N Gauss-Lobatto points on each pipe such that 15 is satisfied. As predicted
in Theorem 3.5 the exponential decay is uniform in the discretization parameters.

Acknowledgments. The authors would like to gratefully acknowledge financial
support by the German Research Foundation (DFG) via grants GSC 233, TRR 146,
TRR 154, and Eg-331/1-1.
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method\tn 0 10 20 30 40 50 γ

Ex. 4.1; h = 0.2 99.136 23.693 6.943 2.051 0.607 0.180 0.122

Ex. 4.1; h = 0.05 99.192 23.709 6.947 2.052 0.607 0.180 0.122

Ex. 4.2; p = 3 99.196 23.904 7.005 2.069 0.613 0.182 0.122

Ex. 4.2; p = 10 99.196 23.710 6.947 2.052 0.607 0.180 0.122

Ex. 4.3; nsv = 2 99.196 23.850 6.984 2.062 0.610 0.181 0.122

Ex. 4.3; nsv = 10 99.196 23.710 6.947 2.052 0.607 0.180 0.122

Table 1. Exponential convergence of E(ph(t)− p̄h,mh(t)− m̄h)
for the methods in Example 4.1-4.3.
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Abstract. The Allen–Cahn equation is a (parabolic) reaction-diffusion equa-

tion with a balanced bistable reaction term, which describes phase transition
processes. It is well-known that when the diffusion coefficient is very small, the

solutions exhibit very interesting phenomena. In the one-dimensional case, we

have an example of metastable dynamics, while in the multi-dimensional case
the Allen–Cahn equation is strictly related to the mean curvature flow. In this

paper we discuss such phenomena in the case of some hyperbolic variations of

the Allen–Cahn equation. In particular, in the one-dimensional case we focus
the attention on the assumptions needed to have metastability and we show

some numerical solutions in the case such assumptions are not satisfied.

1. Introduction. In this paper we are interested in the limiting behavior as ε →
0+ of the solutions to the following hyperbolic Allen–Cahn equation

τutt + g(u)ut = ε2∆u− F ′(u), x ∈ Ω, t > 0, (1)

where u(x, t) ∈ R, Ω ⊂ Rn, with n = 1, 2 or 3, the diffusion coefficient ε and
the parameter τ are positive, and F is a double well potential with wells of equal
depth (we will specify later the precise assumptions on F ). Regarding the function
g : R → R, the main examples we have in mind correspond to the choices g ≡ 1
and g = 1 + τF ′′: in the first case one has the damped nonlinear wave equation with
bistable nonlinearity

τutt + ut = ε2∆u− F ′(u), x ∈ Ω, t > 0, (2)

in the second case, we have the Allen–Cahn equation with relaxation

τutt + (1 + τF ′′(u))ut = ε2∆u− F ′(u), x ∈ Ω, t > 0. (3)

2000 Mathematics Subject Classification. 35L20, 35B25, 35B36, 35K57.
Key words and phrases. Allen–Cahn equation, slow motion, metastability, motion by mean

curvature, singular perturbations.
∗ Corresponding author: Raffaele Folino.
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Both equations (2) and (3) are hyperbolic variations of the classic Allen–Cahn
equation

ut = ε2∆u− F ′(u), x ∈ Ω, t > 0, (4)

proposed in [1] to describe the motion of antiphase boundaries in iron alloys. For-
mally, we obtain eq. (4) by passing to the limit as τ → 0 in (2) or (3).

Before presenting our results on the limiting behavior as ε → 0+ of the solu-
tions to (1), let us recall that there are different interpretations of the equation
(3) with a generic potential F . From the physical point of view, such equation de-
scribes heat propagation by conduction with finite speed and it has been obtained
by substituting the Fourier’s law with a relaxation law of Maxwell-Cattaneo type
[5]. In this case, the parameter τ > 0 represents a relaxation time. Moreover,
equation (3) can be seen as a reaction-diffusion equation with memory. Finally, in
the one-dimensional case, equation (3) has also a probabilistic interpretation and it
describes a correlated random walk. In both the last two interpretations (reaction-
diffusion with memory and correlated random walk) the parameter 1/τ is the rate
of a Poisson process. Details for derivation and interpretations of the equation (3)
can be found in [15, 9, 12] and references therein.

The solutions to the hyperbolic variations (1) with a generic positive (smooth)
function g exhibit the same phenomena of the ones to the classic Allen–Cahn equa-
tion (4) when the diffusion coefficient ε → 0+. In the one-dimensional case, i.e.
when n = 1 and Ω = [a, b] in (1) and (4), we have an example of metastable dy-
namics and there exist metastable patterns which maintain an unstable structure
for an exponentially long time as ε → 0+, that is for a time Tε = O(exp(C/ε)),
where C > 0. It is impossible to mention all the papers devoted to the study of
the metastable dynamics for the Allen–Cahn equation (4); here we only cite the
pioneering works [2, 4, 7, 14]. Metastability for the hyperbolic version (1) has been
investigated in detail in [9, 10, 11, 12]. We will briefly review these results in Sec-
tion (2), where we also discuss the role of the assumptions on the functions F, g and
present some numerical solutions in the case such assumptions are not satisfied.

On the other hand, in the multi-dimensional case, the Allen–Cahn equation is
strictly related to the mean curvature flow. The link between the equation (4) and
the motion by mean curvature was firstly observed by Allen and Cahn in [1] on the
basis of a formal analysis. Among others, rigorous proofs can be found in [3, 6, 8].
In Section (3) we present a result contained in [13], where we study in detail the
case of radially symmetric solutions to the damped version (2).

2. The one-dimensional case: metastability. In this section we consider the
one-dimensional version of (1) in a bounded interval [a, b], subject to homogeneous
Neumann boundary conditions

ux(a, t) = ux(b, t) = 0, t > 0, (5)

and initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [a, b]. (6)

In [9, 11, 12] it has been proved that if the potential F ∈ C3(R) satisfies

F (±1) = F ′(±1) = 0, F ′′(±1) > 0, F (u) > 0 ∀u 6= ±1, (7)

and the damping coefficient g ∈ C1(R) is a strictly positive function, namely

g(u) ≥ κ > 0, (8)
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then there exist metastable states for the IBVP (1)-(5)-(6), which maintain a tran-
sition layer structure for a time Tε = O(exp(C/ε)) as ε → 0+, where C > 0. In
other words, if the initial datum u0 has a particular structure with N transitions
between −1 and +1 (the global minimal points of the potential F ), and the initial
velocity u1 is sufficiently small as ε → 0+, then the solution maintains the same
transition layer structure of the initial datum for an exponentially long time. A
construction of a function with a transition layer structure can be found in [10,
pag. 553]; roughly speaking, a metastable state with N transitions between +1 and
−1 located at h = (h1, . . . , hN ) is a function that is approximately ±1 except in an
O(ε)-neighborhood of h1, . . . , hN . In formula, given h ∈ RN and β ∈ {−1,+1}, the
metastable state Uh = Uh(x) satisfies for ε small

Uh(x) ≈





β, x ∈ [0, h1 −O(ε)],

(−1)iβ, x ∈ [hi +O(ε), hi+1 −O(ε)], i = 1, . . . , N − 1,

(−1)Nβ, x ∈ [hN +O(ε), 1],

and Uh(hi) = 0, for i = 1, . . . , N . In [12, Section 4], we proved that the layer
dynamics is described by the ODE

τh′′i + γh′i =
ε

c0
Pi(h), i = 1, . . . , N, (9)

where hi := hi(t) denotes the position of the i-th transition point at time t and the
constants c0, γ are defined by

c0 :=

∫ +1

−1

√
2F (s) ds, γ :=

1

c0

∫ +1

−1
g(s)

√
2F (s) ds.

Regarding Pi(h), the precise formula can be found in [4] or [12]; here we only recall
that, when F is an even function, one has

Pi(h) :=
1

2
A2K2

{
exp

(
−A(hi+1 − hi)

ε

)
− exp

(
−A(hi − hi−1)

ε

)}
, (10)

for i = 1, . . . , N , where we used the notations h0 := 2a− h1, hN+1 := 2b− hN and
the constants A,K are given by

A :=
√
F ′′(±1), K = 2 exp

{∫ 1

0

(
A√

2F (t− 1)
− 1

t

)
dt

}
.

Taking τ = 0 and γ = 1 in the ODE (9), we obtain the equation describing the layer
dynamics in the classical Allen–Cahn equation (4). Therefore, the term ε

c0
Pi(h)

represents the speed of the i-th transition point in the case of equation (4); it follows
that such speed depends only on the distance between hi and the neighbours hi−1
and hi+1. In particular, hi is attracted by the closest transition point and moves
with an exponentially small velocity (provided A > 0).

In Figure (1) we show numerical solutions of the classical Allen–Cahn equation
(left picture) and the Allen–Cahn equation with relaxation (3) (right). In both
cases, we see that at time T = 1.5 ∗ 104 the solution has the same transition layer
structure of the initial profile and only the positions of the two closest transition
layers slightly change; the other points appear to be stationary. Based on the ODE
(9) with Pi(h) given by (10), the two closest transition points collapse after a time
T ≈ e1/ε = e10 ≈ 2.2 ∗ 104.

The assumptions (7)-(8) are fundamental to prove the metastable dynamics of
the solutions. Here, we will show what happens when they are not satisfied. First,
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Figure 1. Evolution of an initial profile with 6 transitions, lo-
cated at h = (−3.4,−2,−0.5, 0.8, 2.2, 3.2), in the case of the Allen–
Cahn equation (left) and the Allen–Cahn equation with relaxation
(right). In both cases, we choose ε = 0.1 and F (u) = 1

4 (u2 − 1)2.
In the relaxation case, we choose τ = 0.8 and the initial velocity
u1 = 0.

we consider the case when the assumption (8) on g is not satisfied. Fix g = 1+τF ′′,
with F (u) = 1

4 (u2 − 1)2. Hence, if τ ≤ δ < 1 then g(u) ≥ 1 − δ > 0; otherwise we
have

g(u) = 3u2, for τ = 1, g(u) ≤ 0, if |u| ≤
√
τ − 1

3τ
for τ > 1.

In Figure (2) we show the numerical solutions with the same initial data and the
same value of ε of Figure (1), but different values of τ . In the left picture we choose
τ = 1 and see that there are small differences with the case τ = 0.8; in the right
picture, τ = 2 and we see that at time T = 380 the two closest transitions collapse.
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Figure 2. Numerical solutions to the Allen–Cahn equation with
relaxation. The initial data and the value of ε are the same of
Figure (1); we choose τ = 1 in the left picture and τ = 2 in the
right picture.
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Now, we focus the attention on the assumptions on F (7) and show that the
condition F ′′(±1) > 0 is fundamental for the metastability. Indeed, in Figure (3)
we show the numerical solutions in the case of the Allen–Cahn equation (left) and
the Allen–Cahn equation with relaxation (right), when the potential F has two
global minimal points at ±1 , but F ′′(±1) = 0, and we see that the two closest
transitions points collapse after a time much smaller than Figure (1).
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Figure 3. Numerical solutions to the Allen–Cahn equation (left
picture) and Allen–Cahn equation with relaxation (right). The
values of the parameters ε, τ and the initial data are the same of
Figure (1); we change the double well potential and choose F (u) =
1
8 (u2 − 1)4.

3. The multi-dimensional case: mean curvature flow. In this section we
consider radially symmetric solutions to (2) and present the main result of [13],
where we rigorously proved the connection between equation (2) and the motion by
mean curvature in the radial case. As in the one-dimensional case, we consider well-
prepared initial data: we assume that u0 has a particular transition layer structure
and that u1 is sufficiently small as ε → 0+. In general, we can divide the domain
Ω ⊂ Rn, where we consider equation (2) in three regions: two regions Ω+, Ω− where
u0 > 0 and u0 < 0, respectively, and the interface Γ0, where u0 = 0. Therefore, if
uε = uε(x, t) is a solution to (2), we are interested in studying the propagation of
the interface

Γε(t) := {x ∈ Ω : uε(x, t) = 0}.
In the one-dimensional case, Γε consists of a finite number of points: their dynamics
is described by the ODE (9) and they move with an exponentially small velocity. In
the multi-dimensional case, for (1) a formal computation (see [13, Section 2.4]) shows
that Γε moves by mean curvature flow and its velocity is of order O(ε2). Hence, we
can rescale equation (1) and in the new scale the solution reaches its asymptotic limit
in a time which does not depend on ε. To the best of our knowledge, the rigorous
description of the interface motion for (1) with a generic positive damping coefficient
g and a generic domain Ω ⊂ Rn is an open problem. In [13] we consider the case
with g ≡ 1 and Ω the ball of center 0 and of radius 1, i.e. Ω = B(0, 1) = {x ∈ Rn :
|x| ≤ 1}, n = 2, 3. If uε(x, t) is a solution to (2), then wε(x, t) = uε(x, ε−2t) solves

ε2τwεtt + wεt = ∆wε − ε−2F ′(wε), x ∈ B(0, 1), t > 0. (11)
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Consider equation (11) in radial coordinates

ε2τwεtt + wεt = wεrr +
n− 1

r
wεr − ε−2F ′(wε), r ∈ (0, 1), t > 0, (12)

subject to initial conditions

wε(r, 0) = wε0(r), wεt (r, 0) = wε1(r), r ∈ (0, 1), (13)

and Dirichlet boundary condition

wε(1, t) = 1, ∀ t ≥ 0; (14)

moreover, at r = 0 wε must satisfy wεr(0, t) = 0 for any t ≥ 0. Let us assume that
F satisfies (7), that wε1 is sufficiently small as ε → 0+ and that wε0 has a single
transition sphere; the precise assumptions on the initial data can be found in [13,
Section 3]. In particular, we assume that wε0 satisfies

lim
ε→0

∫ 1

0

|wε0(r)− w̄(r)| rn−1 dr = 0, where w̄(r) :=

{
−1, r < ρ0,

+1, r > ρ0.

(15)
Hence, ρ0 is the radius of the initial transition sphere and the goal is to prove that
Γ0 := {x ∈ Ω : |x| = ρ0} moves by mean curvature flow in the singular limit
ε→ 0+. It is well-known that if Γ0 is a sphere in Rn of radius ρ0 which evolves by
mean curvature, then it remains a sphere and shrinks into a point in a finite time;
precisely, at time t we have

Γt := {x ∈ Ω : |x| = ρ(t)},
where ρ satisfies

ρ′ = −n− 1

ρ
, ρ(0) = ρ0, (16)

and, as a consequence,

ρ(t) =
√
ρ20 − 2(n− 1)t, t ∈ [0, ρ20/2(n− 1)].

In [13] we prove that the motion of the interface is governed by the law (16) in
the case of the IBVP (12)-(13)-(14) for well-prepared initial data (in particular, wε0
satisfies (15)) by using an energy approach introduced in [3] to study the propagation
of a transition sphere in the case of the classic Allen–Cahn equation (4). To do this,
we must require that the parameter τ depends on ε and goes to 0 as ε → 0+;
precisely, we assume that there exists a positive number µ� 1 such that

τ(ε) = o(εµ). (17)

However, we believe that such condition on the smallness of τ is indeed technical,
as confirmed by numerical evidence in [13, Section 1].

Introduce the new variable R = r − ρ(t) and define

vε(R, t) := wε(R+ρ(t), t), or, equivalently wε(r, t) = vε(r−ρ(t), t). (18)

The function vε is defined in [−ρ(t), 1− ρ(t)]× [0, T ] for some T > 0, and we want
to choose ρ = ρ(t) in a way such that vε has a transition at R = 0 as ε → 0+,
namely

lim
ε→0+

vε(R, t) =

{
−1, R < 0,

+1, R > 0.
(19)
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If (19) is satisfied, then the function ρ = ρ(t) describes the propagation of the
interface for wε. Using the change of variables (18), we deduce that vε satisfies

ε2τvεtt − 2ε2τρ′vεtR + vεt =
(
1− ε2τ(ρ′)2

)
vεRR

+

(
ε2τρ′′ + ρ′ +

n− 1

R+ ρ

)
vεR − ε−2F ′(vε). (20)

Inspired by [3], we shall rewrite the first two terms of the right-hand side of (20)
in weigthed divergence form, by introducing an appropriate integrating factor. To
this aim, the ODE (16) for ρ in our hyperbolic model is replaced by

ε2τρ′′ + ρ′ = −n− 1

ρ
. (21)

Equation (20) with ρ satisfying (21) can be rewritten in the form

ε2τvεtt − 2ε2τρ′vεtR + vεt =
(
1− ε2τ(ρ′)2

) (φεvεR)R
φε

− ε−2F ′(vε), (22)

where φε is the aforementioned integrating factor. In [13], we study the dynamics
of the solutions to (22), for well-prepared initial data and τ satisfying (17), and
prove that vε satisfies (19). Coming back to the original variables, we have that

lim
ε→0

∫ T

0

∫ 1

0

∣∣wε(r, t)− w0(r, t)
∣∣ rn−1 dr dt = 0,

for any T ∈ (0, ρ20/2(n− 1)), where

w0(r, t) :=

{
−1, r < ρ(t),

+1, r > ρ(t),
with ρ(t) =

√
ρ20 − 2(n− 1)t .

Therefore, concerning equation (2), we rigorously prove that the motion of a tran-
sition sphere is governed by the law (16) in the singular limit ε → 0+, and so, in
the radial case the interface moves by mean curvature flow. However, in order to
rigorously describe the dynamics of the solutions to (11), we used the ODE (21),
which takes into account the inertial term ε2τρ′′, and it is different from (16) as
long as ε is (small, but) strictly positive.
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Abstract. Many physical phenomena can be described by using models of

various levels of complexity. The more complex the model the higher the level
of details it accounts for, but as a result it is more expensive to simulate.

The computational expenses can be saved by decomposing the computational

domain and solving the simple model where sufficient and the complex model
everywhere else. This paper is concerned with model adaptation based on

domain decomposition for systems of hyperbolic partial differential equations

with stiff source terms. To this end, we derive a posteriori estimates, i.e an
upper bound for the L2 distance between the numerical solution to the simple

system and the exact solution to the complex system. We also account for

discretization errors, which enables mesh and model adaptation.

1. Introduction. Chemically reacting flows are of interest in many industrial ap-
plications such as simulation of combustion in engines, electrochemistry in batteries
and manufacturing processes in pharmaceutical and chemical industry. Chemically
reacting flows are extremely costly to simulate due to the interaction between var-
ious mechanisms like convection and reaction. Chemically reacting flows can also
have large system sizes, due to the large number of constituents being present. At
chemical equilibrium, the reaction terms vanish and the partial densities depend
on each other by algebraic relations, simplifying the governing equations and hence
significantly reducing the computational costs. The a posteriori error analysis pre-
sented in this paper provides computable bounds for the L2 distance between the
numerical solution to the chemical-equilibrium system and the exact solution to
the chemical non-equilibrium system. This is crucial in devising model adaptive
schemes.

Previously proposed model adaptive algorithms were based on dual-weighted
residuals (see [3]) and Chapman-Enskog expansions (see [9]). We present error
estimators based on the relative entropy framework which uses the weak-strong
stability of entropy admissible weak solutions to systems of hyperbolic balance laws.
The error estimates are inspired from the analysis of hyperbolic relaxation systems
in [12] and [10].

The paper is organised as follows: firstly, the modelling of chemically reacting
flows is discussed in Section 2, followed by its abstract form in Section 3. Finally,

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. A posteriori error estimates, Hyperbolic balance laws, Relative entropy,

Model adaptation.
∗ Corresponding author: Hrishikesh Joshi.
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the a posteriori error analysis is described in Section 4, in which first a brief de-
scription of the reconstruction methodology is given, then the error estimates and
the coupling between the two models is discussed.

2. Chemically reacting flows. In this section, a class of models describing chem-
ically reacting flows and its properties are discussed.
Consider the following set of M ∈ N chemical reactions for Nc ∈ N constituents

Nc∑
i=1

αjiAi −−⇀↽−−
Nc∑
i=1

βjiAi j = 1, . . . ,M ,

where αji , β
j
i ∈ N are the stoichiometric coefficients and Ai the constituents.

Neglecting heat conduction and viscosity, chemically reacting flows can be modelled
by

∂tρi +∇ · (ρiv) = Mi (βi − αi)Ri, i = 1, . . . , Nc

∂t(ρv) +∇ · (ρv ⊗ v) +∇p = 0, (1)

∂t(ρe) +∇ · ((p+ ρe)v) = 0,

where v is the velocity, ρj are the partial densities, ρe is the total energy and the

total density is defined as ρ =
Nc∑
i=1

ρi. Further, we assume ideal gas mixtures, hence

the pressure is given by p = RT
Nc∑
i=1

ρi
Mi
, where R is the universal gas constant, Mi

are the molecular masses and T is the temperature.
The temperature can be calculated from the total energy, which is defined as

ρe =

Nc∑

i=1

ρicv,iT +

Nc∑

i=1

ρihf,i +
1

2
ρ|v|2. (2)

Here, cv,i > 0 are the specific heats at constant volume and hf,i ∈ R are the
enthalpies of formation. The reader is referred to Section 9 in [2] for more details.

Chemically reacting flows may have various dissipative mechanisms such as heat
conduction, radiation, diffusion and reaction. These dissipative mechanisms drive
the system to chemical and mechanical equilibrium and as a result to thermody-
namic equilibrium. Entropy of the system tells us how far this process has advanced
and each of these mechanisms leads to a positive entropy production as known from
the second law of thermodynamics, see [11]. This entropic structure enables us to
derive computable a posteriori error estimates to carry out model adaptation. For
the sake of simplicity we only consider reactions. Other dissipative mechanisms can
be incorporated in the presented analysis in a similar fashion.

3. Abstract form.

3.1. Balance laws. The system of governing equations describing chemically re-
acting flows (1) can be cast in an abstract form as

∂tU +
∑

α

∂xαFα(U) =
1

ε
R(U),U : Rd × R+ → RN , (3)

where ε > 0. From hereon system (3) is referred to as the complex system.
Projecting the complex system using some projection matrix P : RN → Rn such
that

PR(U) = 0 (4)
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and u := PU, we get

∂tu +
∑

α

∂xαPFα(U) = 0, u : Rd × R+ → Rn. (5)

Further, the equilibrium solutions are parametrized by so called Maxwellian, M(u),
such that

Ueq = M(u). (6)

Hence, in the limit ε→ 0, (5) reduces to

∂tu +
∑

α

∂xαPFα(M(u)) = 0. (7)

From hereon system (7) is referred to as the simple system.
Our objective is to carry out model adaptation between the simple system (7) and
the complex system (3).

The relaxation system is equipped with a convex entropy-entropy flux pair
(H(U), Q(U)) satisfying,

DH(U) D F(U) = DQ(U), (8)

so that smooth solutions of (3) satisfy

∂tH(U) +
∑

α

∂xαQα(U) =
1

ε

∂H(U)

∂U
·R(U) ≤ 0. (9)

The above inequality implies that the system dissipates entropy.
Furthermore, the Maxwellian induces an entropy-entropy flux pair for the equi-

librium system via η(u) := H(M(u)), qα := Qα(M(u)), smooth solutions of which
satisfy

∂tη(u) +
∑

α

∂xαqα(u) = 0. (10)

The error estimates we present are applicable to all systems having the structure
described above. For the application under consideration the model adaptation will
be carried out between the complex system (3), i.e. the chemical non-equilibrium
system and the simple system (7), i.e the chemical equilibrium system. In this case,
ε corresponds to the ratio of time scales of reaction and convection, and the system
size is N = Nc+d+1, where d is the number of spatial dimensions. As the reaction
rates increase ε tends to zero, the reaction terms vanish and the system reaches
equilibrium. The Maxwellian can be calculated from the conditions required for
chemical equilibrium.

3.2. A primer on the relative entropy framework. In this section we briefly
discuss the nature of the solutions of hyperbolic systems of balance laws.

3.2.1. Entropy admissible weak solutions.
It is well known that weak solutions to hyperbolic systems of conservation laws
are non-unique. Hence, we look for solutions that satisfy an additional entropy
admissibility condition. Scalar problems have unique entropy solutions, whereas
entropy solutions to systems of conservation laws in two or more dimensions are
not unique, see [5]. But, even in this case, a weak-strong uniqueness principle
holds, which can be proven based on the relative entropy framework.
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Definition 3.1. The relative entropy and relative entropy flux between states u
and v is defined as

H(u|v) = H(u)−H(v)− ∂H

∂u
(v) (u− v) , (11)

Q(u|v) = Q(u)−Q(v)− ∂H

∂u
(v) (F (u)− F (v)) (12)

respectively.

3.2.2. Weak-strong stability.
Weak-strong stability implies uniqueness of entropy admissible weak solution as long
as a Lipschitz continuous solution to the system exists. Next, weak-strong stability
is described, which forms the basis of the relative entropy framework employed to
derive the error estimates. For general background on hyperbolic conservation laws
the reader is referred to [4].

Theorem 3.2. Let ū : Rd×R+ → Rn be a smooth solution of the equilibrium system
(7), with initial data ū0. Let Uε : Rd×R+ → RN be a family of entropy admissible
weak solutions of the complex system (3) with initial data Uε

0, and the relative
entropy Hr(x, t) := H (Uε(x, t)|M(ū(x, t))), then there exist constants C > 0 and
s > 0 independent of ε so that for any R > 0

∫

|x|<R
Hr(x, t) dx ≤ C

(∫

|x|≤R+st

Hr(x, 0) dx+ ε

)
, a.e. t ∈ [0, T ). (13)

Moreover, if ∫

|x|<R+sT

Hr(x, 0) dx→ 0 as ε ↓ 0, (14)

then

ess sup
t∈[0,T )

∫

|x|<R
|Uε −M(ū)|2 dx→ as ε ↓ 0. (15)

For technical details please refer to [10].

4. A posteriori error analysis. Solutions to hyperbolic conservation laws may
develop discontinuities in finite time, even for smooth initial data. To exploit the
weak-strong stability we need one of the solutions to be Lipschitz continuous. As
the exact solution to the system can be discontinuous, we introduce an intermedi-
ate quantity, a Lipschitz continuous reconstruction of the numerical solution, and
proceed to bound the error between the reconstruction and the exact solution. We
outline the derivation of the computable error estimates in this section.

4.1. Error splitting. We need to bound the distance between the numerical so-
lution to (7) and the exact solution to (3). To this end, the triangle inequality
between the exact solution to (3), the numerical solutions and the reconstructions
is employed. Let U be the exact solution to (3), Uh be some numerical solution

to (3), Ûh its reconstruction, uh be some numerical solution to (7) and ûh its
reconstruction. Employing the triangle inequality, we get

||U−M(uh)|| ≤ ||U−M(ûh)||+ ||M(ûh)−M(uh)||. (16)

The first term in the above inequality will be bounded by the relative entropy
framework and the second term can be explicitly computed.
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4.2. Computational domain decomposition. A tolerance can be set for the
error estimate, which gives the distance between the numerical solution to the simple
system and the exact solution to the complex system. Then, the computational
domain can be decomposed to solve the simple system where determined sufficient
and the complex system everywhere else. As a result, an interface is introduced
where the simple system is solved on one side of the interface and the complex
system on the other side. To describe the features of the a posteriori error estimates
we restrict ourselves to 1D and assume that the simple system is solved for x ∈ R−
and the complex system for x ∈ R+.

In accordance with the domain decomposition, the relative entropy and en-

tropy fluxes are defined as H+
r := H

(
U|Ûh

)
, H−r := H (U|M (ûh)) , and Q+

r :=

Q
(
U|Ûh

)
, Q−r := Q (U|M (ûh)) on R+ and R− respectively.

Remark 1. Strict convexity of H implies that, for some c+ > 0, c− > 0,

H−r ≥ c− |U−M(ûh)|2 , H+
r ≥ c+

∣∣∣U− Ûh

∣∣∣
2

. (17)

4.3. Reconstruction. In case of numerical solutions computed by Runge-Kutta
Discontinuous Galerkin schemes, [7] and [8] explain how to define reconstructions
that are computable and Lipschitz continuous in space and time.

The reconstruction of the numerical solution satisfies a perturbed system of par-
tial differential equations. The reconstruction of the numerical solution to the com-
plex system, Ûh for x ∈ R+, satisfies

∂tÛh + ∂xF(Ûh)− 1

ε
R(Ûh) =: r2, Ûh : R+ × R+ → RN , (18)

where r2 is the residual in the complex system.
Similarly, the reconstruction to the simple system, ûh for x ∈ R−, satisfies

∂tûh + ∂xPF(M(ûh)) =: Pr1, ûh : R− × R+ → Rn, (19)

where Pr1 is the residual in the simple system.
The residuals are related to the discretization errors and can be used for mesh

adaptation.

4.4. A posteriori error estimates. The L2 distance between the reconstruction
and the exact solution can be bounded by the results presented in the following
theorem. The proof of which will be given in [6].

Theorem 4.1. Let U : R × R+ → RN be the exact solution to (3). Let Û be the
Lipschitz reconstruction of the numerical solution of (3) on x ∈ R− and let û be the
Lipschitz reconstruction of the numerical solution of (7) on x ∈ R+, then assuming
for some ν = ν(M)

−
(
∂H

∂U
(U)− ∂H

∂U
(M (PU))

)
· (R(U)−R (M (PU))) ≥ ν |U−M(PU)|2 (20)

for U ∈ RN . Furthermore, for any U,V ∈ RN

−
(
∂H

∂U
(U)− ∂H

∂U
(V)

)
· (R(U)−R(V)) ≥ 0. (21)
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Therefore, we have∫

R+

∣∣∣U− Ûh

∣∣∣
2

dx+

∫

R−
|U−M(ûh)|2 dx (22)

≤ (I +Dc +Ds +Ms + CQ) exp

(
max(Cc +Mc, Cs + 1 + |P|)

min(c−, c+)
t

)
,

where
I =

∫
R− H

−
r (x, 0) dx+

∫
R+ H

+
r (x, 0) dx,

Dc =
∫ t
0

∫
R+

∣∣∣∇2
UH(Ûh)r2

∣∣∣
2

dxdτ ,

Ds =
∫ t
0

∫
R−

∣∣∇2
uη(ûh)Pr1

∣∣2 dxdτ ,

Ms = ε
ν

∫ t
0

∫
R− |∂x (∇uη(ûh)) ∗ P∇UF(M(ûh))|2 dxdτ ,

CQ =
∫ t
0
Q+
r (0, τ)dτ −

∫ t
0
Q−r (0, τ) dτ

Cc =
∣∣∣
∣∣∣∂x
(
∇UH(Ûh)

)
∇2

UF(Ûh)
∣∣∣
∣∣∣
∞
,

Mc =
∣∣∣
∣∣∣ 1εR(Ûh)∇3

UH(Ûh)
∣∣∣
∣∣∣
∞
,

Cs =
∣∣∣∣∂x (∇u(η(ûh)))∇2

u (g(ûh))
∣∣∣∣
∞.

The terms Dc and Ds indicate the discretization errors in the numerical solution
of the complex and the simple system. Furthermore, the terms Cc and Cs indicate
the stability of the perturbed differential equations. The term Ms indicates the
modelling error incurred due to solving the simple system instead of the complex
system on R− and the term I indicates the error incurred due to discrete initializa-
tion. CQ arises due to the use of different models across the interface. Note that
here all terms except CQ are a posteriori computable.

Now, from (12), we know

∫ t

0

Q+
r (0, τ) dτ −

∫ t

0

Q−r (0, τ) dτ =

∫ t

0

Q (M (ûh(0, τ)))−Q
(
Ûh (0, τ)

)
dτ

+

∫ t

0

∂H

∂U
(M (ûh (0, τ))) F (M (ûh (0, τ)))− ∂H

∂U

(
Ûh (0, τ)

)
F
(
Ûh (0, τ)

)
dτ

+

∫ t

0

F(U)

(
∂H

∂U
(M(ûh(0, τ)))− ∂H

∂U
(Ûh(0, τ))

)
dτ (23)

Hence, if the reconstructions satisfy

M(ûh(0, τ)) = Ûh(0, τ) (24)

at the interface then CQ vanishes and the error estimator can be explicitly com-
puted. Note that (24) only specifies a condition for the reconstruction. When
numerically solving the coupled systems, to ensure that no numerical artefacts such
as acoustic waves are introduced special coupling conditions need to be employed.
For more on this the reader is referred to [1].

Numerical experiments show (in [6]) that the discretization terms vanish as the
mesh width tends to zero. The error estimate accounts for modelling and discretiza-
tion errors, hence, it allows for in situ model and mesh adaptation.
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Abstract. We present an a posteriori error analysis for one-dimensional ran-

dom hyperbolic systems of conservation laws. For the discretization of the

random space we consider the Non-Intrusive Spectral Projection method, the
spatio-temporal discretization uses the Runge–Kutta Discontinuous Galerkin

method. We derive an a posteriori error estimator using smooth reconstructions

of the numerical solution, which combined with the relative entropy stability
framework yields computable error bounds for the space-stochastic discretiza-

tion error. Moreover, we show that the estimator admits a splitting into a
stochastic and deterministic part.

1. Introduction. In this contribution we study numerical schemes for spatially
one-dimensional systems of random hyperbolic conservation laws, where the un-
certainty stems from random initial data. The random space is discretized using
the Non-Intrusive Spectral Projection (NISP) method which is based on discrete
orthogonal projections, cf. [8]. The resulting deterministic equations are discretized
by a Runge–Kutta Discontinuous Galerkin (RKDG) method [2]. We reconstruct the
numerical solutions based on reconstructions for determinstic problems suggested
in [4], see also [7] for their use in Stochastic Galerkin schemes. Based on these
reconstructions and using the relative entropy framework, cf. [3, Section 5.2], we
derive an a posteriori error bound for the difference between the exact solution of
the random hyperbolic conservation law and its numerical approximation. We show
that the corresponding residual admits a decomposition into three parts: A spatial
part, a stochastic part, and a part which quantifies the quadrature error introduced

2000 Mathematics Subject Classification. Primary: 35L65, 35R60; Secondary: 65M15, 65M60,

65M70.
Key words and phrases. hyperbolic conservation laws, random pdes, a posteriori error esti-

mates, non-intrusive spectral projection method, discontinuous Galerkin method.
The first author thanks the German Research Foundation (DFG) for support of the project via

DFG grant GI1131/1-1. The second and last author thank the Baden-Württemberg Stiftung for
support via the project “BW-HPC2: SEAL”.

∗ Corresponding author.

449



JAN GIESSELMANN, FABIAN MEYER AND CHRISTIAN ROHDE

by the discrete orthogonal projection. This decomposition paves the way for novel
residual-based adaptive numerical schemes.

The article is structured as follows: In Section 2 we describe the problem of
interest. In Section 3 the NISP and RKDG method is reviewed and we show how
to obtain the reconstruction from our numerical solution. Section 4 presents our
main a posteriori error estimate with decomposition of the residual.

2. Statement of the Problem. Let (Ω,F ,P) be a probability space, where Ω is
the set of all elementary events ω ∈ Ω, F is a σ-algebra on Ω and P is a probability
measure. We consider uncertainties parametrized by a random variable ξ : Ω→ Ξ ⊂
R with probability density function wξ : Ξ → R+. The random variable induces

a probability measure P̃(B) := P(ξ−1(B)) for all B ∈ B(Ξ) on the measurable
space (Ξ,B(Ξ)), where B(Ξ) is the corresponding Borel σ-algebra. This measure
is called the law of ξ and in the following we work on the image probability space
(Ξ,B(Ξ), P̃). For a second measurable space (E,B(E)), we consider the weighted
Lpξ-spaces equipped with the norm

‖f‖Lpξ(Ξ;E) :=





(∫
Ξ

‖f(y)‖pE wξ(y)dy
)1/p

= E
(
‖f‖pE

)1/p

, 1 ≤ p <∞

ess supy∈Ξ ‖f(y)‖E , p =∞.
Our problem of interest is the following initial value problem for an one dimensional
system of m ∈ N random conservation laws, i.e.,

{
∂tu(t, x, y) + ∂xF (u(t, x, y)) = 0, (t, x, y) ∈ (0, T )× R× Ξ,

u(0, x, y) = u0(x, y), (x, y) ∈ R× Ξ.
(RIVP)

Here, u(t, x, y) ∈ U ⊂ Rm is the vector of conserved unknown quantities, F ∈
C2(U ;Rm), is the flux function, u0 is the uncertain initial condition, U ⊂ Rm is the
state space, which is assumed to be an open set and T ∈ (0,∞) describes the final
time. We assume that (RIVP) is strictly hyperbolic, i.e. its Jacobian DF (u) has m
distinct real eigenvalues.

We say that (η, q) ∈ C2(U ;R) forms an entropy/entropy-flux pair if η is strictly
convex and if η and q satisfy D ηDF = D q. We assume that the random conserva-
tion law (RIVP) is equipped with at least one entropy/entropy-flux pair. Following
the definition in [9] for scalar problems, we call u ∈ L1

ξ(Ξ;L1((0, T ) × R;U)) a

random entropy solution of (RIVP), if u(·, ·, y) is a classical entropy solution, cf.

[3, Def. 4.5.1], P̃-a.s. y ∈ Ξ. The well-posedness of (RIVP), will not be discussed
in this article but can found in [6], where existence and uniqueness of random en-
tropy solutions for (RIVP) with random flux functions and random initial data with
sufficiently small total variation is proven, based on the results of [1].

3. Space-Time Stochastic Discretization and Reconstructions. For the sto-
chastic discretization of (RIVP) we use the NISP method, [8], which is based on the
(generalized) polynomial chaos expansion which was introduced in [10]. Under the
assumption that u is square-integrable with respect to Ξ, we expand the solution
of (RIVP) into a generalized Fourier series using a suitable orthonormal basis.

Let {Ψi(·)}i∈N : Ξ→ R be a L2
ξ(Ξ)-orthonormal basis, i.e. for i, j ∈ N we have

〈
Ψi,Ψj

〉
:= E

(
ΨiΨj

)
=

∫

Ξ

Ψi(y)Ψj(y)wξ(y) dy = δij . (1)
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Following [10], the random entropy solution u can be written as

u(t, x, y) =
∞∑

i=0

ui(t, x)Ψi(y), (2)

with (deterministic) Fourier modes ui = ui(t, x) satisfying

ui(t, x) = E
(
u(t, x, ·)Ψi(·)

)
∀i ∈ N . (3)

The NISP method approximates the modes in (3) via a discrete orthogonal pro-
jection, i.e., numerical quadrature. We denote (R + 1) ∈ N quadrature points and
weights by {yl}Rl=0, {wl}Rl=0, and approximate

ui(t, x) =

∫

Ξ

u(t, x, y)Ψi(y)wξ(y) dy ≈
R∑

l=0

u(t, x, yl)Ψi(yl)wl =: ûi for i ∈ N .

(4)

In a second step the NISP method truncates (2) after the M -th mode, i.e.,

u(t, x, y) ≈
M∑

i=0

ûi(t, x)Ψi(y). (5)

For any l = 0, . . . , R, the random entropy solution u of (RIVP) evaluated at quad-
rature point {yl}Rl=0, is denoted by u(·, ·, yl) and it is an entropy solution of the
deterministic version of (RIVP), i.e. of

{
∂tu(t, x, yl) + ∂xF (u(t, x, yl)) = 0, (t, x) ∈ (0, T )× R,
u(0, x, yl) = u0(x, yl), x ∈ R .

(DIVP)l

The deterministic hyperbolic systems (DIVP)l can be discretized by a suitable nu-
merical method. We use the RKDG method as described in [2]. We denote the
corresponding numerical solution of (DIVP)l at quadrature point {yl}Rl=0 and at

points {tn(yl)}Nt(yl)n=0 , Nt(yl) ∈ N, in time by unh(·, yl) ∈ V sp , where

V sp := {v : R→ Rm | v |K∈ Pp(K;Rm), K ∈ T },
is the corresponding DG space of polynomials of degree p ∈ N, associated with
a uniform triangulation T of R. Let us assume that the time partition {tn}Ntn=0

and the triangulation T used for (DIVP)l are the same for every quadrature point
{yl}Rl=0. The numerical approximation of (RIVP) at time t = tn can then be written
as

unh(x, y) :=

M∑

i=0

( R∑

l=0

unh(x, yl)Ψi(yl)wl

)
Ψi(y). (6)

The proof of the a posterior error estimate in Theorem 4.1 uses the relative en-
tropy framework, cf. [3, Section 5.2], which requires one quantity which is at least
Lipschitz continuous in space and time. To this end we reconstruct the numeri-
cal solution so that we obtain a Lipschitz continuous function. To avoid technical
overhead, we do not elaborate upon this process here, but refer to [4, 7], where a
detailed description can be found.

The reconstruction provides us with a computable space-time reconstruction
ûst(yl) ∈ W 1

∞((0, T );V sp+1 ∩ C0(R)) of the numerical solution {unh(yl)}Ntn=0 ⊂ V sp ,
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for each quadrature point {yl}Rl=0. This allows us to define a space-time residual as
follows.

Definition 3.1 (Space-time residual). For all l = 0, . . . , R, we define Rst(yl) ∈
L2((0, T )× R;Rm) by

Rst(yl) := ∂tû
st(yl) + ∂xF (ûst(yl)) (7)

to be the space-time residual associated with the quadrature point yl.

Next we define the reconstructed mode, the space-time-stochastic reconstruction
and the space-time-stochastic residual. The latter is obtained by plugging the space-
time-stochastic reconstruction into the random conservation law (RIVP).

Definition 3.2 (Space-time-stochastic reconstruction and residual). Let {ûst(yl)}Rl=0

: (0, T ) × R → Rm be the sequence of space-time reconstructions at quadrature
points {yl}Rl=0. The reconstructed modes of (4) are defined as

ûsti :=

R∑

l=0

ûst(yl)Ψi(yl)wl, (8)

for i = 0, . . . ,M . The space-time-stochastic reconstruction ûsts : (0, T )× R× Ξ→
Rm is defined as

ûsts(t, x, y) :=
M∑

i=0

ûsti (t, x)Ψi(y). (9)

Finally, we define the space-time-stochastic residualRsts ∈ L2
ξ(Ξ;L2((0, T )×R;Rm))

by

Rsts := ∂tû
sts + ∂xF (ûsts). (10)

This residual is crucial in the upcoming error analysis.

4. A Posteriori Error Estimate and Error Indicators. Before stating the
main a posterior error estimate, let us note that derivatives of the flux function
and the entropy are bounded on any compcat subset C of the state space. These
bounds enter the upper bound in Theorem 4.1. Let C ⊂ U be convex and compact.
Due to F ∈ C2(U ,Rm) and η ∈ C2(U ,Rm) strictly convex there exist constants
0 < CF <∞ and 0 < Cη < Cη <∞, s.t.

|v>HF (u)v| ≤ CF |v|2, Cη|v|2 ≤ v>Hη(u)v ≤ Cη|v|2, ∀v ∈ Rm,∀u ∈ C .

Here HF denotes the Hessian (i.e. the tensor of second order derivatives) of the flux
function and Hη the Hessian of the entropy η. We now have all ingredients together
to state the following a posteriori error estimate that can be directly derived from
[5].

Theorem 4.1 (A posteriori error bound for the numerical solution). Let u be the
random entropy solution of (RIVP). Then, for any n = 0, . . . , Nt, the difference
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between u(tn, ·, ·) and the numerical solution unh from (6) satisfies

‖u(tn, ·, ·)− unh(·, ·)‖2L2
ξ(Ξ;L2(R))

≤ 2‖ûsts(tn, ·, ·)− unh(·, ·)‖2L2
ξ(Ξ;L2(R))

+ 2C−1
η

(
Ests(tn) + CηEsts0

)

× exp
(
C−1
η

tn∫

0

(
CηCF ‖∂xûsts(t, ·, ·)‖L∞

ξ (Ξ;L∞(R)) + C2
η

)
dt
)
,

with

Ests(tn) := ‖Rsts(·, ·, ·)‖2L2
ξ(Ξ;L2((0,tn)×R)),

Ests0 := ‖u0(·, ·)− ûsts(0, ·, ·)‖2L2
ξ(Ξ;L2(R)).

Proof. We apply [5, Lemma 5.1] path-wise in Ξ, integrate over Ξ and use Gronwall’s
inequality to bound ‖u(tn, ·, ·) − ûsts(tn, ·, ·)‖L2

ξ(Ξ;L2(R)) by the second term in the

inequality. The final estimate then follows using the triangle inequality.

In Theorem 4.1 the error between the numerical solution and the entropy solution
is bounded by the error in the initial condition, the difference between the numeri-
cal solution and its reconstruction and the contribution of the space-time stochastic
residual Rsts from (10), quantified by Ests. We would like to distinguish between
errors that arise from discretizing the random space and from discretizing the phys-
ical space. Therefore, we show in Lemma 11 a splitting of the space-time-stochastic
residual Rsts into three parts. Namely a deterministic residual, which corresponds
to the spatial error when approximating (DIVP)l using the RKDG method, a
quadrature residual that reflects the quadrature error from the discrete orthogonal
projection in (4) and a stochastic cut-off error, which occurs when truncating the
infinite Fourier series in (2).

Lemma 4.2 (Orthogonal decomposition of the space-time-stochastic residual). The
space-time-stochastic residual Rsts from (10) admits the following orthogonal decom-
position,

Rsts =
M∑

j=0

(
Rdetj +Rsqj

)
Ψj +

∞∑

j>M

Rscj Ψj , (11)

where

Rdetj :=
R∑

l=0

Rst(yl)Ψj(yl)wl for j = 0, . . . ,M

Rsqj :=
〈
∂xF

( M∑

i=0

ûst(yi)Ψi

)
,Ψj

〉
−

R∑

l=0

∂xF (ûst(yl))Ψj(yl)wl for j = 0, . . . ,M

Rscj :=
〈
∂xF

( M∑

i=0

ûst(yi)Ψi

)
,Ψj

〉
for j > M
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are called the j-th mode of the deterministic, stochastic quadrature and stochastic
cut-off residual. Moreover, we have

Ests(t) = ‖Rsts‖2L2
ξ(Ξ;L2((0,t)×R)

=

M∑

i=0

‖Rdeti +Rsqi ‖2L2((0,t)×R) +

∞∑

i>M

‖Rsci ‖2L2((0,t)×R)

≤ 2Edet(t) + 2Esq(t) + Esc(t), (12)

where, for any t ∈ (0, T ),

Edet(t) :=

M∑

i=0

‖Rdeti ‖2L2((0,t)×R), Esq(t) :=

M∑

i=0

‖Rsqi ‖2L2((0,t)× R),

Esc(t) :=

∞∑

i>M

‖Rsci ‖2L2((0,t)×R).

Proof. We recall that the space-time reconstruction ûst(yl) satisfies

Rst(yl) = ∂tû
st(yl) + ∂xF (ûst(yl)) (13)

for all l = 0, . . . , R. Moreover, the reconstructed mode ûstj was defined as (cf. (8))

ûstj =

R∑

l=0

ûst(yl)Ψj(yl)wl (14)

for all j = 0, . . . ,M . Multiplying (13) by Ψj(yl)wl and suming over l = 0, . . . , R
yields, using (14), the following relationship

R∑

l=0

Rst(yl)Ψj(yl)wl = ∂tû
st
j +

R∑

l=0

∂xF (ûst(yl))Ψj(yl)wl. (15)

By definition of the space-time-stochastic residual we have

Rsts = ∂tû
sts + ∂xF (ûsts) = ∂t

( M∑

i=0

ûsti Ψi

)
+ ∂xF

( M∑

i=0

ûsti Ψi

)
.

Let us begin by studying the j-th mode of Rsts for j = 0, . . . ,M . In this case the
orthogonality relation (1) yields

〈
Rsts,Ψj

〉
=
〈
∂tû

sts + ∂xF (ûsts),Ψj

〉
= ∂tû

st
j +

〈
∂xF

( M∑

i=0

ûsti Ψi

)
,Ψj

〉
. (16)

Using (15) we obtain

〈
Rsts,Ψj

〉
=

R∑

l=0

Rst(yl)Ψj(yl)wl (17)

+
〈
∂xF

( M∑

i=0

ûsti Ψi

)
,Ψj

〉
−

R∑

l=0

∂xF (ûst(yl))Ψj(yl)wl = Rdetj +Rsqj .

For j > M the j-th moment of Rsts is

〈
Rsts,Ψj

〉
=
〈
∂xF

( M∑

i=0

ûsti Ψi

)
,Ψj

〉
= Rscj . (18)
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Formula (11) then follows from (17) and (18). Formula (12) is an application of the
Pythagorean theorem for L2

ξ(Ξ).

Putting together Theorem 4.1 and Lemma 4.2 we obtain our main result, the
following a posteriori error estimate with separable error bounds.

Theorem 4.3 (A posteriori error bound for the numerical solution with error
splitting). Let u be the random entropy solution of (RIVP). Then, for any n =
0, . . . , Nt, the difference between u(tn, ·, ·) and unh from (6) satisfies

‖u(tn, ·, ·)− unh(·, ·)‖2L2
ξ(Ξ;L2(R))

≤ 2‖ûsts(tn, ·, ·)− unh(·, ·)‖2L2
ξ(Ξ;L2(R))

+ 2C−1
η

(
2Edet(tn) + 2Esq(tn) + Esc(tn) + CηEsts0

)

× exp
(
C−1
η

tn∫

0

(
CηCF ‖∂xûsts(t, ·, ·)‖L∞

ξ (Ξ;L∞(R)) + C2
η

)
dt
)
.

5. Conclusions and Outlook. We derived a novel residual-based a posteriori er-
ror bound for the difference between the entropy solution of (RIVP) and its numer-
ical approximation using the NISP method in combination with a RKDG scheme.
Moreover, we proved that the upper bound can be decomposed into three parts,
where Edet quantifies the space-time discretization error of the RKDG scheme, Esq
assesses the quality of the discrete orthogonal projection and Esc quantifies the
stochastic error by truncation of the generalized polynomial chaos series. Based
on these results, residual-based adaptive numerical schemes, which balance the
contribution of the three different sources of numerical error, can be constructed.
Residual-based space-stochastic adaptive numerical schemes are also considered in
[6].
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ANALYSIS OF A NONLINEAR HYPERBOLIC CONSERVATION

LAW WITH MEASURE-VALUED DATA
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Abstract. This research announcement is concerned with a nonlinear hyper-

bolic conservation law model of a highly re-entrant semiconductor manufactur-

ing system. The hyperbolic conservation law is characterized by the non-local
velocity and its flux boundary condition. We report progress on the conjectured

non-existence of L1-optimal controls for the transition between equilibria. In

the space of finite positive regular Borel measures, we formulate a notion of
solution in the spirit of Lagrangian point of view and propose a new notion

of weak measure-valued solution. We prove the existence and uniqueness of

such solutions together with continuity of the flow with respect to time and
(almost) with respect to the initial state.

1. Introduction. In this conference article, we announce new results that well-
posedness of a model for semiconductor manufacturing systems is preserved when
data and states are generalized from L1-functions to Borel measures. We moti-
vate this generalization by partial results on L1-functions not being optimal. For
complete proofs we refer the interested readers to[4]

Hyperbolic conservation laws are commonly used to describe traffic flow, pedes-
trian motion and sedimentation models among many other applications. A con-
tinuum model was introduced in [1] to describe highly re-entrant semiconductor
manufacturing systems which produce a large number of items in a large number
of steps. Denote by x ∈ [0, 1] the degree of completion in the semiconductor fac-
tory. That is, x = 0 represents the beginning of the production line and x = 1
the end. Let ρ : [0,∞) × [0, 1] → [0,∞), (t, x) 7→ ρ(t, x) be the density variable
which describes the work in progress (WIP) density of the product at stage x of
the production at time t. A characteristic feature of the model is that the velocity

is non-local and depends on the the total load W (t) =
∫ 1

0
ρ(t, x)dx. This reflects

the highly re-entrant nature of the product flow in semi-conductor manufacturing
systems. The velocity is a positive, decreasing function v = α(W ) of the total
load. The time evolution of the product density ρ was described in [1] by the scalar
hyperbolic conservation law

∂tρ(t, x) + ∂x(α(W (t))ρ(t, x)) = 0. (1)

A natural boundary control input, the in-flux u, suggests the boundary condition

u(t) = ρ(t, 0)α(W (t)), for t ∈ [0,+∞). (2)

2000 Mathematics Subject Classification. Primary: 35R06, 35L65; Secondary: 65M25, 93C20.

Key words and phrases. Hyperbolic Conservation Law, Measure, Optimal Control.
∗ Corresponding author: Xiaoqian Gong.

457



XIAOQIAN GONG AND MATTHIAS KAWSKI

In addition, the initial condition is

ρ0(x) = ρ(0, x), for x ∈ [0, 1]. (3)

Motivated by business objectives of the semiconductor manufacturing company, for
a given desired out-flux yd and the actual out-flux y(t) = ρ(t, 0)α(W (t)), denote by

Yd(t) =
∫ t
0
yd(s) ds and Y (t) =

∫ t
0
y(s) ds the desired accumulated out-flux and the

actual accumulated out-fluxes, respectively. Furthermore, define the backlog β by
the mismatch between the desired and actual accumulated out-flux, i.e., β = Yd(t)−
Y (t). The control problem associated to the nonlinear hyperbolic conservation law
(1) is to find an optimal control u∗ in a set of admissible controls such that the
control objective functional

J(u) =

∫ ∞

0

|β(t)|p dt, with p = 1 or p = 2 (4)

is minimized at u∗.
Various different choices of the space of admissible controls and objectives are

of both practical and mathematical interest. Each space leads to distinct math-
ematical problems. This model was simulated for L2-data (u ∈ L2((0,∞)) and
ρ0 ∈ L2([0, 1])), and the L2-optimal control (p = 2 in equation (4) ) for piecewise
constant desired yd(t) was approximated numerically in [6]. Existence of unique
solutions to equation (1) for L1-data and existence of optimal solutions to equation
(1) for L2-data and L2-objectives were established analytically in [2]. It has been
conjectured that for the more meaningful L1-objective (p = 1 in equation (4) ), and
L1-data (u ∈ L1((0,∞)) and ρ0 ∈ L1([0, 1])), optimal controls need not exist unless
one requires the control to be bounded. This motivates us to consider the larger
space of finite positive regular Borel measures for the control input and the initial
density.

A number of recent articles [3, 7, 8] have made much progress in establishing the
well-posedness of similar nonlinear hyperbolic conservation laws with non-local ve-
locity in the setting of measure-valued data. The existence and uniqueness of weak
measure-valued solutions for a Cauchy problem associated to the continuity equa-
tion similar to (1) were established in [3] where the velocity relies on a smoothing
convolution. In addition, by considering the probability measures, article [3] used
the Wasserstein metric. In the article [8], the well-posedness of a Cauchy problem
for the transport equation similar to (1) with a source term was proved for data
and states in the spaceMac

0 (R) of finite positive measures on R that are absolutely
continuous with respect to Lebesgue measure and with bounded support on R. The
generalized Wasserstein distance was introduced manage changes of the total mass
with time.

In this article, we will pose the hyperbolic conservation law (1) in the space
M+(I) of finite positive regular Borel measures on an interval I ⊆ R. Let T > 0 be
large but fixed. Assume that the in-flux is given by µ ∈M+((0, T ]) and the initial
measure at the initial time t = 0 is given by ρ0 ∈ M+([0, 1)). Denote by ρt the
measure at time t. To avoid discontinuities of the total load W , we set for every
t ∈ (0, T ]

W (t) = ρt([0, 1)). (5)

That is, for instance, if for some time t0, ρt0({0}) = ρt0({1}) > 0, equation (5)
avoids an unnecessary discontinuity of the total load W . Formally, we have the
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following scalar conservation law

∂tρt + ∂x (α(W (t))ρt) = 0, (6)

with the in-flux at x = 0

µ ∈M+((0, T ])) (7)

and the initial condition

ρ0 ∈M+([0, 1)). (8)

Additionally, we assume that the velocity function α is bounded away from 0 on
compact sets, and is Lipschitz with respect to the total load, W , with Lipschitz
constant L. Namely, for any W1,W2 ≥ 0, ‖α(W1)− α(W2)‖ ≤ L‖W1 −W2‖.

What distinguishes our problem from others is that the velocity depends on
the total load instead of relying on smoothing convolution like in [3]. Due to the
control in-flux and out-flux, notions such as the standard Wasserstein metric are
not applicable. Besides the measures inMac

0 (R), we are also particularly interested
in the measures with nonzero pure point part. For example, Dirac measures play
an important rule when it comes to model impulsive optimal controls or a high
concentration of mass at an instant time in the factory.

The paper is organized as follows. In section 2, we demonstrate that a set of nat-
ural candidates of L1-controls does not contain an optimal control for the transition
between equilibria. Section 3 is devoted to the Lagrangian description of the model
of the highly re-entrant semiconductor manufacturing system. In section 4, we give
a new notion of weak measure-valued solution to the hyperbolic conservation law
(6) in the space of M+(I), and we establish the existence and uniqueness of the
weak measure-valued solutions together with continuity of the flow with respect to
time and (almost) with respect to the initial state.

2. Non-optimality of a family of L1-controls for the transition from a
smaller to a larger equilibrium. In this section, we demonstrate progress to-
wards proving the conjectured non-existence of optimal L1-controls for the optimal
control problem (1)-(4) with p = 1. Consider a desired out-flux yd that is piecewise
constant and increases with a jump at time t∗, i.e.,

yd(t) =

{
y1, t < t∗

y2, t ≥ t∗, (9)

with 0 ≤ y1 < y2 < 1. Additionally, we work with the fixed model α(W ) = 1
1+W for

the velocity as a function of the total load, as in [2]. Denote the constant densities
at the equilibrium states when t < t∗ and when t ≥ t∗ to be ρ1 and cρ2, respectively.
(It will be clear from the context that these are not ρt at times t = 1 and t = 2.)
Then for k = 1, 2, the corresponding outfluxes are yk = ρk

1+ρk
.

2.1. Transfer from a smaller to a larger equilibrium with nonzero backlog.
To meet the requirement that the system arrives at the larger equilibrium at time
t∗, the operator in the factory needs to start action at some time t∗ < t∗, such that

∫ t∗

t∗

α(W (t))dt = 1.
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That is, the operator need to start to increase the total load W at time t∗. But an
inverse response occurs: the velocity of the system decreases due to the increase of
the total load and this leads to nonzero backlog to the system.

Lemma 2.1. For the desired out-flux yd defined in (9), a control input in-flux

u(t) =

{
ρ1α(W (t)), t ≤ t∗,
ρ2α(W (t)), t ≥ t∗, (10)

with t∗ = t∗ − (1−y1)+(1−y2)
2(1−y1)(1−y2) produces a constant backlog β for t ≥ t∗,

β(t) =
y1(y2 − y1)

2(1− y1)(1− y2)
.

2.2. Transfer from a smaller to a larger equilibrium with eventually zero
backlog. To cancel the backlog produced by the control input in-flux u in equation
(10), one needs to modify this control input in-flux by increasing it, i.e., by adding
additional mass M > 0 at x = 0 at some earlier time stage. This results in even
larger inverse response due to the fact that velocity α decreases as the total load W
increases. Thus, the additional mass M must not only make up for the missing out-
flux due to the step up of the in-flux, but must also make up for the further backlog
caused by M itself. It is not a priori clear that for any ε ∈ (0, 1], such a mass M
exists. Furthermore, the requirement that the system reaches to another equilibrium
at time t∗ forces us to choose the control input in-flux as u(t) = ρ2α(W (t)) for t > ε,
with t∗ < ε < t∗. Without loss of generality, we assume that the action time t∗ = 0,

that is,
∫ t∗
0
α(W (t))dt = 1. In this article, we consider the case when ε ∈ (0, 1].

Note that in the situation with a modified control input in-flux, the system reaches

its new equilibrium state ρt ≡ ρ2 at the time T ∗ defined by
∫ T∗

ε
α(W (t))dt = 1,

with zero back-log β(T ∗) = 0.
The time T ∗ at which the backlog becomes zero also depends on both the shape

of the control variation, and on the amount of the additional mass M . Given a

direction h ∈ L1([0, 1]; [0,+∞)) with
∫ 1

0
h(t)dt = 1, and for any ε ∈ (0, 1], we

consider the curve of modified L1-control in-fluxes

uε(t) =

{
ρ2α(W (t)) + M∗(h,ε)

ε h( tε ), 0 ≤ t ≤ ε;
ρ2α(W (t)), t > ε,

(11)

with M∗(h, ε) > 0. Here the L1-function h and the number M∗(h, ε) represent the
shape and the amount of the additional mass respectively.

Lemma 2.2. For every h ∈ L1([0, 1]) as above, and every ε ∈ (0, 1], there exists a
unique M∗(h, ε) > 0 such that the control input uε results in zero backlog in finite
time.

Let M0 = ρ1(ρ2−ρ1)
2 and formally consider the impulsive control (not in L1((, T ]))

u0(t) =

{
M0δ0(t), t = 0,
ρ2α(W (t)), t > 0.

(12)

Lemma 2.3. For every h ∈ L1([0, 1]) as above, the modified L1 control inputs uε
converge to the distribution u0 in the sense of distribution as ε approaches 0 from
the right.

Formally, analyzing directional derivatives of the objective functional J at u0 ∈
M+((0, T ]) in the directions of absolutely continuous Borel measures that corre-
spond to L1 functions, we obtain:
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Theorem 2.4. For every h ∈ L1([0, 1]) as above, there exists εh > 0 such that for
all 0 < ε2 < ε1 < εh the functional J satisfies J(u0) < J(uε2) < J(uε1).

Both heuristic arguments and numerical simulations strongly suggest that the
only reasonable candidates of L1-controls u for which J(u) is even close to J(u0)
are of the above form uε with {t > 0: uε(t) 6= ρ2α(W (t))} contained in an interval
as short as possible.

3. Lagrangian point of view. We have considered a combination of L1-control
together with an impulsive control with one point mass. More generally, we may
combine the L1-data and countably many of point masses in both the control in-
flux u and the initial density ρ0. For any s ∈ R, denote by δs the Dirac measure
centered at s. For i, j ∈ Z+, consider sequences of locations xj ∈ [0, 1] and times

ti ∈ (0, T ], and sequences of point masses mi ≥ 0 and Mj ≥ 0 with
∞∑
i=1

mi < ∞

and
∞∑
i=j

Mj <∞. Denote the L1-control by uL1 and the initial L1-density by ρ0,L1 .

Formally, we have

u = uL1 +

∞∑

i=1

miδti , and ρ0 = ρ0,L1 +

∞∑

i=1

Mjδxj .

Let ξj , ηj : (0, T ] 7→ [0,∞) track the location of the masses mi and Mj respectively.
One might consider, in the Lagrangian approach, the combination of hyperbolic
conservation law in L1-setting and a sequence of (ordinary differential equations
(ODEs) which are coupled by total mass and velocity as follows:

0 = ∂tρL1(t, x) + ∂x(α(W (t))ρL1(t, x)) for (t, x) ∈ (0, T ]× [0, 1], (13a)

ξ′i(t) = α(W (t)) for t ∈ [ti, T ] and i ∈ Z+, (13b)

η′j(t) = α(W (t)) for t ∈ [0, T ] and j ∈ Z+, (13c)

W (t) =

∫ 1

0

ρ(t, x) dx+
∑

i

mi +
∑

j

Mj for t ∈ (0, T ], (13d)

where in (13d) the first and second sum are taken over the sets {i : ξi(t) ∈ [0, 1)}
and {j : ηj(t) ∈ [0, 1)}, respectively. The initial and boundary conditions to the
above hyperbolic conservation law and ODEs are

ρL1(0, x) = ρ0,L1(x) for x ∈ [0, 1],

uL1(t) = ρL1(t, 0)α(W (t)) for t ∈ (0, T ],

ξi(ti) = 0 for i ∈ Z+,

ηj(0) = xj for i ∈ Z+.

Remark 1. In the summation in (13d), we again use the interval [0, 1) to avoid
undesirable discontinuities of the total load W .

Remark 2. The set of ODEs in (13b) and (13c) really is one ODE since for ev-
ery fixed t ∈ (0, T ], the velocity α(W (t)) is constant with respect to the location
x ∈ [0, 1).

Mathematically, a more satisfactory treatment is to combine the L1-data and
point masses into a measure and write the hyperbolic conservation law in a measure
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setting. We will generalize our setting to be in the space of positive σ-finite regular
Borel measures, M+. That is, we consider the following problem

0 = ∂tρ+ ∂x(α(W (t))ρ) (14)

W (t) = ρt([0, 1))

where ρ : (0, T ] 7→ M+([0, 1)); t 7→ ρt, with the initial condition ρ0 ∈ M+([0, 1))
and the control input µ ∈M+((0, T ]).

4. Existence and uniqueness of weak measure-valued solutions to the
hyperbolic conservation law. In this section, the statements and calculations
throughout assume that the initial condition ρ0 ∈M+([0, 1)) and the control in-flux
µ ∈M+((0, T ]) are arbitrary but fixed.

4.1. Existence and uniqueness of the flow X.

Definition 4.1 (Flow). Suppose a time-varying vector field v : [0, T ]× [0, 1] 7→ [0, 1]
is integrable with respect to the first variable and constant with respect to the second
variable. We call a map X : {(t, r) : 0 ≤ r ≤ t ≤ T} × [0, 1] 7→ R+ the flow of the
vector field v if it satisfies for all r ∈ [0, T ] and all x0 ∈ [0, 1],

Ẋ(t; r, x0) = v(t) for a.e. t ∈ [r, T ], and

X(r; r, x0) = x0

with Ẋ representing the derivative of X with respect to time t.

Extend the constant (in space) vector field v = α(W (t)) to [0,∞)× [0, T ] and for
convenience denote the flow of the vector field v, still byX : {(t, r) : 0 ≤ r ≤ t ≤ T}×
[0, 1] 7→ R+ if it exists. Furthermore, if X exists, by the semi-group property of X,
for any fixed r ∈ [0, T ] and t ∈ [r, T ], we have X(t; 0, 0) = X(t; r,X(r; 0, 0)) =
X(t; r, 0) + X(r; 0, 0). Thus for any x0 ∈ [0, 1], X(t; r, x0) = X(t; r, 0) + x0 =
X(t; 0, 0) −X(r; 0, 0) + x0. Therefore to show the existence and uniqueness of the
flow X, it is enough to check the existence and uniqueness of the characteristic
curve ξ : [0, T ] 7→ R+, t 7→ ξ(t) = X(t; 0, 0).

Theorem 4.2. Let vmin = (1 + ρ0([0, 1]) + µ([0, T ]))
−1

and consider a small time
interval [0, τ ], where 0 < τ < 1. Let

Ω =

{
η : [0, τ ] 7→ [0, 1] : η(0) = 0; vmin ≤

η(s)− η(t)

s− t ≤ 1 for all s, t ∈ [0, τ ]

}
.

Then the space Ω is complete under the supremum norm. The map F : Ω 7→
C([0, τ ]), with

F (η)(t) =

∫ t

0

α(ρ0([0, 1− η(s))) + µ((0, s]))ds

is a contraction. Furthermore, the characteristic curve ξ : [0, T ] 7→ R+ is unique.

A key step to prove theorem (4.2) is to split the initial measure ρ0 into the
absolutely continuous part ρ0,ac and the pure point part ρ0,pp. Since the initial
measure ρ0 is finite, there are finitely many large point masses in the pure part
ρ0,pp on the interval [0, 1). The usual contraction argument applies to the absolutely
continuous part ρ0,ac and the small point masses in the pure part ρ0,pp but fails
on time intervals whose interiors contain exit times of large point masses exiting
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[0, 1). In addition, it is not a priori known when the large point masses leave the
system. To overcome this complication, a trick is to replace the initial condition
ρ0 by a modified ρ̃0 (with the same total load) for which contraction mapping
theorem applies over a larger time interval. Since the velocity α only depends on
the total load, the characteristic curves to the initial conditions ρ0 and ρ̃0 coincide
over certain time interval during which no large point masses exit from the system.
Due to the finite number of large point masses, we just need to repeat the argument
for finitely many times, and get global existence of the characteristic curve ξ hence
of the flow X.

Definition 4.3 (Lagrangian solution). Suppose the map

X : {(t, r) : 0 ≤ r ≤ t ≤ T} × [0, 1] 7→ R+

is a flow of the vector field v = α(W (t)). A Lagrangian solution to equation (6) is a
function Φ : [0, T ]→M+([0, 1]), t→ Φt such that for any t ∈ [0, T ] and any Borel
measurable set E ⊂ [0, 1),

Φt(ρ0, µ)(E) =

∫

[0,1)

χE(X(t; 0, x0))dρ0(x0) +

∫

(0,t]

χE(X(t; s, 0))dµ(s), (15)

where χE is the indicator function of the set E defined by χE(x) = 1 is x ∈ E and
χE(x) = 1 else.

Remark 3. When only times t ≤ 1 are considered, then the second term in (15)
can be re-written as µ((0, t]) since the velocity α is bounded above by 1.

4.2. Existence and uniqueness of weak measure-valued solutions. Let
AC([0, T ]) be the set of absolutely continuous functions on [0, T ] and let Ψ be the
set of functions ϕ : [0, T ]×[0, 1] 7→ R such that for every t ∈ [0, T ], ϕ(t, ·) ∈ C1([0, 1])
and for every x ∈ [0, 1], ϕ(·, x) ∈ AC([0, T ]). That is,

Ψ =
{
ϕ : [0, T ]× [0, 1] 7→ R : for every t ∈ [0, T ], ϕ(t, ·) ∈ C1([0, 1]),

for every x ∈ [0, 1], ϕ(·, x) ∈ AC([0, T ])} .

Definition 4.4 (Weak Measure-Valued Solution). A weak measure-valued solu-
tion to equation (6) with the initial condition ρ0 ∈ M+([0, 1)) and the bound-
ary condition µ ∈ M+((0, T ]) is a function ρ : [0, T ] → M+([0, 1)), such that
W : [0, T ] 7→ ρt([0, 1)) is integrable and such that for every τ ∈ [0, T ] and for every
ϕ ∈ Ψ that satisfies

ϕ(t, 1) = 0, for all t ∈ [0, τ ], (16)

one has

0 =

∫

(0,τ ]

∫

[0,1)

(∂tϕ(t, x) + α(W (t))∂xϕ(t, x)) dρt(x) dt+

∫

(0,τ ]

ϕ(t, 0) dµ(t)

−
∫

[0,1)

ϕ(τ, x) dρτ (x) +

∫

[0,1)

ϕ(0, x) dρ0(x).

The double integral is well-defined since the times at which the velocity α are
discontinuous form a set of measure zero.

Theorem 4.5. Every Lagrangian solution of (15) is a weak measure-valued solution
that satisfies (17).
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The proof to theorem (4.5) is fairly straightforward, evaluating the right hand
side of equation (17) at ρ = Φ, and repeatedly using that the flow is defined in
terms of push-forwards of Borel measures by strictly monotone functions.. The
uniqueness of the weak measure-valued solution can be derived from the uniqueness
of the flow X.

4.3. Regularity of the measure-valued solution. Suppose g : R 7→ R,

g(x) =

{
1
2 − | 12 − x| if x ∈ [0, 1]

0 otherwise.

Define the following map φ :M([0, 1)) 7→ [0,∞)

φ(µ) = sup

{∣∣∣∣∣

∫

[0,1)

fg dµ

∣∣∣∣∣ : f ∈ [0, 1][0,1); for all x, y ∈ [0, 1), |f(x)− f(y)| ≤ |x− y|
}
.

Lemma 4.6. The map φ defines a semi-norm on the space M([0, 1)).

The notion of the semi-norm φ is motivated by the flat norm which is commonly
used in the space of Borel measures on a metric space. For careful analysis of
properties of dynamical systems using the flat norm, see[5]. Now we endow the
space M+([0, 1)) with the semi-norm φ.

Theorem 4.7. For every fixed ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]), the weak
solution ρ : [0, T ] 7→ M+([0, 1)) of equation (6) is continuous with respect to the
initial condition under the semi-norm φ.

We have not been able to show that, in general, the flow (t, ρ0) 7→ ρt is continuous
with respect to the initial datum ρ0 and the semi-norm ψ. However, we have the
following almost continuity result.

Theorem 4.8. For every fixed ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]), the weak
solution ρ : [0, T ] 7→ M+([0, 1)) of equation (6) satisfies: For every initial condition
ρ̃0 ∈M+([0, 1)) and every ε > 0 there exist δ > 0 and τ > 0 such that if φ(ρ̃0−ρ0) <
δ then for all t < τ , φ(ρ̃t − ρt) < ε.
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Abstract. One- and two-dimensional sine-Gordon equation in non- homoge-
neous media is considered. Sine-Gordon equation exhibits soliton-like solution

whose existence and behavior in non-homogeneous media is studied. The gov-

erning sine-Gordon equation is discretized using higher order Legendre poly-
nomial based spectral element method. Spectral stability analysis of the nu-

merical scheme shows the strong dependence of a critical time step not only on

the density magnitude of media but also on its nature of distribution. Various
conclusions are made based on the study.

1. Introduction. Sine-Gordon (sG) equation is a hyperbolic, nonlinear wave equa-
tion which governs spatio-temporal dynamics of complex physical processes like,
propagation of magnetic flux in a Josephson junction consisting of two layer of su-
perconducting material separated by an isolating barrier [16], DNA dynamics [10]
etc - to mention just few areas of application. sG equation is exactly integrable but
the presence of external forcing term breaks the exact integrability of this equation,
see [12] for more details. One of the most remarkable solutions of sG equation
is soliton. Soliton wave emerges in various physical processes like shallow water
waves, relativistic field theory, earthquakes, defects in solids, mechanical transmis-
sion lines, Josephson junction oscillator etc. Detailed discussions can be found in
text of Drazin & Johnson [6].

Nonlinear wave propagation in inhomogeneous media has several real-world appli-
cations like tidal waves in the ocean, radio waves in the atmosphere, laser radiation
in plasmas, seismic waves in earthquakes etc. In the literature, dynamics of soliton
is studied in non-homogeneous medium by Dai & Yu[3], Degasperis et al. [4] and
Shyu et al. [17]. In [11] Guerrero et al. showed that interaction with finite-width
homogeneties can activate internal modes of soliton. In [8] Gonzalez & de Mello
showed that the length scale competition between the width of inhomogeneities and
the width of kink-soliton leads to a phenomenon called soliton explosions. In this
paper, we are interested in the dynamics of soliton solution in inhomogeneous media
for one- and two-dimensional sG equation. The extended study of this paper is re-
cently published, see [14] for details. Gharaati & Khordad [7] solved one-dimensional
discrete sG equation in inhomogeneous media changing the parameters like length,
mass, gravitational acceleration and stiffness of the spring in the coupled pendu-
lums chain, such that one can control and guide the solitons. In this paper, various

Key words and phrases. Sine-Gordon equation, Nonhomogeneous media, Spectral element

scheme .
∗ Corresponding author emails: ameyadjagtap@gmail.com, ameya jagtap@brown.edu.
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representation of inhomogeneous media in one- and two dimensions are used where
nonlinear continuous as well as discontinuous density variations are considered. The
governing equation is solved using higher order spectral element scheme given by
Jagtap & Murthy [13].

2. Governing sG equation. Klein-Gordon equation was first introduced by Klein
and Gordon in the context of quantum theory [15, 9]. For a free particle in three

dimensions [2], it takes the following form 1
c2utt = ∆u−

(
mc
~
)2
u, where u, t,∆,m, c

and ~ are the wave function, time, Laplacian, mass of the electron, speed of light
and Planck’s constant respectively. In terms of generalized potential this equation
is written as 1

c2utt = ∆u− V ′(u), where V is the nonlinear smooth function. Even-
though there are many choices for nonlinear potential term [18], we are particularly
interested in sG equation where V ′(u) = −φ sinu. where φ ∈ R− is a constant. In
general, undamped sG equation in non-homogeneous media is given by

ρ(x)utt −∆u− φ sinu = 0, (x = {x, y}, t) ∈ Ω× (0, T ] ⊂ R2 × R+ (1)

with initial conditions u(x, 0) = f(x), ut(x, 0) = g(x) and following boundary
conditions u = 0 on ΓD × (0, T ]; ∂u

∂ν = 0 on ΓN × (0, T ], where ΓD ∪ ΓN = Γ

and ΓD ∩ ΓN = Ø. Note that, c2 = T/ρ, where tension T is assumed to be unity
everywhere, u : R2 × R+ → R is a wave function and ρ(x, y) ∈ R+\{0} is the
spacially dependent density variation in non-homogeneous media. The sG equation
is an integrable infinite dimensional Hamiltonian system and has an infinite number
of conserved quantities [1]. Physical energy is one of the conserved quantity which
is given by

E(t) , 1

2

∫∫
[u2
x + u2

y + u2
t + 2(−φ)(1− cosu)] dx dy (2)

2.1. Variational formulation. The variational formulation for equation (1) is to
find u : (0, T ]→ H1

D(Ω) such that

〈ρ utt,N〉Ω + 〈∇u,∇N〉Ω −
〈
∂u

∂ν
,N

〉

ΓN

− 〈φ sin(u),N〉Ω = 0, ∀N ∈ H1
D(Ω) (3)

u(x, 0) = f(x), ut(x, 0) = g(x) (4)

where H1
D(Ω) = {H1(Ω) : u = 0 on ΓD}. 〈·, ·〉Ω and 〈·, ·〉ΓN are used to denote

L2-inner product over Ω and ΓN respectively.

3. Nonlinear, non-homogeneous media. As discussed in the introduction, soli-
ton wave emerges in many physical problems. Among all soliton, we are particularly
interested in sG soliton and its spatio-temporal behavior while propagating in non-
homogeneous media. In [7] Gharaati & Khordad studied dynamics of generalized
sG soliton in inhomogeneous media by changing the parameters like length, mass,
gravitational acceleration and stiffness of the spring in the coupled pendulums chain,
such that one can control and guide the solitons. There are various applications
where one can use these guided solitons like, Josephson junction for controlling and
guiding the fluxons. Thus, it would be challenging to study the behavior of sG
soliton in non-homogeneous media.

Preliminary reference earth model (PREM) is the widely used one-dimensional
model of seismic velocities in the earth proposed by Dziewonski & Anderson [5]. All
currently available earth models have values which are reasonably close to PREM.
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The jump in discontinuities is in the range of 1000 kg/m3. In this section, vari-
ous density distributions in one and two dimensions are discussed along with their
mathematical expressions. These density variations are inspired by PREM model
where density varies smoothly as well as discontinuously. Effect of these distribu-
tions on the dynamics of the solution of sG equation especially, soliton solution will
be studied in later part of this paper.

Considering one-dimensional domain [−20, 20], the continuous density distribu-
tion ρ(x, y, t) ≡ ρ(x) is given by

ρ(x) = 637 tan−1(exp(x− 4)) (5)

and discontinuous density distribution is

ρ(x) =

{
1 ifx ≤ 4

1000 Otherwise
(6)

In both continuous and discontinuous density variations, the largest and smallest
values of density are almost same.

In two dimensions, the domain is [−7, 7]2 where different density variations are
discussed which include nonlinear density variation given by the Gaussian distribu-
tion

ρ(x, y) = 1000 exp(−(0.4x2 + 0.4y2)) (7)

In this distribution, the density variation is nonlinear but smooth as shown in figure
1 (left). Moreover, density attains its highest value at the centre of the domain
whereas it gradually decreases as one go towards the boundary of the domain.
Next, we consider two cases of discontinuous density variations. First case gives
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Figure 1. Smooth nonlinear density variation (left) and discon-
tinuous density variation (middle and right).

circular jump in density as shown in figure 1 (middle) and its equation is given by

ρ(x, y) =

{
1 ifx2 + y2 ≤ 42

1000 Otherwise
(8)

In case of the circular jump, density magnitude is very small inside the circle whereas
outside the circle the magnitude is large. In second case, oblique jump along the
line x = −y is considered. It is given by the following equation

ρ(x, y) =

{
1 ifx ≤ −y
1000 Otherwise

(9)

as shown in figure 1 (right).
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4. Numerical scheme. The computational domain is divided into Nel number

of elements as Ωh =
⋃Nel
i=1 Ωhi such that Ωhi ∩ Ωhj = Ø, ∀i 6= j. Each el-

ement is mapped onto the parent element using isoparametric mapping. The
parent element is the reference D-cube (D is the physical dimension) given by

Ω̂hi = {ξ = (ξ1, ξ2, · · · , ξD) : −1 < ξp < 1, p = 1, 2, · · · ,D} = (−1, 1)D. The
basis function Nh(ξ) is the Lagrangian interpolation function using Gauss-Lobatto-

Legendre (GLL) collocation points given as Nh
i (ξ) = 1

m(m+1)Lm(ξ)
(ξ2−1)
ξ−ξi Lom−1(ξ),

where mth degree Lobatto polynomial Lom(ξ) is derived from the (m+ 1)th degree
Legendre polynomial as Lom(ξ) = L′m+1(ξ). The m + 1 GLL points ξi are the
roots of the Lobatto polynomial of degree m. The interpolation function for higher
dimensions can be obtained using tensor product of one-dimensional interpolation
function as Nh(ξ) = Nh

1 (ξ1)⊗Nh
2 (ξ2)⊗ · · · ⊗Nh

D(ξD), ξ = (ξ1, ξ2, · · · , ξD) ∈ RD.
The standard Galerkin approximation of wave function u is u(x, y, t) ≈ uh(x, y, t) =∑
∀i u

h
i (t) Nh

i (x, y). In case of spectral element method, interpolation function
Nh ∈ Pm(−1, 1) which is the space of all mth order polynomials. The semi-discrete
problem of (3)-(4) is to find uh : (0, T ]→ Vh such that

〈ρhuhtt,Nh〉Ωh + 〈∇uh,∇Nh〉Ωh −
〈
∂uh

∂ν
,Nh

〉

ΓhN

− 〈φ sinuh,Nh〉Ωh = 0, ∀Nh ∈ Vh

(10)

uh(x, 0) = f(x)h, uht (x, 0) = g(x)h (11)

where Vh is the approximation space of the H1
D(Ω).

Note that, Rh sinu ≈ sin(Rhu) and density ρ ≈ ρh at each node points. Equation
(10) can be written in matrix form as

Mρuhtt +Duh − fN − φM sinuh = 0 (12)

where product approximation is used for sinuh term. Mass matrix M , diffu-
sion matrix D, density matrix ρ and Neumann boundary term fN are given as

〈Nh,Nh〉, 〈∇Nh,∇Nh〉, diag{ρh1 , ρh2 , · · · } and
〈
∂uh

∂ν ,N
h
〉

ΓhN

respectively.

In this paper, GLL quadrature is used to integrate all the integrals involved in
weak formulation which results in diagonal mass matrix. Time derivative term uhtt
is discretized using second order finite difference scheme as

uh,n+1 = ρ−1M−1
{
Mρ(2uh,n − uh,n−1) + ∆t2(−Duh,n + fN + φM sinuh,n)

}

One of the advantages of the spectral element method is, mass matrix is diagonal.
Moreover, density matrix is also diagonal hence, can be easily inverted.

5. Stability analysis of numerical scheme in non-homogeneous media.
A fully discretized linearized homogeneous undamped sG equation with periodic
boundary conditions is given by

uh,n+1 = (2uh,n − uh,n−1) + ∆t2 ρ−1M−1 {(−D + φM)}︸ ︷︷ ︸
Ψhρ

uh,n

= (2I + ∆t2Ψh
ρ)uh,n − Iuh,n−1
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Figure 2. Spectral radius vs. ∆t for various uniform and non-
uniform density distributions (left) and its zoomed view (right).

where I is the identity matrix. Rewriting above equation in the form of system of
equations as

{
uh,n+1

uh,n

}

︸ ︷︷ ︸
ũh,ñ+1

=

[
(2I + ∆t2Ψh

ρ) −I
I 0

]

︸ ︷︷ ︸
A

{
uh,n

uh,n−1

}

︸ ︷︷ ︸
ũh,ñ

where second equation is trivial identity and A is the amplification matrix. Us-
ing recurrence relation one can write ũh,ñ+1 = Añ+1ũh,0. For bounded solution,
||Añ+1|| ≤ 1,∀ñ ∈ N ∪ {0}. This gives following condition on amplification matrix

||A||ñ+1 ≤ 1 ⇒ ||A|| ≤ 1 ⇒ %(A) ≤ 1 where %(A) , max
∀ i
|λi| is the spectral radius

of the amplification matrix.
To further simplify the stability condition, let λ and X = {X1, X2}T be the

eigenvalue and corresponding eigenvector of A, then one can write the eigenvalue
problem as AX = λX. This gives BX1 − X2 = λX1; X1 = λX2, where B ,
(2I+∆t2Ψh

ρ). Eliminating X2 gives BX1 =
(
λ+ 1

λ

)
X1. If λ is real and

∣∣λ+ 1
λ

∣∣ ≤ 2,

then this gives |λ| = 1. Thus, the stability condition obtained for bounded ũh,ñ+1

is %(B) ≤ 2, ∀t > 0. The critical time step is obtained as

∆tcr ≤
2

%
(

2I
∆t + ∆tΨh

ρ

) (13)

where the property of spectral radius %(αS) = α%(S) ∀α ∈ R and S ∈ Rm×m
is used. Hence, critical time step depends on density of non-homogeneous media
through Ψh

ρ .
Equation (13) gives implicit relation for ∆tcr which depends on time step ∆t,

spatial resolution and density of the medium. As an example, following initial

conditions are used f(x, y) = 4 tan−1(exp(3 −
√
x2 + y2)); g(x, y) = 0. Figure 2

shows the variation of the spectral radius of matrix B verses time step for different
mesh size using uniform as well as non-uniform density distributions where equation
(7) is used for non-uniform density variation. It can be seen that ∆tcr value strongly
depends on the density distribution. For uniform density distribution, the value of
∆tcr increases with density. This behavior can be seen in figure 3 (left) where ∆tcr
is plotted against uniform density variation. Figure 3 (right) shows variation of ∆tcr
value with constant term A involved in non-uniform Gaussian density distribution
given by ρ(x, y) = A exp(−(0.4x2 + 0.4y2)). Again, as expected critical time step
increases with A. Moreover, critical time step for non-uniform density distribution
is much lesser than that of uniform density distribution.
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Figure 3. Density vs ∆tcr plot for uniform (left) and non-uniform
(right) density variations.

6. Results and discussions. In this section two test cases, namely, kink (in one
dimension) and circular ring soliton (in two dimensions) are considered to perform
numerical experiments. In all simulations, sixth order Legendre polynomial based
Lagrange basis function is used.

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

x

u

Figure 4. Initial solution for kink (left), surface plot of solution
(middle) and solution on x− t plane (right).

Kinks are spatially localized formation which moves freely in both directions.
Physically, kink can represent dislocation in solids. Kinks with same sign interact
with each other elastically, whereas kinks with opposite sign can cross each other
without changing their sign. The solution of kink is given by

u(x, t) = 4 arctan (exp [γ(x− ct)])
where γ2 , 1

1−c2 is the Lorentz factor and constant c represents velocity of the kink.

The domain is [−20, 20], φ = −1 and initial conditions for kink are

f(x) = 4 arctan

(
exp

[
x√

1− c2
])

; g(x) = −2
c√

1− c2
sech

(
x√

1− c2
)

with c = 0.2. Figure 4 shows the initial profile of the kink and the surface plot

time (t) 0 5 10 15 20

Energy E(t) 8.164965 8.142545 8.138649 8.157345 8.166322

Table 1. Energy conservation for kink test case.

of the solution along with solution on x − t plane. Kink profile moves in right
direction without changing its shape and size. One can see this behavior from x− t

470



HIGHER ORDER SCHEME FOR SINE-GORDON EQUATION

plane. The composite trapezoidal rule is used to find the value of energy E(t) over
different time. Table 1 gives the values of E(t) for kink at different time which shows
that the energy remains nearly constant with increase in time. Next, we compute

experimental order of convergence EOC = log2
||Eh/2||
||Eh|| where ||Eh|| = ||u− uh|| can

be calculated by comparing the numerical solution with that of exact solution for
different grid size. Table 2 shows EOC in L2 and H1 norm where ∆t is smaller than

No. of Elements L2 EOC H1 EOC

6 3.123e-3 - 7.526e-3 -
12 3.344e-5 6.54 1.104e-4 6.09
24 2.543e-7 7.03 1.678e-6 6.03
48 1.886e-9 7.07 2.588e-8 6.01

Table 2. Experimental order of convergence

the spatial resolution. The proposed implicit scheme gives optimal convergence rates
in both the norms. Now, the proposed implicit scheme is used to solve sG equation
in nonlinear non-homogeneous media. First we shall consider kink test case. As
illustrated schematically in figure 5 (right), there are two possible outcomes which
is observed namely, Kink captured and Kink passed.

x

t

- L + L

    Kink 

Captured

    Kink 

Passed

          Location of 

High Density Gradient

Figure 5. Schematic representation of kink captured and kink
passed on x− t plane (left) and numerical solution of kink on x− t
plane for discontinuous density (middle) and continuous density
(right) variations.
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Figure 6. Solution of circular ring soliton at t = 5.6, 8.4, 11.2,
12.6 (left to right) in homogeneous media (ρ = 1).
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time (t) 0 5.6 8.4 11.2 12.6

Energy E(t) 150.3244 150.3572 150.4267 150.8925 150.7499

Table 3. Energy conservation for circular ring soliton. t ∈ [0, 12.6].

Figure 7. Initial solution of circular ring soliton (left) and so-
lution of circular ring soliton at t = 12.6 over Gaussian density
distribution (right).
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Figure 8. Solution of circular ring soliton at t = 5.6, 8.4, 11.2, 12.6
(left to right) in non-homogeneous media (circular discontinuity in
density distribution).
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Figure 9. Solution of circular ring soliton at t = 5.6, 8.4, 11.2, 12.6
(left to right) in non-homogeneous media (oblique discontinuity in
density distribution).
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When the density variation is discontinuous the kink is captured near high-
density gradient region and when it is smooth then the kink is passed with some
deceleration. Interestingly, in both cases, the magnitude of jump in density is same,
only the nature of jump is different. In figure 5, the solution on x− t plane shows
the dynamics of kink is discontinuous (middle) and continuous (right) density vari-
ations which is given by equations (6) and (5) respectively. In case of discontinuous
density variation, as the time progresses the initial kink profile start moving right-
ward, but, this motion is prevented due to the sudden change in density at location
x = 4 which in turn forces kink to reverse its direction momentarily. After a small
time interval, kink again starts in the original direction and again its motion is
prevented due to discontinuous density jump. This cycle continues with an increase
in frequency and eventually, the kink remain at location x = 4 after large time as
shown in figure 5 (middle). In contrast to discontinuous density variation, continu-
ous density variation allows kink to pass through it but the kink velocity decreases.
This can be seen on the x − t plane shown in figure 5 (right) by a curved path of
the kink profile.

Now, let’s move on to the two-dimensional circular ring soliton test case. In
this test case, φ = −1 and the domain is −7 ≤ x, y ≤ 7. The initial conditions

are f(x, y) = 4 tan−1(exp(3 −
√
x2 + y2)); g(x, y) = 0. This gives initial radius

close to three as shown in figure 7 (left). Figure 6 shows solution for time t =
5.6, 8.4, 11.2, 12.6 using fully implicit spectral element scheme. From the initial
conditions, soliton appears at two homocentric ring soliton which shrinks till t =
2.8. From t = 5.6 the soliton start expanding and radiating which is followed by
oscillations at the boundary of the square domain. This expansion continues till
t = 11.2. The soliton start shrinking since t = 12.6. The centre of soliton is not
displaced from its initial position during these transformations. Table 3 gives the
values of E(t) for circular ring soliton at different time t ∈ [0, 12.6] which shows
that the energy remains nearly constant with increase in time.

Now, let’s consider the circular ring soliton over a Gaussian density distribution
given by equation (7). In this distribution density value increases as one go towards
the centre of the domain from any direction. Such density distribution prevents
spatio-temporal motion of the soliton. This can be seen in figure 7 (right) which
shows the soliton at t = 12.6. Such distribution preserves the initial profile of the
soliton. Next, circular ring soliton with the circular discontinuity is considered (see
equation (6)). Density value inside the circle is lesser than that of outside, due to
which only the middle part shows pulsating behavior and outer part remain rigid
due to high density. Figure 9 shows the solution plots at t = 5.6, 8.4, 11.2, 12.6. One
can also see the formation of circular kink along the line of density discontinuity. In
case of oblique discontinuity given by equation (9), only portion x ≤ −y undergoes
pulsating motion. Figure 9 shows the solution plots at different times. Similar to
the circular discontinuity case, one can see the diagonal kink in the solution along
the line of discontinuous density.

In these cases, one can see various effects of non-homogeneous media on sG
solitons. In some cases, these non-homogeneous media preserves the initial profile
of the soliton whereas in other cases only a part of soliton undergoes motion where
low-density medium is present. Due to such non-homogeneity, one can control and
guide the soliton in the desired way.
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7. Conclusions. One- and two-dimensional sG solitons are studied in non- homo-
geneous media. Such media can be effectively used to guide the waves (in this case
’soliton’ wave) in the desired way. Nonlinear smooth and discontinuous density
variations are used in the analysis. The governing sG equation is solved using a
higher order spectral element scheme. Spectral stability analysis shows the strong
dependence of critical time step ∆tcr on density variation. The value of ∆tcr de-
pends not only on the magnitude of density but also on its nature of distribution.
One-dimensional kink and two-dimensional circular ring soliton test cases are cho-
sen to perform various numerical experiments. The spatio-temporal dynamics of
these solitons completely changes in such non-homogeneous media.
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Abstract. In this contribution we present recent developments in the field of

nonlocal balance laws. Starting from scalar balance laws we provide existence
and uniqueness results and show that Entropy conditions as commonly used

for local balance laws are not necessary to obtain unique solutions. Studying

the problem as an initial value problem on R first, we advance our methods to
multi-dimensional nonlocal balance laws on Rn, where we focus in particular

on the required regularity of the boundary of the nonlocal area of integration.

We consider also scalar initial boundary value problems where the velocity
function is considered to be nonnegative so that boundary datum can be – in

a weak sense – prescribed in terms of the flux on one side.

1. Introduction. In recent year, nonlocal conservation and balance laws have
drawn significantly more attention. In application, those models are used in sup-
ply chains [2, 7, 13], in traffic flow [3, 11, 20], in pedestrian flow, crowd dynamics
[18, 5, 1], chemical engineering [14, 10] and recently also in opinion formation [21].
Scalar nonlocal conservation laws have been addressed as initial value problem in
[15, 8, 3, 11] by applying the method of characteristics and a fixed-point problem to
show existence and uniqueness of weak solutions – or by modified Lax-Friedrich’s
schemes relying on Kružkov’s Entropy condition. For the multi-dimensional bal-
ance laws we refer the reader to [18, 1, 6, 5]. Initial boundary value problems of
nonlocal conservation laws are considered in [20, 9]. All the results presented in this
contribution can be found in a more detailed framework in [15, 20, 18].

In Section 2 we consider the initial value problem on R of scalar nonlocal con-
servation laws, in Section 3 we generalize the developed theory to initial boundary
value problems and, finally, in Section 4 we consider multi-dimensional nonlocal
balance laws as initial value problems. Section 5 will state some general remarks
about nonlocal balance laws and future research.

2000 Mathematics Subject Classification. Primary: 35L03, 35L65; Secondary: 65M25, 35D30.
Key words and phrases. nonlocal conservation laws, nonlocal balance laws, existence of solu-
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2. Scalar nonlocal balance laws on R. In this section we investigate the arche-
type of a nonlocal balance law, a scalar nonlocal balance law on R. In Definition 2.1
we first introduce what we mean by scalar nonlocal balance laws.

Definition 2.1 (Scalar nonlocal balance laws on R). We consider on ΩT for T ∈
R>0 the nonlocal scalar balance law in q : ΩT → R given for (t, x) ∈ ΩT by

qt(t, x) + ∂x

(
λ
[
W
[
q, γ, a, b

]]
(t, x)q(t, x)

)
= h(t, x)

q(0, x) = q0(x)

supplemented by the nonlocal term W , averaging the “density” in space

W [q, γ, a, b]
(
t, x
)

:=
∫ b(x)

a(x)
γ(t, x, y)q(t, y) dy

λ
[
W
[
q, γ, a, b

]]
(t, x) := λ

(
W
[
q, γ, a, b

]
(t, x), t, x

)
.

We call q ∈ C([0, T ];L1(R)) a weak solution iff ∀φ ∈ C1
c ((−42, T )×R) it holds that

∫∫
ΩT

φt(t, x)q(t, x) + φx(t, x)λ
[
W [q, γ, a, b]

]
(t, x)q(t, x) dxdt

+
∫
R
φ(0, x)q0(x) dx = −

∫∫
ΩT

h(t, x)φ(t, x) dx dt.

For obtaining existence and uniqueness results we require Assumption 1 on the
involved datum. Most of these are quite natural and not restrictive.

Assumption 1 (Scalar nonlocal balance laws on R). We require for T ∈ R>0 the
involved functions in Definition 2.1 to satisfy the following

• q0 ∈ L1(R) ∩ L∞(R) • h ∈ L1((0, T );L1(R)) ∩ L1((0, T );L∞(R))

• λ ∈ C(R× ΩT ) • a, b ∈W 1,∞
loc (R) • a′, b′ ∈ L∞(R)

• γ ∈ L∞((0, T );W 1,∞(R2))

and the velocity λ may satisfy the following growth conditions for every W ∈
L∞((0, T );W 1,∞(R)):

∃A ∈ L∞loc(R≥−1) : ‖∂3λ[W ]‖L∞((0,T );L∞(R)) ≤ A
(
‖W‖L∞((0,T );L∞(R))

)
(1)

∃B ∈ L∞loc(R≥−1) : ‖∂1λ[W ]‖L∞((0,T );L∞(R)) ≤ B
(
‖W‖L∞((0,T );L∞(R))

)
(2)

Let us discuss the assumptions in Eqs. (1) to (2). Those assure that the velocity
or flux function will be Lipschitz-continuous. Equation (1) guarantees this for the
purely spatial dependent part of the velocity, while Eq. (2) makes sure of that
for the term involving the nonlocal part. These assumptions enable us to attack
the conservation law by the method of characteristics. However, in the proposed
generality there is no guarantee that the solution will not “explode” in finite time.
Existence and uniqueness can thus only be guaranteed for sufficiently small time:

Theorem 2.2 (Existence and uniqueness of solutions for small time horizon). Given
Assumption 1 and T ∈ R>0, the balance law in Definition 2.1 admits a unique weak
solution on a sufficiently small time horizon, i.e. ∃T ∗ ∈ (0, T ] so that there exists a
unique solution q which satisfies

q ∈ C([0, T ∗];L1(R)) ∩ L∞((0, T );L∞(R)).

Proof. The proof can be found in [15].
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Figure 1. Left: λ(W ) = W − 1
2 . Right: λ(W ) = 1

2 −W .

Nevertheless, under specific assumptions we can obtain semi-global solutions in
time. This is detailed in Remark 1 as well as a maximum principle given specific
assumptions on velocity and boundary of the nonlocal term:

Remark 1 (Extension to arbitrary large time and maximum principle). In case

there exists (ã, b̃) ∈ (R ∪ {−∞,∞})2
s.t. a ≡ ã and b ≡ b̃ the solution can be

extended on every finite time horizon. The same holds true if the support of the
weight γ(t, x, ·) is contained in (a(x), b(x)) for every (t, x) ∈ (0, T )×R. In addition,
there is – under specific assumptions on velocity function λ, weight γ and sign of
the initial datum a maximum principle. We do not go into further details but refer
to the corresponding version for the initial boundary value problem in Remark 3.
A precise analysis for the time-extension can be found in [15, Corollary 4.3].

Remark 2 (Entropy condition). It is worth mentioning that according to The-
orem 2.2 there is no need for an entropy condition to obtain uniqueness of weak
solutions, on the contrary, weak solutions of nonlocal conservation laws are unique
by themselves. This is also true for all other existence results in this contribution
and can be explained due to the fact that there is no loss of information.

2.1. Examples. Consider the following example with datum

q0 ≡ χ[−1,1], a(x) = x, b(x) = x+ η, η = 1, γ ≡ 1, h ≡ 0, T = 1,

which is illustrated for two different types of flux functions in Fig. 1. For λ(W ) :=
W − 0.5 the solution blows up in finite time (left illustration). On the right of
the characteristic line (t, 1 − 0.5t), t ∈ [0, T ], the velocity does not change as the
solution remains constant, while starting from x = 0 the characteristic line is given
by (t, 0.5t), t ∈ [0, T ]. As the two mentioned characteristic lines intersect in (1, 0.5)
this leads to a blow-up, i.e. the L∞-norm of the solution goes to infinity when t
approaches 1. On the right hand side for λ(W ) := 0.5 −W – the additive inverse
velocity – the solution is spread out over time and exists on every finite time horizon.
This is also a consequence of the maximum principle in Remark 1.
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3. Scalar nonlocal balance laws on a bounded domain. The introduced the-
ory in Section 2 can also be used for a significantly more challenging problem, non-
local scalar conservation laws on bounded domains, i.e. the corresponding initial
boundary value problem:

Definition 3.1 (Scalar nonlocal conservation laws on a bounded domain). We
consider for (t, x) ∈ (0, T )× (0, 1), and T ∈ R>0 the following nonlocal conservation
law on (0, 1) in q : (0, T )× (0, 1)→ R

qt(t, x) = −∂x
(
λ
[
W [q, v, γη]

]
(t, x)q(t, x)

)

q(0, x) = q0(x)

λ
[
W [q, v, γη]

]
(t, 0)q(t, 0) = λ

[
W [q, v, γη]

]
(t, 0)u(t)

W [q, v, γη](t, x) :=

∫ x+η

x

γη(t, x, y)

({
q(t, y) y ∈ (0, 1)

v(t, y) else

)
dy. (3)

We call q : C([0, T ];L1((0, 1))) a weak solution iff ∀φ ∈ W 1,∞((0, T ) × (0, 1)) with
φ(T, ·) ≡ 0 and φ(·, 1) ≡ 0 the following integral equation is satisfied

0 =
∫∫

ΩT
(φt(t, x) + λ

[
W [q, v, γη]

]
(t, x)φx(t, x))q(t, x) dxdt

+
∫ 1

0
q0(x)φ(0, x) dx+

∫ T
0
φ(t, 0)λ

[
W [q, v, γη]

]
(t, 0)u(t) dt.

Anticipating some of the later results we assume that velocity λ is nonnegative
so that boundary datum can, if at all, only be prescribed at the left hand side of
the considered domain (here x = 0). As velocity can become zero we prescribe
as “boundary datum” flux and not “density”. If the velocity is zero at some time
t̃ ∈ (0, T ) at x = 0, boundary datum u is not attained at t̃ and whenever velocity is
greater zero at x = 0 boundary datum is attained and evoluting into the domain.

On the right hand side of Eq. (3) – due to the nonlocal term – we still have to
prescribe a density for x > 1 which is denoted by v. This density can be used for
different modelling approaches (in traffic flow for instance a green or right light, a
following empty road or fully congested road, etc.). The following assumptions are
essential to obtain existence and uniqueness of solutions. Note that most of them
are rather similar to Assumption 2 underlining the relation between the considered
classes of balance laws.

Assumption 2 (Scalar nonlocal balance laws on a bounded domain). For T ∈ R>0

and η ∈ R>0 we require the involved function in Definition 3.1 to satisfy:

• λ(·, ∗, ?) ∈ L∞
(

(0, T )︸ ︷︷ ︸
∗

;W 1,∞
loc (R× [0, 1]︸ ︷︷ ︸

(·,?)

;R≥0)
)

• q0 ∈ L∞((0, 1)) • u ∈ L∞((0, T ))

• γη ∈ L∞
(
(0, T );W 1,∞((0, 1)× (0, 1 + η))

)
• v ∈ L∞((0, T );L∞((1, 1 + η))).

In addition, the velocity λ may satisfy the following growth condition for every
W ∈ L∞((0, T );W 1,∞((0, 1)))

∃A ∈ L∞loc(R>−1;R≥0) : ‖∂1λ[w]‖L∞((0,T )×(0,1)) ≤ A
(
‖w‖L∞((0,T );L∞((0,1)))

)
. (4)

As we consider a bounded spatial domain we only require Eq. (4) to obtain a
Lipschitz-continuous velocity function. This is different from Eqs. (1) to (2) where
we consider the Cauchy problem on R so that also a grow condition for the explicit
dependency of the velocity with respect to the spatial variable is needed.
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Figure 2. Left: Solution for v(t) = θ(t), u(t) = 1
4 , Middle left:

v(t) = 1 − θ(t), u(t) = 1
4 , Middle right: v(t) = u(t) = 1 − θ(t),

Right: v(t) = 1− θ(t), u(t) = θ(t)

Theorem 3.2 (Existence and uniqueness of solutions for small time horizon). Given
Assumption 2 and T ∈ R>0, the balance law in Definition 3.1 admits a unique weak
solution on a sufficiently small time horizon, i.e. ∃T ∗ ∈ (0, T ] so that there exists a
unique solution q which satisfies

q ∈ C([0, T ∗];L1((0, 1)) ∩ L∞((0, T );L∞((0, 1))).

Proof. The proof is inspired by the idea in Theorem 2.2 and can be found in [20].

As pointed out before, the maximum principle is crucial in particular if q should
represent a density. The maximum principle is pretty common for local conservation
laws, however, for nonlocal conservation laws we require specific assumptions to end
up with a maximum principle.

Remark 3 (Maximum principle). For the initial boundary value problem as con-
sidered here there exists also a maximum principle similar to Remark 1 as long as
λ′ 5 0 and q0 = 0 5 v as well as the weight γ is non-decreasing w.r.t. third variable.
For details, we refer the reader to [20, Corollary 5.9].

3.1. Examples. As a numerical example (the numeric in Section 2.1 and Sec-
tion 3.1 is always carried out according to a numerical method based on character-
istics, see [19]), we consider as velocity the in traffic flow classical Greenshield’s flux
function [12], as nonlocal area of integration we chose η = 1

10 and as right hand side
density v a functions which changes from zero to one periodically. The boundary
datum is assumed to be constant 1

4 and as initial datum we chose the characteristic

function of the interval ( 1
3 ,

2
3 ), in formula:

λ(W ) = 1−W, η = 1
10 , γ(∗, x, ·) ≡ 2(1− ·−xη ) ∀x ∈ (0, 1), q0 ≡ χ( 1

3 ,
2
3 ).

The solutions are illustrated in Fig. 2 (the two leftmost figures). As can be observed,
boundary datum enters the domain at x = 0 (with constant speed as there is no
congestion (boundary density u ≡ 1

4 is rather low) and as congestion is only caused

by the initial datum around x ∈ ( 1
3 ,

2
3 ) and on the right hand side by the “red
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traffic light” v ≡ θ, 1−θ with θ :≡∑i∈N χ(2i−1,2i) respectively, congestion is caused
periodically in time and almost resolved for both cases, however, never spreads back
to the beginning of the road (x = 0).

For a different boundary datum, which is – in some sense – synchronized with
the outgoing density v, we obtain the solution as illustrated in Fig. 2 (the two
rightmost figures). As can be seen, traffic congestion is never fully resolved for
the first example, while the second example shows periodically a full dissolving of
congestion at the right hand side border (x = 1).

4. Multi-dimensional nonlocal balance laws on Rn. Finally, as prescribed in
Section 1 we will consider multi-dimensional nonlocal balance laws. We stick with
the notational convention that bold letters indicate vectors or matrices.

Definition 4.1 (Multi-dimensional nonlocal balance laws on Rn). Let T ∈ R>0

and n ∈ N≥1 be given, we consider the multi-dimensional nonlocal balance law in
q : (0, T )× Rn → R with damping for (t,x) ∈ (0, T )× Rn

qt(t,x) + div2

(
λ
[
W [q, γ,Υ]

]
(t,x)q(t,x)

)
= h(t,x) + g(t,x)q(t,x)

q(0,x) = q0(x)

W [q, γ,Υ](t,x) :=
∫∫

Υ(t)
γ(t,x,y)q(t,y) dy

for w ∈ C([0, T ];C1
b(Rn)) : λ[w](t,x) := λ(w(t,x), t,x).

We call q ∈ C([0, T ];L1(Rn)) weak solution iff ∀φ ∈ C1
c ((−42, T )×Rn) it holds that

∫ T
0

∫∫
Rn (φt(t,x) +∇2φ(t,x) ◦ λ [W [q, γ,Υ]] (t,x)) q(t,x) dx dt

+
∫∫

Rn φ(0,x)q0(x) dx = −
∫ T

0

∫∫
Rn
(
h(t,x) + g(t,x)q(t,x)

)
φ(t,x) dx dt.

As can be seen from Definition 4.1 we consider a broad class of balance laws
involving damping and inhomogeneity on the right hand side of the integral equa-
tion. However, it is worth mentioning that the boundary of the nonlocal term W
is in the multi-dimensional case not explicitly space dependent as it is allowed for
Definitions 2.1 to 3.1. This is due to the fact that a spatial derivative of the nonlocal
term can only be computed for specific areae of integration. Instead, we assume
that the area of integration can only change in time and that any spatial change is
modelled via the weight γ. For existence/uniqueness of solutions we require:

Assumption 3 (Multi-dimensional nonlocal balance laws on Rn ). For T ∈ R>0

and n ∈ N≥1 we propose the following on the functions in Definition 4.1:

• q0 ∈ L1(Rn) ∩ L∞(Rn) • h ∈ L1((0, T );L1(Rn)) ∩ L1((0, T );L∞(Rn))

• g ∈ C([0, T ];C1
b (Rn)) • γ ∈ C([0, T ];C1

b (Rn × Rn))

• λ ∈ C(R× [0, T ]× Rn;Rn)

so that λ is sufficiently smooth and satisfies for every W ∈ C([0, T ];C1
b (Rn))

∃A ∈ L∞loc(R≥−1) : ‖D3λ[W ]‖C([0,T ];C(Rn;Rn×n)) ≤ A
(
‖W‖C([0,T ];C(Rn))

)

∃B ∈ L∞loc(R≥−1) : ‖∂1λ[W ]‖C([0,T ];C(Rn;Rn)) ≤ B
(
‖W‖C([0,T ];C(Rn))

)
.

For the nonlocal area of integration Υ we require that Υ(t) ⊆ Rn is Lebesgue mea-
surable for every t ∈ [0, T ] and Υ ∈ C([0, T ]; M n

K) for a K ∈ R>0 where

M n := {A ∈ L (Rn) : (A ∈ Lb(Rn) ∨ (Rn \ A) ∈ Lb(Rn)) ∧ ∂A (n− 1)-rectifiable}
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M n
K := {A ∈M n : Hn−1(∂A) ≤ K}.

As most of the assumptions are quite natural and are similar to Assumption 1
and Assumption 2 the assumptions on the area of integration Υ guarantee that we
can control the boundary of the area of integration, a crucial ingredient for our
fixed-point proof. We then obtain Theorem 4.2

Theorem 4.2 (Existence and uniqueness of solutions on every finite time horizon).
Given Assumption 3 and T ∈ R>0, n ∈ N≥1, the balance law in Definition 4.1
admits a unique weak solution q which satisfies

q ∈ C([0, T ∗];L1(Rn)) ∩ L∞((0, T );L∞(Rn)).

Proof. The proof is inspired by the idea in Theorem 2.2 and can be found in [18].

It is worth mentioning that the considered result guarantees existence and unique-
ness semi-global in time. This is due to the fact that the nonlocal area of integration
does not explicitly depend on the spatial variable as well as the initial datum is as-
sumed to be in L1(Rn). Otherwise, this could not be guaranteed.

4.1. Examples. For examples we refer to [18, Section 6].

5. Conclusions, further results and future research. In this work we have
presented recent developments in the theory of existence and uniqueness of nonlocal
balance and conservation laws. We have considered different problem classes ranging
from the purely initial value problem to multi-dimensional dynamics as well as the
scalar initial boundary value problem.

The provided theory enables the study of interesting new problems: (1) The
solutions obtained are based on characteristics. As there is no shock-development
and no loss of information it is reasonable to introduced numerical schemes based
on characteristics. The presented examples in Sections 2.1 and 3.1 already rely on
such a method and show high numerical precision. In future research, a rigorous
mathematical theory of convergence will be carried out [19]. (2) We are also able
to study convergence of the nonlocal solution for η → 0. Recent advance has been
made in [4] where the authors showed that for a general nonlocal conservation law
one cannot prove uniform BV estimates. However, in [16] it is shown that for
monotonicity preserving velocity and monotone initial datum the nonlocal solution
converges to the local solution in L1 when the nonlocal area of integration η ap-
proaches zero. We also want to remark that one might actually not need to prove a
BV estimate on the solution but on the nonlocal term – which naturally possesses
higher regularity. (3) The considered model class can also be subject to time-delay
and offers then more realistic modelling in specific frameworks. A study of existence
and uniqueness for a fixed-delay is in progress, as a result we obtain convergence to
the solution without delay when the delay approaches zero [17]. (4) As the nonlocal
LWR model has some advantages to the local LWR model (finite acceleration, no
need for an Entropy condition) and due to the nonlocal impact at the right hand
side v, a generalization to networks is reasonable and the nonlocal impact might
prove advantageous for the definition of proper junction models.
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Abstract. In this report we provide a more detailed discussion of the biolog-

ical background and interpretation of a previously obtained homogenization
result ([6]) which is motivated by folded structures observed in various cell

organelles. More precisely, we investigate how geometric microstructures of a

domain can affect the concentration and distribution of a chemical agent in a
cell organelle on the macroscopic level. Our starting point is a suitable diffu-

sion equation on a domain with additional microstructures of two kinds, the

first one are periodically arranged “horizontal barriers” and the second one are
“vertical barriers” which are not periodically arranged, but uniform on certain

intervals. Both structures are parametrized in size by a small parameter ε. The
ultimate goal is then to let ε tend to zero in order to get the effective equation

at the macroscopic level taking into account the effects of the microstructures.

The present note can be either seen as an addendum to the previously men-
tioned article or as an introduction to the topic (since a short presentation of

the main result of [6] is included here as well).

1. Biological background and motivation. Various cell organelles, e.g. mito-
chondria or the endoplasmic reticulum, exhibit structures of strongly folded mem-
branes (see for instance [3] or [8]). At first glimpse these structures might seem
redundant, but in recent years more and more insight was gained into the impor-
tance and role of these strongly folded membrane structures. In particular, the
following two observations are interesting:

• Deviations from the normal configuration of such folded membranes can be
associated to diseases (see e.g. [12]).

• These structures of strongly folded membranes are not static. In particular, in
apoptosis-related situations (programmed cell death) such folded structures
are reorganized (see [11]). And this change in structure goes along with a
release of e.g. calcium (see [2]).
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More generally, there are known various instances when such reorganizations
of the folded structure can be observed. Such fusion and fission phenomena
always go hand in hand with absorption or release of chemical agents (cf. e.g.
[9]).

These biological observations gave rise to the question whether and how such folded
structures can influence the distribution of chemical agents.
The result presented here can be seen as a proof of principle that in fact depending
on the microscopic structure the macroscopic distribution of a chemical agent can
be different. In biological terms, this means that the microstructure governs the
distribution of chemical agents and by rearranging those microstructures chemical
agents can be stored or released.

We would like to to point out here that there are various other possible questions
in the context of folded membrane structures for which mathematical models and
analysis had led to interesting new insight. Examples of such approaches can be
found in [5], [10] and [4].

2. Homogenization result. In this section we briefly give the statement of the
main homogenization result which was proven in [6] as well as a short description and
discussion of the model at the microscopic and the macroscopic level, respectively.

2.1. Model at the microscopic level. In order to understand the effects of geo-
metric microstructures, we first of all have to give a suitable description of them.
Basically, we have two classes of such microstructures. The geometric setting is
then the following:

• Outer container.
Both microstructures are arranged in the interior of an outer container (in
biological terms this corresponds to the outer membrane of a cell organelle).
For the sake of simplicity, in what follows this outer container will be the
rectangular region (−R − σε,R + σε) × (0, H). The roles of R, H and σ are
illustrated in Figure 1 below and ε is the small parameter which encodes the
thickness of the microstructures and also the parameter which will bridge the
microscopic description to the macroscopic description when let tend to zero.

• Horizontal microstructures.
Theses horizontal microstructures are arranged in a perfectly regular and
equally spaced pattern. One can think of them as a stack of layers of a
membrane. The thickness of theses microstructures is ε and the distance be-
tween two layers of them is νε, respectively (νε)/2 at the top and the bottom
of the stack of these horizontal microstructures between the microstructure
and the outer container. In Figure 1 below these horizontal microstructures
are displayed in dark grey.

• Characteristic parameter of the horizontal microstructures.
In dependence of the parameter ν there are more horizontal microstructures
or fewer. In other words ν indicates how densely packed the layers of the
horizontal microstructures are. This information will obviously also play a
crucial role once we pass from the microscopic description to the macroscopic
one. In oder to keep track of this information, it turns out that it is more
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convenient to use the following parameter

θ =
1

1 + ν
.

• Vertical microstructures.
What concerns theses vertical microstructures, they might be present or not.
The thickness of these second microstructures is again ε and - if present -
they appear at distance σε from the boundary of the outer container. Some
possible configurations are shown in Figure 1 below (light grey).
In addition, we assume that on the left side (i.e. for −R = x) there exists an
interval Jl ⊂ (0, H) such that on Jl always between two horizontal microstruc-
tures there is a vertical microstructure. The meaning of Jr is similarly defined
as the subset of (0, H) where always between two horizontal microstructures
there is a vertical microstructure.

• Non-degeneracy assumption.
Closed compartments are excluded, i.e. if between two horizontal layers of the
modelled membrane (i.e. between two consecutive horizontal microstructures)
there is present a vertical microstructure on the right side, there can be no
vertical microstructure on the left side (and vice versa).

x

z

2R+ 2σε

νε

H

Model I
no vertical microstructures

Jl = ∅ = Jr

2R− ε

Model II
“right side closed”

Jl = ∅, Jr =
(
νε
2 , H − νε

2 )

Jl

2R

Model III
“mixed”

Jl as indicated above,
Jr = ∅

Figure 1. Illustration of the involved parameters and particular
models studied with microstructures of thickness ε

The above described geometric properties of the underlying domain is just one
part of the description of the distribution of a chemical agent - uε - at microscopic
level ε ∈ (0, 1]. The second part is a suitable governing equation which in our case
is a classical diffusion equation with some further features:

dε
∂

∂t
uε − div(dε∇uε) = 0 in Wε (1)

where Wε denotes the free space where the diffusion can take place, i.e.

Wε = (−R− σε,R+ σε)× (0, H) \ (region occupied by the microstructures).
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This region is exactly the region which is displayed in white in Figure 1.

The function dε appearing in the above diffusion equation is defined as follows

dε(x, z) =

{
1 if |x| ≤ R
1
ε if R < |x| ≤ R+ σε

This additional factor amounts to the fact that the measure of the outer shell

Sε = (−σε−R,−R)× (0, H) ∪ (R,R+ σε)× (0, H) ≡ Sε,l ∪ Sε,r
tends to zero as ε tends to zero whereas the free region between the layers of the
horizontal microstructures is preserved in measure. Further details about this can
be found in Section 2.2 of the article [6].

The equation (1) is completed by homogeneous Neumann boundary conditions on
all appearing boundaries and a bounded C1-initial datum

u(x, z, 0) = u0(x, z) ≥ 0.

Remark 1. A more detailed presentation and discussion of the microscopic de-
scription at level ε - including in particular also regularity properties of the weak
solutions uε - can be found in the article [6]. Nevertheless, we would like to point
out here a few important points:

• A similar situation in the context of visual conduction has been studied by
Andreucci and collaborators in [1].

• We did not include any production rates at the boundaries in order to be able
to separate the effects of the geometry of the two kinds of microstructures
from (non-linear) production phenomena on these boundaries.

• Note that in our model we assume that the horizontal microstructures are
arranged in a regular way. But apart from that we do not impose any peri-
odicity.

Of course, it is not sufficient to come up with the model described above, but in
fact one of the important points is to have a good control of the solutions of the
problem at level ε described above. The most relevant properties of the model at
level ε are the following (see also Proposition 1 in [6]):

i) The above described problem at level ε has a unique solution uε.
ii) The solutions uε (for varying ε ∈ (0, 1]) are uniformly bounded and posi-

tive (recall that we already assumed that the initial datum is bounded and
positive), i.e.

0 ≤ uε ≤ C
where C does not depend on ε.
Moreover, the solutions uε satisfy uniform energy bounds and time-regularity
properties.

2.2. Model at the macroscopic level. Once the microscopic model is established
and understood as briefly indicated in the preceding section one can pass to the
macroscopic description by letting ε tend to zero.
From a biologist’s point of view this can be seen as to determine the effective
equation.

In the following, we will present the macroscopic description we obtain based on
the microscopic model discussed above. And in the next section we will give an
outline of the proof of this main result.
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Before we state the macroscopic description, we would like to point out that
when we very ε the domain of uε changes as well. In order to make all the solutions
uε comparable we have to extend them to a common domain, which in our case is
ΩT = (−R,R) × (0, H) × (0, T ]. With this notation the macroscopic description
reads as follows:

Theorem 2.1. The suitable extensions ũε of the solutions uε of the ε-problems
from above converge in the sense of distributions to u, the solution of

ut − uxx = 0 in D′(ΩT )

with boundary conditions

∇u · n = 0 on {x = −R} ∩ Jl
and

∇u · n = 0 on {x = R} ∩ Jr.
In addition, u satisfies

ux ∈ L2(0, T ;L2(Ω)).

Moreover, the restriction of uε to the outer shell Sε on the right side, more precisely

vε,r =
1

σε

∫ R+σε

R

uε(x, z, t) dx,

converges in the sense of distributions to vr, the solution of

vr,t − vr,zz = −1− θ
σ

ux|x=R

with

vr,z = 0 for z = 0 and z = H.

Similarly,

vε,l =
1

σε

∫ −R

−R−σε
uε(x, z, t) dx,

converges in the sense of distributions to vl, the solution of

vl,t − vl,zz = −1− θ
σ

ux|x=−R

with

vl,z = 0 for z = 0 and z = H.

Moreover, the following transition condition holds

u = vl on {x = −R} ∩ Jcl ,
and

u = vr on {x = R} ∩ Jcr .
Remark 2. Of course, the above theorem comes along with further assertions about
the solution of the limit problem at macroscopic level. Apart from the boundedness
of the solution (u, v) of the macroscopic description and its regularity properties,
the most important fact is that the macroscopic description has a unique solution
(u, v). This fact is absolutely crucial to guarantee that no information was lost
when we let tend ε to zero. A more profound discussion of the properties of this
limit problem can be found in [6].
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2.3. Some remarks about the proof of Theorem 2.1. A detailed proof of
Theorem 2.1 can be found in the article [6] (for the general theory of parabolic
problems the reader is referred to [7]).
Nevertheless, we would like to point out here the most important steps and ideas
that lead to Theorem 2.1.

Outline of the proof:

• Step 1: Uniform estimates.
The starting point of the whole homogenization procedure are suitable uniform
a priori estimates for the solutions uε of the ε-problems.

• Step 2: Limit in the interior region.
In this step we restrict our attention to the region of the form {|x| < R− δ}
where δ is at first fixed and will be sent to zero in a second step.
Then, in order to establish the limit behaviour in this region we start by
considering test functions ϕ ∈ C2 such that

ϕ(t = 0) = 0 = ϕ(t = T )

and

ϕ is supported away from the outer shell Sε

in the weak formulation of the ε-problem

0 = −
∫ T

0

∫

Wε∩{|x|<R−δ}
uεϕt −

∫ T

0

∫

∂Wε∩{|x|<R−δ}
(∇uε · n)ϕ

+

∫ T

0

∫

Wε∩{|x|<R−δ}
uε,xϕx +

∫ T

0

∫

Wε∩{|x|<R−δ}
uε,zϕz.

The problem that arises now is that the domains of uε change with ε. Thus,
we have to find extensions that have all the same domain. This is done in the
next step.

• Step 3: Construction of extensions ũε.
As announced in Step 2, we need suitable extensions of uε.
Once such extensions ũε are at hand, the weak formulation from above can
be rewritten as follows

−
∫ T

0

∫

Wε∩{|x|<R−δ}
uεϕt = −

∫ T

0

∫

(−R,R)×(0,H)

∑

j

χIj ũεϕt

and similar for the other terms appearing in the weak formulation (where χIj
stands for the characteristic function of the free space between the jth and
the (j + 1)th horizontal microstructure, respectively the bottom of the outer
container and the first horizontal microstructure and the top of the outer
container and the last horizontal microstructure).
But as one can see easily, a priori both

∑
j χIj and ũε only converge weakly.

This means that the extensions we construct should satisfy suitable regularity
properties as well.
In fact, constructing the extensions ũε by reflection and interpolation we can
establish the following properties (see Lemma 9 in [6]):

i) The extensions ũε coincide with the solution uε on the space between the
horizontal microstructures.
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ii) The extensions ũε enjoy the following uniform regularity properties

ũε ∈ L2(0, T ;W 1,1) with ||ũε||L2(0,T ;W 1,1) ≤ C
and

||ũε(t+ h)− ũε(t)||L2(0,T−h;Lp) ≤ C
√
h ∀h ∈ (0, T ) (1 < p < 2).

With these regularity assertions at hand we can now pass to the limit in the
weak formulation above without any further difficulty. This finally leads to
the limit description in the interior region.

• Step 4: Full limit.
In remains to establish the limiting behaviour in the whole domain including
the outer shell. In particular, it remains to understand what happens in Sε.
The idea here is to use test functions which are independent of x in the outer
shell.

3. Discussion. We would like to close this presentation by a short discussion and
interpretation of the found limit description at macroscopic level. The biological
question one may have in mind is “What is the impact of the geometric configura-
tion of the different microstructures on the distribution of a chemical agent?”

First of all, one could look at steady states (i.e. solutions with vanishing time
derivative), respectively at the long time behaviour. In fact, the most striking
difference can be seen between Model I and Model II (see Figure 1):

i) For Model I

u∞(x, z) = vl,∞(z) = vr,∞(z) ≡ 1

|Ω|

∫

Ω

u0

is the unique stationary solution.
Note that due to the transition condition the constant concentration has to
be the same everywhere.

ii) For Model II





vr,∞(z) ≡ 1

H

∫

Sr

vr(t = 0) independently of z

u∞(x, z) = vl,∞(z) ≡ 1

|Ω|

∫

Ω

u0 independently on x and z

is the unique stationary solution.
In biological terms, this can be interpreted in the sense that the presence of
the vertical microstructures on the right hand side implies that this latter gets
isolated from the rest of the outer container.

Furthermore, as a final illustration of the different behaviours of Model I and Model
II, in Figures 2 and 3 numerical simulations of the two models are displayed.
For this simulation the following input was used: Ω = (−1, 2)× (−1, 2), σ = 1− θ,
T = 2 and u0 was a bump function centred at (0, 0).

In conclusion, we can state that in effect the particular configuration of the
microstructures can determine the distribution of a chemical agent.
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Figure 2. Numerical simulations for Model I (green) and Model
II (red); t ∈ [0, 1], x ∈ [−1, 2] and z = 0.

Figure 3. Numerical simulations for Model I (green) and Model
II (red); t ∈ [0, 1.2], x = 1.85 and z = 0.65.

REFERENCES

[1] D. Andreucci, P. Bisegna, and E. DiBenedetto, Homogenization and concentrated capacity for
he heat equation with non-linear variational data in reticular almost disconnected structures

and applications to visual transduction, Ann. Mat. Pura Appl., 182 (2003), 375-407.

[2] S. Campello, R.A. Lacalle, M. Bettella, S. Manes, L. Scorrano and A. Viola, Orchestration of
lymphocyte chemotaxis by mitochondrial dynamics, JEM, 203 (2006), 2879-2886.

[3] G.M. Cooper and R.E. Hausman, The cell: a molecular approach, 5th edition, ASM Press,

Washington, D.C., 2009.
[4] J. Demongeot, N. Glade, O. Hansen and A. Moreira, An open issue: The inner mitochondrial

membrane (IMM) as a free boundary problem, Biochimie, 89 (2007), 1049-1057.

[5] Y. Deng and M. Mieczkowski, Three-dimensional periodic cubic membrane structure in the
mitochondria of amoebae Chaos carolinensis, Protoplasma, 203 (1998), 16-25.

[6] L.G.A. Keller, Homogenization and concentrated capacity for the heat equation with two
kinds of microstructures: uniform cases, Ann. Mat. Pura Appl., 196 (2017), 791-818.
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Abstract. In this note we consider the ideal compressible magneto–hydro-
dynamics (MHD) equations in a special two dimensional setting. We show

that there exist particular initial data for which one obtains infinitely many
entropy–conserving weak solutions by using the convex integration technique.

Finally this is applied to the isentropic case.

1. Introduction. We consider the ideal compressible magneto–hydrodynamics
(MHD) equations

∂t%+ div (%u) = 0,

∂t(%u) + div (%u⊗ u) +∇p− (curl B)×B = 0,

∂t

(
1

2
%|u|2 + %e(%, p) +

1

2
|B|2

)

+ div

[(
1

2
%|u|2 + %e(%, p) + p+ |B|2

)
u

]
− div

(
(B · u)B

)
= 0,

∂tB + curl (B× u) = 0,

div B = 0.

(1)

The unknown functions in (1) are the density % > 0, the pressure p > 0, the velocity
u ∈ R3 and the magnetic field B ∈ R3, which are all functions of the time t ∈ [0, T )
and the spatial variable x = (x, y, z)T ∈ R3. The internal energy e is a given
function of the density % and the pressure p.

In this note we consider a special two dimensional setting. Let Ω ⊂ R2 a bounded
two dimensional spacial domain. We consider u = (u, v, 0)T and B = (0, 0, b)T and
furthermore we let all the unknowns only depend on (x, y) ∈ Ω. From now on
we write u = (u, v)T ∈ R2 and x = (x, y)T ∈ Ω ⊂ R2 for the corresponding two

2000 Mathematics Subject Classification. Primary: 76W05, 35D30; Secondary: 76N15, 35Q35.
Key words and phrases. magnetohydrodynamics, compressible flow, weak solutions, convex

integration.
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dimensional vectors. Then the MHD system (1) turns into

∂t%+ div (%u) = 0,

∂t(%u) + div
(
%u⊗ u

)
+∇

(
p+

1

2
b2
)

= 0,

∂t

(
1

2
%|u|2 + %e(%, p) +

1

2
b2
)

+ div

[(
1

2
%|u|2 + %e(%, p) + p+ b2

)
u

]
= 0,

∂tb+ div (bu) = 0.

(2)

Note that in (2) div ,∇ are two dimensional differential operators in contrast to (1),
where they are three dimensional differential operators.

We endow system (2) with initial conditions
(
%, p,u, b

)
(0, ·) =

(
%0, p0,u0, b0

)
(3)

and impermeability boundary conditions

u · n
∣∣
∂Ω

= 0. (4)

Definition 1.1. A 4-tuple (%, p,u, b) ∈ L∞
(
[0, T )×Ω; (0,∞)× (0,∞)×R2×R

)
is

a weak solution to (2), (3), (4) if the following equations hold for all test functions
ϕ, φ, ψ ∈ C∞c

(
[0, T )× R2

)
and ϕ ∈ C∞c

(
[0, T )× R2;R2

)
with ϕ · n

∣∣
∂Ω

= 0:
∫ T

0

∫

Ω

[
%∂tϕ+ %u · ∇ϕ

]
dx dt+

∫

Ω

%0ϕ(0, ·) dx = 0; (5)

∫ T

0

∫

Ω

[
%u · ∂tϕ+

(
%u⊗ u

)
: ∇ϕ+

(
p+

1

2
b2
)

divϕ

]
dx dt

+

∫

Ω

%0u0 ·ϕ(0, ·) dx = 0;

(6)

∫ T

0

∫

Ω

[(1

2
%|u|2 + %e(%, p) +

1

2
b2
)
∂tφ

+
(1

2
%|u|2 + %e(%, p) + p+ b2

)
u · ∇φ

]
dx dt

+

∫

Ω

(1

2
%0|u0|2 + %0e(%0, p0) +

1

2
b20

)
φ(0, ·) dx = 0;

(7)

∫ T

0

∫

Ω

[
b∂tψ + bu · ∇ψ

]
dx dt+

∫

Ω

b0ψ(0, ·) dx = 0. (8)

Remark 1.2. The impermeability boundary condition is represented by the choice
of the test functions.

Remark 1.3. Note that we exclude vacuum for our consideration, i.e. in this note
% > 0, p > 0.

It is a well–known fact that there may exist physically non–relevant weak solu-
tions to conservation laws. Hence one has to introduce additional selection criteria
in order to single out the physically relevant weak solutions. A common approach
is to impose an entropy inequality. However for the MHD system (1) there is no
known entropy.
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Note that for the Euler system the functions

η = −%s(%, p) and q = −%s(%, p)u
form an entropy pair. Here the specific entropy s = s(%, p) is a given function as
well as the internal energy e and note that these functions are interrelated by Gibbs’
relation.

It is a straightforward computation to show that a strong solution to the MHD
system (1) fulfills

∂t
(
%s(%, p)

)
+ div

(
%s(%, p)u

)
= 0. (9)

Although this suggests that (η,q) is an entropy pair for the MHD system, too, (η,q)
is not an entropy pair for MHD, cf. [2]. However (η,q) is still used as a selection
criterion in the literature for example if Riemann problems are considered and one
wants to find out whether or not a shock is physical, see e. g. [9]. We misuse
terminology and call η and q still entropy, entropy flux respectively.

The weak solutions, whose existence we will prove in this note, fulfill the entropy
equation (9) in the weak sense. We call such solutions entropy–conserving.

Definition 1.4. A weak solution (%, p,u, b) to (2), (3), (4) is called entropy–
conserving, if for all test functions ϕ ∈ C∞c

(
[0, T )× R2

)
the entropy equation

∫ T

0

∫

Ω

[
%s(%, p)∂tϕ+ %s(%, p)u · ∇ϕ

]
dx dt+

∫

Ω

%0s(%0, p0)ϕ(0, ·) dx = 0 (10)

holds.

The following theorem is our main result:

Theorem 1.5. Let %0, p0 ∈ L∞(Ω; (0,∞)) and b0 ∈ L∞(Ω) be arbitrary piecewise
constant functions. Then there exists u0 ∈ L∞(Ω;R2) such that there are infinitely
many entropy–conserving weak solutions to (2) with initial data %0, p0,u0, b0 and
impermeability boundary condition. These solutions have the property that %, p and
b do not depend on time; in other words % ≡ %0, p ≡ p0 and b ≡ b0.

The proof of Theorem 1.5 relies on the non–uniqueness proof for the full Euler
system provided in [7] and consists of two main ideas. The first one is to make
use of a result (see Proposition 2.1 below) which was proved by Feireisl [6] and
also by Chiodaroli [3]. This result is based on the convex integration method, that
was developed by De Lellis and Székelyhidi [4, 5] in the context of the pressureless
incompressible Euler equations. The second idea is the fact that %, p and b can be
chosen piecewise constant, what was observed originally by Luo, Xie and Xin [8].

Note that non–uniqueness of weak solutions fulfilling an entropy inequality (even
in one space dimension) is well–known: There exist Riemann initial data for which
one has more than one solutions, see e. g. Torrilhon [9] and references therein.

Note furthermore that there is also a convex integration result to incompressible
ideal MHD by Bronzi et al. [1]. There the same two dimensional setting as in the
present note is considered. In contrast to this note, where a convex integration
result for Euler is used, Bronzi et al. apply the convex integration techique directly
to an incompressible version of (2).

2. Proof of the main result. In order to prove Theorem 1.5 we will make use of
the following proposition whose proof is based on convex integration.
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Proposition 2.1. Let Q ⊂ R2 a bounded domain, % > 0 and C > 0 positive
constants. Then there exists m0 ∈ L∞(Q;R2) such that there are infinitely many
functions

m ∈ L∞
(
(0, T )×Q;R2

)
∩ Cweak

(
[0, T ];L2(Q;R2)

)

satisfying

∫ T

0

∫

Q

m · ∇ϕdx dt = 0, (11)

∫ T

0

∫

Q

[
m · ∂tϕ+

(
m⊗m

%
− 1

2

|m|2
%

I
)

: ∇ϕ
]

dx dt

+

∫

Q

m0 ·ϕ(0, ·) dx = 0,

(12)

for all test functions ϕ ∈ C∞c ([0, T ) × R2) and ϕ ∈ C∞c ([0, T ) × R2;R2), and
additionally

Ekin =
1

2

|m|2
%

= C a.e. in (0, T )×Q, E0,kin =
1

2

|m0|2
%

= C a.e. in Q.

For the proof of Proposition 2.1 we refer to [6, Theorem 13.6.1].
Now we are able to prove Theorem 1.5.

Proof of Theorem 1.5. Let %0, p0 ∈ L∞(Ω; (0,∞)) and b0 ∈ L∞(Ω) given piecewise
constant functions. Then there exist finitely many Qi ⊂ Ω open and pairwise
disjoint, such that Ω =

⋃
i

Qi and %0

∣∣
Qi

= %i, p0

∣∣
Qi

= pi and b0
∣∣
Qi

= bi with

constants %i, pi > 0 and bi ∈ R. We apply Proposition 2.1 on each Qi to % = %i
and C = Λ − pi − 1

2b
2
i , where Λ is a constant with Λ > max

i

(
pi + 1

2b
2
i

)
. This

yields m0,i ∈ L∞(Qi;R2) and infinitely many mi ∈ L∞((0, T ) × Qi;R2) with the
properties given in Proposition 2.1. We then piece together the m0,i ∈ L∞(Qi;R2)
to m0 ∈ L∞(Ω;R2) and the mi ∈ L∞((0, T )×Qi;R2) to m ∈ L∞((0, T )× Ω;R2).

We define u0 := m0

%0
∈ L∞(Ω;R2) and for each momentum field m we define a

corresponding velocity field u := m
%0
∈ L∞

(
(0, T ) × Ω;R2

)
. Furthermore we define

(%, p, b) ∈ L∞
(
[0, T ) × Ω; (0,∞) × (0,∞) × R

)
by % ≡ %0, p ≡ p0 and b ≡ b0. We

claim that (%, p,u, b) is an entropy–conserving weak solution to (2) with initial data
%0, p0,u0, b0.

Let ϕ, φ, ψ ∈ C∞c
(
[0, T ) × R2

)
and ϕ ∈ C∞c

(
[0, T ) × R2;R2

)
with ϕ · n

∣∣
∂Ω

= 0
arbitrary test functions. Using (11) and (12), we obtain the following.

∫ T

0

∫

Ω

[
%∂tϕ+ %u · ∇ϕ

]
dx dt+

∫

Ω

%0ϕ(0, ·) dx

=
∑

i

%i

∫

Qi

(∫ T

0

∂tϕdt+ ϕ(0, ·)
)

dx +
∑

i

∫ T

0

∫

Qi

mi · ∇ϕdx dt = 0;
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∫ T

0

∫

Ω

[
%u · ∂tϕ+

(
%u⊗ u

)
: ∇ϕ+

(
p+

1

2
b2
)

divϕ

]
dx dt+

∫

Ω

%0u0 ·ϕ(0, ·) dx

=
∑

i

(∫ T

0

∫

Qi

[
mi · ∂tϕ+

(
mi ⊗mi

%i
− 1

2

|mi|2
%i

I
)

: ∇ϕ
]

dx dt

+

∫

Qi

m0,i ·ϕ(0, ·) dx

)
+
∑

i

∫ T

0

∫

Qi

[
1

2

|mi|2
%i

+
(
pi +

1

2
b2i

)]
divϕ dx dt

= Λ

∫ T

0

∫

Ω

divϕ dx dt = 0;

∫ T

0

∫

Ω

[(1

2
%|u|2 + %e(%, p) +

1

2
b2
)
∂tφ+

(1

2
%|u|2 + %e(%, p) + p+ b2

)
u · ∇φ

]
dx dt

+

∫

Ω

(1

2
%0|u0|2 + %0e(%0, p0) +

1

2
b20

)
φ(0, ·) dx

=
∑

i

(
Λ + %ie(%i, pi)− pi

)∫

Qi

(∫ T

0

∂tφdt+ φ(0, ·)
)

dx

+
∑

i

Λ + %ie(%i, pi) + 1
2bi

%i

∫ T

0

∫

Qi

mi · ∇φ dx dt = 0;

∫ T

0

∫

Ω

[
b∂tψ + bu · ∇ψ

]
dx dt+

∫

Ω

b0ψ(0, ·) dx

=
∑

i

bi

∫

Qi

(∫ T

0

∂tψ dt+ ψ(0, ·)
)

dx +
∑

i

bi
%i

∫ T

0

∫

Qi

mi · ∇ψ dx dt = 0.

We have shown that the equations (5) - (8) hold. Hence (%, p,u, b) is indeed a
weak solution. It remains to show that this solution is entropy–conserving. In other
words we have to show that (10) holds. Let ϕ ∈ C∞c

(
[0, T ) × R2

)
be an arbitrary

test function. We obtain
∫ T

0

∫

Ω

[
%s(%, p)∂tϕ+ %s(%, p)u · ∇ϕ

]
dx dt+

∫

Ω

%0s(%0, p0)ϕ(0, ·) dx

=
∑

i

%is(%i, pi)

∫

Qi

(∫ T

0

∂tϕdt+ ϕ(0, ·)
)

dx

+
∑

i

s(%i, pi)

∫ T

0

∫

Qi

mi · ∇ψ dx dt = 0.

Thus (%, p,u, b) is an entropy–conserving weak solution. Since there are infinitely
many m from Prop. 2.1, there are infinitely many entropy–conserving solutions
(%, p,u, b).
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3. Isentropic MHD. In this section we apply our result to isentropic MHD equa-
tions. The isentropic MHD system reads

∂t%+ div (%u) = 0,

∂t(%u) + div (%u⊗ u) +∇p(%)− (curl B)×B = 0,

∂tB + curl (B× u) = 0,

div B = 0.

(13)

The unknown functions are the density % > 0, the velocity u ∈ R3 and the magnetic
field B ∈ R3. In contrast to the MHD system (1) the pressure p in (13) is not an
unknown but a given function of the density, where p(%) > 0 for all % > 0.

Again we consider a two dimensional setting. Let Ω ⊂ R2 a bounded two dimen-
sional spacial domain. We consider u = (u, v, 0)T and B = (0, 0, b)T and further-
more we let all the unknowns only depend on (x, y) ∈ Ω. Then the isentropic MHD
system (13) turns into

∂t%+ div (%u) = 0,

∂t(%u) + div
(
%u⊗ u

)
+∇

(
p(%) +

1

2
b2
)

= 0,

∂tb+ div (bu) = 0.

(14)

For the isentropic Euler system, the energy

η =
1

2
%|u|2 + P (%) +

1

2
|B|2

is an entropy. Here P (%) is called pressure potential and is given by

P (%) = %

∫ %

1

p(r)

r
dr.

Similar to the full MHD system considered above, one can show that the energy is
not an entropy for (13) but strong solutions fulfill the corresponding energy equation

∂t

(
1

2
%|u|2 + P (%) +

1

2
|B|2

)

+ div

[(
1

2
%|u|2 + P (%) + p(%) + |B|2

)
u

]
− div

(
(B · u)B

)
= 0.

(15)

Hence we will look for energy–conserving weak solutions. In the considered set-
ting the energy equation (15) turns into

∂t

(
1

2
%|u|2 + P (%) +

1

2
b2
)

+ div

[(
1

2
%|u|2 + P (%) + p(%) + b2

)
u

]
= 0.

Definition 3.1. A triple (%,u, b) ∈ L∞
(
[0, T ) × Ω; (0,∞) × R2 × R

)
is a weak

solution to (14) with initial data %0,u0, b0 and impermeability boundary condition
if the following equations hold for all test functions ϕ,ψ ∈ C∞c

(
[0, T ) × R2

)
and

ϕ ∈ C∞c
(
[0, T )× R2;R2

)
with ϕ · n

∣∣
∂Ω

= 0:

∫ T

0

∫

Ω

[
%∂tϕ+ %u · ∇ϕ

]
dx dt+

∫

Ω

%0ϕ(0, ·) dx = 0; (16)
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∫ T

0

∫

Ω

[
%u · ∂tϕ+

(
%u⊗ u

)
: ∇ϕ+

(
p(%) +

1

2
b2
)

divϕ

]
dx dt

+

∫

Ω

%0u0 ·ϕ(0, ·) dx = 0;

(17)

∫ T

0

∫

Ω

[
b∂tψ + bu · ∇ψ

]
dx dt+

∫

Ω

b0ψ(0, ·) dx = 0. (18)

A weak solution is called energy–conserving if in addtion for all test functions
φ ∈ C∞c

(
[0, T )× R2

)
the energy equation

∫ T

0

∫

Ω

[(1

2
%|u|2 + P (%) +

1

2
b2
)
∂tφ

+
(1

2
%|u|2 + P (%) + p(%) + b2

)
u · ∇φ

]
dx dt

+

∫

Ω

(1

2
%0|u0|2 + P (%0) +

1

2
b20

)
φ(0, ·) dx = 0

(19)

holds.

The Cauchy problem for the isentropic MHD equations is ill–posed, too:

Corollary 3.2. Let %0 ∈ L∞(Ω; (0,∞)) and b0 ∈ L∞(Ω) be arbitrary piecewise
constant functions. Then there exists u0 ∈ L∞(Ω;R2) such that there are infinitely
many energy–conserving weak solutions to (14) with initial data %0,u0, b0 and im-
permeability boundary condition. These solutions have the property that % and b do
not depend on time; in other words % ≡ %0 and b ≡ b0.

Proof of Corollary 3.2. Let %0 ∈ L∞(Ω; (0,∞)) and b0 ∈ L∞(Ω) given piecewise
constant functions. Set furthermore p0 := p(%0). Then p0 ∈ L∞(Ω; (0,∞)) is a
piecewise constant function. Additionally we can choose the function e(%, p) in such
a way that %0e(%0, p0) = P (%0). We know from Theorem 1.5 that there exists an ini-
tial velocity u0 ∈ L∞(Ω;R2) such that there are infinitely many entropy–conserving
weak solutions (% ≡ %0, p ≡ p0,u, b ≡ b0) to (2) with initial data %0, p0,u0, b0. It
is easy to check that for each of these solutions, the triple (% ≡ %0,u, b ≡ b0) is an
energy–conserving weak solution to the isentropic MHD equations (14) with initial
data %0,u0, b0 in the sense of Definition 3.1.
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E-mail address: klingen@mathematik.uni-wuerzburg.de

E-mail address: simon.markfelder@mathematik.uni-wuerzburg.de

498



PIECEWISE DETERMINISTIC MARKOV PROCESSES DRIVEN

BY SCALAR CONSERVATION LAWS

Stephan Knapp∗

University of Mannheim
Department of Mathematics

68131 Mannheim, Germany

Abstract. We investigate piecewise deterministic Markov processes (PDMP),

where the deterministic dynamics follows a scalar conservation law and random
jumps in the system are characterized by changes in the flux function. We

show under which assumptions we can guarantee the existence of a PDMP

and conclude bounded variation estimates for sample paths. Finally, we apply
this dynamics to a production and traffic model and use this framework to

incorporate the well-known scattering of flux functions observed in data sets.

1. Introduction. The simplicity of scalar conservation laws allows to understand
general behaviors of underlying models but, on the other hand, they are based on
qualified assumptions as for example steady state or expected values. One possibility
to widen this class of models are systems of conservation laws, where fluctuations
and higher order moments can be governed. Another possibility to extend scalar
conservation laws are stochastic effects. More precisely, starting from deterministic
scalar conservation laws and a corresponding initial value problem (IVP)

ut(x, t) + f(u(x, t))x = 0, u(x, 0) = u0(x), (1)

a natural extension is the incorporation of uncertainties. There already exist ex-
tensions based on a reformulation as stochastic differential equation like in [12] and
partial stochastic differential equation as in [5, 17] in the literature. Also uncertain
initial data as for example in [6] and random chosen flux functions [18] have been
considered. In the latter work, the flux function is random and does not change
randomly in time.

In contrast to [18], our goal is a stochastic process, which “chooses” a new flux
function at random times, where these times and the random choice of the next flux
function may dependent on the actual solution of the whole system. This can be
easily motivated by, e.g. production models with machine failures [8, 10], and also
opinion formation, change of state (gas to liquid or vice versa) are reasonable ap-
plications. This idea directly transfers us into the theory of piecewise deterministic
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Key words and phrases. scalar conservation laws, piecewise deterministic Markov processes,

production, LWR, stochastic.
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Markov processes, see [14]. In detail, given a parametrized family of Lipschitz con-
tinuous flux functions fα ∈ C0,1(R) for α ∈ I ⊂ R, we are interested in a “solution”
to

ut(x, t) + fα(t)(u(x, t))x = 0, u(x, 0) = u0(x), (2)

where α(t) ∈ I denotes the current and random chosen flux function at time t ∈
[0, T ] and x ∈ R.

We define how (2) has to be understood and how α(t) is specified in the subse-
quent section 2. This section is followed by applications and numerical results in
the case of a production and traffic model in section 3.

2. Modeling Equations. Let u : R→ R be a function, then we denote by TV(u)
its total variation and define BV(R) = {u : R → R : TV(u) < ∞} as the set of
all functions from R to R with total bounded variation, see, e.g. [13]. With this
notation, it is well known as a result of Krusckov, see [13], that the IVP (1) has
a unique weak entropy solution if u0 ∈ BV(R) ∩ L1(R) and if f ∈ C0,1(R), i.e., is
Lipschitz continuous. Furthermore, the solution u satisfies

‖u(·, t)‖∞ ≤ ‖u0‖∞, (3)

TV(u(·, t)) ≤ TV(u0), (4)

‖u(·, t)− u(·, s)‖L1 ≤ ‖f‖C0,1 TV(u0)|t− s| (5)

and is L1 stable with respect to initial data

‖u(·, t)− v(·, t)‖L1 ≤ ‖u0 − v0‖L1 . (6)

Deterministic dynamics between jump times. In this section, we define the
dynamics to (2) based on theory of PDMPs. Unfortunately, we cannot apply the
theory of PDMPs directly on solutions to (1) with corresponding flux functions fα

since BV(R) is not separable and hence no Borel space. Following [2], we use the
extended solution operator to (1) on L1(R) and denote it by Sαt : L1(R) → L1(R),
where α indicates that flux function fα is used. We directly deduce the following
properties of the family (Sαt , t ∈ [0, T ]) for every α ∈ I:

Sαs+t = Sαs S
α
t = Sαt S

α
s for s, t ∈ [0, T ] with s+ t ∈ [0, T ], (7)

Sα0 = Id, (8)

t 7→ Sαt ∈ C([0, T ];L1(R)), (9)

‖Sαt u− Sαt v‖L1 ≤ ‖u− v‖L1 , (10)

t 7→ Sαt u0 is the unique entropy solution to (1) if u0 ∈ L1(R) ∩ BV(R). (11)

Up to now, we have no specification of α(t). We define the state space E =
L1(R)× I equipped with the Borel σ-algebra E generated by the open sets induced
by ‖(u, α)‖ = ‖u‖L1 + |α| for (u, α) ∈ E. Then (E, E) is a Borel space.

Our aim is to switch the flux function only at random times, which results in
deterministic dynamics between the jumps in the form of

φt : E → E,

(
u
α

)
7→
(
Sαt u,
α

)
.

Properties (7)-(10) of S directly translate to φ. If we can show that φ : [0, T ]×E → E
is measurable, the dynamics φ is a candidate for deterministic dynamics in between
jump times of a PDMP, see [14]. The following lemma 2.1 tells us a sufficient
condition to prove measurability of φ.

500



PDMPS DRIVEN BY SCALAR CONSERVATION LAWS

Lemma 2.1. Let the mapping α 7→ fα from I → C0,1(R) be continuous with I ⊂ R
an interval, then (t, u, α) 7→ (Sαt u, α) is continuous from [0, T ] × L1(R) × I →
L1(R)× I and consequently measurable.

Proof. Let (s, u, α), (t, v, β) ∈ [0, T ]× L1(R)× I, then we use the norm

‖(s, u, α)− (t, v, β)‖ = |s− t|+ ‖u− v‖L1 + |α− β|.
According to this norm, we use

‖(Sαs u, α)− (Sβt v, β)‖ = ‖Sαs u− Sβt v‖L1 + |α− β|.
To show continuity, we estimate ‖Sαs u− Sβt v‖L1 as follows:

‖Sαs u− Sβt v‖L1 ≤ ‖Sαs u− Sαt u‖L1 + ‖Sαt u− Sαt v‖L1 + ‖Sαt v − Sβt v‖L1

and conclude that we can make ‖Sαs u − Sαt u‖L1 and ‖Sαt u − Sαt v‖L1 sufficiently

small by shrinking ‖(Sαs u, α)− (Sβt v, β)‖ due to properties (9)-(10). Let (vn, n ∈ N)
be a sequence in BV(R) ∩ L1(R) satisfying limn→∞ ‖vn − v‖L1 = 0. We estimate

‖Sαt v − Sβt v‖L1 as follows:

‖Sαt v − Sβt v‖L1 ≤ ‖Sαt v − Sαt vn‖L1 + ‖Sβt vn − Sβt v‖L1 + ‖Sαt vn − Sβt vn‖L1

≤ 2‖v − vn‖L1 + ‖Sαt vn − Sβt vn‖L1

≤ 2‖v − vn‖L1 + t‖fα − fβ‖C0,1 TV(vn),

where we used the result from [13, p. 53] in the last estimate. Altogether, we find
that

‖Sαs u− Sβt v‖L1 ≤ ‖Sαs u− Sαt u‖L1 + ‖u− v‖L1

+ 2‖v − vn‖L1 + T‖fα − fβ‖C0,1 TV(vn).

Now, let (t, v, β) ∈ [0, T ]×L1(R)×I, ε > 0 and choose n ∈ N such that ‖v−vn‖L1 <
ε
6 as well as δ > 0 such that

‖Sαs u− Sαt u‖L1 <
ε

6
, ‖u− v‖L1 <

ε

6
, ‖fα − fβ‖C0,1 <

ε

TV(vn)6T
, |α− β| < ε

6

implying

‖(Sαs u, α)− (Sβt v, β)‖ < ε

for all (s, u, α) ∈ [0, T ]× L1(R)× I satisfying ‖(s, u, α)− (t, v, β)‖ < δ.

One simple example for a family of flux functions, which satisfies the continuity
with respect to the parameter α ∈ I is given by fα = αf for f ∈ C0,1(R). Then
‖fα − fβ‖C0,1 = ‖f‖C0,1 |α− β|.
Jump and jump time distributions. Following [14], we specify the transition
intensities qt(y,B) ≥ 0, i.e., the rate to jump from y ∈ E in a state in B ∈ E at
time t ∈ [0, T ]. This can be decomposed into qt(y,B) = ηt(y,B)ψt(y), where ψt(y)
is the total intensity that a jump occurs a time t and ηt(y,B) is the probability of
a jump from y into a state in B provided a jump occurs at time t.

In order to use these intensities, we assume (y, t) 7→ ψt(y) to be measurable and

for all (y, t) we need
∫ t+h
t

ψs(y)ds < ∞ for h = h(y, t) sufficiently small. For all t
we additionally assume that ηt is a Marovian kernel, see, e.g. [1], for a definition. A
further and natural assumption is that ηt(y, {y}) = 0 holds for all (y, t) ∈ E× [0, T ].

At this point almost everything can happen at jump times but we fix the specific
idea that only the flux function changes at the jump times. In detail, there is no
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jump in the solution of the conservation law component to inherit mass conservation
again. To do so, we restrict on rates

λ : I × B(I)× [0, T ]× L1(R)→ R>0,

satisfying

1. sup{λ(α, I, t, u) : α ∈ I, t ∈ [0, T ], u ∈ L1(R)} ≤ λmax <∞,
2. for every t ∈ [0, T ], (α, u) ∈ E the mapping B 7→ λ(α,B, t, u) is a measure,
3. for every t ∈ [0, T ], B ∈ B(I) the mapping (α, u) 7→ λ(α,B, t, u) is measurable,
4. for every t ∈ [0, T ], (α, u) ∈ E we have λ(α, {α}, t, u) = 0.

Then we define for every y = (α, u) ∈ E and B ∈ E the total intensity and jump
distribution by

ψt(y) = λ(α, I, t, u),

ηt(y,B) =
1

λ(α, I, t, u)

∫

I

1B((β, u))λ(α, dβ, t, u).

Existence. Due to the uniform bound on ψt, we can use a so-called thinning algo-
rithm to build the jump times Tn and after jump locations Yn for n ∈ N0 iteratively,
see [10, 15]. Since the number of jumps is finite P -almost surely, again due to the
uniform bound on the rates, we obtain a stable random counting measure and the-
orem 7.3.1 from [14] can be applied. We obtain the following result

Theorem 2.2. For every initial data x0 = (α0, u0) ∈ E there exists a stochastic
process X = (X(t), t ∈ [0, T ]) on some probability space (Ω,A, P ), which satisfies

1. X(0) = x0,
2. X is a Markov process with respect to its natural filtration FX = (FXt , t ∈

[0, T ]) given by FXt = σ(X(s), 0 ≤ s ≤ t),
3. X is piecewise deterministic and piecewise continuous, i.e., there exist jump

times Tn ∈ [0, T ] and post jump locations Yn ∈ E for n ∈ N0 such that

X(t) = φt−Tn(Yn) ⇔ t ∈ [Tn, Tn+1),

where for convenience T0 = 0 and Y0 = x0.

Total Variation bounds and BV solutions. The extension of the solution to
L1 allowed us to use classical results from the theory of piecewise deterministic
Markov processes to obtain the existence of a stochastic process, which satisfies our
requirements. We expect that if the initial condition u0 ∈ L1(R)∩BV(R), then we
deduce u(t) ∈ L1(R) ∩ BV(R) again as the following lemma shows.

Lemma 2.3. Let X = (X(t), t ∈ [0, T ]) be the stochastic process from theorem
2.2 with X(t) = (α(t), u(t)) ∈ E. If u(0) = u0 ∈ L1(R) ∩ BV(R), then u(t) ∈
L1(R) ∩ BV(R) and TV(u(t)) ≤ TV(u0).

Proof. Let ω ∈ Ω, Tn(ω) the jump times and Yn(ω) the post jump locations of
X(ω) for n ∈ N0. For t ∈ [0, T1(ω)) we have TV(u(t, ω)) = TV(Sα0

t u0) ≤ TV(u0)
by classical results on scalar conservation laws, see, e.g. [13]. At time t = T1 the
flux function changes and for t ∈ [T1(ω), T2(ω)) it follows

TV(u(t)) = TV(S
α(T1(ω),ω)
t−T1(ω)

u(t, ω)) ≤ TV(u(T1(ω), ω)) ≤ TV(u0)

by continuity of t 7→ u(t, ω). Iteratively, we deduce

TV(u(t, ω)) ≤ TV(u0).
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Remark 1. Lemma 2.3 is only valid because we have no jumps in the u component
at jump times by construction. Using the same arguments, the mass in the u
component is preserved.

3. Applications and numerical results. Since we motivated PDMPs driven by
scalar conservation law dynamics by the scattering of real data, we discuss simula-
tion results of two examples in this section. The first example is a production and
the second example is a traffic flow model.

Production model. Macroscopic production models have been widely studied in
the literature, see [3] for an overview. Since in production capacity drops occur due
to machine failures or human influences, deterministic models have been extended
to stochastic production models, see [4, 8, 9, 10]. Therein, a random flux function
in the form of

f(ρ) = min{vρ, µ}
has been chosen with a deterministic production velocity v > 0, a stochastic capacity
µ for a production density ρ. The latter corresponds to the variable u in our context.
In [4, 9] the capacity µ is a Continuous Time Markov Chain, in [8] a semi-Markov
process and in [10] a PDMP construction has been developed.

In contrast to the mentioned works, we consider a single production step instead
of a network and use our more general setting that allows for further flux functions
motivated by data sets, see e.g. [7]. One possible choice is

fα(ρ) = µ(α)(1− e−
v(α)
µ(α)

ρ)

for a continuous bounded capacity µ > 0 and velocity v ≥ 0. Some calculation

shows ‖fα− fβ‖C0,1 = O(|v(α)− v(β)|+ | v(α)µ(α) −
v(β)
µ(β) |) and the flux function fulfills

the requirements to obtain the existence of a suitable stochastic process X, see
theorem 2.2.

In Figure 1a flux functions for µ(α) = 1 + tanh(α2 ) and v(α) = 1 + tanh(α)
and different α are drawn. So, we can capture different production velocities and
capacities by varying α.

(a) Flux functions for different α (b) Sample densities and fluxes at x = 0

Figure 1. Flux-density relation in the production model

It remains to introduce jump rates λ in the production setting. We want the total
jump intensity to be dependent on the Work In Progress (WIP) on some interval

[a, b] ⊂ R, which is defined as WIP(ρ(t)) =
∫ b
a
ρ(x, t)dx. In detail, we assume as
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WIP increases, the probability of a change of the flux function increases and vice
versa. The distribution of the post jump location is assumed to be symmetrical
around ᾱ ∈ R with variance σ2 > 0 and we exemplary use

λ(α,B, t, ρ) = λ̄(ρ)

∫

B

1√
2πσ2(ρ)

e
− (z−ᾱ)2

2σ2(ρ) dz

for every α ∈ R, B ∈ B(R), t ∈ [0, T ] and ρ ∈ L1(R). One reasonable choice for λ̄(ρ)
is λ̄(ρ) = λ0(1 − e−λ1WIP(ρ)) for some λ0, λ1 > 0. For the subsequent simulation
results, we assume a = 0, b = 1, λ0 = 5, λ1 = 1, σ2 = 10−2, ᾱ = 0. The time
horizon is T = 50 and the numerical spatial domain is taken as large that boundary
conditions have no influence at x = 0 on the solution. The deterministic dynamics
is approximated by a Godunov scheme and in figure 1b we see the result of one
sample of the density flux relation at position x = 0 generated by the model with

initial data ρ(x, 0) = 3
2 (sin(x) + 1)e−

|x|
100 . The black markers consider to the density

and flux at times t = 0, 0.2, . . . , 50 and the black solid line in figure 1b represents
the flux function for α = 0. We observe in this stochastic macroscopic production
model the typical scattering effect like it is the case for microscopic production
models driven by discrete event simulations in [7].

Traffic flow model. The scattering effect in the density flux diagram obtained
by real data, see, e.g. [20, 21], is a fundamental pattern and important for the
development of second order, stochastic and phase transition traffic flow models.
In the so-called free phase we observe small fluctuations and an almost linearly
increasing flux with respect to the density. At a critical density, the flux decreases
in the so-called congested phase. The critical density and congested phase are
characterized by higher variances, i.e. sacttering effects in data. There exist already
stochastic approaches like in [16, 19] and a comprehensive overview is given in [22].
We will show that the framework, which we introduced in section 2 is able to capture
the scattering effects as well.

As family of flux functions, we use, motivated by the shape of the probability
density function of the Gamma distribution,

fα(ρ) =
θ − 1

αθ
1

Γ( θ−1α )
ρθ−1e−

θ−1
α ρ

for some parameter θ ≥ 1, α > 0, ρ ≥ 0 and Γ the Gamma function. If θ ≥ 2, we
also have fα ∈ C0,1(R≥0) and the maximum is attained at ρ∗ = α. In figure 2a, we
see the shape of the flux function by varying α ∈ [0.3, 0.5] and θ = 2.1. We set

λ(α,B, t, ρ) = λ̄(α, ρ)

∫

B

1

2a(α, ρ)
1[α0−a(α,ρ),α0+a(α,ρ)](z)dz

for every α > 0, B ∈ B(R>0), t ∈ [0, T ] and ρ ∈ L1(R). Here, we choose λ̄(α, ρ) =
λ0 + (λ1 − λ0)V (α, ρ) for λ0 = 3 as the minimal and λ1 = 10 as the maximal rate,

a(α, ρ) =
√

9
2·103 (V (α, ρ) + 1) with V (α, ρ) =

∫ 1

0
1ρ(x)≥αdx and α0 = 0.4. The

functional V (α, ρ) describes the portion of [0, 1], which is above the actual critical
density α and always lies in between zero and one. To study the free phase, we use an

initial condition in the form of ρ0(x) = (0.05 + 0.4 max{sin(x), 0})e− |x|100 . A sample
of the density flux relation at x = 0 as well as at x = 1 is shown in figure 2b given
at the times t = 0, 0.1, . . . , 50. We observe a low scattering as expected. Contrary,

in figure 2c a sample with initial condition ρ0(x) = (0.4 + max{sin(x), 0})e− |x|100 ,
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i.e. congested case, is shown resulting in high scattering. Finally, in figure 2d the
time evolution of the density and flux at x = 0 in the congested case is shown. The
density is not severely affected by the variation in α compared to the flux.

(a) Flux functions for different values
of α ∈ [0.3, 0.5]

(b) Sample densities and fluxes at x = 0
and x = 1 in free phase

(c) Sample densities and fluxes at x = 0
and x = 1 in congested phase

(d) Sample densities and fluxes at x = 0
in congested phase

Figure 2. Flux-density relation in the traffic flow model

4. Conclusions. We have successfully incorporated random flux functions for scalar
conservation laws in the sense of PDMPs. Additionally, we derived a sufficient con-
dition for an arbitrary family of Lipschitz continuous flux functions such that we
can guarantee the existence of a PDMP. The motivation of scattering effects in
macroscopic models has been recovered in numerical simulation results in the case
of a production and traffic flow model.

To cover more complex dynamics, like space dependent flux functions, the theory
can be extended in a suitable way as future research. This can be relevant to model
traffic accidents and models, where spatial events can happen. Additionally, systems
of conservation laws should be examined as deterministic dynamics for PDMPs since
the extension to L1 solutions is not straightforward anymore.
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Abstract. In this paper we consider the LDA (Low Diffusion Advection)

scheme for solving conservation laws in two space dimensions as it was pub-
lished in [1],[2], [5]. For a special grid and a special nonlinearity we will show

by constructing a counterexample that there is no convergence of the numerical

solution to the exact solution. The example is constructed in such a way that
the exact solution as well as the numerical solution are computed explicitly.

1. Introduction. We consider the initial value problem

∂tu+∇ · f(u) = 0 in R2 × R+, (1)

u(x, y, 0) = u0(x, y) in R2. (2)

Several efficient numerical schemes are available for solving this problem. In this
paper we are going to investigate a special scheme, namely the LDA (Low Diffusion
Advection) scheme.

Given an admissible mesh, consisting of triangles, and a global numbering of the
nodes zi, the dual cell Vi belonging to zi is bounded by the polygon connecting the
barycenters of triangles and the midpoints of the common edges of the neighboring
triangles (see Figure 1). Its area is given by

|Vi| :=
1

3

∑

T∈Ai
|T |, (3)

where Ai contains all neighboring triangles sharing the node zi. The discrete initial
data in Vi are given by

2000 Mathematics Subject Classification. Primary: 35L03, 35L65; Secondary: 65M08, 65M12.
Key words and phrases. Scalar conservation laws, 2D problem, LDA scheme, nonconvergence

proof.
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u0
i :=

1

|Vi|

∫

Vi

u0(x, y) dx dy. (4)

Let uni denote the discrete solution in zi at time level n, constant on Vi. Then the
LDA scheme is given by the following procedure (see [5] formula (2.2), [1] Section
3.2.2, or [2] p. 647). The value of the numerical solution at node zi at time level
tn+1 is given by

un+1
i := uni +

∆t

|Vi|
∑

T∈Ai
φTi (5)

where

φTi :=





−(KT
i )+NTφT , NT :=

(
∑
xj∈T (KT

j )+

)−1

if (NT )−1 6= 0,

0 if (NT )−1 = 0,

(6)

KT
i :=

1

2|T |

∫

T

(
f ′1(uh), f ′2(uh)

)
dxdy · nTi , (7)

φT :=
∑

xj∈T
KT
j uj,T . (8)

Here nTi is the inward scaled normal in T to the face opposite to the node
zi scaled by its surface, uh is the globally continuous numerical solution which
is linear on each triangle T with vortices zi, zj , zk and corresponding node values
(ui, uj , uk) = (ui,T , uj,T , uk,T ).

Figure 1. Dual cells

In [1] (see formula (24)) convergence and an error estimate are shown for the PSI
scheme, which is similar to the LDA scheme (see [1], Section 3.2.3), for solving the
following linear stationary problem:

λ · ∇v = g for x ∈ Ω,

v = 0 on Γ−,
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where Ω is a polygonal domain adapted to the grid, and Γ− is that part of ∂Ω for
which λ · n0 ≤ 0, n0 being the outer normal to Ω.

Then in [1] on page 18, there is a remark, stating that the proof works also for
the LDA scheme (5). At the beginning of Section 4 in [1] the authors mentioned
that the case of a non-linear flux can be discussed in the same way, at least formally.
Convergence for the N-scheme (which is also similar to the LDA scheme) for linear
advection equations is proved in [9] (see also [8]).

Remark 1. In the nonlinear case f(u) :=
(
u, u

2

2

)
the author in [2], (15) considers

for the discretization the following linearized problem

∂tu+ ax∂xu+ ay∂yu = 0 on each triangle T

with ax = 1 and ay := 1
3 (u1 + u2 + u3) where u1, u2 and u3 are values of uh in the

vertices of T . I.e. it holds (see (7))

(ax, ay) :=
1

|T |

∫

T

(
f ′1(uh), f ′2(uh)

)
dxdy.

Lemma 1.1. The scheme defined in (5)–(8) is conservative, i.e. for each polygonal
domain Ω such that Ω = ∪i∈ITi we have

∑

i∈I
|Vi|

(
un+1
i − uni

)
= −∆t

∫

∂Ω

(
f1(uh), f2(uh)

)
· n0 dx dy,

with n0 being unit outward normal vector to ∂Ω.

2. The main result. In this contribution we will show a nonconvergence result
for the scheme defined in (5)–(8) on a special series of grids (see Figure 3 with
refinement levels m = 1 and m = 2).

Theorem 2.1. Let a, b > 0, m ∈ N, where m denotes the refinement level, and
u0(x, y) be equal to −uR < 0 for x+ y < 0 and equal to uR > 0 for x+ y > 0. Let

u be the exact solution of (1)–(2) with f(u) := (u
2

2 ,
u2

2 ). Consider the triangulation
and the refinement process as specified in Figure 3 (m=1, 2) with mesh size hm,
and let uhm be the globally continuous numerical solution, which is linear on each
triangle T and the values in the vortices of the triangles are defined as in (5)–(8).

Furthermore we assume the CFL condition ∆t
√

2
hm
uR < 1. Then we have for any

fixed time t1 > 0 on the subdomain

D =
{

(x, y) : |x+ y| ≤ a√
2

and 0 ≤ y − x ≤
√

8b
}

(9)

such that
a√
8
<

2

3
t1uR, (10)

the following estimate from below, uniformly in hm and all t ≥ t1:

||uhm(·, ·, t)− u(·, ·, t)||L1(D) ≥
|D|
180

uR > 0. (11)
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Figure 2. Initial values and test domain D

An idea of the proof (for a detailed proof see [7]):
The exact solution is a rarerefaction wave and can, as well as the numerical

solution, be computed explicitly. This allows us to compute the error in (11). The
exact solution u to the problem can be written as

u(x, y, t) =





−uR for x+y
2 ≤ −uRt,

x+y
2t for −uRt ≤ x+y

2 ≤ uRt,
uR for uRt ≤ x+y

2 .

(12)

Using the condition (10) one can obtain

‖u(·, ·, t)‖L1(D) =
a|D|
2
√

8t
for all t ≥ t1,

and therefore

‖u(·, ·, t)‖L1(D) → 0 as t→∞.
For the purpose of the discretization a special test domain and a special series of

grids is chosen, see Figure 2 and Figure 3 with refinement levels m = 1 and m = 2.
In this case we use the numbering of nodes in the form of zij (see Figure 3), which
gives us for the m-th level of refinement

zij =
1√
2

((⌊ i
2

⌋
(−1)i − 1

2

) a

3m
− (j−1)

b

3m
,
(⌊ i

2

⌋
(−1)i − 1

2

) a

3m
+ (j−1)

b

3m

)

for the index set

Im =
{

(i, j) ∈ N2; 1 ≤ i ≤ 3m+1, 1 ≤ j ≤ 2 · 3m+1,
}
.

The alternating numbering is chosen to assure that columns 1 and 2 remain to the
left and right of the jump in the initial values, respectively (see Figure 3).
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Figure 3. A special series of grids

Due to the condition (10) only the second case in (12) applies, which implies that
the exact solution u is in each node zij = (xi, yj) ∈ D given by

u(xi, yj , t) =
1√
2

(⌊ i
2

⌋
(−1)i − 1

2

) a

3m
1

t
for all t > t1, (13)

cf. definition of zij .
The initial values are defined in the dual cell Vij around the node zij (see Figure 1)

as u0
ij := 1

|Vij |
∫
Vij

u0(x, y) dxdy, consistently with (4). It can be computed that

u0
ij =





−uR for i = 2k + 1, j ∈ N,

−uR for i = 1, j = 2k − 1,

− 5
6uR for i = 1, j = 2k,

5
6uR for i = 2, j = 2k − 1,

uR for i = 2, j = 2k,

uR for i = 2k + 2, j ∈ N,

k ∈ N, (i, j) ∈ Im. (14)

The L1 error between the initial value u0 and the numerical approximation
uhm(·, ·, 0) of u0 is equal to (see [7])

‖uhm(·, ·, 0)− u0‖L1(D) =
1

3m
· 43

72
|D|uR → 0 as m→∞. (15)
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The numerical solution can be expressed for i = 1, 2 by (see [7])

un+1
1j =




u0

1j j = 2q,

un1j + ∆t
a/3m

√
2

3

(
un2j + un1j + un1j+1

)(
un1j − un2j

)
j = 2q−1,

(16)

un+1
2j =




un2j − ∆t

a/3m

√
2

3

(
un1j + un2j + un2j+1

)(
un2j − un1j

)
j = 2q,

u0
2j j = 2q−1,

q ∈ N, and for i ≥ 3, i ∈ N:

un+1
ij = unij − (−1)i

∆t

a/3m

√
2

3

(
uni−2,j + unij + unki,j+1

)(
unij − uni−2,j

)
, (17)

ki =





i if i+ j = 2k + 2,

i− 2 if i+ j = 2k + 3,
(18)

with j, k ∈ N and for all time steps n ∈ N.
Taking an advantage of (16)–(18) some of the properties of the approximate

solution can be proved for n ∈ N0, e.g.,

(1, 2q) : un1,2q = u0
1,2q = −5

6
uR, q ∈ N,

(1, 2q − 1) : un1,2q−1 ≤ un+1
1,2q−1 < 0, q ∈ N,

(2, 2q − 1) : un2,2q−1 = u0
2,2q−1 =

5

6
uR, q ∈ N,

(2, 2q) : un2,2q ≥ un+1
2,2q > 0, q ∈ N,

and

(2p+ 2, j) : un+1
ij ≥ uni−2,j ≥ un+1

i−2,j , i = 2p+ 2, j, p ∈ N,

(2p+ 1, j) : unij ≤ un+1
ij ≤ uni−2,j , i = 2p+ 1, j, p ∈ N.

Finally, one can prove that

uni,j−1 = uni,j+1 for all (i, j) ∈ Im and m,n,∈ N0, (19)

because of (14) and by induction over n using (16)–(18).
For the purpose of further explicit calculations we divide the set of all triangles

into two subsets, Tki , k = 1, 2, defined for each i ≥ 3 as follows: we say that T ki ∈ Tki
if there are exactly two vertices ziq and zi−2q of T ki such that i+ q = 2p+ k, p ∈ N.

Using this convention it can be shown that we have for all T ki ∈ Tki , k = 1, 2,
and i ≥ 3 the following estimates:

∫

T 1
i

∣∣uhm(x, y, t1)− u(x, y, t1)
∣∣dxdy ≥ 1

21

a

3m
b

3m

(
5

6
uR −

i− pi
3m

a√
8

1

t1

)
(20)

where pi = 1−i (mod 2), and similarly,
∫

T 2
i

∣∣uhm(x, y, t1)− u(x, y, t1)
∣∣dxdy ≥ 1

294

a

3m
b

3m

(
5

6
uR −

i− pi
3m

a√
8

1

t1

)
. (21)

Now, in order to prove Theorem 2.1, we split the L1 norm (11) triangle by
triangle. The error contribution of the triangles in the center column (see Figure 3)
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can be neglected since we are interested in the estimate from below. Further we
notice that there are 2 · 3m pairs of two triangles T 1

i , T 2
i making up one column of

triangulation. For each refinement level m ≥ 1, summing up row by row gives

E := ‖uhm(·, ·, t1)− u(·, ·, t1)‖L1(D)

(19)

≥ 2 · 3m
3m+1∑

i=3

(∫

T 1
i

| · · · |+
∫

T 2
i

| · · · |
)
,

which is further estimated, using pi = 1−i (mod 2), and (20)–(21), as follows:

E ≥ 2 · 3m a

3m
b

3m
2
∑

i∈J

(
1

21
+

1

294︸ ︷︷ ︸
> 1

20

)(
5

6
uR −

i

3m
a√
8

1

t1

)
,

with J = {3 ≤ i ≤ 3m, i = 2p+ 1, p ∈ N}. We then obtain (using also |D| = 2ab)

E ≥ a

5

b

3m

3m−1
2∑

k=1

(
5

6
uR −

2k + 1

3m
a√
8

1

t1

)

=
|D|

10 · 3m

(
3m−1

2

5

6
uR −

(
9m−1

4
+

3m−1

2

)
1

3m
a√
8

1

t1

)

=
|D|
10

(
5

12
uR −

(
1− 1

3m

)
−
(

1

4
+

1

2

1

3m
− 3

4

1

9m

)
a√
8

1

t1

)
.

At this point we use a√
8
< 2

3 t1uR and neglect the last term for m > 1. We arrive at

E ≥





1
180 |D|uR for m = 1,

1
40 |D|uR

(
1− 1

3m−1

)
for m ≥ 2 ,

and the proof follows.

Remark 2. A similar result can be proved if we consider vhm instead of uhm , where
vhm(·, ·, tn) = uni onVi × [tn, tn+1), where Vi is the dual cell as in Figure 1.
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Abstract. In the present work, we have proposed a high order hybrid FDM-

WENO method for the solution of convection-diffusion problems. In hybrid

FDM-WENO method, a fifth order finite difference central flux is used to
compute the convective flux in smooth regions whereas in a region where the

solution has sharp variations or discontinuities, Weighted Essentially Non-

Oscillatory (WENO) reconstruction of adaptive order is used to maintain a
non-oscillatory profile. For the diffusion part, we have used a sixth order fi-

nite difference approximation. A weak local truncation error based estimate

is used to detect the discontinuities or high gradient regions of the solution.
The new hybrid FDM-WENO scheme computes the solution efficiently and in

a non-oscillatory manner.

1. Introduction. In the present work, our aim is to develop efficient hybrid nu-
merical scheme for the convection-diffusion problem of the form

ut + f(u)x = ε(v(u)ux)x, (x, t) ∈ (a, b)× (0, T ], (1)

subject to the initial condition

u(x, 0) = u0(x), x ∈ [a, b],

with periodic and Dirichlet boundary conditions. The solution of convection-diffusion
equation (1) arising in science and engineering may have sharp transitions or dis-
continuities, like shock (for ε = 0), arising locally over a small portion of the phys-
ical domain. Resolving these portions while computing the solution with sufficient
accuracy keeping the computational cost within acceptable limits is a non-trivial
problem and interest of research from decades. The presence of discontinuities, like
shock, or sharp transition in solution, are difficult to resolve using higher order
finite difference discretization of (1). The higher order finite difference discretiza-
tion leads to an oscillatory solution near shock or where the solution has sharp
variations. These shock or sharp transition are local nature, which motivates us to
use an adaptive combination of schemes locally to resolve them. A low expensive
higher order finite difference discretization can be used in smooth regions while a
non-oscillatory scheme can be utilized in shock or sharp transition regions.

2000 Mathematics Subject Classification. Primary: 65M06, 65M22; Secondary: 65M22.

Key words and phrases. Finite difference methods, Weak local truncation error, B-spline.
The author is supported by SERB-DST grant PDF/2018/002621.
∗ Corresponding author: Rakesh Kumar.
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In the present work, we develop a fifth order hybrid FDM-WENO scheme for
the model problem (1). The mechanism of the scheme involves the separation of
the discontinuous and smooth regions and followed by conjugation of FDM with
WENO-AO scheme. For the identification of discontinuous regions, we use weak
local truncation error based estimate (see [2], [1], [4], [5]). We use this information
to capture the shock using the WENO scheme of adaptive order, and finite difference
scheme is used in the smooth regions. We approximate the second derivative using
the sixth order finite difference scheme.

The outline of the article is as follows. In Section 2, we have discussed the
details of the hybrid FDM-WENO scheme. Numerical Experiments are performed
to validate the scheme in Section 3. In the end, conclusions are drawn.

2. Hybrid FDM-WENO scheme. In this section, we discuss the hybrid FDM-
WENO scheme for the convection-diffusion problem. Discretize the domain [a, b]

into N + 1 sub-intervals
[
xi− 1

2
, xi+ 1

2

]
for i = 0, 1, . . . N of equal length ∆x =

xi+ 1
2
− xi− 1

2
. The semi-discrete form of equation (1) is given by

dui
dt

= − 1

∆x
(Fi+ 1

2
− Fi− 1

2
) +

ε

∆x2
(Gi+ 1

2
−Gi− 1

2
), i = 0, 1, . . . N,

where ui is approximation of point value of solution u at point xi. The F and G
denote the convection and diffusion numerical flux, respectively. The convection
numerical flux is given by

Fi+ 1
2

= ΦiFWENO
i+ 1

2
+ (1− Φi)FFDM

i+ 1
2

,

where FFDM
i+ 1

2

and FWENO
i+ 1

2

are the fifth order finite difference and WENO flux

approximation, respectively. Let Φi be a smoothness indicator, which helps us
to distinguish the smooth and regions of sharp variations. The fifth order finite
difference convection flux is given by

FFDM
i+ 1

2
=

1

60
(2fi−2 − 13fi−1 + 47fi + 27fi+1 − 3fi+2),

and the sixth order diffusion flux Gi+ 1
2

for uxx is

Gi+ 1
2

=
1

180
(−2ui−2 + 25ui−1 − 245ui + 245ui+1 − 25ui+2 + 2ui+3).

For the time discretization, we use the Strong Stability Preserving (SSP) Runge-
Kutta method of order three [3]. The WENO flux and smoothness indicator are
defined in further subsections.

2.1. WENO-AO(5,4,3). In this subsection, we have defined the WENO-AO(5,4,3)
flux reconstruction [6]. The WENO-AO(5,4,3) at the interface xi+ 1

2
is given by

FWENO
i+ 1

2
=
ω5
0

γ50

[
P5
0(xi+ 1

2
)− γ40P4

0(xi+ 1
2
)−

1∑

k=−1
γ3kP3

k(xi+ 1
2
)

]
+ ω4

0P4
0(xi+ 1

2
)

+
1∑

k=−1
ω3
kP3

k(xi+ 1
2
),
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where Pmk denotes the polynomial of degree m constructed over stencil Smk (see [6]
for notations and details). The linear weights are given by

γ3−1 = 1
2 (1− γHi)(1− γAvg)(1− γLo),

γ30 = (1− γHi)(1− γAvg)γLo,
γ31 = 1

2 (1− γHi)(1− γAvg)(1− γLo),
γ40 = (1− γHi)γAvg,
γ50 = γHi.




, (2)

where γmk denotes the linear positive weights corresponding to the stencils Smk ,
satisfying γ3−1 + γ30 + γ31 + γ40 + γ50 = 1. The ωmk denotes the non-linear weight
corresponding to linear weight γmk (see [6] for more details). We choose the value
of γHi = γAvg = γLo = 0.85 in our numerical computations.

2.2. Smoothness indicators. In order to distinguish the smooth and regions of
high gradients, we have used the smoothness indicator for convection-diffusion prob-
lem based on Weak Local Truncation Error (WLTE) [2, 4, 1, 5]. Here we provide
the brief details of WLTE based smoothness indicator for the convection-diffusion
problem, and more details can be found in [5].

We define a error function using the weak formulation of convection-diffusion
problem (1) (for simplicity we assume v(u) = 1) as follows

E(u,Φ) :=

∫ T

0

∫

R
{u(x, t)Φt(x, t) + f(u)Φx(x, t) + εuΦxx}dxdt

+

∫

R
u(x, 0)Φ(x, 0)dx = 0, (3)

for all Φ(x, t) ∈ C2,1
0 (R×(0, T ]). A weak solution of the convection-diffusion problem

may have sharp variations, or for ε = 0, it may contains shocks or discontinuities.
We may observe the variations in the values of E as we move from smooth to
discontinuous regions and vice versa for the computed solution u. This variation
in the value of |E| can be taken as a measure of smoothness indicator for the
convection-diffusion problem. Here we refer E(u,Φ) as weak local truncation error
for u with respect to test function Φ. In practice, the computation of WLTE appears
to be a difficult task since Φ is a general test function. Kurganov and his co-workers
overcome this difficulty in [4, 2], where they have used B-splines as test function.
The test function using B-splines is defined as follows

Φni (x, t) = Bi(x)Bn(t), (4)

where Bj(x) and Bn(t) are the quadratic and the linear B-splines with the localized
supports of size |supp(Bj)| = 3∆x and |supp(Bn)| = 2∆t, respectively (for notations
and details see [5]). Under the assumption on the solution to be piece-wise constant
over the cells and putting (4) in (3), we can arrive at

Eni =
1

6

[
uni+1 − un−1i+1 + 4(uni − un−1i ) + uni−1 − un−1i−1

]
∆x+

1

4

[
f(uni+1)− f(uni−1)

+ f(un−1i+1 )− f(un−1i−1 )
]
∆t− ε∆t

2∆x
(uni−1 + un−1i−1 − 2(uni + ui−1i ) + uni+1 + un−1i+1 ).

(5)

Remark 1. With the help of Taylor series expansion about a point (xi, t
n), we

have the following estimates [5] under the sufficient assumption on the smoothness
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N L∞-error Order L1-error Order L2-error Order
20 1.733727e-04 – 2.203097e-04 – 1.735307e-04
40 5.692327e-06 4.928714 7.245025e-06 4.926399 5.693688e-06 4.929684
80 1.876191e-07 4.923140 2.388746e-07 4.922665 1.876329e-07 4.923379
160 6.273009e-09 4.902505 7.987088e-09 4.902440 6.273150e-09 4.902579
320 2.137606e-10 4.875090 2.721421e-10 4.875238 2.137401e-10 4.875260

Table 1. Comparison of L∞-, L1-, and L2-errors of hybrid FDM-
WENO scheme along with their convergence rate.

of the solution u

‖E‖∞ ≈ O
(
4min{r+2,4}

)
,

where ∆ = max(∆x,∆t) and r is the order of accuracy of the numerical scheme
used to compute solution u.

Remark 2. In the case ε = 0, Kurganov and Liu [4] proposed the following esti-
mate and used it in devising an adaptive artificial viscosity method for hyperbolic
conservation laws:

‖Enj ‖∞ ≈





∆,near the shock,

∆α,near the contact wave, 1 < α ≤ 2,

∆β , in the smooth region,

where β = min{r + 2, 4}.
In our hybrid FDM-WENO scheme, we propose to use the smoothness indicator

defined by

Φ(xj) =

{
1, |Ej | > K∆x4,
0, otherwise,

(6)

where K is a positive real number, and we choose K = 1 in our numerical compu-
tations.

2.3. Algorithm. The algorithm of hybrid WENO-FDM comprises the following
steps

1. To calculate the solution at (n+ 1)th level, compute the WLTE En using the
information of solution available at previous time levels n and n− 1.

2. Compute the smoothness indicator Φi using (6).
3. To ensure the smooth transition between two schemes, we need to create a

buffer zone near the problematic points. If point xi is identified as a problem-
atic point, we also flag neighboring points as problematic

Φ(xj) = 1, where xj = xi ± a1∆x for a1 = 1, 2, 3

4. Compute the solution using FDM in smooth parts, and WENO-AO(5,4,3) is
used in problematic regions.

3. Numerical Experiments. In this section, we test the accuracy and resolu-
tion of the hybrid FDM-WENO algorithm across sharp variations or shocks. The
accuracy of the schemes measured in L∞-, L1-, and L2-errors.
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Figure 1. (a)-(b) Comparison of hybrid FDM-WENO solution
with the reference solution at time T = 2 for Example 3.2, (c)-(d)
percentage of WENO-AO(5,4,3) scheme used during simulations.

Example 1. (Accuracy test) Consider the linear advection equation

ut + ux = 0, (x, t) ∈ [−1, 1]

subject to initial data u(x, 0) = sin(2πx) with periodic boundary conditions. In
Table 1, we have depicted the L∞-, L1-, and L2-errors at time T = 1.0 obtained
using hybrid FDM-WENO scheme. We can easily observe from Table 1 that hybrid
scheme converges to exact solution with rate five.

Example 2. (Moving and stationary shock) Consider the inviscid Burgers’ equation
with the following two initial data

u(x, 0) = sin(x), x ∈ [0, 2π], (7)

u(x, 0) = 0.5 + sin(x), x ∈ [0, 2π], (8)

with periodic boundary condition. The Burgers’ equation with (7) will leads to
stationary shock occur at position x = π at time T = 1. Whereas Burgers’ equation
with (8) leads to shock moving to the right initially occurring at time T = 1. We
compute the numerical solution at time T = 2 and compare it with the reference
solution. The reference solution is computed with pure WENO-AO(5,4,3) scheme
using 500 number of mesh points. In both cases, we use 80 number of mesh points,
and CFL number is taken to be 0.5. In Figure 1 (a), we compare the solution for
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Figure 2. (a)-(b) Comparison of hybrid FDM-WENO solution
with the exact solution at time T = 2.0 for Example 3.3, (c)-(d)
WLTE for ε = 0.05, 0.0005 at final time T = 2.0.
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Figure 3. (a) Numerical solution obtained using hybrid FDM-
WENO at time T = 0.2 for Example 3.4, (b) track of smoothness
indicator over x− t plane.

Burgers’ equation corresponding to initial data (7) with reference solution at time
T = 2 and corresponding percentage of WENO-AO(5,4,3) scheme is used in com-
puting the solution depicted in Figure 1 (c). The ‘o-’ indicates computed solution
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Figure 4. (a) Numerical solution obtained using hybrid FDM-
WENO at time T = 0.2 for Example 3.5, (b) track of smoothness
indicator over x− t plane, (c)-(d) WLTE at time T = 0.2.

using WENO-AO(5,4,3) scheme and ‘�-’ indicates the usage of FDM. In the Figure
1 (c), it can be easily observed there is zero percentage of WENO-AO(5,4,3) scheme
used before the time approximately T = 0.8. After time T = 0.8, wave steepening
and shock form at T = 1, are well indicated with smoothness indicator. The hy-
brid FDM-WENO scheme maintain non-oscillatory profile at shock position, and
higher order accuracy is achieved with fifth order central difference approximation
in smooth regions. After the shock formation, we can observe WENO-AO(5,4,3)
scheme is used near shock position only 10-15% of the overall scheme. Similar obser-
vations are found in case of moving shock case. The solution computed with hybrid
FDM-WENO scheme is shown in Figure 1 (b) along with % of WENO-AO(5,4,3)
scheme is shown in Figure 1 (d).

Example 3. Consider the case of nonlinear Burgers’ (f(u) = u2/2) equation with
the exact solution is given by

u(x, t) =
x/t

1 +
√
t/t0 exp(x2/4εt)

, (9)

where t0 = exp(1/8ε). The initial condition obtained by considering t = 1 in (9).
In Figure 2, we have shown the numerical solution at time T = 2 obtained by
using hybrid FDM-WENO scheme for ε = 0.05, 0.0005. The number of mesh points
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used are 60 and CFL is 0.5. As we decrease the value of ε, we can observed the
steepening of waves near the points x = ±0.75. From Figure 2 (a), we can observed
that for ε = 0.05 solution have not steep gradient and it is computed using FDM
only. In Figure 2 (b), we can see in regions of high gradient solution is computed
with WENO-AO(5,4,3) and in the other regions FDM is used. In Figure 2 (c)-(d),
we have depicted the WLTE for ε = 0.05, 0.0005, respectively. For ε = 0.05, solution
have no regions of steep gradients, hence WLTE lies below the ∆x4. For ε = 0.0005,
high gradients are well indicated by WLTE, can be seen from Figure 2 (d).

Example 4. (Buckley-Leverett equation) We consider the convection-diffusion
Buckley-Leverett equation of the form

ut + f(u)x = ε(v(u)ux)x. (10)

This test is an example of degenerate parabolic equation since v(u) vanishes at some
points. In this test case, we take flux function f and v of the form

f(u) =
u2

u2 + (1− u)2
,

and

v(u) =

{
4u(1− u), u ∈ [0, 1],

0, otherwise.

The initial condition is given by

u(x, 0) =

{
1− 3x, x ∈ [0, 13 ]

0, x ∈ ( 1
3 , 1].

The Dirichlet boundary condition u(0, t) = 1 is used at one end and outflow bound-
ary on the other end of the boundary. The numerical solution is computed for
fixed time T = 0.2 and ε = 0.01 using 200 mesh points. In Figure 3, we have de-
picted the solution along with track of smoothness indicator over x− t plane. The
FDM-WENO scheme compute the solution in a non-oscillatory manner.

Example 5. Consider the Buckley-Leverett equation (10) with the flux

f(u) =
u2

u2 + (1− u)2
(1− 5(1− u)2).

and ε, v are same as in the previous example. The initial condition is given by

u(x, 0) =

{
0, x ∈ [0, 1− 1√

2
)

1, x ∈ [1− 1√
2
, 1].

We have computed the solution using 200 mesh points at time T = 0.2 for ε = 0.01.
In Figure 4, we have depicted the solution with the track of smoothness indicator
over the x−t plane and WLTE estimate at the final time. The hybrid FDM-WENO
scheme computes the solution efficiently and in a non-oscillatory manner.

4. Conclusions. In this article, we have proposed a hybrid FDM-WENO scheme
for the convection-diffusion problems. In smooth regions, efficient fifth order fi-
nite difference method is used, and non-oscillatory profile is maintained using the
WENO scheme of adaptive order in the discontinuous areas. A WLTE is used to
separate the smooth and discontinuous regions. Numerical experiments are per-
formed, which show that WLTE error efficiently identifies the discontinuous regions
and hybrid FDM-WENO computes the solution in a non-oscillatory manner. The
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multi-dimension extension of the hybrid FDM-WENO scheme is an interest of future
work.
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Abstract. This paper deals with the Riemann Problem for the Generalized

Aw-Rascle-Zhang (GARZ) model, introduced in [7], subject to a moving con-

straint. A slow and large vehicle on a crowded road is a moving obstacle and
reduces the road capacity. This situation can be modeled by a strongly coupled

ODE-PDE system. The PDE consists of a 2 × 2 system of conservation laws.

The ODE describes the motion of the slow vehicle and it influences the bulk
traffic flow via a moving point flux constraint.

1. Introduction. In this paper we describe the situation created by a slowly mov-
ing large vehicle, like a bus, that generates a moving bottleneck, since it reduces the
road capacity at its position. Thus, we consider a mixed ODE-PDE model consist-
ing of two conservation laws, the generalized Aw-Rascle-Zhang (GARZ) [7], coupled
with an ODE describing the motion of the slow vehicle. The ODE influences the
bulk traffic flow via a moving point flux constraint.

The current literature offers various macroscopic models describing traffic evo-
lution. First, they can rely on a single equation, such as the classical Lighthill–
Whitham [12] and Richards [14] (LWR) model. Then, the so called second or-
der ones are based on two equations, the main examples being the Aw-Rascle-
Zhang (ARZ) model [1, 16], the present GARZ model and the collapsed GARZ
(CGARZ) [8]. A further class of current interest is that of 2−phases or phase
transition models, see [2, 4, 5, 9, 11, 13].
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In this paper, we consider the Riemann Problem for the GARZ model subject to
a moving constraint. Refer to [6] for an analogous study limited to the LWR case
and to [15] for a construction based on the ARZ model. More precisely, in Section 2
we describe the GARZ model. In Section 3 we consider the ODE-PDE constrained
system and solve the corresponding Riemann Problem.

2. Description of the GARZ Model. The generalized Aw-Rascle-Zhang (GARZ)
model, introduced in [7], consists of the following 2×2 system of conservation laws:

{
∂tρ+ ∂x

(
ρ V (ρ, w)

)
= 0

∂t(ρw) + ∂x
(
ρw V (ρ, w)

)
= 0 .

(1)

Here, ρ ∈ [0, ρmax] is the traffic density where ρmax is its maximal possible value;
w is a particular feature of each driver, limited in the fixed interval [wmin, wmax],
with wmax ≥ wmin > 0; V (ρ, w) is the traffic speed of vehicles at density ρ, having
feature w. In the above system (1), (ρ, ρw) is the pair of the conserved variables,
nevertheless below we mostly refer to the couple (ρ, w). Note that in the case
wmax = wmin, (1) essentially reduces to the LWR model.

We impose the following requirements on the velocity V (ρ, w) and on the asso-
ciated flow rate function f1(ρ, w) = ρ V (ρ, w):

A1. (ρ, w) 7→ V (ρ, w) is C2
(
[0, ρmax]× [wmin, wmax]

)
.

A2. V (ρ, w) ≥ 0 for all (ρ, w) ∈ [0, ρmax] × [wmin, wmax]: vehicles never drive
backwards.

A3. V (0, w) = w for all ω ∈ [wmin, wmax], so that w is each driver’s speed on an
empty road.

A4. ∂2f1

∂ρ2 (ρ, w) < 0 and ∂V
∂ρ (ρ, w) < 0 for all (ρ, w) ∈ [0, ρmax] × [wmin, wmax], so

that the traffic speed decreases as traffic density increases.
A5. ∂V

∂w (ρ, w) > 0 for all (ρ, w) ∈ [0, ρmax[× [wmin, wmax], drivers travelling faster
on an empty road, are faster also in a crowded situation.

A6. V (ρmax, w) = 0: at the maximal density ρmax, no vehicle moves.

From requirement A5. there exists a map

R :
{

(v, w) ∈ R× [wmin, wmax] : 0 < v ≤ w
}
→ [0, ρmax[

such that ρ = R(v, w) if and only if V (ρ, w) = v and a map

W :
{

(ρ, v) ∈ [0, ρmax[× R : v ∈ [V (ρ, wmin), V (ρ, wmax)]
}
→ [wmin, wmax]

such that w = W (ρ, v) if and only if V (ρ, w) = v.
We recall that the characteristic speeds of the GARZ model are λ1(ρ, w) =

V (ρ, w) + ρ ∂V∂ρ (ρ, w) and λ2(ρ, w) = V (ρ, w). The first one is genuinely non linear

and the second one is linearly degenerate, see [3]. From requirement A4., λ1(ρ, w) <
λ2(ρ, w) for every ρ > 0.

Next, we recall the Riemann problem associated to (1) with initial data (ρl, wl)
and (ρr, wr). First, we recall all the possible waves in the solution.

• First family wave (1-wave): a wave of the first characteristic family that con-
nects a left state (ρl, wl) with a right state (ρr, wr) whenever wl = wr, which
is a shock for ρl < ρr or a rarefaction wave for ρl > ρr.

• Second family wave (2-wave): a wave of the second characteristic family that
connects a left state (ρl, wl) with a right state (ρr, wr) such that V (ρl, wl) =
V (ρr, wr), which is a contact discontinuity.
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• Vacuum wave (V-wave): a non-classical wave connecting a left state (ρl, wl)
with a right state (ρr, wr) such that ρl = ρr = 0 and wl < wr.

The Riemann Problem. For all states (ρl, wl) and (ρr, wr) in the set [0, ρmax]×
[wmin, wmax] the Riemann problem consisting of (1) with initial data

ρ(0, x) =

{
ρl if x< 0
ρr if x> 0

w(0, x) =

{
wl if x< 0
wr if x> 0

(2)

admits a weak solution (ρ, w) = (ρ, w)(t, x) constructed as follows:

• If wl < wr and ρr < R(wl, wr) then (ρl, wl) is connected to (0, wl) by a 1-
wave; (0, wl) is connected to (0, wr) by a V-wave and (0, wr) is connected to
(ρr, wr) by a 2-wave.

• Otherwise, (ρl, wl) is connected to the point (R(V (ρr, wr), wl), wl) ∈ [0, ρmax]×
[wmin, wmax] by a 1-wave and (R(V (ρr, wr), wl), wl) is connected to (ρr, wr)
by a 2-wave.

Direct computations show that, by A6., the domain [0, ρmax] × [wmin, wmax] is in-
variant with respect to the Riemann Solver recalled above. To this aim, the classical
results [10] can not be applied, due to the coincidence λ1(0, w) = λ2(0, w).

3. The GARZ Model with a Moving Constraint. In this section we consider
the case of a slow and large bus that acts as a moving obstacle blocking a portion
of the road and hindering traffic. The bus trajectory y = y(t) solves the following
ODE

ẏ(t) = ω
(
ρ(t, y(t)+), w(t, y(t)+)

)
, (3)

with a speed

ω(ρ, w) = min{Vb, V (ρ, w)} . (4)

The right limit in (3) is due to the bus adjusting its speed according to the traffic
situation it has in front. Thus, the bus travels with its speed Vb whenever traffic
allows it, otherwise it adapts its speed to the traffic conditions. In any case, it is
not possible for the bus to overtake cars.

In the case ẏ = Vb, we introduce the flux of the main traffic F at the bus position
by

F : [0, ρmax] × [wmin, wmax] → R
ρ , w → ρ

(
V (ρ, w)− Vb

)
.

(5)

As a consequence, for a driver with feature w ∈ [wmin, wmax], the maximum available
flux at the bus position is

Fα : [wmin, wmax] → R
w → α(w) max

ρ∈[0,ρmax]
F (ρ, w) , (6)

where α : [wmin, wmax] → (0, 1) models the reduction of the road capacity felt by
a driver with feature w. Thus, we consider the following mixed ODE-PDE system
consisting of the PDE model (1), of the ODE describing the slower vehicle motion (3)
and with a moving constraint on the flux:





∂tρ+ ∂x
(
ρ V (ρ, w)

)
= 0

∂t(ρw) + ∂x
(
ρw V (ρ, w)

)
= 0

ẏ(t) = ω
(
ρ(t, y(t)+), w(t, y(t)+)

)

ρ
(
t, y(t)

) (
V (ρ(t, y(t)), w(t, y(t)))− ẏ(t)

)
≤ Fα(w) .

(7)
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It is natural to assume that the slowest cars still travel faster than the bus along an
empty road, that is Vb < wmin. A reasonable regularity requirement of the function
α is α ∈ C1((wmin, wmax); [0, 1]) ∩ C0([wmin, wmax], [0, 1]).

Lemma 3.1. Under the assumptions A1.–A6., with the notation (5)–(6) and re-
quiring Vb < wmin, α ∈ C1((wmin, wmax); [0, 1]) ∩ C0([wmin, wmax], [0, 1]), we have

1. There exist ρ̌w, ρ̂w solving Fα(w) + ρ Vb = ρ V (ρ, w), with ρ̌w, ρ̂w ∈ [0, ρmax].
2. There exists a unique ρ∗w ∈ [0, ρmax] solving Vb ρ = ρ V (ρ, w).
3. There exists a unique ρc(w) maximizing the map ρ→ F (ρ, w). In particular,

∂f1(ρc(w),w)
∂ρ = Vb.

4. We have ρ̌w < ρc(w) < ρ̂w < ρ∗w.
5. The maps w 7→ V (ρ̌w, w) and w 7→ V (ρ̂w, w) are continuously differentiable.

The proof relies on basic calculus techniques and is omitted.

We consider the Riemann problem for system (7) with initial data (2). We
denote by f(ρ, w) the flux for the system of conservation laws in (1) and f1(ρ, w) =
ρ V (ρ, w), f2(ρ, w) = ρw V (ρ, w) are its components. ByRS we denote the classical
Riemann solver for the system of conservation laws (1), i.e., the standard weak
entropy solution to (1)–(2) is given by the map (t, x) 7→ RS

(
(ρl, wl), (ρr, wr)

)
(xt ).

By RSρ, respectively RSw, we denote the ρ, respectively w, component of the
classical solution RS((ρl, wl), (ρr, wr)(·)).

The Riemann solver RSα for (7) with initial datum

(ρ, w)(0, x) =

{
(ρl, wl) if x< 0
(ρr, wr) if x> 0

y(0) = 0

(8)

is defined as follows.

Definition 3.2. The constrained Riemann solver

RSα :
(
[0, ρmax]× [wmin, wmax]

)2 → L1
loc(R; [0, ρmax]× [wmin, wmax])

is defined as follows.

1. If f1(RS((ρl, wl), (ρr, wr)(Vb)) > Fα(wl)+VbRSρ((ρl, wl), (ρr, wr))(Vb) , then

RSα
(
(ρl, wl), (ρr, wr)

)
(xt ) =

{
RS

(
(ρl, wl), (ρ̂wl , wl)

)
(xt ) if x

t < Vb
RS

(
(ρ̌wl , wl), (ρr, wr)

)
(xt ) if x

t > Vb

y(t) = Vb t .

2. If f1(RS((ρl, wl), (ρr, wr)(Vb)) ≤ Fα(wl) + VbRSρ((ρl, wl), (ρr, wr))(Vb) and
Vb < V (RS((ρl, wl), (ρr, wr))(Vb)), then

RSα
(
(ρl, wl), (ρr, wr)

)
(xt ) = RS

(
(ρl, wl), (ρr, wr)

)
(xt )

y(t) = Vb t .

3. If Vb ≥ V (RS((ρl, wl), (ρr, wr))(Vb)), then

RSα
(
(ρl, wl), (ρr, wr)

)
(xt ) = RS

(
(ρl, wl), (ρr, wr)

)
(xt )

y(t) = V (RS((ρl, wl), (ρr, wr)(Vb))) t .

Note that in the first case, traffic is influenced by the bus which travels with its
own velocity. In the second case, there is essentially no interaction between the bus
and the traffic, thanks to a low traffic density. The third case refers to a situation
in which the traffic is so heavy that the bus has to slow down and adapt its speed.
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Proving that the above definition indeed singles out a unique weak solution
to (7)–(8) amounts to deal with a variety of cases, each treatable by means of
basic calculus techniques. We prefer to describe in detail sample situations through
diagrams in the (ρ, ρ V ) and (x, t)-plane.

In Figures 1–2–3, we denote L ≡ (ρl, wl), M ≡ (ρm, wm), M̌ ≡ (ρ̌wl , wl), M̂ ≡
(ρ̂wl , wl) and R ≡ (ρr, wr) on the left in the (ρ, ρw)–plane and on the right in the
(x, t)–plane. Note that the middle state M ≡ (ρm, wm) is uniquely characterized
by the two conditions V (ρm, wm) = V (ρr, wr) and wm = wl.

In case 1., the standard solution to the Riemann problem does not satify the
constraint at the bus position. Therefore, we introduce a non–classical shock at the

ρ V (ρ, w)

0

ρ

t

x

L R

0

L

R

M̌ M̂

M̌
M̂

Vbρ

Vb

M

M

Fα(wl) + Vbρ

Figure 1. Solution to the constrained Riemann problem (7)–(8) in
case 1. of Definition 3.2. Left, the (ρ, ρ V )–plane of the fundamental
diagram and, right, the (x, t)–plane. Refer to the text for a detailed
description.

bus position and solve the constrained Riemann problem by means of a Lax wave
of the first family, the non classical wave, a further Lax wave of the first family
and a Lax wave of the second family, see Figure 1, left. Remark that both the first
family waves are supported on the same Lax curve. In the (t, x)–plane, the bus
position, which moves with speed Vb, supports a non classical wave in the solution
to the conservation law (1). Here, the Rankine-Hugoniot conditions are satisfied,
so that the total number of vehicles is duly conserved, but Lax stability conditions
are typically violated, see Figure 1, right.

A sample situation fitting in case 2. of Definition 3.2 is portrayed in Figure 2.
Here, the standard solution to the Riemann Problem (2) does satisfy the flow re-
duction at the bus position, therefore it solves also the constrained Riemann prob-
lem (7)–(8), see Figure 2, left. Again, traffic conditions allow the bus to travel with
its maximal speed Vb, see Figure 2, right.

Finally, case 3. is displayed in Figure 3. In this situation, traffic is so intense
that the bus has to slow down. The classical Lax solution to the Riemann problem
for (1) also solves (7)–(8), provided the bus adapts its velocity to that of the other
vehicles, see Figure 3, right.
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ρ V (ρ, w)

0

ρ

t

x

R

M
L

L

M

R

0

Vbρ

Vb
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Figure 2. Solution to the constrained Riemann problem (7)–(8) in
case 2. of Definition 3.2. Left, the (ρ, ρ V )–plane of the fundamental
diagram and, right, the (x, t)–plane. Refer to the text for a detailed
description.
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0

ρ

t

x
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0
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Figure 3. Solution to the constrained Riemann problem (7)–(8) in
case 3. of Definition 3.2. Left, the (ρ, ρ V )–plane of the fundamental
diagram and, right, the (x, t)–plane. Refer to the text for a detailed
description.
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Abstract. The hydrodynamic evolutions of gaseous stars are governed by the

Euler-Poisson equations in the non-relativistic framework, and governed by the

Einstein-Euler equations in the general relativistic framework. Mathematically
rigorous study of the problem contains difficulties which come from the singu-

larity of physical vacuum boundary. Results obtained for spherically symmetric

case and axially symmetric case are reported.

1. Non-Relativistic Problem Governed by the Euler-Poisson Equations.
We consider the Euler-Poisson equations, which govern the hydrodynamic evolution
of self-gravitating gaseous stars:

∂ρ

∂t
+

3∑

k=1

∂

∂xk
(ρvk) = 0, (1a)

ρ
(∂vj
∂t

+
3∑

k=1

vk
∂vj
∂xk

)
+
∂P

∂xj
= −ρ ∂Φ

∂xj
, j = 1, 2, 3, (1b)

4Φ = 4πGρ. (t ≥ 0, x = (x1, x2, x3) ∈ R3). (1c)

Here ρ is the density, P the pressure, ~v = (v1, v2, v3) the velocity field, Φ the
gravitational potential. G is a positive constant. We assume that there are positive
constants A, γ such that

P = Aργ , 1 < γ ≤ 2. (2)

Considering compactly supported ρ, we replace (1c) by

Φ(t, x) = −G
∫

R3

ρ(t, x′)
|x− x′|dV(x′). (3)

We shall use the co-ordinate system

x1 = r sinϑ cosφ = r
√

1− ζ2 cosφ,

x2 = r sinϑ sinφ = r
√

1− ζ2 sinφ, x3 = r cosϑ = rζ,

and the variable

u =

∫ ρ

0

dP

ρ
=

γA

γ − 1
ργ−1. (4)
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1.1. Spherically Symmetric Problem. First we consider the spherically sym-
metric problem of quantities depending on (t, r).

Equilibria are given as

ρ = ρO

(
θ
(r
a

)
∨ 0
) 1
γ−1

, a :=

√
Aγ

4πG(γ − 1)
ρ
γ−2
2

O .

by the solution θ of the Lane-Emden equation:

d2θ

dξ2
+

2

ξ

dθ

dξ
+ (θ ∨ 0)

1
γ−1 = 0, θ = 1 +O(ξ2) as ξ → +0.

Here we assume that 6
5 < γ < 2 in order that the solution θ(ξ) has a finite zero

ξ1(γ). Put r+ = aξ1(γ).
Introducing the Lagrangian co-ordinate r̄, the equation for the perturbations

r(t, r̄) = r̄(1 + y(t, r̄))

from a fixed equilibrium turns out to be

∂2y

∂t2
− 1

ρ̄r̄
(1 + y)2 ∂

∂r̄

(
P̄G
(
y, r̄

∂y

∂r̄

))
+

1

ρ̄r̄

dP̄

dr̄
H(y) = 0, (0 ≤ r̄ ≤ R) (5)

where

G(y, V ) = 1− (1 + y)−2γ(1 + y + V )−γ = γ(3y + V ) + [y, V ]2,

H(y) = (1 + y)2 − 1

(1 + y)2
= 4y + [y]2.

Thus the linearized problem is

∂2y

∂t2
+ L

( ∂
∂r̄

)
y = 0,

where

L
( d
dr̄

)
y = − 1

ρ̄r̄

d

dr̄

(
γP̄
(

3y + r̄
dy

dr̄

))
+

1

ρ̄r̄

dP̄

dr̄
(4y).

Applying the Nash-Moser theorem formulated in [1], we proved

Theorem 1.1. ([5, Theorem 1]) Suppose 6/5 < γ ≤ 2, γ
γ−1 ∈ N. Then for

∀T ∃ε(T ) 0 < ∀ε ≤ ε(T ) there exists a solution y(t, r̄; ε) ∈ C2([0, T ] × [0, r+])
such that

y(t, r̄; ε) = ε sin(
√
λt+ Const.)ϕ(r̄) +O(ε2)

Here λ is a positive eigenvalue of the linearized operator L and ϕ is the associated
eigenfunction.

We note that the free matter-vacuum boundary is

r = RF (t) = r+(1 + y(t, r+)) = r+(1 + ε sin(
√
λt+ Const.)ϕ(r+) +O(ε2)),

r+ being the radius of the equilibrium, ϕ(r+) 6= 0, and

ρ(t, r) =





C(t)(RF (t)− r) 1
γ−1 (1 +O(RF (t)− r)) r < RF (t),

= 0 RF (t) ≤ r
where C(t) > 0 is a smooth function of t
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Theorem 1.2. ([5, Theorem 2]) Suppose 6/5 < γ ≤ 2, γ
γ−1 ∈ N. Then there exists

a number r such that for ∀T ∃δ(T ) ∀ψ0, ψ1 ∈ C∞([0, r+])
∥∥∥
( d
dr̄

)j
ψ0

∥∥∥
L∞

,
∥∥∥
( d
dr̄

)j
ψ1

∥∥∥
L∞

,≤ δ(T ) ∀j ≤ r

there exists a solution y(t, r̄) ∈ C2([0, T ]× [0, r+]) such that

y|t=0 = ψ0(r̄),
∂y

∂t

∣∣∣
t=0

= ψ1(r̄).

But the condition 6
5 < γ ≤ 2, γ

γ−1 ∈ N restricts γ to 5
4 ,

4
3 ,

3
2 or 2. On the other

hand, applying the Nash-Moser theorem formulated in [11], we proved

Theorem 1.3. ([7]) Suppose that P is a smooth function of ρ > 0 such that P >
0, dP/dρ > 0,

P = Aργ(1 + [ργ−1]1) as ρ→ +0.

Suppose the equilibrium

−r2 d

dr

( 1

r2ρ̄

dP̄

dr

)
= 4πGρ̄, ρ̄ = ρO +O(r2)

have a finite radius. Suppose 1 < γ < 54/53. Then the conclusions of Theorems
1.1, 1.2 hold.

Another approach to the same problem by Juhi Jang, which is based on a so-
phisticated use of Hardy type inequalities, without use of the Nash-Moser theory,
can be found in [3].

1.2. Axially Symmetric Problem. The axially symmetric problem supposes
quantities depends upon (t, r, ζ), and the velocity field is of the form

~v = v
∂

∂r
+ w

∂

∂ζ
+ Ω

∂

∂φ
.

Stationary axially and equatorially symmetric solutions are:

v = w = 0, Ω = Const., ρ = ρ(r, ζ) = ρ(r,−ζ),

governed by the equation

u+ Φ =
1

2
r2(1− ζ2)Ω2 + Const. (6)

The existence of stationary axially symmetric solutions has been established by
joint works with Juhi Jang [2] and [4] as :

Theorem 1.4. Suppose P = Aργ , 6/5 < γ < 2. Then for ∃ε > 0 0 ≤ ∀b ≤
ε, ρO > 0 there extsts a solution of the form

ρ = ρO

(
Θ
(r
a
, ζ; γ, b

)
∨ 0
) 1
γ−1

, b =
Ω2

4πGρO
.

Here the distorted Lane-Emden function Θ is the solution of

Θ =
b

4
(1− ζ2)r2 + 1 +

1

4π

∫ 1

−1

∫ ∞

0

K(r, ζ, r′, ζ ′)(Θ ∨ 0)
1

γ−1 r′2dr′dζ ′

− 1

4π

∫ 1

−1

∫ ∞

0

K(0, 0, r′, ζ ′)(Θ ∨ 0)
1

γ−1 r′2dr′dζ ′

such that
Θ(r, ζ) > 0, r ≤ Ξ0 ⇔ 0 ≤ r < R(ζ),
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where ζ 7→ R(ζ) = R(ζ; γ, b) is continuous on [−1, 1] and 0 < R(ζ) < 2ξ1(γ).
However the evolution problem near these stationary axisymmetric solutions is

still open. Even the spectral analysis of the linearized operator for perturbations
from these stationary slowly and uniformly rotating star solutions is more diffi-
cult than that for spherically symmetric perturbations from spherically symmetric
equilibria. Recent status of our study will be announced elsewhere.

2. Relativistic Problem Governed by the Einstein-Euler Equations. The
evolution of self-gravitating gaseous stars in the framework of the general theory of
relativity is governed by the Einstein-Euler equations :

Rµν −
1

2
gµν =

8πG

c4
Tµν , (7a)

Tµν = (c2ρ+ P )UµUν − Pgµν (7b)

for the metric ds2 = gµνdx
µdxν .

Instead of the exact γ-law (2) for the non-relativistic problem, we assume that
P is a given analytic function of ρ > 0 such that 0 < P, 0 < dP/dρ < c2 and

P = Aργ(1 + [ργ−1/c2]1) (8)

as ρ→ +0 with constants A > 0, 1 < γ ≤ 2. Moreover γ
γ−1 ∈ N or 1 < γ < 54/53.

2.1. Spherically Symmetric Problem. A co-moving spherically symmetric met-
ric

ds2 = e2F (t,r)c2dt2 − e2H(t,r)dr2 −R(t, r)2(dθ2 + sin2 θdφ2) (9)

such that U ct = e−F , Ur = Uθ = Uφ = 0 with spherically symmetric density
distribution ρ(t, r) is considered. The governing equations are given in e.g., [9].

Equilibria are given by the Tolman-Oppenheimer-Volkoff equations ( [10] ):

dm

dr
= 4πr2ρ, (10a)

dP

dr
= −(ρ+ P/c2)

G(m+ 4πr3P/c2)

r2(1− 2Gm/c2r)
. (10b)

Fix an equilibrium ρ = ρ̄(r) such that

m =
4π

3
ρOr

3 +O(r5), (11a)

P = PO − (ρO + PO/c
2)4πG(ρO/3 + PO/c

2)
r2

2
+O(r4) (11b)

as r → 0 and ρ(r)↘ 0 as r ↗ r+(<∞). Putting

m+ = 4π

∫ r+

0

ρ̄(r)r2dr, κ+ = 1− 2Gm+

c2r+
> 0

we have

ū(r) =
Gm+

r2
+κ+

(r+ − r)(1 + [r+ − r, (r+ − r)
1

γ−1 ]1)

We consider spherically symmetric perturbation from this equilibrium:

R = r(1 + y(t, r)), V = rv(t, r) (12)
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governed by

e−F
∂y

∂t
= (1 + P/c2ρ)v, (13a)

e−F
∂v

∂t
=

1

c2
(1 + y)2P

ρ̄
v
∂

∂r
(rv)− 1

r3

G

(1 + y)2

(
m+

4π

c2
Pr3(1 + y)3

)
+

−
(

1 +
r2v2

c2
− 2Gm

c2r(1 + y)

)
(1 + P/c2ρ)−1 (1 + y)2

rρ̄

∂P

∂r
(13b)

Here m = m̄(r) is given and ρ is the function of r, y, r∂y/∂r given by

ρ = ρ̄(r)(1 + y)−2
(

1 + y + r
∂y

∂r

)−1

(14)

Linearization of the system (13a)(13b) at y = v = 0:

∂2y

∂t2
+ Ly = 0

is given by

Ly = −1

b

d

dr

(
a
dy

dr

)
+Qy,

a =
ΓPr4

1 + P/c2ρ
eF+H ,

b = (1 + P/c2ρ)−1ρ̄r4e−F+3H

with Γ :=
ρ

P

dP

dρ
. As the non-relativistic problem we can prove that L can be

considered as a self-adjoint operator in L2((0, r+); b(r)dr) whose spectrum consists
of simple eigenvalues λ1 < λ2 < · · · < λν < · · · → +∞. Moreover we proved

Theorem 2.1. ([6, Theorem 1]) Given T > 0, there exists a positive ε0(T ) such
that for |ε| ≤ ε0(T ) there is a solution (y, v) ∈ C∞([0, T ]× [0, r+]) of the form

y = εy1 + ε2ỹ, v = εv1 + ε2ṽ (15)

such that
sup
j+k≤n

‖∂jt ∂kr (ỹ, ṽ)‖L∞ ≤ C(n).

Here

y1 = sin(
√
λt+ Θ0)ϕ(r),

v1 = e−F̄ (1 + P/c2ρ)−1 ∂y1

∂t
,

while λ is a positive eigenvalue of L and ϕ is an associated eigenfunction.

Note
R(t, r+) = r+(1 + ε sin(

√
λt+ Const.)ϕ(r+) +O(ε2)), (16)

ϕ(r+) 6= 0, and

ρ(t, r) =

{
C(t)(r+ − r)

1
γ−1 (1 +O(r+ − r)) (0 ≤ r < r+)

0 (r+ ≤ r)
(17)

with a smooth function C(t) of t such that

C(t) =
(γ − 1

Aγ

Gm+

r2
+κ+

) 1
γ−1

+O(ε)
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The Cauchy problem (CP):

e−F
∂y

∂t
= · · · (13a), e−F

∂v

∂t
= · · · (13b),

y|t=0 = ψ0(x), v|t=0 = ψ1(x)

was also solved.
The solution metric can be patched to the Schwarzschild metric on the vacuum

region:

ds2 = K](cdt])2 − 1

K]
(dR])2 − (R])2(dθ2 + sin2 θdφ2), (18)

where

K] := 1− 2Gm+

c2R]
, t] = t](t, r), R] = R](t, r). (r ≥ r+)

But maybe the following result was new.

Theorem 2.2. ([6, Supplementary Remark 4]) There are t], R] ∈ C∞([0, T ] ×
[r+,+∞)) such that the coefficients of the patched metric are of C1([0, T ]×[0,+∞)).
But then

∂2R]

∂r2

∣∣∣
r++0

− ∂2R

∂r2

∣∣∣
r+−0

= A
(∂R
∂r

)2

,

A = −V
2

c2

(Gm+

c2R2
+

1√
κ+

1

c2

∂V

∂t

)(
1 +

V 2

c2
− 2Gm+

c2R

)−2

does not vanish if V 6= 0. In other words, the patched metric cannot be of class C2

across the vacuum boundary, unless the static equilibrium is concerned.

2.2. Axially Symmetric Problem. Stationary axisymmetric metrics for the
Einstein-Euler equations have been established in [8], as the post-Newtonian approx-
imations from the stationary axisymmetric solutions of the non-relativistic problem
given by Theorem 1.4. But the metric is constructed in a bounded domain which
contains the support of the density, and a corresponding result as Theorem 2.2
for spherically symmetric problem is not yet found. It is not clear which kind of
vacuum metric on the exterior region should be matched to the interior metric, in-
stead of the Schwarzschild metric for the spherically symmetric problem. This is an
open problem. Of course the evolution problem near these stationary axisymmetric
metrics is completely open.
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Abstract. Gas flow in a pipeline network can be described by a hyperbolic

balance law within each pipe along with coupling conditions at the node. For
equilibrium or near equilibrium flows it is essential to design well-balanced

schemes, in order to avoid spurious oscillations in the solution. Recently Cher-
tock, Herty & Özcan[9] introduced a well-balanced central Upwind scheme for

2× 2 systems of balance laws. Here, we extend the scheme to model coupling

conditions at intersection of pipes and compressor stations, thus resulting in a
well- balanced scheme across the network.

1. Introduction. Various mathematical models have been developed in the past
few years to model gas flow in a pipeline network, see [2, 3, 7, 12, 20, 6]. In order to
capture a fine resolution of the spatial and temporal dynamics, the isothermal Euler
equations (1) provide a suitable model [2, 3]. In this paper, we focus on developing
well-balanced schemes for such flows, which resolve steady states accurately and can
capture small temporal and spatial perturbations to the steady state. Several well-
balanced schemes have been developed for approximating solutions to shallow water
equations such as [1, 21, 22, 5, 8]. Recently Chertock et.al.[9] developed a second-
order well-balanced central Upwind scheme for 2× 2 system of hyperbolic balance
law. We extend this scheme to a network of gas pipeline consisting of intersections
of multiple pipes and compressor stations. In a network, spurious oscillations may
not only be introduced due to the imbalance between flux and source terms, but
also due to discretization errors at junctions and compressors.

The gas flow within each pipe i = 1 . . .M of the network is governed by the
isothermal Euler equations,

(Ui)t + F (Ui)x = S(Ui) (1)

where the conservative variables Ui, flux F (Ui) and source S(Ui) are given by,

Ui =

[
ρi
qi

]
, F (Ui) =

[
qi

q2i
ρi

+ p(ρi)

]
, S(Ui) =

[
0

− fg,i
2Di

qi|qi|
ρi

]
(2)

2000 Mathematics Subject Classification. Primary: 35L60, 35L65, 65M08.

Key words and phrases. Flows in network, Well-balanced schemes, Hyperbolic balance laws.
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with ρi, qi and p(ρi) being the density, momentum and pressure of the gas; and
fg,i, Di are friction factor and diameter of the pipe respectively. The pressure of
the gas for isothermal flow is given by,

p(ρ) = a2ρ. (3)

In order to solve the Euler equations (1), we need initial conditions and boundary
conditions at the ends of the pipes. The boundary condition at a node connecting
multiple pipes is given implicitly by coupling conditions as defined in [2, 25]. The
coupling condition can be written in the form,

φ(U1, U2, ..., UM ) = 0, φ : R2M → RM . (4)

The coupling conditions for a pipeline network are further discussed in Section
2 and Section 3.

O U3(x)

U1(x)

U2(x)

U∗
1
U∗

3
U∗

2

Uo1

Uo2

Uo3

Figure 1. Intersection of three pipes at junction O. Right-
Zoomed view of the junction with old traces Uoi and new traces
U∗i given in Section 2

2. Coupling conditions for the p–system. In this section we briefly summarize
the analytical results for coupling conditions discussed in [2, 11]. In order to study
these coupling conditions, we set the source terms S(Ui) to zero, hence assuming
that wall-friction is neglected at the instance of interaction at the node.

The eigenvalues for the 2× 2 isothermal Euler equations (1) are λ1 = q
ρ − a and

λ2 = q
ρ + a. We assume that the flow within the network is subsonic i.e.,

λ1(Ui) < 0 < λ2(Ui) for i = 1 . . .M. (5)

We can parameterize the incoming pipes, i ∈ I− by x ∈ Ωi := (−∞, xo) .
Similarly the outgoing pipes, j ∈ I+ are parameterized by x ∈ Ωj := (xo,∞). We
denote the solution in the interior of the pipes by the old traces, Uoi and the solution
at the node at a time t > tn is denoted by the new traces, U∗i . The states Uoi and
U∗i are denoted in Figure 1. The new traces are connected to the old traces by a
Lax curve entering the pipe i.e. the first family of Lax curves for the incoming pipe
and the second family for the outgoing pipes. The Lax curves can be written in the
form,

U∗i = U(σi) =

[
ρ(σi)
ρ(σi)

]
. (6)

For construction of the Lax curves, see [13, 18].
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Further we know that the new traces satisfy the coupling conditions at the node,

φ(σ1, . . . , σM ) := φ(U1(σ1), . . . , UM (σM )) = 0. (7)

Solving these coupling conditions, we find parameter σ∗i for each pipe and hence
the new traces U∗i = U i(σ

∗
i ).

We now focus on the coupling condition in [2, 11] for which we design the well-
balanced scheme. However the framework is also valid for other coupling conditions,
for e.g. those discussed in [23]. The first coupling condition is given by the mass
balance at the node xo i.e the total mass which enters the node is same as the total
mass leaving the node.

Several approaches have been studied to model the other (M−1) coupling condi-
tions. For instance, momentum balance in [14, 4] or continuity of Bernoulli invariant
in [20, 25, 24]. Here, we use the coupling condition given by continuity of pressure
at the node xo as given in [2, 14]. Thus we can write the coupling conditions as,

φ(U1, . . . , UM ) =




∑
i∈I− Aiqi −

∑
j∈I+ Ajqj

p(ρ2)− p(ρ1)
...

p(ρM )− p(ρM−1)


 , (8)

where Ai = π
4D

2
i is the cross sectional area for pipe i.

Similarly, we can write the coupling conditions for a compressor connected to
two pipes as,

φ(U1, . . . , UM ) =

[
q2 − q1

p(ρ2)− CRp(ρ1)

]
. (9)

where CR is the compression ratio for the compressor.
To summarize, we require to find the new traces U∗i which are connected to the

old traces Uoi by an incoming Lax curve, and such that the new traces also satisfy
the coupling condition. It has been proven in [10] that these coupling conditions
have a unique solution at the node.

3. Coupling conditions in terms of equilibrium variables. For equilibrium
or near equilibrium flows, the numerical error due to imbalance between flux and
source terms can lead to spurious oscillations within the solution. Chertock, Herty
and Özcan [9] resolved this difficulty by rewriting the balance law in conservative
form i.e we can rewrite equation (1) as,

(ρi)t + (Ki)x = 0, (qi)t + (Li)x = 0 (10)

where the flux variable,

Vi(Ui, Ri) =

[
Ki

Li

]
= F (Ui) +

[
0
Ri

]
, (11)

and fluxes Ki, Li and the integrated source term Ri are given by,

Ki := qi, Li :=
q2
i

ρi
+ p(ρi) +Ri(x), Ri(x) :=

∫ x

x̃i

fg,i
2Di

qi|qi|
ρi

dx. (12)

The point x̃i is an arbitrary but fixed point in Ωi. By construction the equilibrium
variables, (K,L) are constant in each pipe at equilibrium.
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We reformulate the coupling conditions (8) in terms of equilibrium variables as,

Ψ(Ki, Li, Ri) :=




∑
i∈I− AiKi −

∑
j∈I+ AjKj

P1 − P2

...
PM−1 − PM


 (13)

where pressure of the gas for subsonic flow can be calculated as,

Pi = P (K∗i , L
∗
i ) :=

L∗i −Ri +
√

(L∗i −Ri)2 − 4(K∗i )2a2

2
. (14)

Now in order to solve these coupling conditions, we require the Lax-curves in
terms of the equilibrium variables, i.e.,

V (σi) =

[
q(σi)

q(σi)
2

ρ(σi)
+ a2ρ(σi) +Ri

]
, (15)

where the conservative variables, ρ(σi), q(σi) are as defined in (6) for the respective
waves entering the incoming or outgoing pipes. Figure 2 shows phase plot of the
Lax curves in terms of the equilibrium variables. Note that 1-Lax curve for the

(a) Incoming pipes, i ∈ I− (b) Outgoing pipes, i ∈ I+

Figure 2. Phase plot in terms of equilibrium variables with initial
state V oi = (0.1, 0.4)T

incoming pipe and 2-Lax curve for the outgoing pipe are monotonic in the subsonic
regime. We show in [19] that the coupling conditions (13) have a unique solution
in the subsonic regime.

4. A Well-balanced Central Upwind Scheme For Nodal Dynamics. The
evolution of the conservative variables, can be computed by a second-order central
upwind scheme [16, 17, 9]. The computational domain of each pipe, Ωi is discretized

into cells of size ∆xi, centered at xji = x̄i + (j − 1
2 )∆xi for j = 1, . . . , N . The

evolution of the conservative variables is given by,

dU ji
dt

= −V
j+1/2
i − Vj−1/2

i

∆x
(16)

where Vj−1/2
i ,Vj+1/2

i are the fluxes across the left and right interface of cell j,
respectively. At the node these fluxes are given by the solution of the coupling
conditions,

VN+1/2
i = V ∗i , i ∈ I−, (17)

V1/2
i = V ∗i , i ∈ I+. (18)
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The integral terms Ri are calculated using a quadrature by fixing a starting point

x̃ = xoi where Ri = 0 in each pipe. Rji = 1
2 (R

j+1/2
i +R

j−1/2
i ) can be calculated as,

R
j∗+1/2
i = 0 at x̃ = x

j∗+1/2
i ∀ i ∈ I±,

R
j+1/2
i = R

j−1/2
i + ∆x

fg,i
2Di

qji |qji |
ρji

, for x
j+1/2
i > x

j∗+1/2
i ,

R
j−1/2
i = R

j+1/2
i + ∆x

fg,i
2Di

qji |qji |
ρji

, for x
j−1/2
i < x

j∗+1/2
i .

The numerical flux, Vj+1/2
i in the interior of the pipes can be calculated as,

Vj+1/2
i =

a
j+1/2
i,+ V j,Ei − aj+1/2

i,− V j+1,W
i

a
j+1/2
i,+ − aj+1/2

i,−
+ α

j+1/2
i (U j+1,W

i − U j,Ei ) (19)

where the terms V j,Wi , V j,Ei denote the equilibrium variables at the left and right
boundaries of the cell respectively, and can be calculated by applying a minmod
limiter to the average values of the equilibrium variables. We can compute the

conservative variables, U j+1,W
i , U j,Ei from the inverse relation of (12). The terms

a
j+1/2
i,± denote the maximum and minimum eigenvalues for the Jacobian ∂F

∂U at x
j+1/2
i

and α
j+1/2
i =

a
j+1/2
i,+ a

j+1/2
i,−

a
j+1/2
i,+ −aj+1/2

i,−
.

Note that in [9, 19], the numerical viscosity of the flux was multiplied with an

additional limiter function H
(
|V j+1
i −V ji |

∆x
|Ω|

maxj{V ji }

)
to ensure well-balancing. Here

we do not apply this limiter, i.e. we set H ≡ 1. A short calculation shows that the

scheme is still well-balanced if REj = RWj+1 = R
j+1/2
i , since in this case U j+1,W

i =

U j,Ei .

5. Numerical Tests. In this section, we compare the solution obtained by using
the well-balanced scheme discussed above and a second order non well-balanced
central Upwind scheme given in [15] for flows at or near steady state. The coupling
conditions for both WB and NWB scheme are solved using Newton’s iteration with
initial guess given by the old traces, discussed in Section 2 and Section 3. We test
the numerical schemes for a network consisting of a node with one incoming and
two outgoing pipes and two compressor stations along the outgoing pipes as shown
in Figure 3. The compressors C1 and C2 have compression ratios, CR1 = 1.5 and

qin
O

C1

ρ4
out

C2

ρ5
out

×

×
(1)

(2)

(3)

(4)

(5)

Figure 3. Network of gas pipeline with node O and compressors
C1 and C2 with compression ratios CR1 and CR2 respectively
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CR2 = 2 respectively. All the pipes have the same diameter and friction factor such

that
fg
2D = 1 and speed of sound, a = 1. The numerical tests are run for a CFL

number= 0.4.

5.1. Steady state. At first we consider a steady state across the network given in

Figure 3. The steady state is defined by K̂1 = 0.1, K̂2 = K̂3 = K̂4 = K̂5 = 0.05
and pressure, p∗|O = 0.373 which leads to p|C−

1
= p|C−

2
= 0.366 and p|C+

1
=

0.549, p|C+
2

= 0.732 or L̂1 = 0.4, L̂2 = L̂3 = 0.380, L̂4 = 0.554, L̂5 = 0.736. From

these parameters, the boundary values qin = K̂1 and ρiout = ρ(K̂i, L̂i)∀i = 4, 5 are
given for the equilibrium solution. We prescribe these as boundary values for the
numerical scheme using characteristic projections. The L1-norm of the errors for
the equilibrium variables at time T = 1 are given in table below.

Table 1. Comparison of L-1 errors between well-balanced(WB)
and non well-balanced(NWB) scheme at steady state for network
given in Figure 3 at time T=1

No. of cells WB scheme NWB scheme

in each pipe L-1 error for K L-1 error for L L-1 error for K L-1 error for L

25 5.412× 10−16 1.341× 10−15 1.266× 10−6 1.002× 10−6

50 1.452× 10−15 3.148× 10−15 3.233× 10−7 2.630× 10−7

100 3.032× 10−15 7.338× 10−15 8.178× 10−8 6.741× 10−8

We see from the results that the WB schemes preserves steady state of the
network accurately up to machine precision, whereas the numerical error due to
the NWB scheme is much larger. This also means that the coupling conditions in
terms of equilibrium variables are resolved accurately up to machine precision by
Newtons method.

5.2. Perturbation to steady state. We now add a small perturbation to the
momentum at steady state at the node, O at x = 0. Thus the initial condi-

tions for equilibrium variables are given by, K1 = K̂1 + η1e
−100x2

,K2/3 = K̂2/3 +

η2/3e
−100x2

,K4/5 = K̂4/5 and Li = L̂i with η1 = 10−6 and η2 = η3 = 0.5 × 10−6.
The solution at time, T = 1 using WB and NWB schemes is as given in Figure 4.

From Figure 4, one can see that the results of the WB scheme are stable with
coarser grid of N = 50 unlike the NWB scheme. We need a finer resolution of
N = 200 to capture the perturbation with a NWB scheme. A more detailed study
of the solution at times 0.25 and 0.5 (not displayed here) reveals that for the NWB
scheme a perturbation starts immediately at the inflow boundary. At time T=1,
this waved has reached positions x ≈ 0.25 in pipes 2 and 3, and has created most
of the error in the interval [-1, 0.25]. Another error can be seen to the right of the
junction in pipes 2 and 3, and is due to the non-well-balanced coupling condition.
There is also an error due to the coupling condition at the compressor, but it is an
order of magnitude smaller and cannot be detected in the figure.

6. Conclusion. In this article, we have extended the well-balanced scheme intro-
duced by Chertock, Herty and Özcan[9] to a network of gas pipelines with wall-
friction. We studied the coupling conditions for a node connected to multiple pipes
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(a) First Pipe (b) Second Pipe (c) Fourth Pipe

(d) First Pipe (e) Third Pipe (f) Fifth Pipe

Figure 4. Momentum at time T=1 for initial perturbation of or-
der 10−6 at node, O

and compressor stations, in the framework of the well-balanced scheme discussed
in [9]. The numerical test for the network in Figure 3 demonstrates that the well-
balanced scheme can resolve steady states accurately and provides stable solutions
for flows near equilibrium.
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[4] A. Bermúdez, X. López and M. E. Vázquez-Cendón, Treating network junctions in finite
volume solution of transient gas flow models, J. Comput. Phys., 344 (2017), 187–209.

[5] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of

wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267–290.
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Abstract. We consider bounded entropy solutions to the scalar conservation
law in one space dimension:

ut + f(u)x = 0.

We quantify the regularizing effect of the non linearity of the flux f on the

solution u in terms of spaces of functions with bounded generalized variation.

1. Introduction. We consider the scalar conservation law in one space dimension:{
ut + f(u)x = 0 in R+ × R,
u(0, ·) = u0(·), (1)

where the flux f ∈ C∞(R,R) and the function u : R+
t × Rx → R is the spatial

density of the conserved quantity. We consider bounded entropy solutions: more
precisely we require that u ∈ C0([0,+∞), L1

loc(R))∩L∞(R+×R) satisfies (1) in the
sense of distributions and that for every convex entropy η : R→ R it holds

η(u)t + q(u)x ≤ 0

in the sense of distributions, where the entropy flux q is defined up to constants by
q′ = f ′η′. The well-posedness of the Cauchy problem (1) in the class of bounded
entropy solutions with respect to L1

loc topology is by now classical. A first conse-
quence is the fact that the BV regularity of u is propagated in time and this implies
that we can describe in a satisfactory way the structure of the entropy solution u if
u0 ∈ BV(R).

We are interested in the case u0 ∈ L∞, which is included in the classical well-
posedness result. The first result in this direction is the Oleinik one sided Lipschitz
estimate: if the flux is uniformly convex (f ′′ ≥ c > 0), then for every t > 0, the
entropy solution u(t) ∈ BVloc(R) and the following inequality between measures
holds:

Dxu(t) ≤ L
1

ct
. (2)

On the other hand if f(w) = λw is linear the solution is given by

u(t, x) = u0(x− λt)
so u(t) has the same regularity as the initial datum u0.

2000 Mathematics Subject Classification. 35L65.
Key words and phrases. Lagrangian representation, fractional regularity, entropy solutions,

characteristics, conservation laws.
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Between these two extremal cases it is interesting to discuss if some weaker notion
of nonlinearity (compared to uniform convexity) of the flux has some regularizing
effect on the entropy solution u. The literature on this problem is large: several
results, even in several space dimensions and for more general weak solutions, have
been obtained by means of the kinetic formulation of (1) and averaging lemmas (see
[14, 17] and the more recent [15]).

In order to get quantitative regularity results we need to quantify the nonlinearity
of the flux f :

Definition 1.1. We say that the flux f has degeneracy p̄ ∈ N if

1. {f ′′(w) = 0} is finite;
2. for each w ∈ R such that f ′′(w) = 0 there exists p ≥ 2 such that f (p+1)(w) 6= 0.

Let us denote by pw be the minimal p ≥ 2 such that f (p+1)(w) 6= 0;
3. p̄ = maxw pw.

If such a p̄ exists we also say that f has polynomial degeneracy.

It was conjectured in [17] that if the flux f has degeneracy p ∈ N, then for every

ε, t > 0 the entropy solution u(t) ∈ W s−ε,1
loc (R), with s = 1

p . See [16] for a result in

this direction. However it seems more convenient to express the regularity of the
entropy solution in terms of functions with generalized bounded variation: more
precisely let Φ : [0,+∞) → [0,+∞) be a convex function such that Φ(0) = 0, let

v : R→ R and I ⊂ R be an interval. We say that v ∈ BVΦ(I) if

TVΦv(I) := sup
x1<...<xn,xi∈I

n−1∑

i=1

Φ(|v(xi+1)− v(xi)|) < +∞.

See [19] for an introduction to these spaces. If Φ is not degenerate, i.e. Φ(h) > 0

for every h > 0, a function v ∈ BVΦ(R) is a regulated function, i.e. for every x̄ ∈ R
there exist both limx→x̄− v(x) and limx→x̄+ v(x). This is actually a property that
we have for entropy solutions to (1) if the flux satisfies this minimal nonlinearity
assumption: {w : f ′′(w) 6= 0} is dense in R (see for example [20]). We say in
this case that f is weakly genuinely nonlinear. Notice that the available fractional
Sobolev regularity of the entropy solution does not imply that it is regulated. An

interesting particular case is Φ(w) = wp, in this case we denote BVΦ with BV
1
p .

We notice that for every ε > 0 and p ≥ 1 it holds BV
1
p (R) ⊂W 1

p−ε,p(R), see [8].
The use of these spaces in this context started in [8, 10] to express the regularity

of the entropy solution when the flux is strictly (but not necessarily uniformly)
convex.

The case of nonconvex fluxes is addressed in the following theorem and it is the
final goal of this note. When not explicitly written we refer to [18] for more details.

Theorem 1.2. Let f be a flux of degeneracy p and let u be the entropy solution of
(1) with u0 ∈ L∞(R) with compact support. Then there exists a constant C > 0,
depending on L1(conv(suppu0)), ‖u0‖∞ and f , such that for every t > 0, it holds

u(t) ∈ BV1/p(R) and TV1/pu(t) ≤ C
(

1 +
1

t

)
. (3)

1.1. Plan of the paper. In Section 2 we introduce the main tool of this analy-
sis: an extension to the non smooth setting of the classical method of characteris-
tics called Lagrangian representation. This notion has been developed in different
settings: a preliminary version has been introduced in [6] for wave-front tracking
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approximate solutions, in [4] it has been adapted to deal with the case of bounded
and continuous initial data, then extended to L∞ initial data in [5]. Moreover an
extension to systems is given in [7]. In this note we only need to give a represen-
tation for solutions with piecewise monotone initial data, therefore we follow [18]
where a simplified version of the Lagrangian representation is provided.

In Section 3 we present the main novelty of [18] and of this presentation. It is
an estimate of the oscillation of the entropy solution between two characteristics
in terms of their distance and the nonlinearity of the flux. This estimate plays the
role that the Oleinik estimate (2) plays in the convex case and does not require any
nonlinearity assumption on the flux.

Building on this result, the Lagrangian representation and the argument in [11],
we present in Section 4 the main steps for proving the BVloc regularity of f ′◦u under
the assumption of polynomial degeneracy of the flux. In [11] the same problem is
considered in the case of one and two inflection points.

Finally in Section 5 we briefly comment about the proof of Theorem 1.2.

2. Lagrangian representation. As mentioned in the introduction, the starting
point is a precise description of the behavior of the characteristics. In this section
we present the notion of Lagrangian representation, which extends the notion of
characteristic to the non smooth setting. Our strategy is to prove uniform regularity
estimates on a dense class of bounded entropy solutions so it is sufficient to consider
the case in which u is the entropy solution of (1) with u0 continuous, bounded and
piecewise monotone.

Definition 2.1. We say that X : R+
t × Ry → R is a Lagrangian representation of

the entropy solution u if

1. X is Lipschitz continuous with respect to t;
2. X is increasing and continuous with respect to y;
3. X(0, y) = y for every y ∈ R;
4. for every t ≥ 0 it holds

u(t, x) = u0(X(t)−1(x)), (4)

for every x ∈ R \N with N at most countable.

Remark 1. Requiring (4) for every t ≥ 0 we implicitly refer to the L1 continuous
representative of u in time. Moreover it follows immediately from the monotonicity
of X with respect to y and (4) that if u0 is piecewise monotone then u(t) is piecewise
monotone for t > 0. In order to define pointwise the solution, we consider in this
case the lower semicontinuous representative. In any case it is necessary to remove
a countable set of points in (4): these are the points where the preimage X(t)−1(x)
is not a singleton and they are the points where shocks are located.

The Lagrangian representation enjoys several other properties. First the charac-
teristics travel with the characteristic speed: more precisely for every y ∈ R and for
 L1-a.e. t > 0 it holds

∂tX(t, y) =

{
f ′(u(t, X(t, y))) if u(t) is continuous at X(t, y)
f(u(t,X(t,y)+))−f(u(t,X(t,y)−))

u(t,X(t,y)+)−u(t,X(t,y)−) if u(t) has a jump at X(t, y)
. (5)

Two other properties are relevant in the following.

Property 1. For every (t̄, x̄) ∈ (0,+∞)×R there exists y ∈ R such that X(t̄, y) = x̄
and at least one of the following holds:
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1. for every t ∈ [0, t̄],

u(t, X(t, y)−) ≤ u0(y) ≤ u(t, X(t, y)+);

2. for every t ∈ [0, t̄],

u(t, X(t, y)+) ≤ u0(y) ≤ u(t, X(t, y)−).

This is a way to formulate in the nonsmooth case the fact that the smooth
solutions are constant along characteristics.

In order to state the next property we need to introduce the notion of admissible
boundary.

Definition 2.2. Let T > 0, w ∈ R and γ : [0,+∞) → R be a Lipschitz curve.
Moreover let u be the entropy solution of (1) and denote by Ω± = {(t, x) ∈ [0, T )×
R : x ≷ γ(t)}. We say that (γ,w) is an admissible boundary for u up to time T
if the restriction of u to Ω− is the entropy solution of the initial boundary value
problem 




ut + f(u)x = 0 in Ω−,

u(0, ·) = u0 in (−∞, γ(0)),

u(t, γ(t)) = w in (0, T ),

and similary on Ω+.

Property 2. For every (t̄, x̄) ∈ (0,+∞)×R there exists y ∈ R such that X(t̄, y) = x̄
and (X(·, y), u0(y)) is an admissible boundary of u up to time t̄.

A previous extension of the notion of characteristic to the nonsmooth setting is
presented in [13, Chap.10]. The characteristic equation (5) implies that for every y,
the map t→ X(t, y) is a generalized characteristic in the sense of Dafermos. There-
fore the Lagrangian representation X can be interpreted as a monotone selection of
Dafermos generalized characteristics for which (4), Property 1 and Property 2 hold.
See also [3] for a similar use in the case of convex fluxes.

3. Length estimate. In this section we present an estimate that relates the dis-
tance between two characteristics with the same value and the oscillation of the
entropy solution between these characteristics. A relevant feature is the nonlinear-
ity of the flux function f and we quantify it in the following way: given w1 ≤ w2

we consider twice the C0 distance of fx[w1, w2] from the set of affine functions on
[w1, w2]:

d(w1, w2) := min
λ∈R

max
{w,w′}⊂[w1,w2]

(f(w)− f(w′)− λ(w − w′))

Theorem 3.1. Let u be the entropy solution of (1) with u0 bounded, continuous
and piecewise monotone. Let t > 0 and yl < yr be such that

1. u0(yl) = u0(yr) =: w̄;
2. X(·, yl) and X(·, yr) enjoy Property 1 up to time t.

Denote by
s := max{yr − yl, X(t, yr)− X(t, yl)}

and
wm := w̄ ∧ inf

(X(t,yl),X(t,yr))
u(t), wM := w̄ ∨ sup

(X(t,yl),X(t,yr))

u(t).

Then

s ≥ d(wm, wM )t

‖u0‖∞
. (6)
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As a corollary we get a first a priori estimate for the entropy solution u. Roughly
speaking the argument is the following: suppose for simplicity that u0 has compact
support. By finite speed of propagation also the solution at time t will have compact
support. The estimate (6) tells that each oscillation between two values a < b must
occupy a given amount of space, which is strictly greater than 0 if the flux is not
affine between a and b. But the total amount of space at our disposal is finite so we
get an a priori estimate on the number of oscillations between two given values of an
entropy solution on a given bounded interval. From this we can immediately recover
the compactness in L1

loc of the set of equibounded entropy solutions if the flux is
weakly genuinely nonlinear, which can be obtained for example by a compensated
compactness argument (see [20]). This compactness can be made quantitative by

means of BVΦ spaces presented in the introduction.

Corollary 1. Denote by

N(h) = min
w∈[−‖u0‖∞,‖u0‖∞]

d(w,w + h), Ψ := conv(N)

and for every ε > 0 set Φε(w) = Ψ(x2 )xε. Then ∀t > 0

u(t) ∈ BVΦε

loc(R).

Remark 2. Notice that Φε(h) > 0 for every h > 0 if and only if f is weakly
genuinely nonlinear, i.e. {w : f ′′(w) 6= 0} is dense in R.

In this procedure the length estimate plays the same role as the Oleinik estimate
(2) in order to deduce that the entropy solution u(t) ∈ BVloc for every t > 0.
Unfortunately if we specify this last result with f(u) = u2 we get that for every

t > 0 the entropy solution u(t) ∈ BV
1
2−ε and therefore Corollary 1 is not optimal.

More in general in the setting of Theorem 1.2, we get u(t) ∈ BV
1
p+1−ε instead of

the expected u(t) ∈ BV
1
p .

4. BV regularity of f ′ ◦ u. In this section we discuss the BV regularity of the
velocity field f ′◦u. In order to get a positive result we require that the flux function
f has polynomial degeneracy (see Definition 1.1).

Theorem 4.1. Let f be as above and u be the entropy solution of (1) with u0 ∈ L∞
and assume that suppu0 ⊂ [a, b]. Then there exists C depending on b − a, f and
‖u0‖∞ such that for every t > 0

TVf ′ ◦ u(t) ≤ C
(

1 +
1

t

)
.

The details of the proof can be found in [18]. Here we only try to expose the
strategy and the role of the tools and the estimates introduced above. Let us first
notice that the situation is much simpler if the flux f is convex. In this case the
result follows easily from the structure of the characteristics. The key property is
that the characteristics are segments up to the time of the first interaction with
other characteristics and two colliding characteristics never split in the future (see
Fig. 1). An elementary geometrical constraint and (5) implies that

Dxf
′ ◦ u(t) ≤ L

1

t
(7)

and the claim easily follows.
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t

x

Figure 1. The
characteristics
(black) are ab-
sorbed by the
shocks (blue).

t

x

Figure 2. The
characteristics
(black) leave the
contact discontinu-
ities (blue).

This argument does not apply already in the case of fluxes with one inflection
point. In this case (7) does not hold and the reason is that two characteristics who
interact can split in the future in a contact discontinuity (see Fig. 2). In this case,
relying on the precise description of the extremal characteristics in [12] and the
Lagrangian representation, the argument in [11] can be made completely rigorous.

The structure of characteristics in the general case is more complicated. It turns
out however that it is possible to reduce the general case to the case of fluxes with
a single inflection point by means of the length estimate and Property 2. We briefly
explain how it can be done: let δ > 0 be the minimal distance between two inflection
points of f . For any t̄ > 0, thanks to the length estimate (6), it is possible to find
N ≈ C/t̄ characteristics starting from y1 < . . . < yN such that for every t ∈ (t̄/2, t̄)
the oscillation of the entropy solution between two of this characteristics is less than
δ. Moreover the constant C depends on the solution only through the length of the
smallest interval containing the support of u0. We therefore obtained N regions in
which the range of the solution intersect at most one inflection point of the flux.
The additional difficulty is that in the argument of [11] we also need to consider the
interactions of the characteristics with the boundaries of these regions. This can
be done interpreting the characteristics as admissible boundaries (Property 2) and
these are all the ingredients that we need to prove Theorem 4.1.

Remark 3. Actually the BV regularity of f ′ ◦ u(t) can be improved to SBV
regularity for every t ∈ R+ \N with N countable. See [1] for the case of uniformly
convex fluxes, [2] for the extension to the case of strictly convex fluxes and [18] for
a proof in the setting of Theorem 4.1.

Remark 4. The assumption on the flux cannot be removed. In [18] it is provided
an example of entropy solution of (1) in which f has only one inflection point and
f ′ ◦ u does not belong to BVloc((0,+∞)× R).

5. Fractional regularity of the entropy solution. In this last section we deduce
Theorem 1.2 from Theorem 4.1. Again, as already noticed in [8], the situation is
simpler if f is convex. If the flux f has degeneracy p, then the inverse function
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(f ′)−1 is 1
p -Hölder and this implies that there exists C > 0 such that

TV
1
pu(t) ≤ CTVf ′ ◦ u(t), (8)

so that Theorem 1.2 immediately follows from Theorem 4.1.
Let us see now how to remove the convexity assumption on f : as in the previous

section the length estimate allows to consider only the small oscillations of u(t) and
clearly the relevant ones are the oscillations around the inflection points. Therefore
it is not restrictive to consider the case f(u) = up+1 with p even. An estimate
like (8) cannot hold for a generic function u(t) as in the convex case, consider for
example a function v which takes only the values a and −a for some a > 0. In this

case TVf ′ ◦ v = 0 and TV
1
p v can be arbitrarily large. This obstruction is excluded

taking advantage of the fact that u(t) is the entropy solution of (1), roughly speaking
if f ′(w1) ≈ f ′(w2) the shock between w1 and w2 is not entropic. More precisely the
following lemma holds.

Lemma 5.1. Let u be the entropy solution of (1) with f(u) = up+1. There exists
a constant c > 0 depending on f and ‖u0‖∞ such that for a.e. t > 0 and for every
x1 < x2 ∈ R with u(t, x1) · u(t, x2) < 0 it holds

TV(x1,x2)f
′ ◦ u(t) ≥ c|u(t, x2)− u(t, x1)|p.

By means of this lemma it is not hard to conclude the proof of Theorem 1.2.

Remark 5. It has been observed in [9] that the order 1
p cannot be improved in (3).
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Abstract. We present a review on some recent developments on the study of

a system of equations modelling the interactions between short waves, obey-
ing a nonlinear Shrödinger equation, and long waves given by the equations of

fluid dynamics for a compressible fluid flow. The system in question models

an aurora-type phenomenon where a short wave propagates along the stream-
lines of the fluid. The results revised include well-posedness results in different

contexts for strong and for weak solutions, in both the 1-dimensional and mul-
tidimensional cases, as well as some limit processes. We focus on our most

recent contributions contained in the papers Vanishing viscosity limit of short

wave-long wave interactions in planar magnetohydrodynamics, J. Differential
Equations, 266(12) (2019), 8110-8163, and Modeling Aurora Type Phenomena

by Short Wave-Long Wave Interactions in Multidimensional Large Magneto-

hydrodynamic Flows (with H. Frid and R. Pan). SIAM J. Math. Anal., 50(6)
(2018), 61566195.

1. Introduction. We consider a system of equations modeling the interactions
between short waves, obeying a nonlinear Schrödinger equation (NLS), and long
waves, provided by the equations of compressible fluid dynamics. The system in
question models an aurora-type phenomenon where a small wave propagates along
the streamlines of a fluid flow. As such, it can be stated through the following
nonlinear Schrödinger equation

iψt + ∆yψ = |ψ|2ψ +Gψ, (1)

where i is the imaginary unit, ψ = ψ(y, t) ∈ C is the wave function, y is the
Lagrangian coordinate associated to the velocity field of the fluid u, and G is a
potential accounting for possible external forces.

For any given velocity field u, the Lagrangian coordinates are characterized by
being constant along the trajectories. Accordingly, if Ω ∈ Rn is the spatial domain
of the Eulerean coordinate x, which provides the description of the dynamics from

2000 Mathematics Subject Classification. Primary: 76W05, 35Q55, 76N17, 76N10; Secondary:
35Q35.

Key words and phrases. Compressible MHD equations; Nonlinear Schrödinger equation; van-

ishing viscosity, weak solution, strong solutions.
D.R. Marroquin thankfully acknowledges the support from CNPq, through grant proc.

150118/2018-0.

554



DANIEL R. MARROQUIN

an outsider’s point of view, then the Lagrangian transformation Y = Y(y(x, t), t)
is, by definition, given by the relation

y(Φ(x, t), t) = y0(x), (2)

where y0 is any diffeomorphism, which can be chosen conveniently, and Φ is the
flux associated to the velocity field u, that is,

{
dΦ(x,t)
dt = u(Φ(x, t), t), for t ∈ (0, T ),

Φ(x, 0) = x.
(3)

Now, the velocity field of the fluid is determined by the equations of fluid dynam-
ics. These, in turn, take several forms depending on the properties of the fluid under
consideration. For instance, whether the fluid is compressible or incompressible or
whether the fluid is heat conductive o not. Here, we consider the most general case
consisting of a compressible, heat conductive fluid, that conducts electricity and is
in the presence of a magnetic field. In this regime, the velocity field is given by the
equations of magnetohydrodynamics (MHD).

The full 3-dimensional MHD equations read as (see, for example, [17])

ρt + div(ρu) = 0, (4)

(ρu)t + div(ρu⊗ u) +∇p = divS + (∇×H)×H + F, (5)

Ht +∇× (ν∇×H) = ∇× (u×H), (6)

div H = 0, (7)

Et + div(u(E − 1
2 |H|2 + p)) = div (κ∇θ) (8)

+ div(S · u) + div ((u×H)×H + H× (ν∇×H)) + F · u.

Here, ρ = ρ(x, t) ≥ 0, u = u(x, t) ∈ R3 and θ = θ(x, t) are the fluid’s density,
velocity field and temperature; H is the magnetic field; the total energy E is

E = ρ

(
e+

1

2
|u|2

)
+

1

2
|H|2,

where, e is the internal energy, 1
2ρ|u|2 is the mechanical energy and 1

2 |H|2 is the
magnetic energy; p denotes the pressure, F accounts for possible external forces,
and S is the viscous stress tensor given by

S = λ(divu)Id+ µ(∇u + (∇u)top).

The viscosity coefficients satisfy the relations 2µ+λ > 0 and µ > 0; κ is the heat
conductivity and ν > 0 is the magnetic diffusivity.

As we are assuming the fluid to be compressible, the pressure and the internal
energy are, in general, functions of the density and the temperature and must satisfy
Maxwell’s relation

eρ =
1

ρ2
(p− θpθ), (9)

which is a consequence of the second law of thermodynamics.
With this, the model is completed by choosing the external force term in the

momentum equation (5) and the potential term in the NLS (1) as

F = α∇(g′(1/ρ)h(|ψ ◦Y|2)), G = αg(v)h′(|ψ|2), (10)
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where α > 0 is the interaction coefficient, g and h are nonnegative smooth functions
and v = v(y, t) is the specific volume defined by the identity

v(y(x, t), t) =
1

ρ(x, t)
.

Thus, we are left with the following system

ρt + div(ρu) = 0, (11)

(ρu)t + div(ρu⊗ u) +∇p = divS + (∇×H)×H (12)

+ α∇(g′(1/ρ)h(|ψ ◦Y|2)),

Ht +∇× (ν∇×H) = ∇× (u×H), (13)

div H = 0, (14)

Et + div(u(E − 1
2 |H|2 + p)) = div (κ∇θ) + div(S · u) (15)

+ div ((u×H)×H + H× (ν∇×H)) + α∇(g′(1/ρ)h(|ψ ◦Y|2)) · u,
iψt + ∆yψ = |ψ|2ψ + αg(v)h′(|ψ|2)ψ. (16)

The short wave-long wave interactions occur along the particle paths and this is
translated in the equations by stating the NLS in the Lagrangian coordinates of the
fluid. Accordingly, we have to ensure that the change of variables is well defined.
Actually, it can be shown that the Lagrangian transformation is nonsingular if and
only if there is no vacuum nor concentration, that is, if the density is strictly positive
and finite.

Indeed, using Liouville’s formula for the determinant on the Jacobian JΦ :=
det ∂Φ

∂x (x, t) as well as the continuity equation (11), a straightforward calculation
shows that

d

dt

(
ρ(Φ(x, t), t)

Jy(x, t)

)
= 0.

In particular, we see that y0 can be chosen so that

det
∂y

∂x
(x, t) = ρ(x, t) (17)

The most important feature of this model is that it is endowed with an energy
identity, which can be stated in differential form as
{
Et + divx(κ∇xθ) + divx

(
u(E − 1

2 |H|2 + p+ αg′(1/ρ)h(|ψ ◦Y|2))
)

(18)

− divx

(
S · u + (u×H)×H + H× ν(∇x ×H)

)}
dx

= −
{(1

2
|∇yψ(t,y)|2 +

1

4
|ψ(t,y)|4 + αg(v(t,y))h(|ψ(t,y)|2

)
t

− divy(ψt∇yψ + ψt∇yψ)
}
dy.

This identity can be deduced by multiplying (16) by ψt (the complex conjugate
of ψt), taking real part, adding the resulting equation to the energy equation (15)
and using relation (17) and the continuity equation (11) in order to deal with the
change of variables.

This kind of model was introduced in 2011 by Dias and Frid in [7], where inspired
by Benney’s general theory on short wave-long wave interactions [2], they proposed
a similar coupling where the Lagrangian coordinate was provided by the velocity
field of a compressible isentropic (non-heat conductive) fluid (thus, driven by the
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Navier-Stokes equations); and studied existence and uniqueness of solutions as well
as the vanishing viscosity problem in the 1-dimensional setting.

Later, in 2014, Frid, Pan and Zhang [13] included the thermal description and
showed existence an uniqueness of global smooth solutions to the Cauchy problem
when the initial data are small perturbations of an equilibrium state.

In 2016, Frid, Jia and Pan extended these results to the model above, involving
the MHD equations instead of the Navier-Stokes equations, showing decay rates of
the solutions on top of the existence and uniqueness of global smooth solutions, also
with small data.

Here we present a brief review of our most recent contributions regarding this
model, contained in [21]. These results extend Dias and Frid’s findings of well
posedness and the vanishing viscosity problem to the planar (1-dimensional) system
including both the thermal and magnetic descriptions.

We also comment on the results in [14], in collaboration with H. Frid and R. Pan,
where we propose and establish the convergence of an approximation scheme which
circumvents the lack of regularity of solutions, as well as the possible occurrence of
vacuum, when we deal with the 2-dimensional model with arbitrarily large initial
data.

2. Planar equations: vanishing viscosity. Let us first review our contributions
on the planar version of the short wave-long wave interactions system described
above. These results are contained in [21].

The planar MHD equations arise from the full 3-dimensional equations under
the assumption that the flow moves in a preferential direction and is uniform in the
transverse directions. This is translated into the equations by imposing that the
partial derivatives with respect to the second and third spatial coordinates of the
involved functions are identically equal to zero. Then, decomposing the velocity field
u = (u,w) into its longitudinal direction u and transverse directions w = (w1, w2) a
straightforward calculation provides the simplified planar equations. The magnetic
field, in turn is also decomposed into its longitudinal and transverse directions as
H = (h0,h), where h = (h1, h2). Note that, under these assumptions, equation
(14) implies that the longitudinal direction h0 is constant and can be assumed to
be equal to 1 (see [6]).

In the planar case, the Lagrangian coordinate y = y(x, t) can be defined in
a simpler way through the relations yx = ρ, yt = ρu and y(x, 0) =

∫ x
0
ρ0(z)dz,

where ρ0(x) = ρ(x, 0) is the initial density. As a result, the short wave-long wave
interactions system is reduced to the following 1-dimensional form

ρt + (ρu)x = 0, (19)

(ρu)t +
(
ρu2 + p+

β

2
|h|2 − αg′(1/ρ)h(|ψ ◦Y|2)

)
x

= (εux)x, (20)

(ρw)t + (ρuw − βh)x = (µwx)x, (21)

Et +
(
u
(
E + p+ β

2 |h|2
)
− βw · h

)
x

(22)

= (εuux + µw ·wx + νh · hx + κθx)x + α
(
g′(1/ρ)h(|ψ ◦Y|2)

)
x
u,

βht + (βuh− βw)x = (νhx)x, (23)

iψt + ψyy = |ψ|2ψ + αg(v)h′(|ψ|2)ψ, (24)

where E = ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ β
2 |h|2.
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Note that, in contrast with system (11)-(16), a new parameter appeared. Namely,
the magnetic permeability β. This parameter, which relates the magnetic field to
the magnetic induction, is usually taken to be equal to 1 in the literature (cf. [17])
since in most real world media covered by the MHD equations this constant differs
only slightly from the unity. However, the only physical constraint on it is its
positivity.

Here, µ and ε = λ+ 2µ are the shear viscosity and the bulk viscosity of the fluid,
respectively.

In this setting, we are able to prove global existence and uniqueness of smooth
solutions in a bounded open spacial domain Ω which can be assumed to be (0, 1).
We first prove existence and uniqueness of local solutions and then extend the local
solutions to global ones based on a priori estimates.

For the local result we use a Faedo-Galerkin type method similar to that applied
by Dias and Frid in [7], which is in turn resembles the classic work by Kazhikhov
and Shelukhin in [16] (c.f. [1, Chapter 2]). As for the global result, we develop some
a priori estimates inspired by the work of Chen and Wang in [6] and by the work
of Wang in [26]. In particular we show that no vacuum nor concentration develop
in finite time.

Having well posedness for the one dimensional model, we turn our attention to
he vanishing viscosity problem. First, we assume that the pressure has the form
p(ρ, θ) = aργ+δθpθ(ρ), where a > 0, γ > 1, δ > 0 and pθ is a function of the density
that satisfies certain growth conditions. Note that if ε, α, δ and β are all zero we are
left with a system involving Euler’s equations of compressible fluid dynamics and a
decoupled nonlinear Schrödinger equation. In this connection we show convergence
of the sequence of solutions as ε, α, δ and β tend to zero. More specifically, we
show that if α,= o(ε1/2) and δ, β = o(ε) as ε → 0, leaving µ > 0 and ν > 0 fixed,
then the sequence of solutions to system (19)-(24) converges to a weak solution of
the limit problem.

As the limit problem has different regularity properties than the original one (in
Euler’s equations shock waves are expected to occur in finite time, even if the initial
data is smooth) this convergence is not a straightforward task.

The method we employ to achieve this is the compensated compactness combined
with the Young measures as applied by Chen and Perepelitsa in [5], where they study
the problem of vanishing viscosity limit for the Navier-Stokes equations. Due to the
presence of the magnetic field and the short wave-long wave interactions we had to
deduce some new estimates that allowed us to apply the method.

Such uniform estimates allow us to apply the Div-Curl lemma in order to prove
that the Tartar-Murat commutator relation for the entropy kernel of the limit Eu-
ler Equation (equations (19) and (20) with ε = β = α = δ = 0) holds. After
this, the arguments in [5, 3, 8] apply and the Young measures associated to the
sequence (ρε, ρεuε) are reduced to delta masses, thus yielding strong convergence
to an entropy solution (ρ, ρu) of the limit Euler equations.

Once we have this strong convergence of the sequence of densities and momen-
tums, the convergence in (21) and (23) follows in a straightforward way by a weak
compactness argument on Sobolev spaces. Similarly, the convergence in the NLS
equation (24) is a consequence of Aubin-Lions lemma.

Finally, the convergence in the energy equation is delicate, but we are able to
adapt certain arguments by Feireisl in [10] in order to show that the sequence
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of temperatures converges to a variational solution of the limit thermal energy
equation.

3. Multidimensional case: approximation scheme. Moving on to the multi-
dimensional case, let us discuss briefly our results contained in [14], in collaboration
with H. Frid and R. Pan.

As aforementioned, the main difficulty is the possible occurrence of vacuum.
Since in the multidimensional fluid equations solutions are not smooth enough and
vacuum may appear in finite time for large data, and as the Lagrangian transforma-
tion becomes singular in these situations, an effective coupling of the fluid equations
with the nonlinear Schrdinger equation can not be made in a straightforward way.

In order to overcome these difficulties, we define the interaction through a reg-
ularized system that provides a good definition for an approximate Lagrangian
coordinate. Then, after showing existence of solutions, we show compactness of the
sequence of solutions to the regularized system thus making sense of the desired
SW-LW interaction in the limit process.

For simplicity, in the multidimensional model we focus on the isentropic case, that
is, the case of a non heat-conductive fluid, which trivializes the energy equation.

In order to workaround the lack of regularity of the density we first add an
artificial viscosity to the continuity equation (4). Fix ε > 0 and δ > 0 and consider
the following regularized system

ρt + div(ρu) = ε∆ρ, (25)

(ρu)t + div(ρu⊗ u) +∇(aργ + δρβ) + ε∇u · ∇ρ
= (∇×H)×H + µ∆u + (λ+ µ)∇(divu) + ρF, (26)

Ht −∇× (u×H) = −∇× (ν∇×H), (27)

div H = 0. (28)

Note that besides the artificial viscosity added to the continuity equation, two
new terms appeared in the momentum equation (26). The term δρβ , where β > 1,
acts as an artificial pressure and is intended to provide better estimates on the
density, whereas the term ε∇u · ∇ρ is set to equate the unbalance in the energy
estimates of the MHD equations caused by the introduction of the artificial viscosity.
This approximate system resembles the one employed by Hu and Wang in [15] where
they study the existence of weak solutions to the three dimensional MHD equations.
A similar approximation was introduced by Feireisl, et al. in [11] in the study of the
Navier-Stokes equations, who, in turn, followed the pioneering ideas by Lions in [18].
Recall that ε and δ are small constants and the analysis that we develop provides
insights that justify the accuracy to which this regularized model approximates the
desired SW-LW interaction.

Now, as it turns out, even in this regularized setting the velocity field might not be
smooth enough to provide a good enough definition of Lagrangian transformation
that we can work with. More specifically, in the present situation there is no a
priori bound available for Jacobian of the Lagrangian transformation, as it depends
on the L∞ norm of ∇u. For this reason we replace the velocity by a suitable
smooth approximation uN (which tends to u as N → ∞) in the definition of the
Lagrangian transformation. Thus obtaining an approximate Lagrangian coordinate
given by (3), (2) and with u replaced by uN .
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Although we now have a smoothed Lagrangian coordinate, we lose relation (17
and instead we have

Jy(t) = ρ(0, x)e−
∫ t
0

div uN (s,Φ(s,x))ds. (29)

Accordingly, we have to make a further slight modification to our model. Namely,
instead of taking F as (10) we take it of the form

F = ∇
(
α
Jy
ρ
g′(1/ρ)h(|ψ|2)

)
. (30)

Note that, although vacuum is permitted in our model, the fact that g is com-
pactly supported in (0,∞) clarifies any ambiguity in the definition of F.

As a result we end up with the following system of equations:

ρt + div(ρu) = ε∆ρ, (31)

(ρu)t + div(ρu⊗ u) +∇(aργ + δρβ) + ε∇u · ∇ρ

= ∇(α
Jy
ρ
g′(1/ρ)h(|ψ|2)) + (∇×H)×H + µ∆u + (λ+ µ)∇(divu), (32)

Ht −∇× (u×H) = −∇× (ν∇×H), (33)

div H = 0. (34)

iψt + ∆yψ = |ω|2ψ + αg(v)h′(|ψ|2)ψ, (35)

Regarding this new system, we prove the existence of solutions in any finite
time interval and show the convergence of the approximate solutions when the
artificial viscosity ε together with the interaction coefficients α tend to 0 and as
N → ∞. Then, we make δ tend to zero and show convergence to a solution of
the system formed by the MHD equations together with the decoupled nonlinear
Schrdinger equation. As emphasized before, the proposed approximation scheme
has the purpose to legitimize the coordinates of the limiting Schrdinger equation to
be considered as the Lagrangian coordinates of the fluid in a generalized sense.

Let us remark that our results hold in a smooth bounded open spacial domain
in R2. The only restriction that does not allow us to proceed in the full three
dimensional case comes from the lack of solvability of the nonlinear Schrödinger
equation in this setting. However, assuming this our methods can be adapted to
the three dimensional case.

Also, our result covers large initial data at the price of obtaining only weak
solutions.

REFERENCES

[1] S. N. Antontsev, A. V. Kazhikhov and V. M. Monakhov, Boundary value problems in me-

chanics of nonhomogeneous fluids, Studies in Mathematics and Its Applications, Vol. 22,
North-Holland, Amsterdam, 1990.

[2] D. J. Benney, A general theory for interactions between short and long waves, Studies in

Applied Mathematics, 56 (1977), 81–94.
[3] G.-Q. Chen, The compensated compactness method and the system of isentropic gas dynam-

ics, Lecture Notes, Preprint MSRI-00527-91, Berkeley, October 1990.

[4] G.-Q. Chen, Remarks on DiPerna’s paper: “Convergence of the viscosity method for the
isentropic gas dynamics” [Comm. Math. Phys. 91 (1983), no. 1, 130], Proc. Amer. Math. Soc.

125 (1997), no. 10, 29812986.

[5] G.-Q. Chen and M. Perepelitsa, Vanishing viscosity limit of the Navier-Stokes equations
to the Euler equations for compressible fluid flow, Communications on Pure and Applied

Mathematics, Vol. LXIII (2010) 1469 –1504.

560



DANIEL R. MARROQUIN

[6] G.-Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large
initial data, Journal of Differential Equations 182 (2002) 344376.

[7] J. P. Dias and H. Frid, Short wave-long wave interactions for compressible NavierStokes

equations, SIAM J. Math. Anal., 43 (2011) 764787.
[8] X. X. Ding, G.-Q. Chen, P. Z. Luo, Convergence of the Lax-Friedrichs scheme for isentropic

gas dynamics I, II. Acta Math. Sci., 5 no. 4 (1985) 415432, 433472. Chinese translations: Con-
vergence of the Lax-Friedrichs scheme for the system of equations of isentropic gas dynamics.

I. Acta Math. Sci. (Chinese) 7 (1987), no. 4, 467480. Convergence of the Lax-Friedrichs scheme

for the system of equations of isentropic gas dynamics. II. Acta Math. Sci. (Chinese) 8 (1988),
no. 1, 6194. Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme

for the isentropic system of gas dynamics. Comm. Math. Phys. 121 (1989), no. 1, 6384.

[9] R. J. DiPerna, Convergence of the vanishing viscosity method for isentropic gas dynamics,
Communications in Mathematical Physics, 91 (1983), 1–30.

[10] E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics

and its Applications, vol 26. Oxford University Press, Oxford, 2004.
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Abstract. In these notes we present some recent results concerning the non-

uniqueness of solutions to the transport equation, obtained in collaboration
with Gabriel Sattig and László Székelyhidi in [19, 18, 17].

1. Introduction. These notes concern the problem of (non)uniqueness of solutions
to the transport equation in the periodic setting

∂tρ+ u · ∇ρ = 0, (1)

ρ|t=0 = ρ0 (2)

where ρ : [0, T ]× Td → R is a scalar density, u : [0, T ]× Td → Rd is a given vector
field and Td = Rd/Zd is the d-dimensional flat torus.

Unless otherwise specified, we assume in the following that u ∈ L1 is incompress-
ible, i.e.

div u = 0 (3)

in the sense of distributions. Under this condition, (1) is formally equivalent to the
continuity equation

∂tρ+ div(ρu) = 0. (4)

It is well known that the theory of classical solutions to (1)-(2) is closely connected
to the ordinary differential equation

∂tX(t, x) = u(t,X(t, x)),

X(0, x) = x.
(5)

More precisely, if u is at least Lipschitz continuous, the solution to (1)-(2) is given
by the formula

ρ(t,X(t, x)) = ρ0(x). (6)

There are several PDE models, related, for instance, to fluid dynamics or to the
theory of conservation laws (see for instance [11, 7, 14, 15, 16]), where one has
to deal with vector fields which are not Lipschitz, but have lower regularity and
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therefore it is important to investigate the well-posedness of (1)-(2) in the case of
non-smooth vector fields.

There are several possibilities to state the well-posedness problem for (1)-(2) in
a weak setting; we describe now one possible way. Fix an exponent p ∈ [1,∞] and
denote by p′ its dual Hölder, 1/p + 1/p′ = 1. The following two questions are of
interest.

(a) Do existence and uniqueness of solutions to (1)-(2) hold in the class of densities

ρ ∈ L∞(0, T ;Lp(Td)) =: L∞t L
p
x (7)

for a given vector field

u ∈ L1(0, T ;Lp
′
(Td)) =: L1

tL
p′
x ? (8)

(b) Is the relation (6), which links the PDE (1) to the ODE (5) (or, in other words,
the Eulerian world to the Lagrangian one) still valid, in some weak sense?

Let us briefly comment on the choice of the classes (7)-(8) for the density and the
vector field, respectively. The choice of the class (7) for the density is dictated by
the following consideration. For smooth solutions to (1), every (spatial) Lp norm
remains constant in time. It is therefore natural in the weak setting to look for
densities whose Lp norm, if not constant, at least remains uniformly bounded in
time. Once the class for ρ is fixed, the choice (8) of the class for the vector field u
is as well natural, since in this way the product ρu ∈ L1((0, T )×Td) and hence the
notion of distributional solution to (4) (and thus also to (1)) makes sense.

This is the plan of these notes. In Section 2 we give a brief presentation of some
well-posedness results and some counterexamples to well-posedness which can be
found in the literature. In Section 3 we state the main theorem of these notes,
Theorem 3.1. In Section 4 we make some comments on the proof of Theorem 3.1.

We wish to stress that the aim of these notes is to give an informal presentation
of some recent results concerning non-uniqueness of solutions to the transport equa-
tion. For this reason, we intentionally avoid technicalities, we are quite vague in
many points, many references are missing, and the statement of the main theorem
is not presented in its full generality. For a more detailed discussion, we refer to
[19, 18].

2. Well-posedness for the Cauchy problem in the weak setting. We sketch
in this section a (far from complete) overview of the literature concerning the an-
swers to questions (a) and (b) above.

First of all, we remark that existence of weak solutions in the class (7), for a given
vector field as in (8), is not a serious issue, because of the linearity of the transport
equation. Indeed, to produce a weak solution to (1)-(2), it is enough to regularize
the vector field u and the initial datum ρ0, to solve the regularized smooth problem
and use the uniform bound in L∞t L

p
x to get a weakly converging sequence. By the

linearity of the equation (1), the limit of such sequence is a weak solution to (1)-(2).
The big issue is thus uniqueness of weak solutions and the relation (6) between

Eulerian and Lagrangian world.

2.1. Uniqueness results. The first uniqueness result we mention is the celebrated
theorem by DiPerna and Lions in 1989 [12], when they proved that, if the vector field
u, in addition to the integrability condition (8), enjoys also the Sobolev regularity

u ∈ L1
tW

1,p′
x , (9)
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then uniqueness of solutions holds in the class of densities (7). Let us remark that
Di-Perna and Lions’ Theorem is still true, even when the incompressibility condition
(3) is substituted by the weaker condition

div u ∈ L∞tx . (10)

Di-Perna and Lions’ Theorem was extended in 2004 by Ambrosio [1], where
he proved that, in the class of bounded densities (i.e. p = ∞ in our notation),
uniqueness of solutions holds, if

u ∈ L1
tBVx. (11)

Again, also Ambrosio’s Theorem holds if (3) is replaced by (10).
Very recently, Bianchini and Bonicatto further extended Ambrosio’s unique-

ness result to vector fields which satisfy (11) and are nearly incompressible. We
do not want to enter into details here and to give a precise definition of near-
incompressibility. We only mention that such notion is the natural generalization
of (10), in the framework of BV vector fields.

We add two remarks to this list of results. The first one is the following. The
proofs of the mentioned results are very subtle and involve several deep ideas and
sophisticated techniques. We could however try to summarize the heuristics behind
all of them as follows: (very) roughly speaking, a Sobolev or BV vector field u is
Lipschitz-like (i.e. Du is bounded) on a large set and there is just a small “bad”
set, where Du is very large. On the big set where u is “Lipschitz-like”, the classical
Cauchy-Lipschitz theory applies. Non-uniqueness phenomena could thus occur only
on the small “bad” set. Uniqueness of solutions in the class of bounded densities
(or Lp densities, where p is exactly the dual Hölder to the integrability exponent of
Du, see (9)) is then a consequence of the fact that a bounded (or Lp) density ρ can
not “see” this bad set, or, in other words, can not concentrate on this bad set.

A second interesting remark is that, roughly speaking, whenever uniqueness for
the PDE (1) holds in the class of bounded densities (i.e. p =∞) for a given vector
field u, a uniqueness statement holds (in the sense of regular Lagrangian flow, a
notion we will not introduce in these notes, for a precise definition we refer, for
instance, to [2]) also for the ODE (5) with the same vector field u. This can be
seen, observing that the inverse flow map Φ(t) := X(t)−1 : Td → Td is (at least
in the smooth case) a bounded solution to (1) with (vector valued) initial datum
Φ(0, x) = x.

2.2. Non-uniqueness results. From the analysis in the previous section it follows
that the uniqueness results present in the literature concern vector fields

(a) which enjoy some form of exact or approximate incompressibility (e.g. they
have bounded divergence or they are nearly incompressible);

(b) and which are at least once differentiable (in some weak sense, e.g. they are
Sobolev or BV ).

The counterexamples to uniqueness which can be found in the literature are, in
general, based on the failure of at least one of these two conditions. For instance,
already in the paper [12] by Di-Perna Lions, it is possible to find an example of a
Sobolev vector field with unbounded divergence and another example of an incom-
pressible vector field which belongs to L1

tW
1,s
x for every s < 1, but not to L1

tW
1,1
x ,

for which uniqueness of solutions fails. A further counterexample can be found in
[10] (an incompressible vector field which belongs to L1(ε, T ;BVx) for every ε > 0
but not to L1(0, T ;BVx)).
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Let us also remark that the counterexamples mentioned so far are based on vector
fields for which the associated ODE (5) has a degenerate behavior and therefore the
Eulerian non-uniqueness is a consequence of the Lagrangian one.

3. Statement of the main theorem. We mentioned in the previous section sev-
eral uniqueness and non-uniqueness results and we observed that, in order to have
uniqueness, the vector field u must have some incompressiblity property and must
possess one full spatial derivative. There is however one question we did not answer
so far:

for fixed p ∈ [1,∞), does uniqueness of solutions hold in the class of densities
L∞t L

p
x for a given incompressible u ∈ L1

tW
1,p̃, with p̃ < p′?

Recall that p′ is the dual Hölder exponent to p and thus, if p̃ ≥ p′, then DiPerna-
Lions’ theory [12] guarantees uniqueness of solutions in L∞t L

p
x.

The answer to such question is not trivial at all. There are indeed two competing
mechanisms, one playing for uniqueness, the other one playing against.

On one side, the incompressibility and the Sobolev regularity of u imply unique-
ness in the class of bounded densities (more precisely, in L1

tL
p̃′
x , with p̃′ the dual

Hölder to p̃) and thus, as observed in the previous section, uniqueness of solutions
to the ODE (5) holds, in the sense of the regular Lagrangian flow. The Lagrangian
picture is very well behaved.

On the other side, if “p is too small compared p̃”, it could happen (referring
to the heuristics introduced in the previous section) that “an Lp density does see
the bad set of the W 1,p̃ vector field u” and thus “purely Eulerian” non-uniqueness
phenomena could occur.

The following theorem, which is the main result we present in these notes, pro-
vides an answer to the question asked above.

Theorem 3.1 (M., Sattig, Székelyhidi). Let p ∈ [1,∞), p̃ ∈ [1,∞). If

1

p
+

1

p̃
> 1 +

1

d
, (12)

then there exist infinitely many incompressible vector fields

u ∈ CtLp
′
x ∩ CtW 1,p̃

x

for which uniqueness of solutions to the transport equation (1) fails in the class of
densities ρ ∈ CtLpx. Moreover:

• if p = 1, p′ =∞, then u ∈ C
(
[0, T ]× Td

)
∩ CtW 1,p̃

x ;
• the same result holds if the transport equation (1) is replaced by the transport-

diffusion equation
∂tρ+∇ρ · u = ∆ρ (13)

if, in addition, p′ < d.

Let us add some comments on the statement of Theorem 3.1.

1. The case p = ∞ is not considered. Indeed p = ∞ corresponds to the case
of bounded densities and we have observed in Section 2.1 that, in this case,
uniqueness holds even for BV vector fields.

2. Similarly, also the case p̃ =∞ is not considered. Indeed p̃ =∞ corresponds to
the case of a Lipschtiz continuous vector field u and, in this case, the classical
Cauchy-Lipschitz theory for the ODE (5) provides a solution to (1)-(2), via
the formula (6).
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3. In the case p = 1, p′ = ∞ (which correspond to p̃ < d), the vector fields we
construct are continuous, not only bounded. This shows that, in general, even
the continuity of the vector field, in addition to the incompressibility and the
Sobolev regularity, is not enough to guarantee uniqueness of weak solutions
(compare with the result in [5, 6]).

4. For the vector fields provided by Theorem 3.1, uniqueness for the ODE (5)
holds (in the sense of regular Lagrangian flow): nevertheless, the PDE (1)
displays anomalous behavior. This shows that, for such vector fields, the
relation between the Lagrangian and Eulerian world, summarized in Equation
(6), is completely destroyed. This is even more evident in the case p = 1, where
the vector fields we construct are continuous and thus the trajectories of the
regular Lagrangian flow are classical C1 curves solving (5).

5. In general, for the transport-diffusion equation (13) much stronger uniqueness
results hold than for the transport equation (1). Indeed, the diffusion term ∆ρ
is usually dominating (being the highest order term) and thus its regularizing
effect translates, through the energy estimate, into a uniqueness statement
for (13). On the contrary, for the vector fields provided by Theorem 3.1, the
non-uniqueness generated by the first order term ∇ρ · u is so strong that it
beats even the second order term ∆ρ.

4. Some comments on the proof. We conclude these notes with some comments
on the proof of Theorem 3.1. Referring again to the heuristics introduced in Section
2.1, the basic idea behind the proof of Theorem 3.1 is to “concentrate the density
ρ on the bad set of the vector field u”.

This is done through a convex integration scheme, in the spirit of the papers by
De Lellis, Skékelyhidi and collaborators on the Euler equations (see, in particular,
[9]). More precisely, the linear (in ρ) PDE (4) is treated as a nonlinear PDE with
both ρ and u as unknowns. The density ρ and the field u are constructed as limit
of sequences

ρ = lim
q→∞

ρq, u = lim
q
uq, q ∈ N, (14)

where the limits have to be taken in suitable norms and (ρq, uq) are approximate
solutions to the transport equation, i.e.

∂tρq +∇ρq · uq = Errorq, div uq = 0, (15)

with Errorq converging weakly to zero, as q →∞.
The sequences (ρq)q, (uq)q are constructed recursively: assuming ρq, uq are given,

as a first attempt, one defines

ρq+1 = ρq + aq(t, x)Θ(λqx), uq+1 = uq + bq(t, x)W (λqx). (16)

Here:

• λq ∈ N is an oscillation parameter, with λq →∞ as q →∞;
• Θ : Td → R, W : Td → Rd are fixed smooth profiles, called Mikado density

and Mikado field, in the same spirit of the Mikado flows introduced by Daneri
and Székelyhidi in [8] for the Euler equations; for a precise definition of Θ and
W we refer to the paper [19];

• aq, bq are “slow oscillating” amplitudes, defined at each step in order to reduce
Errorq and to get, in the limit, a solution (ρ, u) to (4).
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As in the framework of the Euler equations, the basic idea of convex integration
is to choose the oscillation parameter λq bigger and bigger along the iteration, and
to use oscillations in order to reduce the error in (15).

The main difference between Theorem 3.1 and the theorems proven in the frame-
work of the Euler equations (e.g. [9, 13, 3]) is the following: in Theorem 3.1 we
want to construct a vector field which is in W 1,p̃

x , i.e. it possesses one full derivative
(in some Lp̃ space), whereas in the framework of the Onsager’s conjecture for the
Euler equations, the aim was to show the existence of anomalous Cγ solutions, for
every γ < 1/3, i.e. solutions which possess “just 1/3 of derivative” (measured in a
sup norm).

How can we thus get such a W 1,p̃ bound? If a scheme as in (16) is used, one
can easily see that problems arise. Indeed, in order to have convergence of Duq in
Lp̃, one should be able to provide a good bound of the distance ‖Duq+1 −Duq‖Lp̃ .
However we have

‖Duq+1 −Duq‖Lp̃ ≈ λq‖bq‖L∞‖DW‖Lp̃ (17)

and the presence of the multiplicative factor λq prevents the convergence of Duq in
Lp̃.

This issue can be solved using a concentration argument, in the same spirit of
what Buckmaster and Vicol did in the framework of the Navier-Stokes equations
in their remarkable recent work [4], using intermittent Beltrami flows. In order to
explain how the concentration argument works, let us think, for the time being, to
the fixed Mikado density Θ and field W as compactly supported functions in Rd (i.e
not as periodic functions). Then we can construct a family of concentrated Mikado
densities and fields, parametrized by a concentration parameter µ > 0 , defined as
a rescaled version of Θ and W , as follows:

Θµ(x) := µαΘ(µx), Wµ(x) = µβW (µx).

It is now not difficult to see that, if (12) is satisfied, then one can choose α, β so
that

‖Θµ‖Lp ≈ 1, ‖Wµ‖Lp′ ≈ 1, (18)

and

‖DWµ‖Lp̃ ≈ µ−c, (19)

for some c > 0, so that ‖DWµ‖Lp̃ → 0, as µ → ∞. In this way, we can produce a
whole family of Mikado fields, which “are not degenerating” as µ → ∞ (i.e. they
remains “of order 1”, in some suitable norm, thanks to (18)), but, at the very same
time, have vanishing derivative, thanks to (19).

We can now modify our Ansatz (16) as follows:

ρq+1 = ρq + aq(t, x)Θµq (λqx), uq+1 = uq + bq(t, x)Wµq (λqx), (20)

where µq is a sequence of real numbers, with µq → ∞ as q → ∞, to be chosen
appropriately. In this way, thanks to (19), the estimate in (17) becomes

‖Duq+1 −Duq‖Lp̃ ≈ λq‖bq‖L∞‖DWµq‖Lp̃ . ‖bq‖L∞λqµ
−c
q ,

and thus, if µq is chosen much bigger than λq, the distance ‖Duq+1 −Duq‖Lp̃ can
be made arbitrarily small, thus getting convergence of uq in W 1,p̃ and hence proving
Theorem 3.1.
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solutions of the Euler equations, Arch. Rational Mech. Anal., 224(2) (2017), 471–514.
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Abstract. We consider the short-time existence and nonlinear stability of
vortex sheets for the nonisentropic compressible Euler equations in two spatial

dimensions, based on the weakly linear stability result of Morando–Trebeschi

[16]. The content of this paper summarizes the results collected in Morando–
Trebeschi–Wang [18].

1. Introduction. We study compressible Euler equations in R2:



(∂t + u · ∇)p+ γp∇ · u = 0,

ρ(∂t + u · ∇)u+∇p = 0,

(∂t + u · ∇)s = 0,

(1)

where pressure p = p(t, x) ∈ R, velocity u = (v(t, x), u(t, x))T ∈ R2, and entropy
s = s(t, x) ∈ R are unknown functions of time t and position x = (x1, x2)T ∈ R2.
We consider a polytropic gas, where the density ρ obeys the constitutive law ρ =

ρ(p, s) := Ap
1
γ e−

s
γ , with given A > 0 and γ > 1 the adiabatic exponent of the gas.

According to Lax [12], a weak solution (p,u, s) of (1) that is smooth on either
side of a smooth surface Γ(t) := {x2 = ϕ(t, x1)} is said to be a vortex sheet (even
called contact discontinuity) provided that it is a classical solution to (1) on each
side of Γ(t) and the following Rankine–Hugoniot conditions hold at each point of
Γ(t):

∂tϕ = u+ · ν = u− · ν, p+ = p−. (2)

Here ν := (−∂x1ϕ, 1)T is a spatial normal vector to Γ(t) and u±, p±, s± denote
the restrictions of u, p, s to both sides {±(x2 − ϕ(t, x1)) > 0} of Γ(t), respectively.
These conditions yield that the normal velocity and pressure are continuous across
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Γ(t). Hence the possible jumps displayed by a vortex sheet concern the tangential
velocity and entropy. Remark also that the first two identities in (2) are the eikonal
equations ∂tϕ+λ2(p±,u±, s±, ∂x1

ϕ) = 0, where λ2(p,u, s, ξ) := u ·(ξ,−1)T denotes
the second characteristic field of system (1).

We are interested in the structural stability of vortex sheets to nonisentropic
compressible Euler equations (1) with the initial data being a perturbation of planar
vortex sheets:

(p̄,±v̄, 0, s̄±)T in ± x2 > 0, (3)

where p̄ > 0, v̄ > 0, s̄± are constants.
The interface Γ(t) (namely, function ϕ) is a part of unknowns of nonlinear prob-

lem (1)–(2). The usual approach consists of straightening unknown interface Γ(t)
by a suitable change of coordinates in R3, in order to reformulate the free boundary
problem in a fixed domain. Precisely, unknowns (p,u, s) are replaced by functions

(p±] ,u
±
] , s
±
] )(t, x1, x2) := (p±,u±, s±)(t, x1,Φ

±(t, x1, x2)),

where Φ± are smooth functions satisfying

Φ±(t, x1, 0) = ϕ(t, x1) and ± ∂x2
Φ±(t, x1, x2) ≥ κ > 0 if x2 ≥ 0. (4)

Hereafter we drop the ] index and set U := (p, v, u, s)T for convenience. Then the
construction of vortex sheets for system (1) amounts to proving the existence of
smooth solutions (U±,Φ±) to the following initial-boundary value problem:

L(U±,Φ±) := L(U±,Φ±)U± = 0 if x2 > 0, (5a)

B(U+, U−, ϕ) = 0 if x2 = 0, (5b)

(U±, ϕ)|t=0 = (U±0 , ϕ0), (5c)

where the differential operator L(U,Φ) takes the form:

L(U,Φ) := I4∂t +A1(U)∂x1
+ Ã2(U,Φ)∂x2

, (6)

symbol I4 is the 4× 4 identity matrix,

Ã2(U,Φ) :=
1

∂x2
Φ

(A2(U)− ∂tΦI4 − ∂x1ΦA1(U)) ,

A1(U) :=




v γp 0 0
1/ρ v 0 0
0 0 v 0
0 0 0 v


 , A2(U) :=




u 0 γp 0
0 u 0 0

1/ρ 0 u 0
0 0 0 u


 ,

and B denotes the boundary operator

B(U+, U−, ϕ) :=




(v+ − v−)|x2=0∂x1ϕ− (u+ − u−)|x2=0

∂tϕ+ v+|x2=0∂x1
ϕ− u+|x2=0

(p+ − p−)|x2=0


 .

Since equations (4)–(5) are not enough to determine functions Φ±, we require, as in
Francheteau–Métivier [9], that functions Φ± satisfy the following eikonal equations:

∂tΦ
± + λ2(p±,u±, s±, ∂x1

Φ±) = 0 if x2 ≥ 0. (7)

This choice of Φ± has the advantage to considerably simplify the expression of
equations (5a). More importantly, the rank of the boundary matrix for problem (5)
keeps constant on the whole domain {x2 ≥ 0}, which allows the application of the
Kreiss symmetrizer technique to problem (5) in the spirit of Majda–Osher [13].
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In the new variables, piecewise constant state (3) corresponds to the trivial so-
lution of (4)–(5b) and (7)

U± = (p̄,±v̄, 0, s̄±)T, Φ±(t, x1, x2) = ±x2, (8)

with p̄ > 0 and v̄ > 0. Let us denote by c̄± = c(p̄, s̄±) the sound speeds corre-

sponding to the constant states U±, where c(p, s) :=
√
pρ(ρ, s) =

√
γes/γ

Ap
1
γ−1

for the

polytropic gas.
We aim to show the short-time existence of solutions to nonlinear problem (4)–

(5) and (7) provided the initial data is sufficiently close to (8). Our main result is
stated as follows.

Theorem 1.1. Let T > 0 and µ ∈ N with µ ≥ 13. Assume that background state
(8) satisfies the stability conditions:

2v̄ > (c̄
2
3
+ + c̄

2
3
−)

3
2 , 2v̄ 6=

√
2(c̄+ + c̄−). (9)

Assume further that the initial data U±0 and ϕ0 satisfy suitable compatibility condi-

tions up to order µ1, and (U±0 −U±, ϕ0) ∈ Hµ+1/2(R2
+)×Hµ+1(R) has compact sup-

port. Then there exists δ > 0 such that, if ‖U±0 −U±‖Hµ+1/2(R2
+) +‖ϕ0‖Hµ+1(R) ≤ δ,

then there exists a solution (U±,Φ±, ϕ) of (4)–(5) and (7) on the time interval
[0, T ] satisfying

(U± − U±,Φ± − Φ±) ∈ Hµ−7((0, T )× R2
+), ϕ ∈ Hµ−6((0, T )× R).

Compressible vortex sheets, along with shocks and rarefaction waves, are funda-
mental waves that play an important role in the study of general entropy solutions
to multidimensional hyperbolic systems of conservation laws. It was observed long
time ago in [14] (cf. Coulombel–Morando [5] for using only algebraic tools) that for
two-dimensional nonisentropic Euler equations (1), piecewise constant vortex sheets
(8) are violently unstable unless the following stability criterion is satisfied:

2v̄ ≥ (c̄
2
3
+ + c̄

2
3
−)

3
2 , (10)

while they are linearly stable under this condition. In the seminal work of Coulombel
and Secchi [7], building on their linear stability results in [6], the short-time exis-
tence and nonlinear stability of compressible vortex sheets are established for the
two-dimensional isentropic case under condition (10) (as a strict inequality) by
performing a modified Nash–Moser iteration scheme. These results were recently
generalized by Chen–Secchi–Wang [3] to cover the relativistic case. Let us also
quote the recent works by Huang–Wang–Yuan [11] and Ruan–Trakhinin [20] for
similar results in the case of two-phase compressible flows.

As for three-dimensional gas dynamics, vortex sheets have been showed in Fejer–
Miles [8] to be always violently unstable, which is analogous to the Kelvin–Helmholtz
instability for incompressible fluids. In contrast, Chen–Wang [2] and Trakhinin [22]
proved independently the nonlinear stability of compressible current-vortex sheets
for three-dimensional compressible magnetohydrodynamics (MHD). This result in-
dicates that non-paralleled magnetic fields stabilize the motion of three-dimensional
compressible vortex sheets.

1For the precise definition of compatibility conditions of the initial data, see [18, Definition

4.1].
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Extending the results in [6], the first two authors obtained in [16] the L2–
estimates for the linearized problems of (4)–(5) and (7) around background state
(8) under condition (10) (as a strict inequality), and that around a small perturba-
tion of (8) under (9). In the present paper we summarize the result obtained in [18]
about structural nonlinear stability of two-dimensional nonisentropic vortex sheets,
obtained by adopting the Nash–Moser iteration scheme developed in [10, 7] and
already successfully applied to the plasma-vacuum interface problem [21], three-
dimensional compressible steady flows [23] and MHD contact discontinuities [15].

It is worth noting that in the statement of Theorem 1.1, the inequality 2v̄ 6=√
2(c̄++c̄−) is required in addition to stability condition (10) (with strict inequality).

This is due to the fact that the linearized problem about piecewise constant basic
state (8), with v̄ taking the critical value above, satisfies an a priori estimate with
additional loss of regularity from the data, which is related to the presence of a
double root of the associated Lopatinskĭı determinant (see [16, Theorem 3.1]). At
the subsequent level of variable coefficient linearized problem about a perturbation
of (8), the authors in [16] were not able to handle this further loss of regularity, thus

the case of v̄ = (c̄+ + c̄−)/
√

2 is still open. Notice also that in the isentropic case

(where c̄+ = c̄− = c̄), value (c̄
2
3
+ + c̄

2
3
−)

3
2 coincides with

√
2(c̄+ + c̄−) and condition

(9) reduces to the supersonic condition v̄ >
√

2c̄ studied in Coulombel–Secchi [7].
The plan of this paper is as follows. In Section 2, we introduce the effective

linear problem and state the result of well-posedness, in usual Sobolev space Hs

with s large enough, obtained for it. Section 3 is devoted to a short discussion of
the modified Nash–Moser iteration scheme used to prove Theorem 1.1, based on the
a priori tame estimates satisfied by the solution to the linearized problem.

2. Well-Posedness of the Effective Linear Problem. A fundamental step to
get the solvability of the nonlinear problem (4)–(5) and (7) is the study of the well-
posedness of the corresponding linearized problem. We linearize (4)–(5) and (7)
around a basic state (Ur,l,Φr,l) := (pr,l, vr,l, ur,l, sr,l,Φr,l)

T given by a perturbation
of the stationary solution (8). The index r (resp. l) denotes the state on the right
(resp. on the left) of the interface (after change of variables). More precisely, the
perturbation

(U̇r,l(t, x1, x2), Φ̇r,l(t, x1, x2)) := (Ur,l(t, x1, x2),Φr,l(t, x1, x2))− (U±,Φ±)

is assumed to satisfy

supp
(
U̇r,l, Φ̇r,l

)
⊂ {−T ≤ t ≤ 2T, x2 ≥ 0, |x| ≤ R}, (11)

U̇r,l ∈W 2,∞(Ω), Φ̇r,l ∈W 3,∞(Ω),
∥∥U̇r,l

∥∥
W 2,∞(Ω)

+
∥∥Φ̇r,l

∥∥
W 3,∞(Ω)

≤ K, (12)

where T , R, and K are positive constants and Ω denotes the half-space {(t, x1, x2) ∈
R3 : x2 > 0}. Moreover, we assume that (U̇r,l, Φ̇r,l) satisfies constraints (4), (7),
and Rankine–Hugoniot conditions (5b), that is,

∂tΦr,l + vr,l∂x1
Φr,l − ur,l = 0 if x2 ≥ 0, (13a)

± ∂x2Φr,l ≥ κ0 > 0 if x2 ≥ 0, (13b)

Φr = Φl = ϕ if x2 = 0, (13c)

B
(
Ur, Ul, ϕ

)
= 0 if x2 = 0, (13d)

for a suitable positive constant κ0.
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2-D NONISENTROPIC VORTEX SHEETS

Let us consider solutions to (4)–(5) and (7) of the form (Ur,l + εV ±,Φr,l + εΨ±),
where (V ±,Ψ±) represent some “small perturbations” of the basic state (Ur,l,Φr,l).
Up to second order errors and after the passage to the “good unknowns” of Alinhac
(cf. [1])

V̇ + := V + − Ψ+

∂x2
Φr
∂x2

Ur, V̇ − := V − − Ψ−

∂x2
Φl
∂x2

Ul (14)

(made in order to get rid of first order terms in Ψ± originating from linearization),
the effective linearized problem of (4)–(5) and (7) around the ground state (Ur,l,Φr,l)
reads as

L′e(Ur,l,Φr,l)V̇ ± := L(Ur,l,Φr,l)V̇
± + C(Ur,l,Φr,l)V̇ ± = f± if x2 > 0, (15a)

B′e(Ur,l,Φr,l)(V̇, ψ) := b∇t,x1ψ + b]ψ +MV̇ |x2=0 = g if x2 = 0, (15b)

Ψ+ = Ψ− = ψ if x2 = 0 . (15c)

In view of the results obtained in [1, 9, 7], zero-th order terms in Ψ± are neglected
in (15a) and considered as error terms at each Nash–Moser iteration step in the

nonlinear analysis. Here we have set V̇ := (V̇ +, V̇ −)T, ∇t,x1ψ = (∂tψ, ∂x1ψ)T.
Moreover, differential operators L(Ur,l,Φr,l) are defined in (6), while C(Ur,l,Φr,l)
are suitable lower order operators, whose explicit form can be easily computed but
is useless for the sequel of our discussion. Coefficients b, b], and M are defined by

b(t, x1) :=




0 (vr − vl)|x2=0

1 vr|x2=0

0 0


 , b](t, x1) := M(t, x1)




∂x2
Ur

∂x2Φr
∂x2Ul
∂x2

Φl




∣∣∣∣∣∣∣∣
x2=0

,

M(t, x1) :=




0 ∂x1
ϕ −1 0 0 −∂x1

ϕ 1 0
0 ∂x1

ϕ −1 0 0 0 0 0
1 0 0 0 −1 0 0 0


 .

From (12), b,M ∈ W 2,∞(R2), b] ∈ W 1,∞(R2), C(Ur,l,Φr,l) ∈ W 1,∞(Ω), and the
coefficients of the operators L(Ur,l,Φr,l) are in W 2,∞(Ω).

We observe that linearized boundary conditions (15b) depend on the traces of V̇ ±

only through the noncharacteristic components P(ϕ)V̇
±

:= (V̇ ±1 , V̇ ±3 − ∂x1ϕ V̇
±
2 )T

of V̇ ±, as it is expected, because the boundary {x2 = 0} is characteristic for problem
(15) in view of (13a).

On the effective linear problem (15), we are able to show the following well-
posedness result in the usual Sobolev space Hs with order s large enough (see [18]).

Theorem 2.1. Let T > 0 and s ∈ [3, α̃] ∩ N with any integer α̃ ≥ 3. Assume that

the stationary solution (8) satisfies (9), and that perturbations (U̇r,l, Φ̇r,l) belong to
Hs+3
γ (ΩT ) for all γ ≥ 1 and satisfy (11)–(13), and

‖(U̇r,l,∇Φ̇r,l)‖H5
γ(ΩT ) + ‖(U̇r,l, ∂x2

U̇r,l,∇Φ̇r,l)|x2=0‖H4
γ(ωT ) ≤ K.

Assume further that (f±, g) ∈ Hs+1(ΩT )×Hs+1(ωT ) vanish in the past. Then there
exists a positive constant K0, which is independent of s and T , and there exist two
constants C > 0 and γ ≥ 1, which depend solely on K0, such that, if K ≤ K0, then
problem (15) admits a unique solution (V̇ ±, ψ) ∈ Hs(ΩT )×Hs+1(ωT ) that vanishes
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in the past and obeys the following tame estimate:

‖V̇ ‖Hsγ(ΩT ) + ‖P(ϕ)V̇ |x2=0‖Hsγ(ωT ) + ‖ψ‖Hs+1
γ (ωT )

≤ C
{
‖f‖Hs+1

γ (ΩT ) + ‖g‖Hs+1
γ (ωT )

+
(
‖f‖H4

γ(ΩT ) + ‖g‖H4
γ(ωT )

)
‖(U̇r,l, Φ̇r,l)‖Hs+3

γ (ΩT )

}
, (16)

where V̇ := (V̇ +, V̇ −), P(ϕ)V̇ := (P(ϕ)V̇ +,P(ϕ)V̇ −), f := (f+, f−).

In the above statement, we have set ΩT := (−∞, T )×R2
+, ωT := (−∞, T )×R '

∂ΩT for any real number T . Moreover, the functional spaces (and related norms)
involved above are an “exponentially weighted” version of usual Sobolev spaces on
ΩT and ωT , defined for all k ∈ N and γ ≥ 1 as

Hk
γ (ΩT ) :=

{
u ∈ D′(ΩT ) : e−γtu ∈ Hk(ΩT )

}
,

provided with the natural norm ‖u‖Hkγ (ΩT ) := ‖e−γtu‖Hk(ΩT ) (and similarly for

Hk
γ (ωT )). Since the most of functions we are dealing with have double ± states,

in (16) we have used the shortcut notation ‖V̇ ‖Hsγ(ΩT ) :=
∑
± ‖V̇ ±‖Hsγ(ΩT ) and

similarly for the other terms in the estimate.
Let us shortly discuss the main steps of the proof of Theorem 2.1. The first

two authors proved in [16, Theorem 4.1], by spectral analysis based on Kreiss sym-
metrizer techniques and paradifferential calculus, that problem (15) satisfies a basic
L2–a priori estimate with a loss of one tangential derivative. Then, in [18] we de-
fined a dual problem for (15), to which we were able to associate the same kind of
L2–a priori estimate with a loss of one tangential derivative. Since system (15a) is
symmetrizable hyperbolic and in view of the regularity of coefficients coming from
(12), the well-posedness result in L2 of [4] can be applied to the effective linear
problem (15), giving the existence of a unique L2−solution of (15). In order to get
well-posedness in higher order Sobolev spaces, as it is required by Theorem 2.1, the
essential point is deriving the a priori tame estimate (16) for all sufficiently smooth
solutions to (15). We first obtain the estimate for tangential derivatives. Since the
boundary matrix for our problem (15) is singular, there is no hope to estimate all

the normal derivatives of V̇ directly from equations (15a) by applying the standard
approach for noncharacteristic boundary problems as in [19, 17]. However, for our
problem (15), we can obtain the estimate of missing normal derivatives through the
equations of the “linearized vorticity” and entropy, where the linearized vorticity
has been introduced in [7]. Then, we estimate such normal derivatives by expressing
them in terms of tangential derivatives and the linearized vorticity.

Let us notice, in the end, that, according to the loss of regularity from the data
in the basic L2−a priori estimate found in [16], the tame estimate (16) displays a
loss of one derivative from data to the found solution. Moreover there is also a fixed
loss of three derivatives from the coefficients of the system, namely the basic state
(U̇r,l, Φ̇r,l).

3. The Nolinear Problem: Nash–Moser Iteration Scheme. In this section
we turn to the resolution of the original nonlinear problem (4)–(5) and (7). Let us
only sketch the idea of the proof of the main Theorem 1.1, referring to [18] for the
details.

In order to reduce the original problem (4)–(5) and (7) into a nonlinear one with
zero initial data, it is first convenient to seek the solution of (4)–(5) and (7) into
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the form

(Ua±,Φa±, ϕa) + (V ±,Ψ±, ψ) ,

where (Ua±,Φa±, ϕa) (with Φa±|x2=0 = ϕa) is the so-called approximate solution,
that is a solution of above problem in the sense of Taylor’s series at time t = 0.
Suitable necessary compatibility conditions of sufficiently large order have to be
prescribed on the initial data (U±0 , ϕ0) for the existence of such a sufficiently smooth
approximate solution, see [18, Section 4].

Because of the loss of regularity from data and coefficients to the solution of the
linearized problem, occurring in Theorem 2.1, we cannot hope to solve the nonlinear
problem by resorting to an iteration scheme based on classical contraction principle.
Instead, the Nash–Moser scheme turns out to be adapted to our situation, because
it allows to handle the above loss of regularity.

As already announced in the end of Section 1, the solution (V ±,Ψ±, ψ) of the
nonlinear problem with zero initial data is found as the limit of a sequence of
solutions (V ±k ,Ψ

±
k , ψk) coming from the resolution of “approximating” linearized

problems, constructed by performing an iteration scheme based on a Nash–Moser
type argument. At the (k+ 1)−th iteration of the scheme, the updated approxima-
tion (V ±k+1,Ψ

±
k+1, ψk+1) is constructed from the approximation at previous step k

as

V ±k+1 = V ±k + δV ±k , Ψ±k+1 = Ψ±k + δΨ±k , ψk+1 = ψk + δψk,

where the differences δVk, δΨk, and δψk are obtained from the resolution of the
effective linear problem of kind (15)





L′e(Ua + Vk+1/2,Φ
a + Ψk+1/2)δV̇k = fk in ΩT ,

B′e(Ua + Vk+1/2,Φ
a + Ψk+1/2)(δV̇k, δψk) = gk on ωT ,

(δV̇k, δψk) = 0 for t < 0,

(17)

where, for simplicity, we have removed the ± superscripts,

δV̇k := δVk −
∂x2

(Ua + Vk+1/2)

∂x2
(Φa + Ψk+1/2)

δΨk

is the “good unknown” (cf. (14)), and (Vk+1/2,Ψk+1/2) is a suitable “modification”

of the approximating state at k−th step (V ±k ,Ψ
±
k ), costructed in such a way to

compensate the loss of regularity from the coefficients and the data to the solution
of the linearized problem and such that the basic state (Ua + Vk+1/2,Φ

a + Ψk+1/2)
involved in (17) satisfies all the assumptions needed in order to solve the linearized
problem according to Theorem 2.1, that is constraints (11)–(13). The source terms
(fk, gk) are defined through the accumulated errors at step k. In order to get
convergence of the Nash–Moser scheme, so as to obtain (V ±,Ψ±, ψ) passing to the
limit in the sequence (V ±k ,Ψ

±
k , ψk), such accumulated errors have to converge to

zero in the right functional space, which is proved in [18, Section 5.3].
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[10] L. Hörmander, The boundary problems of physical geodesy, Arch. Ration. Mech. Anal., 62

(1976), 1–52.
[11] F. Huang, D. Wang and D. Yuan, Nonlinear stability and existence of vortex sheets for inviscid

liquid-gas two-phase flow, Discrete Contin. Dyn. Syst., 39 (2019), 3535–3575.

[12] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10 (1957),
537–566.

[13] A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uni-
formly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607–675.

[14] J. W. Miles, On the disturbed motion of a plane vortex sheet, J. Fluid Mech., 4 (1958),

538–552.
[15] A. Morando, Y. Trakhinin and P. Trebeschi, Local existence of MHD contact discontinuities,

Arch. Ration. Mech. Anal., 228 (2018), 691–742.

[16] A. Morando and P. Trebeschi, Two-dimensional vortex sheets for the nonisentropic Euler
equations: linear stability, J. Hyper. Diff. Eqs., 5 (2008), 487–518.

[17] A. Morando and P. Trebeschi, Weakly well posed hyperbolic initial-boundary value problems

with non characteristic boundary, Methods Appl. Anal., 20 (2013), 1–31.
[18] A. Morando, P. Trebeschi and T. Wang, Two-dimensional vortex sheets for the nonisentropic

Euler equations: Nonlinear stability, J. Differential Equations, 266 (2019), 5397–5430.

[19] J. B. Rauch and F. J. Massey III, Differentiability of solutions to hyperbolic initial-boundary
value problems, Trans. Amer. Math. Soc., 189 (1974), 303–318.

[20] L. Ruan, Y. Trakhinin, Elementary symmetrization of inviscid two-fluid flow equations giving
a number of instant results, Phys. D, 391 (2019), 66–71.

[21] P. Secchi and Y. Trakhinin, Well-posedness of the plasma-vacuum interface problem, Nonlin-

earity, 27 (2014), 105–169.
[22] Y. Trakhinin, The existence of current-vortex sheets in ideal compressible magnetohydrody-

namics, Arch. Ration. Mech. Anal., 191 (2009), 245–310.

[23] Y.-G. Wang and F. Yu, Structural stability of supersonic contact discontinuities in three-
dimensional compressible steady flows, SIAM J. Math. Anal., 47 (2015), 1291–1329.

E-mail address: alessandro.morando@unibs.it

E-mail address: paola.trebeschi@unibs.it

E-mail address: tao.wang@whu.edu.cn

576



SPHERICALLY SYMMETRIC SHADOW WAVE SOLUTIONS TO

THE COMPRESSIBLE EULER SYSTEM AT THE ORIGIN

Marko Nedeljkov∗

Department of of Mathematics and Informatics, University of Novi Sad

Trg Dositeja Obradovića 4
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Abstract. The paper contains sufficient conditions for the existence of a delta
wave at the origin for spherically symmetric flows for the compressible Euler

system. The delta wave at the origin is constructed by means of the concept
of shadow waves. Its existence would entail the possibility that an incoming

wave produces a mass concentration at the origin. Conditions on an incoming

wave to result in reflection or accumulation at the origin are still unknown in
the case of the Euler system.

1. Introduction. The behavior of spherically symmetric solutions to the Euler
system of compressible gas dynamics

ρt +∇ · (ρ~u) = 0

(ρ~u)t +∇ · (ρ~u⊗ ~u) +∇p (ρ, e) = 0
(
ρe+

1

2
ρ |~u|2

)

t

+∇ ·
((

ρe+
1

2
ρ |~u|2

)
~u+ p (ρ, e) ~u

)
= 0

(1)

near the origin has been addressed by various authors. For example, [1] has given
conditions for the existence of globally bounded (weak) solutions, while [4, 5] have
constructed possibly unbounded self-similar solutions. For further references we
recommend the quoted papers. As pointed out in [2], it appears to be an open
question whether an incoming shock, starting at some |~x| = R is always reflected at
the origin |~x| = 0 or whether it can be (partially) absorbed in form of an additional
delta wave at the origin due to mass concentration.

In this article, we are exploring this possibility using the concept of “shadow
waves” [6] to approximate a possible delta shock. We are going to derive gen-
eral conditions for such a shadow wave (SDW) to exist at the origin. We derive
admissibility conditions to be met by such a shadow wave in order to satisfy the
Clausius-Duhem entropy inequality weakly. The goal of the paper is to collect a
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number of necessary and sufficient conditions for the existence of admissible SDWs.
Whether such SDWs can be employed to construct global solutions, given any or
certain incident waves, remains a topic of further research. In an earlier paper
[7], the authors have completely solved the pseudo-Riemann problem for radially
symmetric solutions to the system of pressureless gas dynamics. The existence of
solutions with an accumulating Dirac measure part at the origin has been exhibited
there.

In polar coordinates, r = |~x|, spherically symmetric solutions are of the form

ρ(~x, t) = ρ(r, t), e(~x, t) = e(r, t), ~u(~x, t) = u(r, t)
~x

|~x| .

In these variables, the system (1) reduces to the following 1D-system of balance
laws

ρt + (ρu)r +
n− 1

r
(ρu) = 0

(ρu)t +
(
ρu2 + p (ρ, e)

)
r

+
n− 1

r
ρu2 = 0

(
1

2
ρu2 + ρe

)

t

+

((
1

2
ρu2 + ρe

)
u+ p (ρ, e)u

)

r

+
n− 1

r

((
1

2
ρu2 + ρe

)
u+ p (ρ, e)u

)
= 0.

(2)

Note that the scalar velocity u may take non-negative and negative values. The
density ρ and the internal energy e are always non-negative scalar functions. We
shall also make use of the variables

~m = ρ~u, m = ρu.

The ideal gas here is taken to be a polytropic one, i.e.

p = kρe, k ∈ (0, 2).

The real (physical) entropy for the compressible Euler system is given, for a poly-
tropic gas, by

S = cv ln
( p

ρk+1

)
+ c0 or S = cv ln

(ke
ρk

)
+ c0.

The Clausius-Duhem inequality requires that

∂t(ρS) +∇ · (~mS) ≥ 0, (3)

and any physically relevant solution should satisfy that condition.

2. Shadow wave at the origin. Assume given an incoming wave that starts at
r = R > 0 of the form

U(r, t) =

{
Us,0 = (ρs,0, us,0, es,0), r < c(t) +R

Us,1 = (ρs,1, us,1, es,1), r > c(t) +R.
(4)

We will look for a solution after the above wave reaches the origin, i.e., when c(T )+
R = 0 for some T . This results in a new initial value problem, a so called “incident
problem”. One can restart the time so T becomes zero, and look for a SDW at
the origin followed by a wave connecting the right-hand side Us,1 = (ρs,1, us,1, es,1)
of the incoming wave. That new state will be denoted by U1 = (ρ1, u1, e1) and it
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starts from the fixed boundary r = εt. The boundary with Us,1 is unknown. More
precisely, we are looking for an approximate solution of the form

U(r, t) =





Uε(t), r < εt

U1(r, t), εt < r < C1(t)

Us,1(r, t), r > C1(t).

(5)

The SDW part is captured in Uε. The existence or non-existence of such a solution
will give an answer to the question what mass stays at the origin. If it accumulates,
the SDW will have a positive strength and if not, the SDW will have negligible
strength, i.e., its strength will converge to zero.

We will take n = 3 in the following calculations, but all other dimensions can be
done in the same way. The value of Uε does not depend on the space variable ~x
because the wave represented by (5) moves only infinitesimally around the origin.
Note that we have to use the original 3D+1 (~x, t)-variables in the subsequent deriva-
tions instead of the simplified 1D+1 radial variables (r, t) because we are looking
for a solution near the origin and the spherical coordinates are singular there. The
obtained SDW and its relations with U1(εt, t) will be taken as boundary conditions
at r = 0.

Denote by S : |~x| − εt = 0 the front of the SDW defined in (5). Its unit normal
ν = (~νx, νt) is then determined by

~νx =
~x

|~x|
√

1 + ε2
, νt = − ε√

1 + ε2
.

2.1. The first equation. As noted above, the following calculations are done in
a region near the origin, so we have to use Cartesian coordinates. Spherically
symmetry of the vector-valued quantities is captured in our notation by setting

~m(~x, t) = m(r, t) ~ω, ~ω =
~x

|~x|
and similarly for ~m1(~x, t) and ~mε(t). The volume and surface elements will be
denoted by dV and dS, respectively.

Substitution of (5) into the first equation of (1) gives

−
∫ ∞

0

∫

R3

ρ∂tϕ+ ~m · ∇ϕdV dt

=−
∫ ∞

0

∫

|~x|<εt
ρε∂tϕ+ ~mε · ∇ϕdV dt−

∫ ∞

0

∫

|~x|>εt
ρ1∂tϕ+ ~m1 · ∇ϕdV dt

=

∫ ∞

0

∫

|~x|<εt
∂tρεϕdV dt

︸ ︷︷ ︸
=:I1

+

∫ ∞

0

∫

|~x|=εt
(ρ1 − ρε)νtϕdSdt

︸ ︷︷ ︸
=:I2

+

∫ ∞

0

∫

|~x|=εt
(~m1 − ~mε) · ~νxϕdSdt

︸ ︷︷ ︸
=:I3

+

∫ ∞

0

∫

|~x|>εt
∂tρ1ϕdV dt+

∫ ∞

0

∫

|~x|>εt
∇ · ~m1ϕdV dt

︸ ︷︷ ︸
=0

= 0,

(6)
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where we have used that ρ = ρ1 and ~m = ~m1 are solutions of the first equation
for |~x| > εt in the last term above and that ~mε does not depend on ~x. Let us now
estimate the above integrals. The volume of the ball Br(0) equals 4πr3/3 and its
surface area is 4πr2.

In order to be able to model a finite, nonzero mass inside the shadow wave, I1
should neither be zero nor divergent as ε → 0. This means that ∂tρε should be of
the order O(ε−3). To guarantee this, we make the following assumption.

Assumption (A1): ρε(t) = ξ(t)ε−3 for some smooth function ξ(t).

Under assmption (A1),

I1 =

∫ ∞

0

∫

|~x|<εt
∂tξ(t)ε

−3(ϕ(0, t) +∇ϕ(0, t) · ~x) dV dt+O(ε)

≈4π

3

∫ ∞

0

t3ξ′(t)ϕ(0, t)dt.

Here we have used that∣∣∣∣∣

∫

|~x|<εt
∇ϕ(0, t) · ~x dV

∣∣∣∣∣ ≤
∫

|~x|<εt
|∇ϕ(0, t) · ~x| dV ≤

∫

|~x|<εt
|∇ϕ(0, t)| εt dV ≈ ε4.

Using that νt ≈ −ε,

I2 ≈− 4π

∫ ∞

0

∫

|~x|=εt

(
ρ1(εt, t)− ξ(t)ε−3

)
(ϕ(0, t) + εt∇ϕ(0, t) · ~ω)ε dSdt

≈− 4π

∫ ∞

0

(
ρ1(εt, t)− ξ(t)ε−3

)
ε3t2ϕ(0, t)dt.

Concerning I3, we observe that the term (~m1 − ~mε) has to be of the order at most
O(ε−2). Otherwise,

I3 ≈
∫ ∞

0

∫

|~x|=εt

((
~m1(εt, t)− ~mε(t)

)
· ~νx(ϕ(0, t) + εt∇ϕ(0, t) · ~ω

)
dSdt

would diverge.

Assumption (A2): The difference ∆mε(t) = m1(εt, t)−mε(t) = O(ε−2) as ε→ 0,
uniformly for t in compact subsets of (0,∞).

Using that ~m1 = m1~ω, ~mε = mε~ω and ~ω · ~νx = 1/
√

1 + ε2, we arrive at

I3 ≈ 4π

∫ ∞

0

∆mε(t)ε
2t2ϕ(0, t) dt+O(ε).

Under the assumptions above, only the terms involving ϕ(0, t) in the integrals sur-
vive as ε→ 0. This yields the following differential equation:

t

3
ξ′(t) + ξ(t)− lim

ε→0

(
ε3ρ1(εt, t)− ε2∆mε(t)

)
= 0. (7)

or
t

3
ξ′(t) + ξ(t)− lim

ε→0

(
ε3ρ1(εt, t)− ε2ρ1(εt, t)u1(εt, t) + ξ(t)ε−1uε(t)

)
= 0. (8)

In order to separate the waves further, we suppose a specific form for uε(t):
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Assumption (A3): uε(t) = χ(t)εα for some α ≥ 1 and some smooth function χ(t).

It follows that

mε(t) = ρε(t)uε(t) = ξ(t)χ(t)εα−3

where α− 3 ≥ −2. In particular, assumption (A2) holds provided

m1(εt, t) = ρ1(εt, t)u1(εt, t) = O(ε−2) (9)

as ε→ 0. Note that conversely, assumptions (A1) and (A2) together imply (9).

Proposition 1. Let assumptions (A1), (A2) and (A3) hold. A shadow wave of
the form (5) satisfies the first equation (conservation of mass) of system (2) in the
weak limit as ε→ 0 if and only if

(a) in case α = 1

t

3
ξ′(t) + ξ(t)(1− χ(t)) = lim

ε→0

(
ε3ρ1(εt, t) + ε2ρ1(εt, t)u1(εt, t)

)
; (10)

(b) in case α > 1

t

3
ξ′(t) + ξ(t) = lim

ε→0

(
ε3ρ1(εt, t) + ε2ρ1(εt, t)u1(εt, t)

)
. (11)

Remark 1. A physically reasonable assumption is that ρ1(r, t) is integrable near
r = 0, i.e., ρ1(r, t) = O(ra) with a > −3. (This assumption will be explicitly made
later in (A6); see also conditions given in [3].) Then the first limit on the right-hand
side of (10) or (11) is zero, and the existence (and the value) of the limit depends
only on the behavior of u1(r, t) near r = 0.

2.2. The second set of equations. Let us use each component of ~m = ρ~u and
ρ~u ⊗ ~u + pI instead of ρ and ~m = ρ~u in (6), respectively, and repeat the above
analysis for the first equation. Also, we will use the same integration bounds for
I1, I2, I3 as above.

Thus, for i–th component, i = 1, 2, 3, we have

I1 ≈ −
∫ ∞

0

∫

|~x|<εt
∂tmε(t)ωi(ϕ(0, t) +∇ϕ(0, t) · ~x) dV dt.

By assumptions (A1) and (A3), mε(t) = ξ(t)χ(t)εα−3 with α ≥ 1. It follows that
I1 ≈ 0, because the volume of the ball |~x| ≤ εt equals a constant times ε3.

Next,

I2 ≈ −
∫ ∞

0

∫

|~x|=εt
(m1(εt, t)−mε(t))︸ ︷︷ ︸

=∆mε(t)

ωiνt(ϕ(0, t) + εt∇ϕ(0, t) · ~ω) dSdt.

By assumption (A2), ∆mε(t) = O(ε−2). Further, νt ≈ ε, and the surface of the
sphere |~x| = εt equals a constant times ε2. It follows that I2 ≈ 0 as well.

Finally we have

I3 ≈
∫ ∞

0

∫

|~x|=εt
((~m1(εt, t)u1(εt, t)ωi − ~mε(t)uε(t)ωi) · ~νx + (p1(εt)− pε(t))νx,i)

(ϕ(0, t) + εt∇ϕ(0, t) · ~ω) dSdt

≈
∫ ∞

0

∫

|~x|=εt
((m1(εt, t)u1(εt, t)−mε(t)uε(t))ωi

+ (p1(εt, t)− pε(t))ωi)ϕ(0, t) dSdt,

581



M. NEDELJKOV, L. NEUMANN AND M. OBERGUGGENBERGER

where we have used the notation ·1 = (·1,1, ·1,2, ·1,3), and that ~ω ≈ ~ν. The fact that
the ∇ϕ–term vanishes as ε → 0 requires that the ϕ–term remains bounded, which
we will make sure by the following assumption:

Assumption (A4): u1(εt, t) = O(1) and ∆pε(t) = p1(εt, t) − pε(t) = O(ε−2) as
ε→ 0, uniformly for t in compact subsets of (0,∞).

Indeed, by assumptions (A1) and (A3), mε(t)uε(t) = ξ(t)χ2(t)ε2α−3 with α ≥ 1.
By assumption (A2), m1(εt, t) = O(ε−2), see (9). Using the surface area of the
sphere |~x| = εt, the term in question is seen to remain bounded, and it follows
further that

I3 ≈ 4π

∫ ∞

0

(
m1(εt, t)u1(εt, t) + k(ρ1(εt, t)e1(εt, t)− ρε(t)eε(t))

)
ε2t2ϕ(0, t) dt

for each i = 1, 2, 3.

Proposition 2. Let assumptions (A1), (A2), (A3) and (A4) hold. A shadow wave
of the form (5) satisfies the second equation (conservation of momentum) of system
(2) in the weak limit as ε→ 0 if and only if

lim
ε→0

ε2
(
m1(εt, t)u1(εt, t) + k(ρ1(εt, t)e1(εt, t)− ρε(t)eε(t))

)
= 0.

Again, additional assumptions will allow us to separate the waves further.

Assumption (A5): eε(t) = ζ(t)εβ for some β ≥ 1 and some smooth function ζ(t).

Corollary 1. If in the situation of Proposition 2 assumption (A5) holds, then

(a) in case β = 1

kξ(t)ζ(t) = lim
ε→0

ε2
(
ρ1(εt, t)u2

1(εt, t) + kρ1(εt, t)e1(εt, t)
)

; (12)

(b) in case β > 1

lim
ε→0

ε2
(
ρ1(εt, t)u2

1(εt, t) + kρ1(εt, t)e1(εt, t)
)

= 0. (13)

2.3. The third equation. By assumptions (A1), (A3) and (A5),

I1 ≈
∫ ∞

0

∫

|~x|≤εt
∂t(ξ(t)ζ(t)ε−3+β +

1

2
ξ(t)χ(t)2ε−3+2α)(ϕ(0, t) +∇ϕ(0, t) · ~x) dV dt

with α, β ≥ 1. The volume of the ball |~x| ≤ εt is proportional to ε3, thus I1 ≈ 0.
Next, using that νt ≈ −ε,

I2 ≈−
∫ ∞

0

∫

|~x|=εt

(
ρ1(εt, t)e1(εt, t) +

1

2
ρ1(εt, t)u1(εt, t)2 − ρε(t)eε(t)−

1

2
ρε(t)uε(t)

2

+ p1(εt, t)u1(εt, t)− pε(t)uε(t)
)
ε
(
ϕ(0, t) + εt∇ϕ(0, t) · ~ω

)
dSdt.

By assumption (A4) and (9), p1(εt, t) = kρ1(εt, t)e1(εt, t), ρ1(εt, t)u1(εt, t)2 and
p1(εt, t)u1(εt, t) are all of order O(ε−2). By assumptions (A1), (A3) and (A5) the
order of ρε(t)eε(t), ρε(t)uε(t)

2 and pε(t)uε(t) is at most O(ε−2). Thus again I2 ≈ 0.
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Finally, using the same estimates as before,

I3 ≈
∫ ∞

0

∫

|~x|=εt

((
ρ1(εt, t)e1(εt) +

1

2
ρ1(εt)u1(εt, t)2 + p1(εt, t)

)
u1(εt, t)

−
(
ρε(t)eε(t) +

1

2
ρε(t)uε(t)

2 + pε(t)
)
uε(t)

) (
ϕ(0, t) + εt∇ϕ(0, t) · ~ω

)
dSdt

≈ 4π

∫ ∞

0

t2ε2
(
ρ1(εt, t)e1(εt, t) +

1

2
ρ1(εt, t)u1(εt, t)2 + p1(εt, t)

)
u1(εt, t)ϕ(0, t) dt.

Recalling that p1 = kρ1e1, the third equation results in the requirement that

lim
ε→0

ε2u1(εt, t)
(

(1 + k)ρ1(εt, t)e1(εt, t) +
1

2
ρ1(εt, t)u1(εt, t)2

)
= 0. (14)

Proposition 3. Let assumptions (A1) – (A5) hold. A shadow wave of the form
(5) satisfies the third equation (conservation of internal energy) of system (2) in
the weak limit as ε→ 0 if and only if (14) holds.

3. Entropy condition. Using standard SDW methods and Taylor expansion of
the test function, we are going to determine whether and when the Clausius-Duhem
inequality is satisfied by SDW solutions obtained in the previous section.

Denote by η(U) = ρS(U), ~Q = −~mS(U), U = (ρ, ~m, e) the entropy-entropy flux
pair, where S = ln

(
kρ−ke

)
. We say that a solution to (1) is admissible if it satisfies

∂t(η(U)) +

3∑

i=1

∂xi(Qi(U)) ≥ 0 (15)

in the distributional sense. That is, a family Uε of weak or approximate solution is
admissible if

I := − lim inf
ε→0

∫ ∞

0

∫

R3

η(Uε)∂tϕ+ ~Q(Uε) · ∇ϕdV dt ≥ 0,

for every ϕ ∈ C∞0 (R3 × R+), ϕ ≥ 0.
Using the same procedure as in Subsection 2.1 with with (ρ, ~m) substituted by

(η, ~Q) in (6) we get the following condition

I ≈
∫ ∞

0

∫

|~x|<εt
∂tη(Uε)ϕdV dt

︸ ︷︷ ︸
=:I1

+

∫ ∞

0

∫

|~x|=εt
(η(U1)− η(Uε))νtϕdSdt

︸ ︷︷ ︸
=:I2

+

∫ ∞

0

∫

|~x|=εt
( ~Q(U1)− ~Q(Uε) · ~νxϕdSdt

︸ ︷︷ ︸
=:I3

≥ 0.

(16)

By the mean value theorem, ϕ(x, t) ≈ ϕ(0, t) +∇ϕ(~θ, t) · ~x, and so

I1 ≈
4π

3

∫ ∞

0

∂tη(Uε)ϕ(0, t)t3ε3 dt+

∫ ∞

0

∫

|x|≤εt
∂tη(Uε)∇ϕ(~θ, t) · ~x dV dt.

Invoking assumptions (A1) and (A5),

η(Uε) = ε−3ξ(t) ln
(
kξ(t)−kζ(t)ε3k+β

)
= ε−3ξ(t)

(
(3k + β) ln ε+ ln(kξ(t)−kζ(t))

)
.

Consequently, the second integral goes to zero as ε→ 0, resulting in

I1 ≈
4π

3

∫ ∞

0

∂t

(
ξ(t)

(
(3k + β) ln ε+ ln(kξ(t)−kζ(t))

))
t3ϕ(0, t) dt.
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Note that this integral diverges of order | ln ε|, in general. Next,

I2 ≈− 4π

∫ ∞

0

(η(U1)− η(Uε))t
2ε3ϕ(0, t) dt

−
∫ ∞

0

∫

|~x|=εt
(η(U1)− η(Uε))ε∇ϕ(~θ, t) · ~x dSdt.

Written out explicitly,

ε3η(U1(εt, t)) = ε3ρ1(εt, t)
(
− k ln ρ1(εt, t) + ln e1(εt, t) + ln k

)
.

A natural physical assumption is the integrability of the density ρ1(r, t) around
r = 0. We also need some control on the logarithm of e1(r, t). Thus we require

Assumption (A6): ρ1(r, t) = O(ra) and e1(r, t) = O(rb) as r → 0 uniformly for t
in compact subsets of (0,∞), where a > −3 and b is some real number.

For small ρ1, η1 we observe that (ρ1 ln ρ1) is bounded from below by exp(−1), while
e1 might go to −∞. For large ρ1, η1, the term ε3η(U1(εt, t)) is controlled by the
remaining positive power of ε. Consequently, the term involving η(U1) under the
integral does not contribute to the limit inferior as ε → 0, nor does the second
integral in I2. In conclusion, only the term involving η(Uε) survives, that is,

I2 ' 4π

∫ ∞

0

ξ(t)
(
(3k + β) ln ε+ ln(kξ(t)−kζ(t))

)
t2ϕ(0, t) dt.

Finally, observing that ~νx = O(1),

I3 ≈ 4π

∫ ∞

0

(
m1(εt, t) ln

(
kρ1(εt, t)−ke1(εt, t)

)
−mε(t) ln

(
kρε(t)

−keε(t)
))

t2ε2
(
ϕ(0, t) + εt∇ϕ(~θ, t) · ~ω

)
dt.

From (9), ε2m1(εt, t) = O(1). As before, the ∇ϕ-term in I3 vanishes (actually here
lower bounds by some power of ε on e1(εt, t) are needed as well), and only the term
multiplying ϕ contributes to the limit inferior.

Collecting terms, dividing by 4πt2 and recalling that mε(t) = ε−3+αξ(t)χ(t), we
arrive at the following assertion.

Proposition 4. Under assumptions (A1) – (A6), a shadow wave solution of the
form (5) is admissible if and only if

lim inf
ε→0

[ t
3

∂

∂t

(
ξ(t)

(
(3k + β) ln ε+ ln(kξ(t)−kζ(t))

))

+ ξ(t)
(
1− χ(t)ε−1+α

)(
(3k + β) ln ε+ ln(kξ(t)−kζ(t))

)

+ ε2m1(εt, t)
(
− k ln ρ1(εt, t) + ln e1(εt, t) + ln k

)]
≥ 0.

(17)

Remark 2. If in addition to the assumptions above, m1(r, t) = O(rc) for some
c > −2 as r → 0, then the last line in inequality (17) vanishes. Further, the limits
in (10) and (11) are equal to zero, so that

t

3
ξ′(t) + ξ(t)(1− χ(t)) = 0 (α = 1) or

t

3
ξ′(t) + ξ(t) = 0 (α > 1).

In either case, the only remainig term in (17) is

ξ(t)
∂

∂t
ln
(
kξ(t)−kζ(t)

)
, (18)
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which should be nonnegative then. Recalling the initial condition ξ(0) = 0, the only
solution with α > 1 is ξ(t) ≡ 0. Then condition (18) is automatically satisfied, but
the shadow wave has zero strength. The remaining case is α = 1, leading to

t

3
ξ′(t) + ξ(t)(1− χ(t)) = 0 and

(
ln ζ(t)− k ln ξ(t)

)′ ≥ 0,

which does have nonvanishing solutions ξ(t) for suitable choices of χ(t), ζ(t). A
complete solution must also satisfy (12), (13), and (14).

Note that the condition m1(r, t) = O(rc), c > −2, is just slightly stronger than
the condition limr→0 r

2m1(r, t) = 0, which has been imposed on self-similar, radial
weak solutions in [3].

It remains a task for future research to determine whether shadow wave solutions
of this type exist which can be connected to an incoming wave Us,1(r, t) with an
intermediate state U1.
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Abstract. We consider the impingement of a droplet onto a wall with high im-

pact speed. For this purpose an isothermal Navier–Stokes–Allen–Cahn model
[5] is used. Properties of the model are discussed. In order to solve the system

numerically we introduce an energy consistent discontinuous Galerkin scheme
and show a numerical example of droplet impact.

1. Introduction. High speed droplet impact occurs in many applications like
spray coating. Other applications are for example ink jet printing, liquid-fueled
engines, and spray cooling. In these situations compressible effects in the liquid
droplet phase may play an important role. During impact the compressed liquid
triggers a shock wave which travels backwards through the bulk and determines the
overall droplet dynamics. An analytical study of the wave patterns can be found
in [8]. In particular it turned out that incompressible approaches are not adequate
to predict the correct jetting time, which is actually smaller due to the shock wave
pattern [9]. In this contribution we introduce a phase field approach to model high
speed droplet impact scenarios. Both, the liquid and the vapor phase are assumed to
be compressible. For direct numerical simulation an energy consistent discontinuous
Galerkin scheme is derived.

2. The phase field model. Phase field models are widely used to simulate inter-
facial phenomena. They are based on the assumption that the interface is a thin
transition layer in which the different fluids mix. This diffuse layer is represented by
a phase field variable. Based on an energy principle, namely the interplay between
mixture and kinetic energy, phase field models can be derived with a variational
approach, see e.g.[1] for an overview. For the isothermal case it is in this way possi-
ble to derive models that obey the second law of thermodynamics in the form of an
entropy inequality. While phase field models have been studied much more in an
incompressible setting, less work has been done for compressible phase field models.

2000 Mathematics Subject Classification. Primary:76T99; Secondary: 65M60.
Key words and phrases. Phase field model, two phase flow, moving contact line, Navier–Stokes–

Allen–Cahn, energy consistent, discontinuous Galerkin.
∗ Corresponding author: Lukas Ostrowski.
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The compressible models are typically based on [3, 12]. More recent models are
[5, 16]. However, their main difference are scalings of the double well potential.

For the unknowns density ρ > 0, velocity v ∈ R2 and phase field parameter
ϕ ∈ [0, 1] we consider the following isothermal compressible Navier–Stokes–Allen–
Cahn system [5] in a domain Ω ⊂ R2:

∂tρ+ div(ρv) = 0, (1)

∂t(ρv) + div(ρv ⊗ v + pI) = div(S)− γ div(∇ϕ⊗∇ϕ− 1

2
|∇ϕ|2I) +

1

γ
∇W (ϕ),

∂t(ρϕ) + div(ρϕv) = −ηµ,
with boundary conditions

v · n = 0, (2)

βvτ + ν(ϕ)
∂vτ
∂n
− L(ϕ)

∂ϕ

∂τ
= 0, (3)

∂tϕ+ vτ
∂ϕ

∂τ
= −α

ρ
L(ϕ) on ∂Ω. (4)

The phase field parameter allows to distinguish the phases. It takes the value
0 in the vapor phase, the value 1 in the liquid phase, and values in between in
the mixture region. The dissipative viscous part of the stress tensor reads as S =
S(ϕ,∇v) = ν(ϕ)(∇v+∇v>−div(v)I) with an interpolation of the viscosities νL/V

of the pure phases ν(ϕ) = h(ϕ)νL +(1−h(ϕ))νV > 0 by the nonlinear interpolation
function

h(ϕ) = 3ϕ2 − 2ϕ3. (5)

Further, we define the interpolation of the free energy densities ρfL/V of the pure
phases ρψ(ρ, ϕ) = h(ϕ)ρfL(ρ) + (1 − h(ϕ))ρfV(ρ). This determines the pressure

as p = p(ρ, ϕ) = −ρψ(ρ, ϕ) + ρ∂ρψ∂ρ (ρ, ψ). With the double well potential W (ϕ) =

ϕ2(1−ϕ)2 we define the (generalized) chemical potential µ = 1
γW

′(ϕ)+ ∂ρψ
∂ϕ −γ∆ϕ,

which steers the phase field variable into equilibrium. Additionally, we have the
mobility η > 0, slip length β > 0 and relaxation parameter α > 0. Finally

L(ϕ) = γ
∂ϕ

∂n
+ g′(ϕ),

where g(ϕ) = −σ cos(θs)(h(ϕ) − 1/2), with the surface tension parameter σ > 0
and the static contact angle θs ∈ [0, π].

The total energy corresponding to the system (1)-(4) reads

Etot
..=

∫

Ω

F (ρ, ϕ,∇ϕ) +
1

2
ρ|v|2 dx +

∫

∂Ω

g(ϕ) ds, (6)

with the free energy density

F (ρ, ϕ,∇ϕ) = F̃ (ρ, ϕ) +
1

2
γ|∇ϕ|2 =

1

γ
W (ϕ) + ρψ(ρ, ϕ) +

1

2
γ|∇ϕ|2. (7)

Remark 1. On a first glance the nonlinear interpolation (5) seems unnecessarily
complicated. However, it is needed in order to obtain correct equilibria. The use of
a linear interpolation function h(ϕ) = ϕ would result in incorrect equilibria due to
the fact that h′(0) = h′(1) 6= 0.
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2.1. The boundary conditions. We consider a moving contact line problem
(MCL), see Figure 1. This kind of problems needs special attention regarding
boundary conditions. We derive boundary conditions for the MCL problem in

τ

n

Ω

Figure 1. Sketch of computational domain for droplet impact simulation.

a similar fashion as done in [13, 14] for the incompressible case. To this end,
we add the wall free energy term

∫
∂Ω
g(ϕ) ds to the total free energy (6). Here

g(ϕ) is the interfacial free energy per unit area at the fluid-solid boundary. We
choose g(ϕ) ..= ∆g(h(ϕ) − 1/2), i.e. a smooth interpolation between ±∆g/2, with
∆g = g(1) − g(0). This energy difference can be specified by considering Young’s
equation

σ cos(θs) = σS − σLS = g(0)− g(1), (8)

with the surface free energy σ of the liquid, the static contact angle θs, surface
free energy σS of the solid, and interfacial free energy σLS between liquid and solid.
From (8), we have ∆g = −σ cos(θs). Applying variational techniques to this total
free energy yields the boundary condition (3). The extension of the classical (single
phase) Navier-slip condition βvτ + ν ∂vτ∂n = 0 relies on the fact that one has to
account for the uncompensated Young stress arising from the deviation of the fluid-
fluid interface from the static configuration. For details see [13]. The generalized
Navier boundary condition (GNBC) is given by

βvτ = −ν(ϕ)
∂vτ
∂n

+ L(ϕ)
∂ϕ

∂τ
.

Away from the interface the second term drops out and we have the classical Navier-
slip condition but in the interface region the additional term acts and allows for
correct contact line movement.

Note that L(ϕ) = 0 is the Euler–Lagrange equation at the fluid-solid boundary
for minimizing the total free energy with respect to the phase field variable. Hence,
L(ϕ) = 0 corresponds with the equilibrium condition where ∂t(ρϕ) + div(ρvϕ) = 0.
The boundary relaxation dynamics of ϕ are assumed as

∂tϕ+ v · ∇τϕ = −α
ρ
L(ϕ),

with a positive phenomenological parameter α. Here ∇τ
..= ∇ − (n · ∇)n is the

gradient along the tangential direction. Since v · n = 0, we have v · ∇τϕ = vτ
∂ϕ
∂τ .
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Remark 2. The boundary conditions (2)-(4) contain several special cases. If we
let the relaxation parameter α tend to infinity, we end up with

v · n = 0,

βvτ + ν(ϕ)
∂vτ
∂n

= 0,

L(ϕ) = 0.

If additionally θs = π/2 we have

v · n = 0,

βvτ + ν(ϕ)
∂vτ
∂n

= 0,

∇ϕ · n = 0.

Finally, by sending the slip length β to infinity we obtain the no slip condition

v = 0, (9)

∇ϕ · n = 0. (10)

2.2. Energy Inequality. The phase field model (1) is thermodynamically con-
sistent, that means in particular that for a smooth solution it fulfills an entropy
inequality. With the total energy as mathematical entropy the following inequality
can be easily shown to hold.

Lemma 2.1 (Energy inequality). Let (ρ,v, ϕ) be a smooth solution of (1) in
(0, T )×Ω satisfying the boundary conditions (2) - (4) on (0, T )× ∂Ω. Then for all
t ∈ (0, T ):

d

dt

(∫

Ω

F (ρ,v, ϕ) +
1

2
ρ|v|2 dx +

∫

∂Ω

g(ϕ) ds

)
=

−
∫

Ω

η

ρ
µ2 dx−

∫

Ω

S : ∇v dx−
∫

∂Ω

β|vτ |2 ds−
∫

∂Ω

α

ρ
|L(ϕ)|2 ds ≤ 0. (11)

This means we have dissipative mechanisms due to phase transition, viscosity,
wall slip, and composition relaxation at the solid interface.

Remark 3. Up to our knowledge there is no wellposedness result for a system like
(1)-(4).

3. Numerical Scheme. Phase field modelling is based on a variational principle.
Our model is thermodynamically consistent and follows the energy dissipation law
(11). Numerical schemes with artificial dissipation for stabilization can lead to
problems like increase of energy or parasitic currents [4, 10]. Hence, it is desirable
that the numerical scheme fulfills the energy dissipation inequality (11) on a discrete
level without artificial numerical dissipation. This motivates the use of energy
consistent discontinuous Galerkin schemes (DG) to solve phase field systems [7, 11,
15]. The derivation of our scheme to solve the system (1) is based on [6].

Recall the free energy density (7). First we introduce auxiliary variables

σ = ∇ϕ,

µ =
∂F

∂ϕ
− div(γσ),

τ =
∂F

∂ρ
+

1

2
|v|2.
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With these we rewrite the system (1) into a mixed non-conservative formulation

∂tρ+ div(ρv) = 0,

ρ∂tv + div(ρv ⊗ v)− div(ρv)v − 1

2
ρ∇|v|2 + ρ∇τ = div(S) + µ∇ϕ,

∂tϕ+∇ϕ · v = −ηµ
ρ
,

µ =
∂F

∂ϕ
− γ div(σ),

τ =
∂F

∂ρ
+

1

2
|v|2,

σ = ∇ϕ,
with the boundary conditions

v = 0, σ · n = 0 on ∂Ω.

The more general boundary conditions (2)-(4) will be considered in future work. We
introduce some notation and briefly sketch the idea of the derivation of the scheme.
Let T be a triangulation of Ω. We define the discontinuous Galerkin space by

Vh ..=
{
u ∈ L2(Ω): u

∣∣
T
∈ Pk for all T ∈ T

}
,

where Pk is the space of polynomials up to degree k. Further, let Vh ..= Vh × V dh ×
Vh × Vh × Vh × V dh . We define the jump and average operators as follows: Let T1

and T2 be two mesh elements with a common facet F , Φ a scalar-valued and u a
vector-valued function on Ω. Further, let T be a mesh element with boundary facet
Fb = ∂T ∩ ∂Ω then,

{{Φ}}F ..=
1

2
(Φ
∣∣
T1

+ Φ
∣∣
T2

), {{Φ}}Fb ..= Φ
∣∣
T
,

{{u}}F ..=
1

2
(u
∣∣
T1

+ u
∣∣
T2

), {{u}}Fb ..= u
∣∣
T
,

[[Φ]]F ..= Φ
∣∣
T1

nT1
+ Φ

∣∣
T2

nT2
, [[Φ]]Fb

..= Φ
∣∣
T
nT ,

[[u]]F ..= u
∣∣
T1
· nT1

+ u
∣∣
T2
· nT2

, [[u]]Fb
..= u

∣∣
T
· nT ,

[[u]]⊗,F ..= u
∣∣
T1
⊗ nT1 + u

∣∣
T2
⊗ nT2 , [[u]]⊗,Fb

..= u
∣∣
T
⊗ nT .

We omit the subscripts F ,Fb whenever no confusion can arise.
For the spatial discretization we first assume generic fluxes Fi which then are

determined by our requirements. That means for instance for the first equation

0 =

∫

Ω

(∂tρh + div(ρhvh))ψ dx +

∫

E
F1(ρh,vh, ϕh, µh, τh,σh, ψ) ds

Here for brevity we slightly abuse the notation. The notation
∫

Ω
•means

∑
T∈T

∫
T
•,

the set E contains all interior facets of the underlying triangulation T of Ω. In or-
der to assure consistency of the fluxes, conservation of mass and correct energy
dissipation there arise several conditions on the fluxes. Enforcing additionally the
conservation of momentum is too restrictive, hence the non-conservative formulation
of the momentum equation.

Let 0 = t0 < t1 < . . . < tN = T be a temporal decomposition of [0, T ]. We set

∆tn ..= tn+1 − tn. Moreover, we denote Φn(·) ..= Φ(·, tn) and Φn+1/2 ..= Φn+1+Φn

2 .
The temporal discretization is of Crank-Nicholson type. Finally, with (7) the fully
discrete scheme reads as follows:
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Find (ρn+1
h ,vn+1

h , ϕn+1
h , µ

n+1/2
h , τ

n+1/2
h ,σn+1

h ) ∈ Vh such that

0 =

∫

Ω

(
ρn+1
h − ρnh

∆t
+ div(ρ

n+1/2
h v

n+1/2
h )

)
ψ dx−

∫

E
[[ρ

n+1/2
h v

n+1/2
h ]]{{ψ}} ds, (12)

0 =

∫

Ω

(
ρ
n+1/2
h

(
vn+1
h − vn

h

∆t

)
+ div(ρ

n+1/2
h v

n+1/2
h ⊗ v

n+1/2
h )− div(ρ

n+1/2
h v

n+1/2
h )v

n+1/2
h

−1

2
ρ
n+1/2
h ∇|vn+1/2

h |2 + ρ
n+1/2
h ∇τn+1/2

h − µn+1/2
h ∇ϕn+1

h

)
·X dx

−
∫

E
[[τ

n+1/2
h ]] · {{ρn+1/2

h X}} − [[ϕn+1
h ]] · {{µn+1/2

h X}} ds+Bh(v
n+1/2
h ,X;ϕ

n+1/2
h ),

(13)

0 =

∫

Ω

(
ϕn+1

h − ϕn
h

∆t
+∇ϕn+1

h · vn+1/2
h + η

µ
n+1/2
h

ρ
n+1/2
h

)
Θ dx−

∫

E
[[ϕ

n+1/2
h ]] · {{Θv

n+1/2
h }} ds,

(14)

0 =

∫

Ω

(
µ
n+1/2
h − F̃ (ρnh, ϕ

n+1
h )− F̃ (ρnh, ϕ

n
h)

ϕn+1
h − ϕn

h

+ γ div(σ
n+1/2
h )

)
χ dx

−
∫

E
γ[[σ

n+1/2
h ]]{{χ}} ds, (15)

0 =

∫

Ω

(
τ
n+1/2
h − F̃ (ρn+1

h , ϕn+1
h )− F̃ (ρnh, ϕ

n+1
h )

ρn+1
h − ρnh

− 1

4
(|vn+1

h |2 + |vn
h |2)

)
ζ dx, (16)

0 =

∫

Ω

(
σn+1

h −∇ϕn+1
h

)
· Z dx +

∫

E
[[ϕn+1

h ]] · {{Z}} ds, (17)

holds for all (ψ,X,Θ, χ, ζ,Z) ∈ Vh.
We rely on a symmetric interior penalty discretization [2] for the viscous stress

tensor:

Bh(v,X;ϕ
n+1/2
h ) =

∫

Ω

S(∇v, ϕ) : ∇X dx

−
∑

e∈E∪∂Ω

∫

e

{{S(∇v, ϕ)}} : [[X]]⊗ + {{S(∇X, ϕ)}} : [[v]]⊗ − αB

|e| [[v]]⊗ : [[X]]⊗ ds.

With αB sufficiently large to ensure coercivity of Bh(·, ·;ϕ). The discretization is
chosen such that the discrete counterpart of the energy inequality 2.1 is satisfied.

Lemma 3.1 (Fully discrete energy inequality). The discrete solution of the scheme
(12)-(17) conserves mass and satisfies the energy dissipation equality, i.e.

∫

Ω

F̃ (ρn+1
h , ϕn+1

h ) +
γ

2
|σn+1
h |2 +

ρn+1
h

2
|vn+1
h |2 dx

−
∫

Ω

F̃ (ρnh, ϕ
n
h) +

γ

2
|σnh|2 +

ρnh
2
|vnh |2 dx

= −∆t

∫

Ω

η
|µn+1/2
h |2

ρ
n+1/2
h

dx−∆tBh(v
n+1/2
h ,v

n+1/2
h ;ϕ

n+1/2
h ).

Proof. For the mass conservation take ψ = 1 in equation (12). In order to prove
the energy dissipation equality multiply equation (12) with τn+1/2, equation (13)
with vn+1/2 and equation (14) with µn+1/2. Summing up and using the boundary
conditions and basic algebraic manipulations leads to the result.
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4. Numerical Example. In this section we present a numerical experiment. We
briefly comment on the choice of model parameters and equations of state. The
scheme has been implemented with boundary conditions (9)-(10). The general case
will be implemented in future work.

4.1. Choice of the Model Parameter. We choose stiffened gas type equations
of state, i.e.

ρfL/V(ρ) = αL/Vρ ln(ρ) + (βL/V − αL/V)ρ+ γL/V.

This leads to the partial pressure

pL/V(ρ) ..= −ρfL/V + ρ
∂ρfL/V

∂ρ
= αL/Vρ− γL/V.

The minima of the free energies are located at ρL/V = exp
(
− βL/V

αL/V

)
. We choose

the parameters αL/V, βL/V, and γL/V such that the minima of the free energies have
the same height. This prevents one-phase equilibria, since no phase is energetically
more favorable. If no surface tension is present, e.g. in the 1D case, one can show
that in equilibrium the densities in the bulk phases are exactly ρL/V. In the case
with surface tension this is not true anymore. We expect the value in the droplet
to be slightly higher and slightly lower in the surrounding vapor. For this reason
we choose the density of initial data accordingly. For the bulk viscosities we set
νL = 0.0125 and νV = 0.00125. The capillary parameter is γ = 5 · 10−4 and the
mobility η = 10.

4.2. Droplet Impact. The example is the high speed impact of a droplet onto a
perfect wall. In Figure 2 the density is depicted at three different times t = 0, t =
0.13, and t = 0.21, i.e. the initial configuration, right before the impact, and after
impact. The initial velocity of the droplet is −1.1ey. One can see the shock waves
in the vapor and also in the liquid phase. The second picture also shows that the
shock speed is larger in the liquid phase than in the vapor phase. Even though
we use boundary conditions (9)-(10) for the simulation, we still observe a moving
contact line. This dynamics is however mainly determined by the chemical potential
µ, not by advection. This can be seen in Figure 3.

Figure 2. Droplet impact. Density at times t = 0, t = 0.13, t = 0.21.

Figure 3. Droplet impact. Chemical potential µ in the lower
computational domain at times t = 0, t = 0.13, t = 0.21.
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Abstract. The Roe and HLLC Riemann solvers are widely used as building

blocks of finite volume Godunov-type schemes for solving the Euler equations
of gas dynamics and related hyperbolic flow models. The HLLC solver (HLL

with Contact restoration) has gained increasing popularity over the last two

decades since it possesses some of the good properties of the Roe solver and in
addition it satisfies important entropy and positivity conditions with no need

of special fixes. In the present work we rewrite the classical HLLC solver for

the Euler equations in a novel form that allows an interpretation of the HLLC
wave structure as an averaged system eigenstructure. This reveals a formal

mathematical similarity of the HLLC solver with the Roe solver, which can
be useful to extend to the HLLC method some numerical techniques devised

specifically for the Roe method. We indicate several applications, focusing in

particular in the present work on the design of a well-balanced HLLC method
for the Euler equations with gravitational source terms.

1. Introduction. Finite volume Godunov-type schemes based on Riemann solvers
are widely used to compute solutions to hyperbolic systems of equations. Some
of the most popular approximate Riemann solvers are the solver of Roe [13] and
the solver of Harten–Lax–van Leer (HLL) and its variants. The HLLC solver
(HLL with Contact restoration) introduced by Toro, Spruce and Speares [15] for
the Euler equations of gas dynamics has especially gained increasing popularity
over the last two decades for solving a large variety of compressible flow models,
since it possesses some of the good properties of the Roe solver and in addition it
satisfies important entropy and positivity conditions with no need of special fixes.
In the present work we rewrite the classical HLLC Riemann solver in a novel form
that allows an interpretation of the HLLC wave structure as an averaged system
eigenstructure. This reveals a formal mathematical similarity of the HLLC solver
with the Roe solver, which can be useful to extend to the HLLC method some
numerical techniques devised specifically for the Roe method. One application,
which has motivated our investigation, is the extension to HLLC-type schemes of
low Mach number preconditioning techniques proposed for the Roe scheme. This
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has been illustrated by the author in [10, 11]. In the present work we use our novel
formulation of the HLLC solver to apply the f-wave approach of [1] for designing
a robust well-balanced HLLC scheme for the Euler equations with gravitational
source terms.

2. The Euler equations of gas dynamics. The Euler equations governing
an inviscid compressible flow can be written in two spatial dimensions in the
conservative form:

∂tq + ∂xf(q) + ∂yg(q) = 0, (1a)

where

q =




ρ
ρu
ρv
E


 , f(q) =




ρu
ρu2 + p
ρuv

u(E + p)


 , g(q) =




ρv
ρvu

ρv2 + p
v(E + p)


 . (1b)

Here ρ is the fluid density, u and v are the flow velocity components in the x and y
direction, respectively, p is the pressure, and E is the total energy per unit volume,

E = E+ρ |~u|
2

2 , where E denotes the internal energy per unit volume, and ~u = (u, v).
The system is closed through the specification of a pressure law p = p(E , ρ). The
Euler system is hyperbolic and the eigenvalues associated to the direction ~n, |~n| = 1,
are λ1,4 = ~u · ~n∓ c and λl = ~u · ~n for l = 2, 3 . The speed of sound is c =

√
κh+ χ,

where κ = ∂p(E,ρ)
∂E , χ = ∂p(E,ρ)

∂ρ , and h denotes the specific enthalpy, h = (E + p)/ρ.

3. Finite volume schemes based on Riemann solvers. We briefly recall here
the class of finite volume schemes based on Riemann solvers in the wave propagation
formulation by LeVeque [5, 6, 7]. Let us consider a general hyperbolic system of
the form

∂tq +A(q)∂xq +B(q)∂yq = 0. (2)

We assume a spatial discretization on a Cartesian grid with cells of uniform size ∆x
and ∆y in the x and y directions, respectively. We denote by Qni,j the approximate
solution of the system at the cell (i, j), i, j ∈ Z, at time tn, n ∈ N, and set ∆t =
tn+1 − tn. The two-dimensional first-order wave propagation algorithm [5, 6] has
the form

Qn+1
i,j = Qni,j −

∆t

∆x

(
A+∆Qi−1/2,j +A−∆Qi+1/2,j

)

−∆t
∆y

(
B+∆Qi,j−1/2 + B−∆Qi,j+1/2

)
.

(3)

Here A±∆Q and B±∆Q are the so-called fluctuations arising from the solution
of local plane-wave Riemann problems in the x and y directions, respectively [5].
To compute these quantities, a Riemann solver must be provided. Let us now
consider with no loss of generality the approximation of a two-dimensional plane-
wave Riemann problem in the x direction for the Euler equations, namely a Riemann
problem for the system ∂tq + ∂xf(q) = 0, with initial left and right data q` and
qr. The exact solution of this problem consists of at most four constant states
separated by a genuinely nonlinear 1-wave, a contact discontinuity corresponding to
the eigenvalue λ2 = λ3 = u, and a genuinely nonlinear 4-wave (assuming a convex
equation of state). The solution structure defined by an approximate Riemann
solver can be expressed by a set of M waves W l and corresponding speeds sl,
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x

t

Roe solver

λ̂1 λ̂2 = λ̂3 λ̂4

q`

W1

qr

W2+W3 W4

HLLC solver

x

t
S` SrS?

q` qr

q?rq?`

W1 W2 W3

Figure 1. Solution structure of the Roe solver (left) and of the HLLC
solver (right) for a plane-wave Riemann problem for the 2D Euler

equations.

M ≥ 2. The so-called f-waves Z l, which carry a jump in the flux, are defined as
Z l = slW l, l = 1, . . . ,M . For conservation we require:

∆f ≡ f(qr)− f(q`) =
M∑

l=1

Z l. (4)

Once the Riemann solution structure associated to each cell pair {(i, j), (i + 1, j)}
is defined, the fluctuations A∓∆Qi+1/2,j in (3) are computed as

A−∆Qi+1/2,j =
∑

l:sl
i+1/2,j

≤0
Z li+1/2,j , A+∆Qi+1/2,j =

∑

l:sl
i+1/2,j

>0

Z li+1/2,j . (5)

The first-order scheme (3) can be extended to second-order accuracy by adding
suitable correction terms, which can be expressed again in terms of f-waves and
speeds [6]. The most general form of the algorithm includes contributions from
the decomposition of fluctuations in the transverse direction to account for cross-
derivative terms.

3.1. Roe approximate Riemann solver. The idea of the approximate Riemann
solver of Roe [13] is to define an approximate solution to a Riemann problem for the
Euler equations ∂tq + ∂xf(q) = 0, with q and f(q) as in (1), by the exact solution

of a Riemann problem for a linearized system ∂tq + Â(q`, qr)∂xq = 0. The Roe

matrix Â = Â(q`, qr) is defined locally by evaluating the Jacobian A(q) = f ′(q)
of the original system in a suitable average state q̂ = q̂(q`, qr) that guarantees
conservation. The Riemann solution structure of the Roe solver consists of M = 4
waves and speeds that correspond to the eigenstructure of the Roe matrix (see

Figure 1). Denoting with r̂l and λ̂l the right eigenvectors and eigenvalues of Â,

respectively, we haveW l = ζ̂lr̂l and sl = λ̂l, l = 1, · · · , 4, where ζ̂l are the coefficients
of the projection of ∆q ≡ qr − q` onto the basis of the Roe eigenvectors, qr − q` =∑4
l=1 ζ̂lr̂l. The definition of the Roe eigenstructure is reported in Appendix A.

The Roe numerical viscosity matrix is Θ = |Â|, where R̂ = [r̂1 . . . r̂4] and Λ̂ =

diag(λ̂1, . . . , λ̂4).

3.2. HLLC approximate Riemann solver. The Riemann solution structure of
the HLLC solver of Toro et al. [15, 14] consists of three waves W l, l = 1, 2, 3
(M = 3), moving at speeds s1 = S`, s2 = S?, s3 = Sr, which separate four constant
states q`, q

?`, q?r and qr (see Fig. 1). In the following we will indicate with (·)` and
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(·)r quantities corresponding to the states q` and qr , respectively. Moreover, we
will indicate with (·)?` and (·)?r quantities corresponding to the states q?` and q?r

adjacent, respectively on the left and on the right, to the middle wave propagating
at speed S?. With this notation, the waves of the HLLC solver are W1 = q?` − q`,
W2 = q?r − q?`, W3 = qr − q?r. We impose conservation conditions, together with
the invariance of the pressure p and of the normal velocity u across the 2-wave.
Then the speed S? is determined as

S? =
∆p+ ρ`u`(S

` − u`)− ρrur(Sr − ur)
ρ`(S` − u`)− ρr(Sr − ur)

, (6)

where ∆p ≡ pr − p`. The middle states q?`, q?r are found as:

q?ι = ρι
Sι − uι
Sι − S?




1

S?

vι
Eι
ρι

+ (S? − uι)
(
S? + pι

ρι(Sι−uι)

)



, ι = `, r. (7)

A definition for the wave speeds must be provided. For the numerical experiments

below we have adopted the definition in [3], S` = min(u` − c` , λ̂1), Sr = max(ur +

cr , λ̂4).

3.3. A new formulation of the HLLC solver. We illustrate in this Section a
novel formulation of the HLLC solver that allows us to highlight a mathematical
similarity with the Roe solver. First we introduce two quantities č `, č r representing
the speeds of sound associated to the external acoustic waves by defining:

S` = u` − č ` and Sr = ur + č r. (8)

For any given choice of the estimates of the wave speeds S` and Sr the relations
above determine č ` and č r. The speed S? can be easily rewritten in terms of č `

and č r:

S? =
ρ`č

`u` + ρr č
rur −∆p

ρ`č ` + ρr č r
. (9)

The densities ρ?ι, ι = `, r, corresponding to the middle states can be expressed as

ρ?` = ρ`
č `

S? − u` + č `
and ρ?r = ρr

č r

ur − S? + č r
. (10)

Then, after some easy algebraic manipulations, we see that the HLLC waves for the
Euler equations can be equivalently rewritten as

W1 = ζ̌1ř1, W2 = W̌2 + W̌2
s , W̌2 = ζ̌2ř2 , W̌2

s = ζ̌2sř2s , W3 = ζ̌3ř3 , (11a)

where

ζ̌1 =
ρ?`

ρ`č ` + ρr č r

(
∆p

č `
− ρr

č r

č `
∆u

)
, ζ̌3 =

ρ?r

ρ`č ` + ρr č r

(
∆p

č r
+ ρ`

č `

č r
∆u

)
,

(11b)

ζ̌2 = ρ?r−ρ?` = ∆ρ−
((

ρ?`

č `
+
ρ?r

č r

)
∆p+

(
ρ`ρ

?r č
`

č r
− ρrρ?`

č r

č `

)
∆u

)
1

ρ`č ` + ρr č r
,

(11c)

ζ̌2s = ρ̌∆v , ρ̌ ≡ ρ?` + ρ?r

2
, ∆(·) ≡ (·)r − (·)` , (11d)
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and

ř1 =




1

u` − č `

v`

H` − S?č `



, ř3 =




1

ur + č r

vr

Hr + S?č r



, ř2 =




1

S?

v̄

∆ě? −
(
χ
κ

)
+

(S?)2

2
+
(
v2

2

)



, ř2s =




0

0

1

v̄



, (11e)

with

∆ě? =
1

ρ?r − ρ?`

(
ρ?r

c2r
κr

− ρ?`
c2`
κ`

− 2ρ̌∆
(χ
κ

)
−∆p+

1

2
ρ?r(ur − S?)2 − 1

2
ρ?`(u` − S?)2

)
.

(11f)

Note that ρ?r
c2r
κr
− ρ?`

c2`
κ`
− 2ρ̌∆

(
χ
κ

)
−
(
χ
κ

)
ζ̌2 = ρ?rhr − ρ?`h`. Above we have

denoted with H = h+ |~u|
2

2 the total specific enthalpy and we have used the average

operator (̄·) ≡ (·)`+(·)r
2 . The expressions of the HLLC waves in this novel form

reveal analogies with the waves of the Roe solver. We observe that the vectors řl ,
like the Roe eigenvectors, have the form of the eigenvectors of the Euler system
rl(q) evaluated in a special state that is a function of the left and right Riemann
data (although not in the form r̂l = rl(q̂) as for the Roe solver), except for the
quantity ∆ě? appearing in the last component of the vector ř2 . This quantity
becomes singular if ζ̌2 = ρ?r − ρ?` = 0, which happens in the trivial case of uniform
flow, qr = q`, but also in other cases (e.g. pr = p`, ρ` = ρr, u` = −ur). Note that
in such situations the wave W̌2 is simply zero, and the Riemann solution is always
well defined. For consistency we expect

lim
ρ?r−ρ?`→0

∆ě? = 0. (12)

Note that if the matrix Ř = [ř1, ř2, ř2s, ř3] is nonsingular we can interpret the
Riemann solution of the HLLC solver as the Riemann solution of a linearized system
with a constant coefficient matrix Ǎ = Ǎ(q`, qr) = ŘΛ̌Ř−1, where Λ̌ = diag(u` −
č `, S?, S?, ur + č r). The HLLC numerical viscosity matrix is identified as Θ = |Ǎ|.

4. Applications.

4.1. Low Mach number preconditioning techniques. The origin of the
present work came from a study aimed at extending popular low Mach number
preconditioning techniques for the Roe’s scheme to the HLLC scheme. These
techniques typically modify at low Mach number the acoustic waves and speeds that

contribute to the numerical viscosity term
∑4
l=1(|λ̂l|ζ̂lr̂l) = |Â|(qr − q`). Thanks to

the novel formulation of the HLLC solver we were able to mimic a preconditioning
technique proposed for Roe’s scheme and apply it to the HLLC scheme, both for
the Euler equations [11] and for a two-phase flow model [10]. We refer to [11, 10]
for details.

4.2. Well-balanced f-wave method for hyperbolic systems with source
terms. We illustrate here an application of the new form of the HLLC solver for
the design of a robust well-balanced f-wave method for the Euler equations (1)
with a source term Ψ(q). In particular we shall consider a source term of the form
Ψ = [0,−ρ∇ϕ,−ρ~u · ∇ϕ]T, where ϕ(~x) is a gravitational potential. We recall that
a scheme is well-balanced if it can preserve stationary states at the discrete level
and if it is able to accurately model small perturbations from steady states. In the
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numerical algorithm we need to solve plane-wave Riemann problems for a system
of the form

∂tq + ∂xf(q) = ψ(q), ψ(q) = [0,−ρ∂xϕ, 0,−ρu∂xϕ]T, (13)

where ∂xϕ = g n(x), denoting here with n(x) the x-component of the unit vector
~n(~x) indicating the direction of the gravity field ~g. The idea of the f-wave approach
[1] (see also [9]) is to include the contribution of the source term ψ(q) in the jump
of the fluxes that is decomposed into f-waves (cf. (4)), that is:

f(qr)− f(q`)− ψ̃∆ =
M∑

l=1

Z l, (14)

where ψ̃∆ is a discrete interface value of the source term contribution. If this term
is defined such that the discrete condition ∆f− ψ̃∆ = 0 expresses steady conditions,
and if the f-wave decomposition (14) is obtained by a projection of ∆f − ψ̃∆ onto
a set of M linearly independent vectors, then we observe that steady states are
maintained by the method. In fact if initially ∆f − ψ̃∆ = 0, then the f-waves in
(14) are simply zero, hence equilibrium is preserved [1, 9]. The discrete source term

contribution ψ̃∆ in (14) can be simply defined as:

ψ̃∆ = [0, −g n(x)( ~̄x ) ρ∆x, 0, −g n(x)( ~̄x ) ρu∆x]T, (·) ≡ 1

2
((·)` + (·)r). (15)

This general definition has proven to be efficient in all the numerical tests that we
have performed. If the exact steady solution is available, then we may be able to
define a term ψ̃∆ that gives an exact discrete version of the stationary conditions.
For instance, let us consider the exact solution for the isothermal equilibrium in one
dimension of an ideal gas p0(x) = ρ0(x) = exp(−gx), u0(x) = 0, which characterizes
one test problem below. Then, we can take:

ψ̃∆ = [0, ρ exp(g x)∆(exp(−g x)), ρu exp(g x)∆(exp(−g x))]T. (16)

The splitting (14) can be performed by a projection onto the Roe eigenvectors,

∆f−ψ̃∆ =
∑4
l=1 β̂lr̂k, hence we define the f-waves as Z l = β̂lr̂l, β̂ = R̂−1(∆f−ψ̃∆).

This f-wave Roe method (for instance used in [12]) results to be very efficient for
treating sources, nonetheless it suffers from the drawbacks of the Roe method,
namely unphysical states in low density regions and computation of non-entropic
shocks. Note that while several entropy fixes are available for the standard Roe
scheme, it might be complicated to use them within the f-wave framework (since we
would need to compute the waves from the f-waves). To overcome these difficulties

we apply the f-wave approach to the HLLC method, by projecting ∆f − ψ̃∆ onto
the HLLC vectors {řl}1≤l≤4. Hence we define Z l = β̌lřl, β̌ = Ř−1(∆f − ψ̃∆).

The explicit analytical expression of Ř−1 can be easily obtained. To handle the
problem of the singularity of ∆ě? in (11f) one simple option is to set this quantity
to zero if |ζ̌2| < ε (e.g. ε = 10−15). Another option for instance is to employ the

desingularizing definition 1/ζ̌2 , 2ζ̌2/(ζ̌
2
2 + max(ζ̌22 , ε

2)) [4].

4.2.1. Numerical experiments. All the tests are performed with second-order algo-
rithms, MC limiter, Courant number = 0.9. We assume an ideal gas with γ = 1.4
and we set g = 1.

Riemann problems. We solve two Riemann problems to show the advantages of the
f-wave HLLC method with respect to the f-wave Roe method. The computational
domain is [0, 1] and the initial discontinuity is at x = 0.5. Free flow boundary
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conditions are used. First, we solve a problem with ρ` = 3, ρr = 1, p` = 3, pr = 1,
u` = ur = 0.9. The solution contains a left-going transonic rarefaction, which
is computed correctly by the HLLC method but not by the Roe method, which
would need an entropy fix. See Fig. 2, left plot. The second test is a version with
gravity of the double rarefaction test of [3]. Here ρ` = ρr = 1, p` = pr = 0.4,
ur = −u` = 2. The solution involves two rarefactions going in opposite directions
that form a region of very low density and pressure in between. The Roe scheme fails
for this test, whereas the HLLC scheme computes the solution with no difficulties
(note that gravity here pulls slightly toward the left). See Fig. 3, left plot. Results
for a double rarefaction test in two dimensions are displayed in Fig. 3, right plot.
Here we have a setup analogous to the 1D test, with initial discontinuity at x = 1
in the domain [0, 2] × [0, 2]. Gravity acts downwards along the y axis. Top and
bottom boundaries are walls.

Perturbation of isothermal equilibrium. We perform a one-dimensional test proposed
in [8] to investigate the well-balanced property of the method. A small perturbation
of the isothermal equilibrium conditions p0(x) = ρ0(x) = exp(−gx), u0(x) = 0, is
considered for the pressure field: p(x)|t=0 = p0(x)+η exp(−100(x−0.5)2), η = 10−4,
x ∈ [0, 1]. The f-wave HLLC method exhibits the same good behavior of the f-wave
Roe method, see Fig. 2, right plot, and results are qualitatively similar to those in
the literature [8, 16, 2].
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Figure 2. Left: Transonic rarefaction test with gravity (ϕ = gx), ρ
at t = 0.2. Right: Perturbation of isothermal equilibrium test. p(x, t)−
p0(x) at t = 0.25. HLLC (∗), Roe (◦) results with 100 cells, HLLC
results with 1000 cells (−).

Radial Rayleigh–Taylor instability. We perform the two-dimensional Rayleigh–
Taylor instability test proposed in [8] (with initial conditions as in [2]). Here we
consider a radial gravitational potential (gravity is directed inward, ϕ = g|~x|).
A radially symmetric isothermal equilibrium is assumed, for which the pressure
is continuous across |~x| = r0 = 0.6 but has a density jump ∆ρ = 0.1 across
|~x| = r0(1 + η cos(ξθ)), ξ = 20, η = 0.02. Results are shown in Figure 4 for a
second-order computation on the domain [−1, 1]× [−1, 1] with 240× 240 grid cells.
As expected we see Rayleigh–Taylor instabilities arise at the interface with the
density jump. Elsewhere equilibrium conditions are well maintened, and results are
analogous to [8].
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Figure 3. Double rarefaction test with gravity computed by the HLLC
method. Left: 1D test (ϕ = gx), ρ at t = 0.14, results with 100 cells (∗)
and 1000 cells (−). Right: 2D test (ϕ = gy), ρ at t = 0.25, results with
200 × 200 cells.
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Figure 4. Rayleigh–Taylor instability test. 2nd order HLLC method,
240 × 240 cells. Density at t = 0, 2.5, 3.5. Color scale from 0.2 (darker)
to 1.5 (lighter).

5. Conclusions. We have presented a reformulation of the HLLC Riemann solver,
which shows that the HLLC wave structure can be interpreted as an averaged system
eigenstructure. In particular, we use this new Roe-like form of the HLLC solver to
develop a robust second-order well-balanced f-wave HLLC method for the solution
of the Euler equations with gravitational source terms. The presented reformulation
of the HLLC solver can be used for other applications [11], and it could be derived
also for more complex flow models, see e.g. [10].

Appendix A. Roe eigenstructure for the Euler equations. We recall the
eigenstructure of the Roe matrix Â(q`, qr) for a plane-wave Riemann problem in the
x direction with data q`, qr for the Euler equations. We assume κ, χ = constant.
We introduce the averages:

â =
a`
√
ρ`+ar

√
ρr√

ρ`+
√
ρr

, a = u, v,H, ρ̂ =
√
ρ`ρr, ĉ =

√
κ(Ĥ − K̂) + χ, K̂ = û2+v̂2

2 .

(17)
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The Roe eigenvalues are λ̂1 = û − ĉ, λ̂2 = λ̂3 = û, λ̂4 = û + ĉ. The matrix
R̂ = [r̂1, . . . , r̂4] of the corresponding Roe right eigenvectors is

R̂ =




1 1 0 1

û− ĉ û 0 û+ ĉ
v̂ v̂ 1 v̂

Ĥ − ûĉ −χκ + K̂ v̂ Ĥ + ûĉ


 . (18)

The coefficients ζ̂l, l = 1, . . . 4, of the Roe eigen-decomposition qr − q` =
∑4
l=1 ζ̂lr̂l,

are:

ζ̂1 = 1
2ĉ

(
∆p
ĉ − ρ̂ ∆u

)
, ζ̂2 = ∆ρ− ∆p

ĉ2 , ζ̂3 = ρ̂∆v, ζ̂4 = 1
2ĉ

(
∆p
ĉ + ρ̂ ∆u

)
. (19)
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densities, J. Comput. Phys., 92 (1991), 273–295.

[4] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-

upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5 (2007), 133–160.
[5] R. J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J.

Comput. Phys., 131 (1997), 327–353.

[6] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press,
2002.

[7] R. J. LeVeque, clawpack Software, http://www.clawpack.org.

[8] R. J. LeVeque and D. S. Bale, Wave-Propagation Methods for Conservation Laws with Source
Terms, in Proc. of the 7th Intl. Conf. on Hyperbolic Problems, (Ed. R. Jeltsch), Birkhäuser
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DISCONTINUOUS BOILING EFFECTS
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Abstract. We aim at characterizing the existence and uniqueness of steady

solutions to hyperbolic balance laws with source terms depending discontinu-
ously on the unknown. We exhibit conditions for such differential equations to

be well-posed and apply it to a model describing boiling flows.

1. Introduction. The aim of this paper is to present a framework for the study of
steady states of 1D balance laws with sources defined as a discontinuous function
of the unknown. Such steady states satisfy systems of the form

d

dx
F (U)(x) = S(U(x)), (1a)

where the source jumps when a certain function h reaches a threshold, i.e.

S(U) =

{
S−(U) if h(U) < 0,
S+(U) if h(U) ≥ 0.

(1b)

The discontinuity of S with respect to the unknown leads to both theoretical
and numerical difficulties. Especially, Picard-Lindelöf theory is unavailable and
extensions are required.

The application we have in mind is the study of boiling flows. We aim at studying
the homogenized two-phase flow model based on a drift-flux model ([11, 10, 9]) used
for the developpement of the FLICA4 code ([15, 3, 14])

∂tU + ∂xF (U) = S(U), (2a)

U =

(
αρv, ρ, ρu, ρ

(
e+

u2

2

))T
, (2b)

F (U) =

(
αρvu, ρu, ρu

2 + p, ρ

(
(e+

u2

2
+
p

ρ
)u

))T
, (2c)

S(U) =

{
(0, 0, 0, φ)

T
if h(U) < hb,

(Kφ, 0, 0, φ)
T

if h(U) ≥ hb, (2d)

with a constant K > 0. Here, αρv is the density of vapor alone, and ρ, ρu, ρe
are the density, momentum and energy of the homogenized flow, i.e. of liquid and

2000 Mathematics Subject Classification. 35R05, 35Q35, 34A36.
Key words and phrases. Discontinuous source term, Ordinary differential equation, Steady

state, Carathéodory solution, Well-posedness.
∗ Corresponding author: Teddy Pichard.
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vapor together. The source term models the heating of the fluid, through the term
φ > 0 in the energy equation, and the creation of vapor (in the first equation) when
the enthalpy h is above a boiling threshold hb.

In the next two sections, we first present a framework that guarantees the exis-
tence and uniqueness of solution of (1), first on a very simple scalar case, then on a
more general vectorial framework. This is applied to the problem (2) in Section 4.
Section 5 is devoted to conclusion and outlooks.

2. Preliminaries. Consider the Cauchy problem

dU

dx
= S(U, x), U(0) = U0. (3)

Here, S : RN × R → RN is a function of U ∈ RN and x ∈ R that may be
discontinuous. As S is not continuous, we need a definition of solutions to (3) in a
weak sense.

Definition 2.1. Let I be an open interval of R containing 0. A function U : I ⊂
R→ R is a Carathéodory solution to (3) if it is absolutely continuous and satisfies

∀x ∈ I, U(x) = U0 +

∫ x

0

S(U(y), y)dy.

In order to illustrate the difficulties emerging with discontinuous right-hand-side
(RHS) in (3), let us first consider the following simple scalar case (inspired by [12, 8])

d

dx
u =

{
s− if u < 0,
s+ if u ≥ 0,

u(0) = u0. (4)

The behavior of u away from 0 is well understood. Difficulties arise when u
reaches 0. We can list three types of behavior (represented on Fig. 1):

1. If s− ≥ 0 and s+ ≤ 0, then for all u0 ∈ R

u(x) =





u0 + s−x if u0 ≤ 0 and x ≤ −u0

s−
,

u0 + s+x if u0 ≥ 0 and x ≤ −u0

s+
.

(5a)

However this solution can not be extended for x larger than u0/s
±.

2. If s− ≤ 0 and s+ ≥ 0, then for all u0 ∈ R

u(x) =

{
u0 + s−x if u0 ≤ 0,
u0 + s+x if u0 ≥ 0.

(5b)

Remark that, if u0 = 0, the functions x 7→ s−x and x 7→ s+x are two
Carathéodory solutions of (4).

3. If s− and s+ have strictly the same sign, say positive, then for all x ≥ 0,

u(x) =





u0 + s+x if u0 ≥ 0,

u0 + s−x if u0 ≤ 0 and x ≤ −u0

s−
,

u0 + s−
−u0

s−
+ s+

(
x− −u0

s−

)
if u0 ≤ 0 and x ≥ −u0

s−
.

(5c)

The solutions defined in these three cases are depicted in the phase space (x, u) on
Fig. 1. Remark that on this simple example, neither existence nor uniqueness of
a solution is guaranteed. Thus, further considerations are necessary to obtain the
well-posedness of (3) in a general case or of (1) for our applications.
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u

x

s− > 0 s+ < 0

u

x

s− < 0 s+ > 0

u

x

s− > 0 s+ > 0

Figure 1. Solutions of (5) depending on the signs of s− and s+:
from left to right, solutions of (5a), (5b) and (5c)

In the next section, we focus on a vectorial ODE. We prove its well-posedness
under a condition corresponding to a vectorial version of the third case (5c).

3. A framework for ODE with Heaviside RHS. Consider now the problem

d

dx
U(x) =

{
S−(U(x), x) if h(U(x)) < 0,
S+(U(x), x) if h(U(x)) ≥ 0,

U(0) = U0, (6)

where the unknown U(x) ∈ RN is vectorial and the enthalpy h(U) is scalar.
We seek a natural framework for (6) to be well-posed. The result below could be

obtained as a corollary of e.g. [13, 4, 5] or through Filippov’s theory ([7, 1, 6]). Here
we present a simple condition on the surface h(U) = 0 under which any solution
changes sign at most once. The solution is then obtained by gluing together two
solutions obtained with the Picard-Lindelöf theorem.

Lemma 3.1. Suppose that

• h ∈ C1(RN ,R),
• Both S− and S+ satisfy the hypothesis of the Picard-Lindelöf theorem: conti-

nuity with respect to x and locally Lipschitz continuity with respect to U ,
• ∀x ∈ R, and ∀V ∈ RN , such that h(V ) = 0,

(∇Uh(V ).S−(V, x)) > 0 and (∇Uh(V ).S+(V, x)) > 0. (7)

Then, for any Carathéodory solutions Ū to (6), there exists at most one point x0 ∈ R
such that h(Ū)(x0) = 0, and h(Ū) is strictly negative on x < x0 and strictly positive
on x > x0.

Remark 1. The vector ∇Uh(V ) is normal to the hypersurface
{U ∈ RN , s.t. h(U) = 0}. Thus, the condition (7) imposes that the vector fields
S− and S+ are both pushing the solution toward the same side of h(U) = 0. The
solution is then constructed by following S− until it reaches h(U) = 0, and then
following S+ (see Fig. 2).

Proof. First, we remark that, as h is C1(RN ,R) and the Carathéodory solution
Ū is absolutely continuous, then h(Ū) is continuous and has a derivative almost
everywhere which is

d

dx
h(Ū)(x) = ∇Uh(Ū)(x).S(Ū(x), x). (8)
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h(V ) < 0 h(V ) > 0

h(V ) = 0

∇Uh(U(x0))

×
U0

S−(U(x0))

U(x)S+(U(x0))

Figure 2. Representation, for a problem of the form (6) in R2, of
the solution U(x) ∈ R2, the hypersurface {V ∈ R2 s.t. h(V ) = 0}
and the vectors S−(U(x0)), S+(U(x0)) and ∇Uh(U(x0))

Then, assume there exists a point x0 such that h(Ū(x0)) = 0. Then, for all y ≥ 0
(we may reason similarly for y < 0),

h(Ū)(x0 + y) =

∫ x0+y

x0

∇Uh(Ū)(x).S(Ū(x), x)dx

≥
∫ x0+y

x0

min(∇Uh(Ū)(x).S−(Ū(x), x),∇Uh(Ū)(x).S+(Ū(x), x))dx,

The function in the last integral is continuous and strictly positive at x = x0 by (7).
Thus there exists ε > 0 such that

∀x ∈]x0, x0 + ε[, h(Ū)(x) > 0, and ∀x ∈]x0 − ε, x0[, h(Ū)(x) < 0. (9)

Suppose by contradiction that there exists x1 > x0 such that h(Ū)(x1) = 0. The
continuity of h(Ū) and (9) yield the existence of x2 in (x0, x1), such that h(Ū(x2)) =
0. Repeating this operation, we construct a sequence (xi)i∈N of distinct points where
h(Ū) is null, and that converges towards a limit denoted by x∞ by dichotomy.
Considering that

|h(Ū)(x∞)| =
∣∣∣∣h(Ū)(xi) +

∫ x∞

xi

∇Uh(Ū)(x).S(Ū(x), x)dx

∣∣∣∣
≤ |x∞ − xi|‖∇Uh(Ū)(x)‖∞,[x0,x1]‖S(Ū(x), x)‖∞,[x0,x1].

we obtain xi →i→+∞ x∞ and h(Ū(x∞)) = 0, which contradicts the existence of the
interval (9). Once we know that h(Ū) has at most one zero, (9) gives the sign of
h(Ū) on both sides.

Proposition 1. Under the hypothesis of Lemma 3.1, for all initial conditions
U0 ∈ RN , there exists a unique maximal solution U to (6) that is absolutely contin-
uous. Furthermore, this solution U depends continuously on U0.

Proof. We prove the case h(U0) < 0, the other one being completely similar. Ac-
cording to Lemma 3.1, there is at most one point x0 where h(U) switches sign, and
as h(U(0)) < 0 it is larger than 0. Thus, any Carathéodory solution U takes the
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form

U(x) = U0 +





∫ x

0

S−(U(y), y)dy if x < x0,
∫ x0

0

S−(U(y), y)dy +

∫ x

x0

S+(U(y), y)dy otherwise.
(10)

The existence and uniqueness follows from the Picard-Lindelöf theory. Indeed on
x < x0 the solution coincides with the solution of the Cauchy problem

V ′(x) = S−(V (x), x), V (0) = U0

which exists and is unique as S− is continuous and locally Lipschitz continuous with
respect to its first variable. Then on x ≥ x0, it coincides with the solution of the
Cauchy problem

V ′(x) = S+(V (x), x), V (x0) = U(x0).

To conclude the proof it remains to show that x0 is a continuous function of the
initial data U0. Fix U0 and x0 such that

ϕ(U0, x0) = h(U(x0)) = h

(
U0 +

∫ x0

0

S−(U(y), y)dy

)
= 0

As ∂ϕ
∂x0

(U0, x0) = ∇Uh (U(x0)) · S−(U(x0), x0) is not null by (7), the implicit func-
tion theorem yields the result.

4. Application to homogenized two-phase fluid models. First, we rewrite
Proposition 1, then we apply it to a reformulation of (2).

4.1. With a non-linear flux. When the flux function F in (1) is non-linear, we
may simply adapt Proposition 1 into the following result.

Corollary 1. Suppose that

• F ∈ C1(RN ,RN ),
• h ∈ C1(RN ,R),
• S− and S+ are continuous w.r.t. x and locally Lipschitz continuous w.r.t. U ,
• ∀x ∈ [0, L], and ∀V ∈ RN , s.t. h(V ) = 0,

∇Uh(V ).(DF (V ))−1.S−(V, x) > 0, and ∇Uh(V ).(DF (V ))−1.S+(V, x) > 0. (11)

Then, for all initial conditions U0 ∈ RN satisfying det (DF (U0)) 6= 0, there exists a
unique maximal solution U to (1) absolutely continuous and satisfying
det (DF (U)) 6= 0. Furthermore, this solution depends continuously on U0.

Remark 2. Requiring that DF (U) is invertible corresponds to imposing that the
flows remains subsonique and admissible, which is commonly admitted for practical
applications. This condition may restrict the size of the spatial domain.

Proof. Any Carathéodory solution U to (1) is differentiable almost everywhere.
Thus, as F ∈ C1(RN ,RN ), then F (U) is absolutely continuous and differentiable
almost everywhere, and its derivative equals almost everywhere

d

dx
F (U)(x) = DF (U)(x).

d

dx
U(x).
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Thus any solution to (1) of such regularity and satisfying det (DF (U)) 6= 0, also
solves the Cauchy problem

d

dx
U(x) =

{
(DF (U)(x))−1.S−(U(x), x) if h(U)(x) < 0,
(DF (U)(x))−1.S+(U(x), x) if h(U)(x) ≥ 0.

(12)

Using Proposition 1 and the hypothesis, (12) has a unique solution U and it depends
continuously on U0.

4.2. On the boiling flow model. Now, we aim to apply this result to (1). In

order to apply Corollary 1, we rewrite the problem with a new set of unknowns Ũ
such that

• we can perform the computations required in (11) ;
• it has a physical interpretation.

We chose for variables

Ũ = (cv, q, p, h),

where cv is the volume fraction of vapor, q is the momentum. The enthalpy h is
chosen among the variables to simplify the definition of ∇Uh and q to simplify the
definition of DF̃ . These variables Ũ are commonly defined based on U as

Ũ = φ−1(U) =

(
αρv
ρ
, ρu, p, e+

p

ρ

)
, U = φ(Ũ) =

(
cv
τ
,

1

τ
, q,

h

τ
− p+

τq2

2

)
,

where τ = 1
ρ is the specific volume. We close the new system, not by expressing p

as a function of U (it is a variable in the new system), but by fixing

τ = cvτv + (1− cv)τl,
as a convex combination of the vapor and liquid specific volumes τv and τl, where
τv(p, h) and τl(p, h) are given C1(R2,R) functions of p and h, and independent of q
and cv. These functions are commonly tabulated.

Rewriting the steady state of (2) in terms of Ũ reads

d

dx
F̃ (Ũ) = S̃(Ũ) (13)

F̃ (Ũ) = F ◦ φ(Ũ) =

(
cvq, q, τq

2 + p,
τ2q3

2
+ qh

)
,

S̃(Ũ) = S ◦ φ(Ũ) =

{
(0, 0, 0, φ) if h < hb,
(Kφ, 0, 0, φ) if h ≥ hb.

We obtain in the end the following requirement.

Proposition 2. Suppose that

∀p ∈ R+, q2 ∂τ

∂p
(p, hb) + 1 > Kq2[τ(τv − τl)](p, hb) > 0. (14a)

Then, for all boundary conditions Ũ(0) = Ũ0 = (cv,0, q0, p0, h0) satisfying

q0 6= 0, and q2
0

(
∂τ

∂p
+ τ

∂τ

∂h

)
(p0, h0) + 1 6= 0, (14b)

there exists a unique maximal solution U absolutely continuous to (13). Further-

more, this solution depends continuously on Ũ0.
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Remark 3. Condition (14b) corresponds to imposing that the flow remains sub-

sonique. This formula is obtained by imposing the invertibility of DF̃ (Ũ) which is

necessary and sufficient to ensure the uniqueness of a steady solution Ũ . Of course,
one also need φ to be a bijection to ensure the existence of a unique solution U to
the original equation.

The formula (14b) refers not directly to the speed of sound, because in a non-

steady framework, Ũ is not transported, but U is. The speed of sound would be
obtained from the eigenvalues of DF (U) = DF̃ (φ−1(U)).Dφ−1(U). In the incom-
pressible case ∂pτ = 0, one finds after computations that those eigenvalues are

τq ±
√
τ/ ∂τ∂h and twice τq, where one identifies the velocity u = τq and the speed

of sound yields c =
√
τ/ ∂τ∂h .

Proof. First, one verifies that dq
dx = 0, thus q 6= 0 is constant and (13) reduces to

d

dx
F̄ (Ū) = S̄(Ū) S̄(Ū) =

{
(0, 0, φ) if h < hb,
(Kφ, 0, φ) if h ≥ hb,

Ū = (cv, p, h), F̄ (Ū) =

(
cvq, τq

2 + p, q

(
τ2q2

2
+ h

))
.

One computes

DF̄ (Ū) =




q 0 0
q2(τv − τl) q2 ∂τ

∂p + 1 q2 ∂τ
∂h

q3τ(τv − τl) q3τ ∂τ∂p q
(
q2τ ∂τ∂h + 1

)


 , (15)

the determinant of which yields

Det := det
(
DF̄ (Ū)

)
= q2

[
q2

(
∂τ

∂p
+ τ

∂τ

∂h

)
+ 1

]
,

which is non-zero at the boundary by hypothesis. Inverting (15) yields

(DF̄ (Ū))−1 =
1

Det




q
(

1 + q2
(
∂τ
∂p + τ ∂τ∂h

))
0 0

−q3(τv − τl) q2
(
q2τ ∂τ∂h + 1

)
−q3 ∂τ

∂h

−q3τ(τv − τl) −q4τ ∂τ∂p q
(
q2 ∂τ

∂p + 1
)


 .

Multiplying it by the source term and by ∇Ūh(Ū) = (0, 0, 1) leads to

∇Ūh(V ).(DF̄ (V ))−1.S̄−(V, x) =
qφ

Det

(
1 + q2 ∂τ

∂p

)
,

∇Ūh(V ).(DF̄ (V ))−1.S̄+(V, x) =
qφ

Det

(
1 + q2

(
∂τ

∂p
−Kτ(τv − τl)

))
.

If (14b) holds, these two values are positive and we may apply Corollary 1.

5. Conclusion and outlook. We have described, in a theoretical framework, a
set of conditions providing the existence and uniqueness of a steady solution, in the
sense of Carathéodory, to hyperbolic systems of balance laws. We have applied it
for the study of a boiling flow model. The resulting conditions on the physical pa-
rameters for such steady flows to exists are twofold. First, the flow needs to remain
subsonic in the whole spatial domain, this constrains the domain length and the
boundary conditions. Second, if the source is discontinuous along an hypersurface
in the phase space, then the source and the flux on both sides need to be defined
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in such a way that the flow may only cross the discontinuity hypersurface in one
direction.

In the present work, we have only considered boundary conditions on one sides,
which suffice to study time independent flow. Though, it is more common in this
field to use two boundaries with further requirements (see typically [2] for unsteady
flows).

At the numerical level, capturing equilibrium states such as steady states for
balance laws has been widely studied. Though, the discontinuity of source terms of
the form (1) brings new difficulties, the study of which is left for future work.
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Abstract. We are interested in the numerical approximation of the bi tem-
perature Euler equations, which is a non conservative hyperbolic system in-

troduced in [1]. We consider a conservative underlying kinetic model, the

Vlasov-BGK-Poisson system. We perform a scaling on this system in order to
obtain its hydrodynamic limit. We present a deterministic numerical method

to approximate this kinetic system. The method is shown to be Asymptotic-

Preserving in the hydrodynamic limit, which means that any stability condition
of the method is independant of any parameter ε, with ε→ 0. We prove that

the method is, under appropriate choices, consistant with the solution for bi-
temperature Euler. Finally, our method is compared to methods for the fluid

model (HLL, Suliciu).

1. Introduction. The bi-temperature Euler system, describing out-of-equilibirum
plasma physics, is comprised of an equation over mass, an equation over momen-
tum, and one equation over each species energy (electrons and ions). This system is
a non-conservative hyperbolic system. It contains so-called non-conservative terms,
which cannot be put in divergential form. Such terms are not well-defined, and, in
situations involving shocks, computing exact or approximated solutions is a chal-
lenging issue.

In this paper, the aim is to propose a reference numerical method for such solu-
tions using an underlying kinetic model to the bi-temperature Euler system. This
kinetic model is conservative, and hence does not exhibit the drawback of the macro-
scopic model. Hence, the idea dwells in solving the Vlasov-BGK-Ampère system
in the hydrodynamic limit, which will be presented in section 2.3. In order to be
able to compare the results with the scheme applied to the bi-temperature Euler
system, it is necessary to describe identical scales. By performing a scaling on the
kinetic system, dimensionless parameters are introduced in the system. Taking the
hydrodynamic limit then amounts to taking the limit when these parameters tend

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Non-conservative hyperbolic systems, numerical analysis, underlying

kinetic models.
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to zero. In the general case, if a naive numerical approach is used, extremely re-
strictive stability conditions will appear, rendering the scheme unusable in a decent
amount of computation time. Hence, an Asymptotic-Preserving (AP) scheme needs
to be derived. Such a scheme possess stability conditions independent of these small
parameters and is then able to compute solutions for both cases when parameters
are of the order of one and when these parameters are arbitrarily small.

2. Description of the models.

2.1. Bi-temperature Euler model. The one-dimensional bi-temperature Euler
model describes the behaviour of a two species fluid (constituted of electrons and
ions) on a macroscopic scale:

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pe + pi) = 0,

∂t(ρ
iεi +

1

2
ρiu2) + ∂x(u(ρiεi +

1

2
ρiu2 + pi)) + u(ci∂xp

e − ce∂xpi) = −νei(T i − T e),

∂t(ρ
eεe +

1

2
ρeu2) + ∂x(u(ρeεe +

1

2
ρeu2 + pe))− u(ci∂xp

e − ce∂xpi) = νei(T
i − T e).

Superscripts e and i denote quantities related to electrons and ions, respectively.
ρ = ρe + ρi = mene +mini is the total density, mα being the mass of a particle of
species α, and nα the corresponding concentration. u is the macroscopic velocity
of the fluid. pα, Tα and εα denote the partial pressures, temperatures and specific

energies. ce = Zme

mi+Zme and ci = mi

mi+Zme denote the mass fractions,with Z the
ionization rate. νei is the temperature exchange rate between the two species, that
can depend on space and time.

2.2. Macroscopic quantities. Define fα(t, x, v) : R+×R×R 7→ R+, the particle
distribution function of species α, where t, x, v respectively denote the time, space
and microscopic velocity variables. Integration with respect to v ∈ R will be denoted
as follows, for any function g that depends on v such that (1 + v2)g ∈ L1(R):

〈g〉 =

∫

R
gdv.

Macroscopic quantities nα(t, x), uα(t, x) and Tα(t, x) are defined as moments of
fα as follows:

〈fα〉 = nα, 〈vfα〉 = nαuα,

〈mα v
2

2
fα〉 =

1

2
mαnα(uα)2 +

1

2
nαkBT

α.

Similarly, mixture macroscopic quantities are defined as:

〈mefe +mif i〉 = ρ, 〈v(mefe +mif i)〉 = ρu,

〈v
2

2
(mefe +mif i)〉 =

1

2
ρu2 +

1

2
(ne + ni)kBT.

Finally, we define electromagnetic quantities: E ∈ R is the electric field along x,
qα is the electric charge of species α. Note that qe = −Zqi. j and ρ are respectively
the current and total electric charge, defined as:

〈qefe + qif i〉 = ρ, 〈v(qefe + qif i)〉 = j. (1)
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2.3. Vlasov-BGK-Ampère system. Consider the Vlasov-BGK-Ampère model,
for t ∈ R, x ∈ R, v ∈ R and α ∈ {e, i}:

∂tf
α + v∂xf

α +
qαE

mα
∂vf

α =
1

τα
(M(fα)− fα) +

1

ταβ
(M(fα)− fα), (2)

∂tE = − j

ε0
, (3)

∂xE =
ρ

ε0
, (4)

where τα and ταβ are, respectively, the relaxation rate towards intra-species and
inter-species equilibria (ταβ = τβα). ε0 is the dielectric permittivity of vacuum.

The entropy-minimizing distribution function is the local Maxwellian distribu-
tion, denoted M(fα), defined by:

M(fα)(t, x, v) =
nα(t, x)√

2πkB
Tα(t,x)
mα

exp (− (v − uα(t, x))2

2kB
Tα(t,x)
mα

).

M(fα), the exchange Maxwellian distribution, is defined as:

M(fα)(t, x, v) =
nα(t, x)√
2πkB

T (t,x)
mα

exp (− (v − u(t, x))2

2kB
T (t,x)
mα

).

2.4. Scaling of the equations. The regime of interest is the hydrodynamic limit
of this model, which corresponds to the scale of the phenomena described by the
bi-temperature Euler equations (see [1]). Hence, consider the following scaling, for
α = e, i:

∂tf
α + v∂xf

α +
qα

mα
E∂vf

α =
1

τ
(Me − fe) +

1

ε
(M

e

p − fe), (5)

∂tE = − j
τ
, (6)

∂xE =
ρ

τ
. (7)

Reaching the hydrodynamic limit consists in taking the limit of the model when
τ tend to 0. Notice that, however, ε is finite. In the limit, the Maxwell equations
(6-7) become j = 0 and ρ = 0, which can be rewritten as:

ue = ui, ne = Zni. (8)

The equations (8) are called the quasi-neutrality constraints. This form of the
system of equations is the singular quasi-neutral limit of our initial model, where
two evolution equations degenerate into algebraic relations. The purpose of this
work is to derive an Asymptotic-preserving (AP) numerical scheme, that is to say
with a stability condition that is independant τ .

3. Numerical treatment. In this section, numerical treatment of system (5-6-7)
is addressed.
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3.1. Vlasov-BGK equations: general method. A time-splitting method is
used on the Vlasov-BGK equations, in order to separate the Vlasov equations from
the BGK operators. More precisely, the following equations are going to be consec-
utively solved:

∂tf
α + v∂xf

α +
qα

mα
E∂vf

α = 0, (9)

the Vlasov-Maxwell equations for α = e, i, coupled with the Ampère equation:

∂tE = − j

τ2
. (10)

Then, the effects of the inter-species and intra-species collisions are consecutively
computed:

∂tf
α =

1

ε
(M

α − fα), ∂tf
α =

1

τ
(Mα − fα), (11)

where τ → 0.
A uniform discretization of the phase space is considered. Concerning the velocity

discretization, the boundaries of the domains are chosen as follows: for a given initial
condition, let us denote the initial moments by nα0 , uα0 and Tα0 . For α = e, i, we
have:

V α = [min
x

(uα0 (x))− lα max
x

√
kB

Tα0 (x)

mα
,max

x
(uα0 (x)) + lα max

x

√
kB

Tα0 (x)

mα
], (12)

where lα is chosen to fit the initial maxwellian distribution.
Notations for the discretization are chosen as follows: ∆x denotes the discretiza-

tion step of the domain [Lmin, Lmax] ⊂ R in Nx cells. For α = e, i, the velocity
domains [V αmin, V

α
max] ⊂ R are both discretized using Nv cells and the discretization

steps are denoted ∆ve and ∆vi. Then, we use indices k and j to denote quantities
computed at the k-th cell in space and j-th cell in velocity. Moreover, we denote
∆t the time step and we use a superscript n to denote the quantity computed at
time tn = t0 + n∆t.

Step 1: Computation of g and E

The following discretization is performed, for α = e, i:

f̃α,n+1
k,j = fα,nk,j −

∆t

∆x
(φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)− ∆t

2∆vα
qαEn+1

k

mα
(fα,nk,j+1 − f

α,n
k,j−1), (13)

coupled with

En+1
k = Enk −

∆t

τ
jn+1
k . (14)

Note that the term ∂vf has been discretized using a centred scheme. For the
space discretization, φ represented the flux function of the spatial discretization
which will be specified in the next section.

Equations (13) are stable under the CFL condition :

∆t ≤ min
α

(
1

||V α||∞
∆x + ||qαEn+1||∞

mα∆vα

). (15)

Then, partial and mixture quantities associated with f̃e,n+1 and f̃ i,n+1 are com-
puted using the midpoint quadrature formula.
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Step 2: inter-species relaxation

We apply a backward Euler method to the equations (11):

f̂α,n+1
k,j =

1

∆t+ τei

[
∆tM̃

α,n+1

k,j + τeif̃α,n+1
k,j

]
,

which is unconditionnaly stable. M̃
α,n+1

k,j is the mixture Maxwellian defined by the

moments ñα,n+1
k , ũn+1

k and T̃n+1
k , which are conserved through this step. Hence,

the mixture Maxwellian is known beforehand, which allows this implicitation. Par-
tial velocities and temperatures (denoted in the next section with a hat) are then
recomputed using the previous formulae.

Step 3: intra-species relaxation

The next step consists in the relaxation towards Maxwellian equilibrium. Since
the BGK operator preserves moments, we have the following properties: ∀k ∈
{1, ..., Nx},

n̂α,n+1
k = nα,n+1

k , ûα,n+1
k = uα,n+1

k , T̂α,n+1
k = Tα,n+1

k . (16)

Similarly to the previous section, this property allows us to use an implicit scheme,
the backward Euler method: ∀k ∈ {1, ..., Nx}, ∀j ∈ {1, ..., Nv} and p = 0, 2,

fα,n+1
k,j = f̂α,n+1

k,j +
∆t

τ
(Mα,n+1

k,j − fα,n+1
k,j ), (17)

where

Mα,n+1
k,j =

nα,n+1
k√

2πkB
Tα,n+1
k

mα

exp (− (vj − uα,n+1
k )2

2kB
Tα,n+1
k

mα

),

which are expressed using quantities known at the end of step 2, according to the
properties (16). Taking the limit τ → 0 in (17) leads to:

gα,n+1
k,j = Mα,n+1

k,j .

In the next section, enforcement of quasineutrality constraints (8) will be adressed.
More precisely, specific spatial fluxes will be given and a reformulation of the
Maxwell-Ampère equation will be performed in order to derive an Asymptotic-
Preserving method, valid in the limit τ → 0. Note that if these constraints are
enforced through the hyperbolic step of the scheme (step 1), then they will be
trivially preserved by both step 2 and 3. Hence, quasineutrality only has to been
enforced through step 1.

3.2. Modified-viscosity upwind scheme. The space divergence is discretized
explicitly, via the following modified upwind scheme:

φα,n
k+ 1

2 ,j
=
vαj
2

(fα,nk+1,j + fα,nk,j )− |Vmax|
2

(fα,nk+1,j − f
α,n
k,j ), (18)

where Vmax = max (|V emin|, |V imin|, |V emax|, |V emin|).
This method is the classical upwind scheme, where the numerical viscosity |vj |,

that depends directly of the microscopic velocity, has been replaced by the small-
est velocity that ensures stability for all equations. The discrete system writes as
follows:
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f̃α,n+1
k,j = fα,nk,j −

∆t

∆x
(φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)− ∆t

2∆vα
qαEn+1

k

mα
(fα,nk,j+1 − f

α,n
k,j−1), (19)

and

En+1
k = Enk −

∆t

τ
jn+1
k . (20)

This level of implicitness allows for a reformulation of the equation on the electric
field. More precisely, the equation used to compute the electric field in (20) is not
valid in the limit τ → 0. To solve this problem, we follow the idea developped in
[2]. By multiplying equation (19) by qαvαj ∆vα and summing over j, it comes:

qα
∑

j

vαj f̃
α,n+1
k,j ∆vα = qα

∑

j

vαj f
α,n
k,j ∆vα − qα∆t∆vα

∆x

∑

j

vαj (φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)

− ∆t

2

∑

j

vαj (
(qα)2En+1

k

mα
(fα,nk,j+1 − f

α,n
k,j−1)).

(21)

According to the definition of the current jnk =
∑
α
qα
∑
j

vαj f
α,n
k,j ∆vα, taking (21)

into account with α = e, i, one obtains

j̃n+1
k = jnk −

∆t

∆x

∑

α

qα
∑

j

∆vαvαj (φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)

− ∆tEn+1
k

2

∑

α

(qα)2

mα

∑

j

vαj (fα,nk,j+1 − f
α,n
k,j−1).

By injecting this equation in (20), we get the following expression for the electric
field:

En+1
k =

τEnk −∆tjnk + ∆t2

∆x

∑
α
qα
∑
j

∆vαvαj (φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)

τ − ∆t2

2

∑
α

(qα)2

mα

∑
j

vαj (fα,nk,j+1 − f
α,n
k,j−1)

,

which is valid for all values of τ . In particular, we are interested in the limit
τ → 0, which is:

En+1
k =

1
∆x

∑
α
qα
∑
j

∆vαvαj (φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)

∑
α

(qα)2

mα nα,nk
,

where it has been assumed that jnk = 0. Such a choice for En+1
k ensures that

j̃n+1
k = 0, which is one of the two quasi-neutrality constraints (8). The choice of φ

(18) that has been made ensures that the other contraint ˜̄ρn+1
k = 0 is also verified.

More precisely, compute the discrete equation on ˜̄ρn+1
k . ∀k ∈ {1, ..., Nx}, provided

that
∑
j

(ψα,n
k,j+ 1

2

−ψα,n
k,j− 1

2

) = 0, the following equation on the total electric charge is

obtained:

ρn+1
k = ρnk −

∆t

∆x

∑

α

qα
∑

j

(φα,n
k+ 1

2 ,j
− φα,n

k− 1
2 ,j

)∆vα.
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According to (18) and by rearranging the terms, we obtain:

ρn+1
k = ρnk −

∆t

2∆x
(jnk+1− jnk−1) +

∆t

2∆x

∑

α

qα
∑

j

|Vmax|(fα,nk+1,j −2fα,nk,j +fα,nk−1,j)∆v
α

(22)
By assuming that ρnk = jnk+1 = jnk−1 = 0, it comes:

ρn+1
k =

∆t

2∆x
Vmax(ρnk+1 − 2ρnk + ρnk−1) = 0. (23)

Hence, quasineutrality is conserved at all time.

4. Numerical results. In this section, numerical resolution of Riemann problems
with our method is presented. Comparative results obtained by an HLL-type scheme
and a Suliciu relaxation method on the bi-temperature Euler system are displayed
along the solutions from the kinetic scheme that has been derived in this paper (see
[1] for more details on these methods).

The spatial domain is chosen as the interval [0,1], supplemented with homo-
geneous Neumann boundary conditions. Physical constants (kB , Z, q

i) are chosen
equal to one. All test cases are done in the hydrodynamic limit τ → 0. Concerning
the choice of lα in (12), a convergence test has been performed on the initial con-
ditions of the test cases in order to obtain a appropriate value that would optimize
computational cost. Hence, in all test cases, lα = 8, for α ∈ {e, i}. A mass ratio of
10 (me = 0.1 and mi = 1) is considered.
Shock tube with different initial temperatures. The following initial conditions are:
{
nα(x) = 1, uα(x) = 0, Tα(x) = 1 if x ∈ [0, 0.5],

nα(x) = 0.125, uα(x) = 0, T e(x) = 2 T i(x) = 3 if x ∈ [0.5, 1].

Parameters are chosen as Nx = 120000, Nv = 40 and l = 8. The inter-species
collision relaxation time is τei = 0.1. Results are computed at time t = 0.1. The
result are provided in figure 1 and 2. Quasi-neutrality is achieved and temperatures
exhibit different jump relations across discontinuities for each method (see Figure
3).
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Figure 1. Density and velocity solutions of shock tube test case
with a mass ratio of 10 with 120000 space points, 40 velocity points
and a domain length of 8
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Figure 2. Electronic and ionic temperatures of a shock tube test
case with a mass ratio of 10 with 120000 space points, 40 velocity
points and a domain length of 8
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Figure 3. Zoom on interval [0.66, 0.76] from figure 2 of electronic
and ionic temperatures for a shock tube test case with a mass ratio
of 10 with 120000 space points, 40 velocity points and a domain
length of 8

Shock wave. This test case is constituted of two shock waves. It is given by the
following data:

{
nα(x) = 1, uα(x) = 1, Tα(x) = 1 if x ∈ [0, 0.5],

nα(x) = 1, uα(x) = −1, Tα(x) = 1 if x ∈ [0.5, 1].

We have Nx = 120000, Nv = 40 and l = 8. The inter-species collision relaxation
time is τei = 0.1. Results are computed at time t = 0.1.

The results are provided in Figure 4 and 5. Quasi-neutrality is achieved on the
conserved quantities. The solution contains two shock waves and different jump
relations can be observed for each numerical method. In Figure 6, a zoom is per-
formed on the constant values reached by each method between the two shocks.
This shows the different behaviour between the three methods.

5. Conclusion. In this article, a kinetic numerical method able to provide ref-
erence results for a non-conservative hyperbolic system, the bi-temperature Euler
system, is proposed. This method is able to enforce all the desired properties that
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Figure 4. Density and veloctiy solutions of a shock wave test case
with a mass ratio of 10 with 120000 space points, 40 velocity points
and a domain length of 8
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Figure 5. Electronic and ionic temperature of a shock wave test
case with a mass ratio of 10 with 120000 space points, 40 velocity
points and a domain length of 8

are relevant for comparisons with methods applied directly to the hyperbolic system.
Such methods lack an unambiguous definition of the non-conservative products and
exhibit different Rankine-Hugoniot relation when the solution contains shock waves.
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Figure 6. Zoom on interval [0.40, 0.60] on figure 5 of electronic
and ionic temperature of a shock wave test case with a mass ratio
of 10 with 120000 space points, 40 velocity points and a domain
length of 8
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Abstract. We consider a system which is the transformed Keller-Segel-Fisher

/KPP chemotaxis model with logarithmic sensitivity. For Cauchy problem,
a time asymptotic solution has been constructed in [7], with a proof of L2

convergence. In this paper we extend the study to pointwise sense, both in
space and in time. Our main result provides a detailed, pointwise description

of the wave pattern in the time asymptotic convergence of the solution to the

asymptotic solution.

1. Introduction. We consider the following Cauchy problem:{
vt + ux = 0,

ut + (uv)x = Duxx + ru(1− u),
x ∈ R, t > 0,

(v, u)(x, 0) = (v0, u0)(x), x ∈ R,
(1)

where D, r > 0 are constant parameters, and the Cauchy datum (v0, u0) is a small
perturbation of a constant equilibrium state (0, 1). Equation (1) is derived from
the logarithmic Keller-Segel-Fisher/KPP chemotaxis model, for the case of non-
diffusive chemical, via the inverse Hopf-Cole transformation and rescaling/non-
dimensionalization. Details are given in [8] (also see [9]), including both cases
of diffusive and non-diffusive chemicals. Applying a general theory on hyperbolic-
parabolic balance laws developed recently in [3, 4, 6], (1) has a unique global-in-time
solution, with optimal Lp time decay rates, p ≥ 2, for small data solutions.

Although a general theory on asymptomatic behavior of solution is available
only for multi-space dimensions [5], an asymptotic solution of (1) is constructed
and L2-convergence is proved in [7] by ad hoc consideration:

(v, u) ≈ (θ, 1− 1

r
θx). (2)
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Here θ is the self similar solution of the heat equation

θt =
1

r
θxx, (3)

carrying the same mass as v. That is, since θ and v are conserved quantities,
∫

R
θ(x, 0) dx =

∫

R
θ(x, t) dx =

∫

R
v(x, t) dx =

∫

R
v0(x) dx ≡ d0. (4)

Noting the solution to (3), (4) is the heat kernel, we have the explicit formulation
of it:

θ(x, t) =
d0√

4π(t+ 1)/r
e−

rx2

4(t+1) . (5)

The goal of this paper is to extend the result in [7] by establishing (2) in the
pointwise sense, both in space and in time. To simplify our statement we introduce
the following notations:

ψα(x, t) = (1 +
x2

t+ 1
)−αΓα(t), x ∈ R, t ≥ 0,

Γα(t) =





(t+ 1)−α if 1/2 < α < 1

(t+ 1)−1[1 + ln (t+ 1)] if α = 1

(t+ 1)−1 if α > 1

,

(6)

where α > 1/2 is a constant. Our main result is the following theorem:

Theorem 1.1. Let D, r > 0 be constants, and (v0, u0 − 1) ∈ H2(R), satisfying

|(v0, u0 − 1)|(x) = O(1)(x2 + 1)−α, (7)

where α > 1/2 is a constant. Let

δ0 ≡ sup
x∈R

[
(x2 + 1)α|(v0, u0 − 1)|(x)

]
+ ‖(v0, u0 − 1)‖H2 . (8)

If δ0 is sufficiently small, the Cauchy problem (1) has a unique solution for t > 0,
with the following property:

v(x, t) = θ(x, t) +O(1)δ0ψ
α(x, t), (9)

u(x, t) = 1− 1

r
θx(x, t) +O(1)δ0(t+ 1)−1/2ψα(x, t), (10)

where θ and ψα are given in (5) and (6), respectively.

Theorem 1.1 shows that (2) is valid in a pointwise sense: For v, the error of the
asymptotic ansatz θ is in the scale of ψα, which decays faster in time since α > 1/2.
Similarly, for u− 1, (t+ 1)−1/2ψα decays faster than the ansatz − 1

r θx.
We carry out the proof of Theorem 1.1 in the next two sections.

2. Preliminaries. We first cite the global existence result from [7], which is from
the application of the general theory in [3]:

Theorem 2.1 ([7]). Let r > 0 and D > 0 be constants, and (v0, u0 − 1) ∈ H2(R).
Then there exists a constant δ0 > 0 such that if ‖(v0, u0 − 1)‖H2 ≤ δ0, the Cauchy
problem (1) has a unique solution, with (v, u− 1) ∈ C0([0,∞);H2(R)) for t > 0.
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We write (1) in terms of the perturbation and in vector form:

wt +Awx = Bwxx + Lw +R,

w(x, 0) = w0(x),
(11)

where

w(x, t) =

(
v

u− 1

)
=

(
w1

w2

)
(x, t), w0(x) =

(
v0

u0 − 1

)
=

(
w01

w02

)
(x), (12)

A =

(
0 1
1 0

)
, B =

(
0 0
0 D

)
, L =

(
0 0
0 −r

)
, (13)

R = R1x(x, t) +R2(x, t), R1 =

(
0

−(w1w2)(x, t)

)
, R2 =

(
0

−r(w2
2)(x, t)

)
. (14)

The Green’s Function of the linear part of (11) (without the nonlinear source
term R) is the solution matrix G(x, t) of

Gt +AGx = BGxx + LG

G(x, 0) = δ(x)I2×2,
(15)

where δ(x) is the Dirac δ-function, and I2×2 is the 2× 2 identity matrix. Detailed
estimates on G are obtained in [2] for different combinations of parameters. Here
we cite the case of non-diffusive chemical:

Theorem 2.2 ([2]). Let D, r > 0 be constants, and l ≥ 0 be an integer. Then for
x ∈ R, t > 0, the Green’s function G(x, t) has the following estimate:

∂l

∂xl
G(x, t) =

∂l

∂xl

[
1√

4πt/r
e−

rx2

4t

(
1 0
0 0

)]
+O(1)(t+ 1)−

1
2 t−

l+1
2 e−

x2

Ct

(
0 1
1 0

)

+ (t+ 1)−1t−
l+1
2 e−

x2

Ct

(
O(1) 0

0 O(1)

)
+ e−

t
D

l∑

j=0

δ(l−j)(x)Qj ,

(16)

where C > 0 is a constant, and Qj, 0 ≤ j ≤ l, is a 2 × 2, symmetric, polynomial
matrix in t with a degree not more than j/2. In particular,

Q0 =

(
1 0
0 0

)
.

In the proof of (10) we need a refinement of the (2, 1) entry of G, with a precise
leading term. Slightly modifying the proof of Theorem 2.2 we have the following:

Theorem 2.3. Under the assumptions of Theorem 2.2, the second term on the
right-hand side of (16) can be replaced by

− ∂l+1

∂xl+1

[
1√

4πrt
e−

rx2

4t

(
0 1
1 0

)]
+O(1)(t+ 1)−1t−

l+2
2 e−

x2

Ct

(
0 1
1 0

)
. (17)

To estimate wave interaction, we cite Lemma 3.2 in [1]:
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Lemma 2.4 ([1]). Let α ≥ 0, β > 0, µ > 0 and λ be constants. Then for x ∈ R,
t ≥ 0, we have

∫ t/2

0

∫

R
(t− τ)−1(t+ 1− τ)−

α
2 e−

(x−y−λ(t−τ))2
µ(t−τ) (τ + 1)−

β
2 e−

(y−λ(τ+1))2

µ(τ+1) dydτ

= O(1)(t+ 1)−
γ
2 e−

(x−λ(t+1))2

µ(t+1)

{
1 if β 6= 3

ln(t+ 2), if β = 3
, (18)

where γ = α+ min{β, 3} − 1;

∫ t

t/2

∫

R
(t− τ)−1(t+ 1− τ)−

α
2 e−

(x−y−λ(t−τ))2
µ(t−τ) (τ + 1)−

β
2 e−

(y−λ(τ+1))2

µ(τ+1) dydτ

= O(1)(t+ 1)−
γ
2 e−

(x−λ(t+1))2

µ(t+1)

{
1 if α 6= 1

ln(t+ 2), if α = 1
, (19)

where γ = min{α, 1}+ β − 1.

We also need to estimate interaction between waves of heat kernel type and waves
of algebraic type:

Lemma 2.5. Let µ > 0 and α > 1/2 be constants. Then for x ∈ R, 0 ≤ τ ≤ t, we
have
∫

R
[(t− τ)−

1
2 + (τ + 1)−

1
2 ]e−

(x−y)2
µ(t−τ)

(
1 +

y2

τ + 1

)−2α
dy = O(1)

(
1 +

x2

t+ 1

)−α
. (20)

Proof. Denote the left-hand side of (20) by I. Then consider the integration on
{|y| ≥ |x|/2} and {|y| ≤ |x|/2} separately. We have

I ≤
∫

|y|≥ |x|2

[
(t− τ)−

1
2 e−

(x−y)2
µ(t−τ) + (τ + 1)−

1
2

(
1 +

y2

τ + 1

)−α]
dy
(

1 +
x2

4(t+ 1)

)−α

+

∫

|y|≤ |x|2

[
(t− τ)−

1
2 e−

(x−y)2
2µ(t−τ) + (τ + 1)−

1
2

(
1 +

y2

τ + 1

)−2α]
dy e−

x2

8µ(t−τ)

≤C
(

1 +
x2

4(t+ 1)

)−α
+ Ce−

x2

8µ(t+1) ≤ C
(

1 +
x2

t+ 1

)−α
,

where C > 0 is a generic constant.

3. A Priori Estimates. Due to Theorem 2.1, to prove Theorem 1.1 we only need
to obtain (9) and (10), which is the goal of this section.

From (11) and by Duhamel’s principle, we have

w(x, t) =

∫

R
G(x− y, t)w0(y) dy +

∫ t

0

∫

R
G(x− y, t− τ)R(y, τ) dydτ, (21)

where G is the Green’s function defined by (15). Denote the heat kernel by H:

H(x, t; 1/r) =
1√

4πt/r
e−

x2

4t/r . (22)

From (3) we have

θ(x, t) =

∫

R
H(x− y, t; 1/r)θ(y, 0) dy. (23)
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Let Gij be the (i, j) entry of G, 1 ≤ i, j ≤ 2. Then combining (12), (21) and (23)
and by integration by parts, we have

(v − θ)(x, t) = I1 + I2,

(u− 1 +
1

r
θx)(x, t) = Ĩ1 + Ĩ2,

(24)

where

I1 =

∫

R
{[G11(x− y, t)v0(y)−H(x− y, t; 1/r)θ(y, 0)]

+G12(x− y, t)[u0(y)− 1]} dy,

I2 =

∫ t

0

∫

R

{[ ∂
∂x
G12(x− y, t− τ)

]
(−w1w2)(y, τ)

+G12(x− y, t− τ)(−rw2
2)(y, τ)

}
dydτ,

Ĩ1 =Ĩ11 + Ĩ12,

Ĩ11 =

∫

R
[G21(x− y, t)v0(y) +

1

r
Hx(x− y, t; 1/r)θ(y, 0)] dy,

Ĩ12 =

∫

R
G22(x− y, t)[u0(y)− 1] dy,

Ĩ2 =

∫ t

0

∫

R

{[ ∂
∂x
G22(x− y, t− τ)

]
(−w1w2)(y, τ)

+G22(x− y, t− τ)(−rw2
2)(y, τ)

}
dydτ.

(25)

Define a function M(t) as follows:

M(t) = sup
0≤τ≤t

{
‖[ψα(·, τ)]−1(v − θ)(·, τ)‖L∞

+ (τ + 1)
1
2 ‖[ψα(·, τ)]−1(u− 1 +

1

r
θx)(·, τ)‖L∞

}
.

(26)

To prove (9) and (10) we need to show

M(t) ≤ Cδ0, t ≥ 0, (27)

where C > 0 is a constant. For the rest of this section, we use C to denote a
universal positive constant, which may vary line by line according to the context.

From (4) we have ∫

R
[v0(x)− θ(x, 0)] dx = 0.

Thus we define

η(x) =

∫ x

−∞
[v0(y)− θ(y, 0)] dy = −

∫ ∞

x

[v0(y)− θ(y, 0)] dy, (28)

which implies

η′(x) = v0(x)− θ(x, 0). (29)

From (4), (5) and (8) we have

|v0(x)|+ |u0(x)− 1|+ |θ(x, 0)| ≤ Cδ0(|x|+ 1)−2α. (30)
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Lemma 3.1. If v0 satisfies (7), then for x ∈ R,

η(x) = O(1)δ0(|x|+ 1)1−2α, (31)

where δ0 is defined in (8).

Proof. From (28) and (30), for x ≤ 0 we have

|η(x)| ≤
∫ x

−∞
[|v0(y)|+ |θ(y, 0)|] dy ≤ Cδ0

∫ x

−∞
(|y|+ 1)−2α dy = Cδ0(|x|+ 1)1−2α.

If x > 0, we use the second equality in (28) to arrive at the same conclusion.

Lemma 3.2. Under the assumptions of Theorem 1.1, for x ∈ R, t > 0, we have

|I1| ≤ Cδ0ψα(x, t), (32)

|Ĩ1| ≤ Cδ0(t+ 1)−
1
2ψα(x, t). (33)

Proof. We write I1 in (25) as

I1 =I11 + I12,

I11 =

∫

R
H(x− y, t; 1/r)[v0(y)− θ(y, 0)] dy,

I12 =

∫

R
{[G11(x− y, t)−H(x− y, t; 1/r)]v0(y)

+G12(x− y, t)[u0(y)− 1]} dy.

(34)

Consider the case |x| ≤
√
t+ 1 first. If t ≥ 1, by integration by parts and

applying (31), we have

I11 =

∫

R
Hx(x− y, t; 1/r)η(y) dy = O(1)δ0t

− 1
2

∫

R
H(x− y, t; 2/r)(|y|+ 1)1−2α dy

=O(1)δ0t
− 1

2

[ ∫

|y|≤√t+1

t−
1
2 (|y|+ 1)1−2α dy

+

∫

|y|≥√t+1

H(x− y, t; 2/r)(t+ 1)
1
2−α dy

]

=O(1)δ0Γα(t).

(35)

If 0 < t ≤ 1, without integration by parts, we similarly have

I11 =

∫

R
H(x− y, t; 1/r)O(1)δ0 dy = O(1)δ0 = O(1)δ0Γα(t). (36)

Noting (6), for |x| ≤
√
t+ 1 and t > 0, we have

I11 = O(1)δ0ψ
α(x, t). (37)

Next we consider |x| ≥
√
t+ 1 and t > 0. With integration by parts on {|y| ≤

|x|/2}, we write

I11 =

∫

|y|≥ |x|2
H(x− y, t; 1/r)[v0(y)− θ(y, 0)] dy +H(x− y, t; 1/r)η(y)

] |x|
2

− |x|2

+

∫

|y|≤ |x|2
Hx(x− y, t; 1/r)η(y) dy.
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Applying (30), (22) and (31) to the right-hand side, we have

I11 =O(1)δ0

[
(|x|+ 1)−2α + t−

1
2 e−

rx2

16t (|x|+ 1)1−2α + t−1e−
rx2

32t

∫ |x|
2

0

(y + 1)1−2αdy
]

=O(1)δ0(|x|+ 1)−2α +O(1)δ0(|x|+ 1)−2e−
x2

Ct





0 if 1
2 < α < 1

ln(|x|+ 1) if α = 1

1 if α > 1

.

(38)

Noting |x| ≥
√
t+ 1 and e−

x2

Ct ln(|x|+1) = O(1)(1+ln(t+1)) by considering |x| ≷ t,
we obtain

I11 = O(1)δ0
( x2

t+ 1

)−α
Γα(t) = O(1)δ0ψ

α(x, t). (39)

To estimate I12, we apply (16), (22) and (30) to (34) to have

I12 = O(1)δ0

[ ∫

R
(t+ 1)−

1
2H(x− y, t;C)(|y|+ 1)−2α dy + e−

t
D (|x|+ 1)−2α

]
. (40)

Comparing the right-hand side of (40) to those of (35) and (36), respectively, it is
clear that the former is bounded by the latter. Also, by considering integration on
{|y| ≥ |x|/2} and {|y| ≤ |x|/2}, the right-hand side of (40) is bounded by that of
(38). Therefore,

I12 = O(1)δ0ψ
α(x, t), x ∈ R, t > 0. (41)

Equations (34), (37), (39) and (41) give us (32).

To prove (33), we apply Theorems 2.2 and 2.3, in particular, (17) to Ĩ11 in (25):

Ĩ11 =

∫

R
−1

r
Hx(x− y, t; 1/r)[v0(y)− θ(y, 0)] dy

+

∫

R
O(1)(t+ 1)−1t−

1
2H(x− y, t;C)v0(y) dy. (42)

If we apply (16) instead, together with (23), we also have

Ĩ11 =

∫

R
O(1)(t+ 1)−

1
2H(x− y, t;C)v0(y) dy +

1

r
θx(x, t). (43)

For |x| ≤
√
t+ 1, if t ≥ 1, we compare Ĩ11 in (42) with I11 in (34), and follow

the derivation of (35) to arrive at Ĩ11 = O(1)δ0(t+ 1)−1/2ψα(x, t). If 0 < t ≤ 1, we

have, from (43) and similar to (36), Ĩ11 = O(1)δ0 = O(1)δ0(t+ 1)−1/2ψα(x, t).
For |x| ≥

√
t+ 1, similarly, if t ≥ 1, we follow the derivation of (38) to handle

the first term of (42), which gives us the estimate O(1)δ0(t + 1)−1/2ψα(x, t). The
second term in (42) is better than the first term in (40) by a decay factor (t+ 1)−1,
thus results in O(1)δ0(t + 1)−1/2ψα(x, t). If 0 < t ≤ 1, we compare (43) with (40)

to have Ĩ11 = O(1)δ0ψ
α(x, t) = O(1)δ0(t+ 1)−1/2ψα(x, t). In summary,

Ĩ11 = O(1)δ0(t+ 1)−1/2ψα(x, t), x ∈ R, t > 0. (44)

For Ĩ12 in (25), applying (16) and (30) we have

Ĩ12 = O(1)δ0

∫

R
(t+ 1)−1H(x− y, t;C)(|y|+ 1)−2α dy,
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which is better than the first term in (40) by a decay factor (t + 1)−
1
2 . This gives

us

Ĩ12 = O(1)δ0(t+ 1)−1/2ψα(x, t), x ∈ R, t > 0. (45)

Combining (25), (44) and (45), we settle (33).

Lemma 3.3. Under the assumptions of Theorem 1.1, for x ∈ R, t > 0, we have

|I2| ≤ C[δ20 +M2(t)]ψα(x, t), (46)

|Ĩ2| ≤ C[δ20 +M2(t)](t+ 1)−
1
2ψα(x, t). (47)

Proof. From (25) and (16), we have

I2 =

∫ t

0

∫

R
O(1)(t−τ+1)−

1
2 (t−τ)−

1
2 e−

(x−y)2
C(t−τ) [(t−τ)−

1
2 |w1w2|(y, τ)+w2

2(y, τ)] dydτ

+

∫ t

0

e−
t−τ
D O(1)|w1w2|(x, τ) dτ. (48)

From (12) and (26) we have

|w1(x, t)| ≤ |θ(x, t)|+M(t)ψα(x, t),

|w2(x, t)| ≤ 1

r
|θx(x, t)|+M(t)(t+ 1)−

1
2ψα(x, t).

(49)

By (5) and (6), they imply

|w1w2|(x, t) ≤ C[δ20 +M2(t)](t+ 1)−
3
2 e−

x2

C(t+1)

+M2(t)(t+ 1)−
1
2 [Γα(t)]2

(
1 +

x2

t+ 1

)−2α
,

|w2
2|(x, t) ≤ Cδ20(t+ 1)−2e−

x2

C(t+1) +M2(t)(t+ 1)−1[Γα(t)]2
(
1 +

x2

t+ 1

)−2α
.

(50)

Substituting (50) into (48), and applying Lemmas 2.4 and 2.5, we arrive at

I2 =O(1)[δ20 +M2(t)](t+ 1)−1e−
x2

C(t+1)

+O(1)M2(t)

∫ t

0

(t− τ + 1)−
1
2 (t− τ)−

1
2 (τ + 1)−

1
2 [Γα(τ)]2 dτ

(
1 +

x2

t+ 1

)−α

+O(1)[δ20 +M2(t)]

∫ t

0

e−
t−τ
D (τ + 1)−

3
2 dτ

(
1 +

x2

t+ 1

)−2α
.

(51)

By integrating on [0, t/2] and [t/2, t] separately, we obtain

I2 =O(1)[δ20 +M2(t)](t+ 1)−1e−
x2

C(t+1) +O(1)M2(t)(t+ 1)−1
(
1 +

x2

t+ 1

)−α

+O(1)[δ20 +M2(t)](t+ 1)−
3
2

(
1 +

x2

t+ 1

)−2α

=O(1)[δ20 +M2(t)]ψα(x, t).

(52)

This settles (46).
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The proof of (47) is similar. From (25) and (16) we have

Ĩ2 =

∫ t

0

∫

R
O(1)(t−τ+1)−1(t−τ)−

1
2 e−

(x−y)2
C(t−τ) [(t−τ)−

1
2 |w1w2|(y, τ)+w2

2(y, τ)] dydτ

+

∫ t

0

e−
t−τ
D O(1)|w1w2|(x, τ) dτ. (53)

Following the derivation of (52), we substitute (50) into (53), and apply Lemmas 2.4

and 2.5. The extra decay factor (t− τ + 1)−
1
2 in the Green’s function is translated

into the extra decay factor (t+ 1)−
1
2 in (47), through the application of Lemma 2.4

and the time integral similar to the second term in (51).

Combining (24), (32), (33), (46) and (47), we have

|v − θ|(x, t) ≤ C[δ0 +M2(t)]ψα(x, t),

|u− 1 +
1

r
θx|(x, t) ≤ C[δ0 +M2(t)](t+ 1)−

1
2ψα(x, t).

With (26), these imply M(t) ≤ C[δ0 +M2(t)] for some constant C > 0. By simple
algebra, we have (27) if M(t) is bounded by a small constant. Via a continuity
argument, (27) is valid if δ0 is small.
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Abstract. Temperature discontinuities, or fronts, in the surface quasi-geostrophic

(SQG) equations support surface waves. By regularizing the contour dynam-

ics equations, we drive a nonlinear and nonlocal equation, which describes the
evolution of SQG fronts. In this survey, we review some recent results on

the dynamics of SQG fronts, including a derivation of SQG fronts equation,

existence of local and global solutions, and evidence of finite-time singularity
formation.

1. Introduction. The 2D surface quasi-geostrophic (SQG) equation is classically
written as an active scalar equation

θt + u · ∇θ = 0,

u = ∇⊥(−∆)−1/2θ.

Here, θ(x, t) with x = (x, y) is an unknown scalar field, and the velocity field u(x, t)
is determined nonlocally from θ by a perpendicular Riesz transform [28]

u(x) = − 1

2π
lim
ε→0+

∫

R2\Bε(x)

(x− y)⊥

|x− y|3 θ(y) dy.

The SQG equation comes from the quasi-geostrophic (QG) equation which de-
scribes stratified mid-to-high latitude synoptic scale dynamics in oceanic or atmo-
sphere flows. One of the major hypotheses of flows in this altitude range is that
the long-scale dynamics of the fluids is governed by the near balance between the
Coriolis force and horizontal pressure gradients [21]. The SQG equation is a reduc-
tion of the QG equation when the flows are confined near a surface [15, 20, 24].
Mathematically, the inviscid SQG equation has strong similarity to the 3D Euler
equations [5, 6], and the SQG patch problem has a formal resemblance to the vortex
patch problem [22]. For analysis of the SQG equation, see [1, 4, 23, 25] and the
references cited therein.

By the transport nature of the SQG equation, we may consider a special type of
weak solution when θ takes on only two distinct constant values θ+, θ−, so that

θ(x, t) =

{
θ+ x ∈ Ω(t),
θ− x ∈ Ωc(t),
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Key words and phrases. Surface quasi-geostrophic equation, contour dynamics, global exis-

tence, space-time resonances, modified scattering.
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Figure 1. Left: Patch with bounded Ω(t). Right: Front with Ω(t)
a half-space.

for some domain Ω(t) ⊂ R2, and thus, to study this type of solutions, we only need
to study the evolution of the boundary ∂Ω(t). We first define a weak solution of
the SQG equation [25].

Definition 1.1 (Weak solutions of the SQG equation). A bounded function θ is a
weak solution of the SQG equation if for any φ ∈ C∞c (R2 × (0, T )), we have∫

R2×[0,T ]

[θ(x, t)φt(x, t) + θ(x, t)u(x, t) · ∇φ(x, t)] dx dt = 0.

When Ω(t) is simply connected and ∂Ω(t) is a connected regular curve, we dis-
tinguish two particular types of domain, which are shown in Figure 1.

1. Patches, whose boundary is a smooth, simple, closed curve diffeomorphic to
the circle T, with θ− = 0 outside the patch.

2. Half-spaces, whose boundary is a smooth, simple curve diffeomorphic to R
that divides R2 into two half-spaces.

In the case of a patch, one can take θ(·, t) = θ+χΩ(t) where Ω(t) is a simply

connected bounded subset of R2, whose boundary is parametrized by x = X(γ, t).
If the constant is normalized by choosing θ+ = 2π, one obtains well-defined contour
dynamics equations for the patch [11]

Xt(η, t) = c(η, t)∂ηX(η, t) +

∫

T

∂ηX(η, t)− ∂ηX(η − ζ, t)
|X(η, t)−X(η − ζ, t)| dζ, (1)

where c(η, t) is an arbitrary function corresponding to a time-dependent
reparametrization of the curve. Local existence and uniqueness of the initial-value
problem of this equation is established in Sobolev spaces by arc-length reparametriza-
tion of the patch boundary [7, 11, 12]. In [2, 3, 14], a class of nontrivial global
solutions are constructed using the Crandall–Rabinowitz’s bifurcation theorem. It
has also been proved that splash singularities cannot occur in a smooth boundary
of an SQG patch [13], but whether other types of finite-time singularities can occur
remains open. Some numerical studies are carried out in [8, 27], where a curva-
ture blow-up on the SQG patch boundary and a complicated self-similar cascade of
filament instability are observed in the numerical simulations.

In the case of half-spaces, we refer the boundary ∂Ω(t) as a front. In contrast
to the patches, the formal contour dynamics equation, obtained by replacing the
integration limit T with R in (1), does not converge. However, a regularization
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procedure is introduced in [16] to make sense of the divergent integral. We remark
that in [19], we justify this procedure by using direct contour dynamics methods.
The derivation of a regularized evolutionary equation describing the dynamics of
SQG fronts is reviewed in Section 2. When the fronts are spatially periodic, the
initial-value problem is proved to be locally well-posed in the C∞-class, by a Nash–
Moser argument [26], and in the analytic class, by a Cauchy–Kowalevski theorem
[10]. In [17], the initial value problem for a cubically nonlinear, approximate equa-
tion of the regularized equation (2) with periodic initial data is proved to be locally
well-posed in Sobolev spaces. We also prove the global well-posedness of the initial
value problem for the full equation (5) with a smallness assumption on the initial
data [18]. The proof for global well-posedness is outlined in Section 3. Finally,
we survey in Section 4 a numerical study of the SQG fronts, which suggests wave
breaking or singularity formation in finite time.

2. Regularized SQG front equations. We will consider only fronts that are a
graph, located at

y = ϕ(x, t),

where ϕ(x, t) : R → R is a smooth, bounded function. As is discussed above, the
formal contour dynamics equation for the fronts does not converge. To make sense
of the equation, we propose the following regularization. We first cut-off the inte-
gration region using a ball with radius λ around a point x on the front, and then
obtain the truncated equation for X

Xt(η, t) = c(η, t)∂ηX(η, t) +

∫ η+λ

η−λ

∂ζX(η, t)− ∂ζX(ζ, t)

|X(η, t)−X(ζ, t)| dζ.

When the front curve is given by a graph ϕ(x, t), the function c can be uniquely
solved and we obtain an equation for ϕ

ϕt(x, t) +

∫ λ

−λ

ϕx(x+ ζ, t)− ϕx(x, t)

|ζ| dζ

+

∫ λ

−λ

[
ϕx(x+ ζ, t)− ϕx(x, t)√

ζ2 + (ϕ(x+ ζ, t)− ϕ(x, t))2
− ϕx(x+ ζ, t)− ϕx(x, t)

|ζ|

]
dζ = 0.

Using the Fourier transform, we find that

∫ λ

−λ

ϕx(x+ ζ, t)− ϕx(x, t)

|ζ| dζ =
[
d(λ)− 2(log λ)

]
ϕx(x, t)− 2 log |∂x|ϕx(x, t),

where log |∂x| is the Fourier multiplier operator with symbol log |ξ| and d(λ)→ −2γ
as λ → ∞ with γ being the Euler–Mascheroni constant. Now, by a λ-dependent
Galilean transformation x 7→ x+

[
d(λ)−2 log λ

]
t, the divergent advection term can

be removed. In the limit λ→∞, we get a regularized equation for SQG fronts

ϕt(x, t)− 2 log |∂x|ϕx(x, t)

=−
∫

R
[ϕx(x, t)− ϕx(x+ ζ, t)]

{
1

|ζ| −
1√

ζ2 + [ϕ(x, t)− ϕ(x+ ζ, t)]2

}
dζ.

(2)

Dimensional analysis of the SQG equation demonstrates that parameters θ± are
velocities, so one might expect that the waves on an SQG front are nondispersive.
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Nevertheless, this equation is dispersive with dispersion relation ω(ξ) = 2ξ log |ξ|
by looking at the linearized equation (originally pointed out in [26])

ϕt(x, t) = 2 log |∂x|ϕx(x, t). (3)

This linearized equation (3) has an anomalous scaling-Galilean invariance x 7→
λ[x + 2(log λ)t], t 7→ λt, and the linearized equation commutes with a scaling-
Galilean vector field

S = (x+ 2t)∂x + t∂t. (4)

3. Global well-posedness of SQG front equation. We consider the initial
value problem posed on R

ϕt(x, t)− 2 log |∂x|ϕx(x, t)

=−
∫

R
[ϕx(x, t)− ϕx(x+ ζ, t)]

{
1

|ζ| −
1√

ζ2 + [ϕ(x, t)− ϕ(x+ ζ, t)]2

}
dζ,

ϕ(x, 0) = ϕ0(x),

(5)

where ϕ : R×R+ → R is defined for x ∈ R and t ∈ R+. For fronts with small slopes
|ϕx| � 1, we can expand the nonlinearity and rewrite (2) as

ϕt(x, t)− 2 log |∂x|ϕx(x, t)

=
∞∑

n=1

cn
2n+ 1

∂x

∫

R2n+1

Tn(η1, . . . , η2n+1)

2n+1∏

j=1

(
eiηjxϕ̂(ηj , t)

)
dη1 · · · dη2n+1,

(6)

where

Tn(η1, . . . , η2n+1) =

∫

R

∏2n+1
j=1 (1− eiηjζ)
|ζ|2n+1

dζ, cn =

√
π

Γ
(

1
2 − n

)
Γ(n+ 1)

. (7)

The main theorem in [18] is as follows.

Theorem 3.1. Let s = 1200, r = 7, and p0 = 10−4. There exists a constant
0 < ε� 1, such that if ϕ0 ∈ Hs(R) satisfies

‖ϕ0‖Hs + ‖xϕ0‖Hr ≤ ε0

for some 0 < ε0 ≤ ε, then there exists a unique global solution ϕ ∈ C([0,∞);Hs(R))
of (5). Moreover, this solution satisfies

‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hs . ε0(t+ 1)p0 ,

where S is the vector field in (4).

We remark that according to this theorem, the Sobolev Hs-norm of ϕ is not
controlled uniformly in time, and it possibly has a very slow growth of order (t+1)p0 .
The only norm we can bound uniformly in time is the Z-norm of ϕ (see (10) for
the definition of Z-norm). It is not clear to us whether this is a limitation of our
method of proof or an intrinsic feature of the solutions.

Following [9], to prove this global existence theorem, it suffices to prove local
well-posedness and a suitable global a priori bound.
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3.1. Local well-posedness. The difficulty in local well-posedness is that straight-
forward Hs-estimates for (5) do not close, due to a logarithmic loss of derivatives
[16]. In order to overcome this difficulty, we use Weyl para-differential calculus to
para-linearize the equation, then extract a term from the nonlinearity, which can
be controlled by the linear term, and define a weighted energy whose estimates do
close.

We use Taf to denote the standard Weyl para-product [29], and define an s-order
weighted energy as

Ẽ(s)(t) = ‖ϕ‖2L2(R) +

s∑

j=1

E(j)(t),

E(j)(t) =

∫

R
|D|jϕ(x, t) ·

(
2− TBlog[ϕ]

)2j+1

|D|jϕ(x, t) dx,

(8)

where, if we denote by δ the Dirac-delta distribution,

Blog[ϕ](·, ξ)

=−F−1
ζ

[ ∞∑

n=1

2cn

∫

R2n

δ

(
ζ −

2n∑

j=1

ηj

)

·
2n∏

j=1

(
iηjϕ̂(ηj)χ

( (2n+ 1)ηj
ξ

))
dη1 dη2 · · · dη2n

]
.

By carrying out standard estimates for E(s)(t), we find that

E(s)(t) ≤ E(s)(0) exp

{∫ t

0

[(
‖ϕx(τ)‖W 2,∞ + ‖log |∂x|ϕx(τ)‖W 2,∞

)2

· F
(
‖ϕx(τ)‖W 2,∞ + ‖log |∂x|ϕx(τ)‖W 2,∞

)]
dτ

}
,

where, for a sufficiently large number C̃ depending only on s, F (·) is an increasing
continuous real-valued function as long as

∞∑

n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖log |∂x|ϕx(t)‖2nW 2,∞

)
<∞.

The local well-posedness and breakdown criterion for solutions is stated in the
following theorem.

Theorem 3.2. Let s > 4 be an integer. There exists a constant C̃ > 0, depending
only on s, such that if ϕ0 ∈ Hs(R) satisfies

‖TBlog[ϕ0]‖L2→L2 ≤ C,
∞∑

n=1

C̃n|cn|
(
‖∂xϕ0‖2nW 2,∞ + ‖∂x log |∂x|ϕ0‖2nW 2,∞

)
<∞ (9)

for some constant 0 < C < 2, then there exists a maximal time of existence 0 <
Tmax ≤ ∞ depending only on ‖ϕ0‖Hs , C, and C̃ such that the initial value problem
(5) has a unique solution with ϕ ∈ C([0, Tmax);Hs(R)). If Tmax <∞, then either

lim
t→Tmax

∞∑

n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖log |∂x|ϕx(t)‖2nW 2,∞

)
=∞

or
lim

t→Tmax

∥∥TBlog[ϕ(·,t)]
∥∥
L2→L2 = 2.
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We remark that this proof requires the smallness of the W 2,∞-norms of ∂xϕ0 and
∂x log |∂x|ϕ0 (see (9)), in order to validate the expansion of nonlinearity, as well as

the non-degeneracy of the weight (so that Ẽ(s) ≈ ‖ϕ‖2Hs(R)). It is unclear whether

the problem is still locally well-posed if 2− TBlog[ϕ] degenerates.

3.2. Global a priori bound. To complete the proof of global well-posedness
theorem, we introduce the Z-norm of a function f

‖f‖Z =
∥∥∥(|ξ|+ |ξ|r+3)f̂(ξ)

∥∥∥
L∞
ξ

. (10)

To obtain the global a priori bound, we use a bootstrap argument and prove the
following proposition.

Proposition 3.3 (Bootstrap). Let T > 1 and suppose that ϕ ∈ C([0, T ];Hs) is a
solution of (5), where the initial data satisfies

‖ϕ0‖Hs + ‖x∂xϕ0‖Hr ≤ ε0

for some 0 < ε0 � 1. If there exists ε0 � ε1 . ε
1/3
0 such that the solution satisfies

(t+ 1)−p0 (‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr ) + ‖ϕ‖Z ≤ ε1

for every t ∈ [0, T ], then the solution satisfies an improved bound

(t+ 1)−p0 (‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr ) + ‖ϕ‖Z ≤ ε0.

We call the assumptions in Proposition 3.3 the bootstrap assumptions. To prove
Proposition 3.3, the first step is to prove a sharp dispersive estimates

‖ϕ(t)‖L∞ +
∥∥∂r+1 log |∂x|ϕ(t)

∥∥
L∞ . ε1(t+ 1)−1/2. (11)

We achieve this by first carrying out the standard dispersive estimates for the lin-
earized equation (3) and then taking advantage of the bootstrap assumptions to
sharpen it. Using this sharp dispersive estimates, one can directly complete esti-
mates for ‖ϕ(t)‖Hs . By modifying the weighted energy (8) for Sϕ, we then obtain
the improved bounds for

(t+ 1)−p0 (‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr ) .
The most difficult part is the nonlinear dispersive estimate, which deals with the
estimates for ‖ϕ‖Z .

The rest of the proof involves a detailed frequency-space analysis. To show ‖ϕ‖Z
is uniformly bounded by a constant of order ε0, we only need to show that

∫ T

0

‖ϕt‖Z dt =

∫ T

0

‖ht‖Z dt . ε0, (12)

where

h(x, t) = e−2t∂x log |∂x|ϕ(x, t), ĥ(ξ, t) = e−2itξ log |ξ|ϕ̂(ξ, t).

To this end, we take the Fourier transform of the expanded equation (6), and
rewrite the equation as

ĥt + e−2itξ log |ξ|N̂≥5(ϕ)

=− 1

6
iξ

∫

R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2,

where N≥5(ϕ) denotes the nonlinearity of quintic degree and higher,

Φ(ξ, η1, η2) = 2(ξ − η1 − η2) log |ξ − η1 − η2|+ 2η1 log |η1|+ 2η2 log |η2| − 2ξ log |ξ|,
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and T1 is defined as in (7) which can be rewritten as

T1(η1, η2, η3)

= η2
1 log |η1|+ η2

2 log |η2|+ η2
3 log |η3|+ (η1 + η2 + η3)2 log |η1 + η2 + η3|

− (η1 + η2)2 log |η1 + η2| − (η1 + η3)2 log |η1 + η3| − (η2 + η3)2 log |η2 + η3|.
Therefore, proving inequality (12) is reduced to showing that under the bootstrap
assumptions, the integrals
∫ T

0

ξ(|ξ|+ |ξ|r+3)

∫

R2

T1(η1, η2, ξ − η1 − η2)

· eitΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2 dt,

(13)

∫ T

0

(|ξ|+ |ξ|r+3)e−2itξ log |ξ|N̂≥5(ϕ) dt (14)

are bounded uniformly with respect to ξ and T .
For the estimates of (13), we distinguish between time resonances and space

resonances. In most regions of frequency space, these resonances do not appear
simultaneously, and we can use oscillatory integral estimates or an interpolation
inequality to get sufficient decay. To be more specific, in the region with only space
resonance, we integrate by parts in the time variable to obtain a fourth degree non-
linearity in h, and then we use multilinear estimates and sharp dispersive estimates
(11) to gain time decay. In the region away from the space-time resonances, we in-
tegrate by parts in a frequency variable and gain an extra (t+ 1)−1-decay. Around
the space-time resonances, we need to use modified scattering (a phase correction)
to cancel out the leading order non-integrability in time.

The estimates for higher-order nonlinear terms (14) can be proved by multilinear
estimates, as the sharp dispersive estimates (11) provides enough time decay.

4. Evidence of singularity formation. We study numerically an approximate
model equation of the regularized SQG front equation

ϕt+
1

2
∂x

{
ϕ2 log |∂x|ϕxx − ϕ log |∂x|(ϕ2)xx +

1

3
log |∂x|(ϕ3)x

}
= 2 log |∂x|ϕx. (15)

This equation is obtained by a formal truncation of the nonlinearity of (6) at
the cubic level. It is easy to verify that this equation has following two conserved
quantities for smooth data

Entropy: S(t) =

∫

T
ϕ2 dx,

Energy: H(t) =

∫

T
ϕ log |∂x|ϕ+

1

8
ϕ2∂2

x log |∂x|ϕ2 − 1

6
ϕ∂2

x log |∂x|ϕ3 dx.

We choose initial data

ϕ0(x) = cos(x+ π) +
1

2
cos[2(x+ π + 2π2)], (16)

and use a pseudo-spectral method (215 Fourier modes) with spectral viscosity to
carry out the numerical simulations. We observe an oscillatory singularity at t ≈
0.06 near x ≈ 2.15 (see Figure 2 and Figure 3).

We remark that a proof of singularity formation for the SQG equation is open.
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Figure 2. Left: Solution of (15) with initial data (16), shown at
t = 0 (blue), t = 0.01875 (cyan), t = 0.0375 (magenta), t = 0.05625
(green), t = 0.075 (red). Right: Detail of singularity formation.

Figure 3. Left: Energy of the solution. Right: Entropy of the
solutions. Both of these quantities are no longer conserved after
time t ≈ 0.06.
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[14] J. Gómez-Serrano, On the existence of stationary patches, Adv. Math., 343 (2019), 110–140.
[15] I. M. Held, R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, Surface quasi-geostrophic

dynamics, J. Fluid Mech., 282 (1995), 1–20.

[16] J. K. Hunter and J. Shu, Regularized and approximate equations for sharp fronts in the surface
quasi-geostrophic equation and its generalization, Nonlinearity, 31 (2018), no. 6, 2480–2517.

[17] J. K. Hunter, J. Shu and Q. Zhang, Local well-posedness of an approximate equation for SQG

fronts, J. Math. Fluid Mech., 20 (2018), no. 4, 1967–1984.
[18] J. K. Hunter, J. Shu and Q. Zhang, Global solutions of a surface quasi-geostrophic front

equation, preprint, arXiv:1808.07631.

[19] J. K. Hunter, J. Shu and Q. Zhang, Contour dynamics for surface quasi-geostrophic fronts,
preprint, arXiv:1907.06593.

[20] G. Lapeyre, Surface quasi-geostrophic, Fluids, 2 (2017).
[21] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture

Notes in Mathematics, 9, American Mathematical Soc., Providence, RI, 2003.

[22] A. J. Majda and E. G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison
with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena, 98 (1996), no. 2,

515–522.

[23] F. Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations
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SINGULARLY PERTURBED SEMILINEAR PROBLEMS
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Abstract. In solving time-dependent singularly perturbed semilinear prob-
lems by the standard finite differences or finite element methods, the cor-

responding discrete problem on each time level is formulated as a nonlinear

systems of algebraic equations; and to solve these nonlinear systems of alge-
braic equations, we require some iterative method for the computation of the

numerical solutions.

In this article, a finite difference numerical method is used to solve the time-
dependent singularly perturbed semilinear convection-diffusion problems. The

numerical approximations to the solution are generated using a backward Euler

method in time and a HODIE method in space via simultaneous discretization.
The stability for the present time-dependent semilinear problems (both con-

tinuous and discrete) are proved by the inverse-monotonicity properties of the
classes of linear initial-boundary value problems. The given method is shown

to have first order parameter-uniform convergence in time and almost second

order parameter-uniform convergence in space. Numerical result is given to
support the theoretical error bounds of the numerical method.

1. Introduction. Consider the singularly perturbed semilinear parabolic
convection-diffusion problem of the form

Tu :=
∂u

∂t
− ε∂

2u

∂x2
+ a

∂u

∂x
+ f(x, t, u) = 0, (x, t) ∈ X := Ω× ω = (0, 1)× (0, T ],

(1a)

u(x, 0) = 0, ∀ x ∈ Ω, (1b)

u(0, t) = p0(t), u(1, t) = p1(t), ∀ t ∈ ω, (1c)

where 0 < ε << 1 is a small positive perturbation parameter. Functions a and f
are sufficiently smooth functions, satisfying the following conditions

a(x) ≥ α > 0, ∀ x ∈ Ω, (2)

β ≤ fu(x, t, u) ≤ δ, ∀ (x, t, u) ∈ X × R, (3)

under the suitable continuity and compatibility conditions on the data an unique
solution u(x, t) of the problem (1) exists [6]. For ε << 1 problem (1) is singularly
perturbed and has an exponential boundary layer of width O

(
ε ln( 1

ε )
)

at x = 1 of

2000 Mathematics Subject Classification. Primary: 65M06, 65M12; Secondary: 65M15.
Key words and phrases. backward Euler method, convection-diffusion problems, HODIE

scheme, singular perturbation problems, time-dependent semilinear problems.
∗ Corresponding author: Varsha Srivastava.
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X [3].

Model problems of kind (1) arise frequently in modeling fast chemical reactions
and biological processes [5, 14].

The singularly perturbed semilinear parabolic convection-diffusion problems have
been studied fairly extensively, see [1, 2, 8, 10, 11, 12, 16] and the references therein.
These works involve the monotone iterative schemes, based on the method of upper
and lower solution [9], to prove the parameter-uniform convergence. In contrast,
here we consider the relatively simple truncation error and barrier function tech-
nique to prove the parameter-robust convergence of the present method via simul-
taneous discretization.

Therefore, the purpose of the present paper is to design and analyze a parameter-
uniform numerical method for singularly perturbed semilinear parabolic convection-
diffusion problems using the backward Euler method in time and a combination
of the schemes in space via simultaneous discretization. The combination of the
schemes in spatial direction depend on the relation between the mesh width and
the perturbation parameter.

This paper is arranged as follows. In Section 2, the stability, the bounds on the
derivatives for the solution, and it’s components for continuous problem are given.
A discrete numerical method is designed and it’s stability is discussed in Section 3.
The parameter-uniform maximum pointwise error bounds are estimated in Section
4. Numerical experiment is given in Section 5 and finally, conclusions are included
in Section 6.

Notation: Throughout the paper, C, sometimes subscripted, is a generic positive
constant that is independent of ε, N and ∆t. Consider the maximum norm and
denote it by ||.||D, where D is a closed and bounded subset of X. For a real valued
function g ∈ C(D), define ||g||D = max

D
|g|. The analogous discrete maximum norm

on the mesh DN,Nt is denoted by ||.||DN,Nt . If g ∈ C(X) then gnj = g(xj , tn), also
||g||

X
N,Nt = max

X
N,Nt

|g(x, t)|.

2. Properties of the Exact Solution. Introduce the linear operator L0 [7]

L0z :=
∂z

∂t
− ε ∂

2z

∂x2
+ a

∂z

∂x
+

∫ 1

0

fu(x, t, sz)ds z, (x, t) ∈ X, z ∈ C2,1(X)

where
∫ 1

0
fu(x, t, su)ds ≥ β > 0, and L0(±z) = ∓f(x, t, 0).

Lemma 2.1. (Maximum Principle) Assume that u ∈ (C2,1(X)
⋂
C0,0(X)), satisfy-

ing u(x, 0) ≥ 0 on Ω, u(0, t) ≥ 0 and u(1, t) ≥ 0 on ω. Then L0u ≥ 0 for (x, t) ∈ X
implies that u ≥ 0 in X.

Lemma 2.2. (Stability Estimate) Let u be the exact solution of (1). Then

||u||X ≤ 1
α ||L0u||X + max{||p0||ω, ||p1||ω}.

Lemma 2.3. Let u be the exact solution of (1). Then ∀ (x, t) ∈ X∣∣∣∣
∂s+mu(x, t)

∂xs∂tm

∣∣∣∣ ≤ C
(

1 + ε−s exp

(−α(1− x)

ε

))
, 0 ≤ m ≤ 3, 0 ≤ s+m ≤ 4.
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Proof. Follows from the similar approach used in [13].

To prove the parameter-uniform convergence, we need to derive the sharper
bounds by decomposing the solution as u(x, t) = v(x, t) + w(x, t), (x, t) ∈ X,
where the regular component v(x, t) satisfy

Tv(x, t) :=
∂v(x, t)

∂t
− ε∂

2v(x, t)

∂x2
+ a(x)

∂v(x, t)

∂x
+ f(x, t, v) = 0, (x, t) ∈ X,

subject to the appropriate initial-boundary conditions, and the singular component
w(x, t) satisfy

vTw(x, t) :=
∂w(x, t)

∂t
− ε∂

2w(x, t)

∂x2
+ a(x)

∂w(x, t)

∂x
+ f(x, t, v + w)− f(x, t, v)

= 0, (x, t) ∈ X,
subject to the appropriate initial-boundary conditions. Noting that vTw is a new
operator.

Lemma 2.4. For all (x, t) ∈ X, the regular component v satisfies
∣∣∣∣
∂s+mv(x, t)

∂xs∂tm

∣∣∣∣ ≤ C(1 + ε4−s), 0 ≤ m ≤ 3, 0 ≤ s+m ≤ 4, (4)

and the singular component w satisfies∣∣∣∣
∂s+mw(x, t)

∂xs∂tm

∣∣∣∣ ≤ Cε−s exp

(−α(1− x)

ε

)
, 0 ≤ m ≤ 3, 0 ≤ s+m ≤ 4. (5)

Proof. Follows from the similar approach used in [13].

3. Discrete Problem. Let X
N,Nt

= Ω
N×ωNt and ∂XN,Nt = ∂X∩XN,Nt

denote
the discrete mesh and the discrete boundary respectively. A uniform mesh is used
for time-discretization as ωNt := {0 = t0 < t1 < . . . < tNt = T} with uniform
time spacing ∆t = T

Nt
. For spatial discretization, the domain Ω is decomposed

into two piecewise-uniform subdomains (0, 1 − σ) and (1 − σ, 1) with N/2 equal
mesh intervals, where N = 2r, r ≥ 3. The transition parameter σ is defined as

σ = min

{
1

2
, σ0ε lnN

}
, where the constant σ0 will be chosen later on in Section 5.

The mesh spacing within the subdomains are H1 = hj = 2(1−σ)
N for 1 ≤ j ≤ N/2;

and H2 = hj = 2σ
N for N/2 + 1 ≤ j ≤ N with hj = xj − xj−1.

At each time level tn, the corresponding discretization on each subdomains XN,Nt

is given by
[TN,NtU ]nj := [Q(D−t U) +R(U) +Q(f)]nj = 0, (6)

where [D−t U ]nj :=
(Unj −Un−1

j )

∆t , [R(U)]nj := rn,−j Unj−1 + rn,cj Unj + rn,+j Unj+1, and

[Qf ]nj := q−j f(xj−1, tn, U
n
j−1) + qcjf(xj , tn, U

n
j ).

For each (xj , tn) ∈ XN,Nt , the coefficients rn,∗j , ∗ = −, c,+ are given by

rn,−j =
−2ε− ajhj+1 + q−j [−(2hj + hj+1)aj−1 + ajhj+1]

hj(hj + hj+1)
,

rn,+j =
−2ε+ ajhj − q−j hj(aj + aj−1)

hj+1(hj + hj+1)
, rn,cj = −rn,−j − rn,+j , and qcj = 1− q−j .

Here the unknown coefficients are determined so that the scheme is exact for the
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polynomials up to degree two and satisfies the normalization condition. q−j is the

free parameter, given in (10).

Let Kn,−
j = rn,−j +q−j (fu+1/∆t), Kn,c

j = rn,cj +qcj(fu+1/∆t), and Kn,+
j = rn,+j .

Next is to prove that the matrix associated with ULN,Nt is an M-matrix and the
scheme is uniformly stable.

Lemma 3.1. Let N0 be the smallest positive integer such that

σ0||a||
2

<
N0

lnN0
,

(
||a′||+ δ +

1

∆t

)
< αN0,

(
δ +

1

∆t

)
< αN0 (7)

hold. For each (xj , tn) ∈ XN,Nt , there exist positive constants C1 and C2 such that

Kn,−
j < 0, Kn,+

j < 0, C1 ≤ Kn,−
j +Kn,c

j +Kn,+
j ≤ C2, (8)

then the matrix associated with ULN,Nt is an M-matrix, where q−j ≥
aj

(aj + aj−1)
for ||a||hj ≥ 2ε. Moreover, for some positive constant C3 the scheme is uniformly
stable in the maximum norm, if

hj+1K
n,+
j − hjKn,−

j ≥ C3 > 0. (9)

The free parameter q−j , ∀ xj ∈ ΩN of spatial direction is chosen as

q−j =





aj
(aj + aj−1)

, ‖a‖hj ≥ 2ε

(hj − hj+1)

3hj
, ‖a‖hj < 2ε.

(10)

4. Error Analysis.

Lemma 4.1. Let v and V denote the smooth components of u and U respectively.
Then,

||v − V ||
X
N,Nt ≤ C(∆t+N−2 ln2N).

Proof. In XN,Nt , the initial and boundary conditions are |(v−V )(xj , 0)| = 0,∀ xj ∈
Ω
N
, and |(v − V )(0, tn)| = 0, |(v − V )(1, tn)| = 0,∀ tn ∈ ωNt , also the truncation

error bound yields
∣∣TN,Ntvnj − Tvnj

∣∣ =
∣∣V LN,Nt(v − V )nj

∣∣

≤|C∆t

(
∂2vnj−1

∂t2
+
∂2vnj
∂t2

)
+
∂3vnj
∂x3

(
ε

3
(hj − hj+1)− q−j hjε)

+
hjhj+1

6
aj −

q−j hj
6

(ajhj+1 + aj−1(hj+1 − 2hj)))

+R3(xj , xj−1, v
n)rn,−j +R3(xj , xj+1, v

n)rn,+j

+ q−j εR1

(
xj , xj−1,

∂2vn

∂x2

)
+ q−j aj−1R1

(
xj , xj−1,

∂vn

∂x

)
|,
(11)

where Rn(a, b, g) =

∫ b

a

(b− ξ)n
n!

gn+1(ξ)dξ is the remainder of the Taylor’s expan-

sion in the integral form.
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Consider (xj , tn) ∈ XN,Nt with 1 ≤ j ≤ N/2 and 1 ≤ n ≤ Nt. Using (4)
in (11), we get |TN,Ntvnj − Tvnj | ≤ C(∆t+N−2), and when (xj , tn) ∈ XN,Nt with

N/2+1 ≤ j ≤ N−1 and 1 ≤ n ≤ Nt, we get |TN,Ntvnj −Tvnj | ≤ C(∆t+N−2 ln2N).

Consider ψ±(xj , tn) = C(∆t+N−2 ln2N)(1 +xj)± (v−V )(xj) as barrier function
in XN,Nt . Recalling initial-boundary conditions, truncation error bounds, and the
maximum principle for V LN,Nt with ψ±(xj , tn) for sufficiently large C such that
ψ±(xj , tn) ≥ 0. This implies

|(v − V )(xj , tn)| ≤ C(∆t+N−2 ln2N), ∀ (xj , tn) ∈ XN,Nt
.

At a fixed time level tn, the error of the singular component is given by

[V T
N,Ntw − vTw]nj = [V T

N,Ntw]nj

= q−j
wnj−1 − wn−1

j−1

∆t
+ qcj

wnj − wn−1
j

∆t
+ rn,−j wnj−1 + rn,cj wnj

+ rn,+j wnj+1 + q−j (f(xj−1, tn, V
n
j−1 + wnj−1)− f(xj−1, tn, V

n
j−1))

+ qcj(f(xj , tn, V
n
j + wnj )− f(xj , tn, V

n
j ))− q−j (

∂wnj−1

∂t
− ε

∂2wnj−1

∂x2

+ aj−1

∂wnj−1

∂x
+ f(xj−1, tn, v

n
j−1 + wnj−1)− f(xj−1, tn, v

n
j−1))

− qcj(
∂wnj
∂t
− ε

∂2wnj
∂x2

+ aj
∂wnj
∂x

+ f(xj , tn, v
n
j + wnj )− f(xj , tn, v

n
j ))

≤
∣∣[ΓN,Ntw]nj

∣∣+ C||v − V ||. (12)

Therefore,

∣∣[V TN,Ntw − vTw]nj
∣∣ ≤

∣∣[ΓN,Ntw]nj
∣∣+ C||v − V ||, (13)

where

[ΓN,Ntw]nj =Q

(
wnj − wn−1

j

∆t

)
+ rn,−j wnj−1 + rn,cj wnj + rn,+j wnj+1

+Q

(
−∂wnj
∂t

+ ε
∂2wnj
∂x2

− aj
∂wnj
∂x

)
.
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Alternatively,

[V T
N,Ntw − vTw]nj = [V T

N,Ntw − V T
N,NtW ]nj

= (q−j
wnj−1 − wn−1

j−1

∆t
+ qcj

wnj − wn−1
j

∆t
+ rn,−j wnj−1 + rn,cj wnj

+ rn,+j wnj+1 + q−j (f(xj−1, tn, V
n
j−1 + wnj−1)− f(xj−1, tn, V

n
j−1))

+ qcj(f(xj , tn, V
n
j + wnj )− f(xj , tn, V

n
j )))− (q−j

Wn
j−1 −Wn−1

j−1

∆t

+ qcj
Wn
j −Wn−1

j

∆t
+ rn,−j Wn

j−1 + rn,cj Wn
j + rn,+j Wn

j+1

+ q−j (f(xj−1, tn, V
n
j−1 +Wn

j−1)− f(xj−1, tn, V
n
j−1))

+ qcj(f(xj , tn, V
n
j +Wn

j )− f(xj , tn, V
n
j )))

= [ULN,Ntξ]nj

where the error function ξ is defined as ξ = w−W and the linear operator ULN,Nt

is defined by

[yLN,Ntz]nj := Q

(
znj − zn−1

j

∆t

)
+ rn,−j znj−1 + rn,cj znj + rn,+j znj+1

+Q

(∫ 1

0

fu(xj , tn, y
n
j + sznj )ds znj

)
.

(14)

Now define the mesh functions φj(γ) in Ω
N

for some positive constant γ as

φj(γ) =
N∏

k=j+1

(
1 +

γhk
ε

)−1

, 0 ≤ j ≤ N − 1, with φN (γ) = 1. (15)

Lemma 4.2. For xj ∈ ΩN , suppose that all the assumptions of Lemma 3.1 hold,
then there exists a constant C(γ) such that

ULN,Ntφj(γ) ≥ C(γ)

max{ε, hj}
φj(γ),

where γ ≤ α/2 and α is same as defined in (2).

Lemma 4.3. Let w and W be the singular components of u and U respectively.
Then,

||w −W ||
X
N,Nt ≤ C

(
∆t+N−

ασ0
2 +N−2 ln2N

)
.

Proof. The initial and boundary conditions are |(w −W )(xj , 0)| = 0, ∀ xj ∈ ΩN ,
|(w − W )(0, tn)| ≤ 0 and |(w − W )(1, tn)| ≤ 0, ∀ tn ∈ ωNt , also the Taylor’s
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expansion gives
∣∣[V TN,Ntw − vTw]nj

∣∣ =
∣∣ULN,Nt(w −W )nj

∣∣

≤ |C∆t

(
∂2wnj−1

∂t2
+
∂2wnj
∂t2

)
+
∂3wnj
∂x3

(
ε

3
(hj − hj+1)− q−j hjε

+
hjhj+1

6
aj −

q−j hj
6

(ajhj+1 + aj−1(hj+1 − 2hj)))

+R3(xj , xj−1, w
n)rn,−j + rn,+j R3(xj , xj+1, w

n)

+ q−j εR1

(
xj , xj−1,

∂2wn

∂x2

)
+ q−j aj−1R1

(
xj , xj−1,

∂wn

∂x

)
|

+ C||v − V ||, (16)

where Rn(a, b, g) is the remainder of the Taylor’s expansion in the integral form.

For (xj , tn) ∈ XN,Nt , when ||a||hj ≥ 2ε, the expression of truncation error will
reduce to
∣∣[V TN,Ntw − vTw]nj

∣∣ ≤ C1∆t+
C2

max{ε, hj}
exp

(
−α(1− xj+1)

ε

)
+ C||v − V ||,

and when ||a||hj < 2ε, the truncation error bound gives

∣∣[V TN,Ntw − vTw]nj
∣∣ ≤ C1∆t+

C2

max{ε, hj}

(
hj
ε

)2

exp

(
−α(1− xj+1)

ε

)
+C||v−V ||,

where we have also carefully examined the truncation error at the transition point

xN/2 = (1 − σ). Let us construct the barrier function ψ±γ (xj , tn) in X
N,Nt

with

ϑ(γ) = C3

(
1 +

γhj+1

ε

)
as

ψ±γ (xj , tn) = C1∆t+ C2(1 + xj)N
−2 ln2N + ϑ(γ)φj(γ)± (w −W )(xj , tn).

Recalling initial-boundary conditions, truncation error bounds, and the maximum
principle for ULN,Nt with ψ±γ (xj , tn) for sufficiently large C1, C2 and C3 such that

ψ±γ (xj , tn) ≥ 0. We get,

|(w −W )(xj , tn)| ≤ C1∆t+C2

(
N−

ασ0
2 +N−2 ln2N

)
, 0 ≤ j ≤ N/2, 0 ≤ n ≤ Nt,

(17)
where we have used Lemma 3.1 of [15].

On the other hand, for N/2 ≤ j ≤ N and 0 ≤ n ≤ Nt, we consider the barrier

functions ψ±γ (xj , tn) in X
N,Nt

as

ψ±γ (xj , tn) =C1∆t+ C2(1 + xj)
(
N−

ασ0
2 +N−2 ln2N

)
+ C3

(
H2

ε

)2

φj(γ)

± (w −W )(xj , tn).

Recalling initial-boundary conditions, truncation error bounds, and the maximum
principle for ULN,Nt with ψ±γ (xj , tn) for sufficiently large C1, C2 and C3 such that

ψ±γ (xj , tn) ≥ 0. This gives

|(w −W )(xj , tn)| ≤ C
(

∆t+N−
ασ0
2 +N−2 ln2N

)
, ∀ (xj , tn) ∈ XN,Nt

,

and hence completes the proof.
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Theorem 4.4. Let u be the exact solution of the problem (1) and U be the discrete
solution of the numerical method (6). If γ = α/2 and N ≥ N0, the error associated
with the solution satisfies

||u− U ||
X
N,Nt ≤ C

(
∆t+N−

ασ0
2 +N−2 ln2N

)
.

Proof. The triangle inequality gives

||u− U || ≤ ||v − V ||+ ||w −W || ≤ C
(

∆t+N−
ασ0
2 +N−2 ln2N

)
,

which gives the first order convergence in time and for almost second order conver-
gence in space we need to take ασ0 ≥ 4.

5. Numerical Experiments.

Example 5.1. Consider the following time-dependent singularly perturbed semi-
linear convection-diffusion problem:

For (x, t) ∈ X := (0, 1)× (0, 1],

∂u

∂t
− ε∂

2u

∂x2
+
∂u

∂x
+ u2 + u = (1− x)(1− e−t),

u(x, 0) = 0, x ∈ Ω := [0, 1],

u(0, t) = 0, u(1, t) = 0 t ∈ ω := (0, 1].

To solve the corresponding discrete nonlinear systems, the Newton’s method is
used at each time level tn with the initial approximation
w0 = (u0(x0, tn), u0(x1, tn), . . . , u0(xN , tn))T , where u0(x, t) is the solution of the
reduced problem. The stopping criterion for Newton’s method is ‖wk − wk−1‖ <
10−12. For each N,∆t and ε, it takes only 4 iterations to satisfy the stopping
criterion to get the discrete solution.

The exact solution is not known for the test problem, so a variant of the double mesh
principle is used to calculate the maximum pointwise errors for different values of
ε,N and ∆t using EN,∆tε := ||UN,∆t − U2N,∆t/4||

X
N,Nt and the parameter-uniform

errors by EN,∆t = max
ε
EN,∆tε . We then calculate the parameter-uniform numerical

order of convergence by ρN,∆t = log2

(
EN,∆t

E2N,∆t/4

)
.

For different values of ε,N and ∆t, Table 1 represents the maximum pointwise errors
EN,∆tε and parameter-uniform rates of convergence ρN,∆tε of the discrete numerical
method for the Example 5.1. The value of σ0 is chosen as 2 for given Example.

6. Conclusions. The present paper proposes a parameter-uniform numerical
method to solve the singularly perturbed semilinear parabolic convection-diffusion
problems. The method is analyzed via simultaneous discretization and comprises
the backward Euler method in time and HODIE scheme in space direction. The
parameter-uniform convergence of the present method via simultaneous discretiza-
tion is proved without the mesh restriction N−q ≤ C∆t, for some q ∈ (0, 1) unlike
the case of semi-discretization [4]. The present method is first order uniformly con-
vergent in time and almost second order uniformly convergent in space. Numerical
results are in agrement with the theoretical results.
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Table 1. Maximum pointwise errors EN,∆t and parameter-
uniform rates of convergence ρN,∆t for Example 5.1.

ε = 2−j N = 26 N = 27 N = 28 N = 29 N = 210

∆t = 0.2 ∆t = 0.2
4 ∆t = 0.2

42 ∆t = 0.2
43 ∆t = 0.2

44

j = 4 3.60E-03 1.30E-03 3.67E-04 9.51E-05 2.40E-05
1.47 1.82 1.95 1.99

8 4.82E-03 1.90E-03 5.67E-04 1.52E-04 3.88E-05
1.34 1.74 1.90 1.97

12 4.93E-03 1.96E-03 6.03E-04 1.66E-04 4.32E-05
1.33 1.70 1.86 1.94

16 4.94E-03 1.96E-03 6.05E-04 1.67E-04 4.38E-05
1.33 1.70 1.86 1.93

20 . . . . .

24 . . . . .

28 . . . . .

32 4.94E-03 1.96E-03 6.05E-04 1.67E-04 4.38E-05
1.33 1.70 1.86 1.93

EN,∆t 4.94E-03 1.96E-03 6.05E-04 1.67E-04 4.38E-05
ρN,∆t 1.33 1.70 1.86 1.93
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Abstract. We investigate the phenomenon of a time-delay in the instabili-

ties exhibited by some hyperbolic equations. We discuss at first what happens

when considering the viscous complex Burgers equation: we see that the in-
stantaneous amplification manifested by the solution of the inviscid equation

is not observed when introducing a regularizing viscous term in the system, as
we show that we have existence of a bounded solution in times of order one

and, only after that, an exponential growth in time. Finally, we give some par-

tial results on a dispersive regularization of the Euler equations. These results
are contained in [8, 10, 11]. The delay in the instabilities is strictly related to

a loss of hyperbolicity and to the subsequent transition to ellipticity for the

hyperbolic problems under consideration.

1. Introduction. In this paper we mean to describe the role of a regularization
in the instabilities of some hyperbolic equations: precisely, we show that given a
strongly unstable partial differential equation (meaning that, even if starting from
a regular initial datum we observe an instantaneous amplification of the solution
in some norm) if we add a regularizing term in the equation (as, for instance, a
small viscous term), we observe the following behavior: the solutions stay bounded
for short times before exhibiting an exponential growth. Hence, we can distinguish
two different times scales in the dynamics of the solution: a first time phase of the
order O(1) where the solution is bounded in some norm, and a second time phase
where it experiences and instability in time; as a consequence, the system appears
to be perfectly stable for a long time, and it’s only in the appropriate observation
time that the instabilities are detected.

This phenomenon is what we call time delayed instabilities; such behavior and the
corresponding two-time phases of the dynamics is reminiscent of the phenomenon
of metastability, in which the speed of convergence of the solutions towards the
equilibrium depends singularly on the viscosity (see, for instance, [2, 6, 7] and the
references therein).

In this paper, we deal at first with the Cauchy problem for the one-dimensional
Burgers equation with small viscosity and a complex forcing term

∂tu+ u∂xu− ε∂2xu = i, u(x, 0) = u0(x), (1)

2000 Mathematics Subject Classification. Primary: 35K58, 35L45, 35B35; Secondary: 35Q31.

Key words and phrases. Loss of hyperbolicity, instabilities, complex Burgers equation.
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where t ∈ R+, x ∈ T and 0 < ε� 1 can be seen as a small viscosity parameter. In
particular, we prove that the solutions to (1) exhibit a delay in time for the instabil-
ities with respect to the corresponding inviscid problem, for which the instabilities
are manifested as soon as t > 0 (for more details, see [8, 10]).

More precisely, let us consider (1) in the inviscid case ε = 0, i.e.

∂tu+ u∂xu = i, u(x, 0) = u0(x). (2)

For such equation, in [3] it has been proved that if a real datum generates a local C2

solution to (2), then the datum must be analytic. This reveals a strong instability
of the Cauchy problem (2).

This instability is strictly related to a change in the behavior of the symbol in
(2): starting from a real datum u0, the linearized first-order operator ∂t + u0∂x
is hyperbolic at t = 0; however, as soon as t > 0, because of the complex forcing
term on the right hand side, if a solution u(t) exists then =mu(t) 6= 0, so that
the linearized operator is no longer hyperbolic. The phenomenon described is what
is called a loss of hyperbolicity (see, for instance, [4]). In particular, such a loss
of hyperbolicity (or, in other words, such transition from hyperbolicity (at t = 0)
to ellipticity (at t > 0)) translates, at the level of the dynamics of the PDE, into
an instantaneous amplification of the solution (i.e. into an instability in time),
as rigorously proved in [3]. Indeed, the authors showed as some nearby data (as
measured in a strong norm) may generate solutions which are instantly driven apart
(as measured in a weak norm) or, even worse, may generate no solutions at all (in
this case the Cauchy problem is even more strongly ill-posed as one has absence of a
solution operator, compared to absence of Hölder estimates for a solution operator,
see also [4]).

As opposite to the inviscid case, when considering the viscous problem (1), we
still have a loss of hyperbolicity in the equation but with a delay in time; indeed,
denoting by u1 := <e u and u2 := =mu, let us compute the symbol associated to
system (1):

A(u1, u2, ξ) =

(
u1 −u2
u2 u1

)
iξ + εξ2,

with spectrum given by det(λ Id−A) = 0, that is

λ±(ε, t, x, ξ) = u1iξ + εξ2 ± |u2|ξ.
In particular <e λ+(ε, t, x, ξ) > 0 for all t ≥ 0 while,

<e λ−(ε, t, x, ξ) = εξ2 − |u2|ξ,
and negativity of <e λ− indicates ellipticity of the system, potentially corresponding
to an amplification of the solution. Hence, we possibly have a transition from
hyperbolicity to ellipticity, depending on the sign of <e λ−.

We then observe that due to =mu(0) = 0 and because of the complex forcing
term, we expect =mu(t) to be approximately equal to t for small t > 0, implying

<e λ−(ε, t, x, ξ) = |ξ|(ε|ξ| − O(t)), for ξ ∈ Z. (3)

Hence:

• If relevant frequencies are large, that is |ξ| ∼ 1/ε, then positivity in (3) is
preserved for times t of the order O(1) (precisely, we have <e λ− > 0 for
t ≤ ε ξ with ξ ∼ ε−1).

650



INSTABILITIES IN HYPERBOLIC EQUATIONS

Hence, we expect solutions issued from highly-oscillating data of order O(1/ε)
to be defined, and uniformly bounded in ε, over time intervals of the order
O(1). Moreover, if u0 is of the form u0 (k1x/ε), then the relevant frequencies
are ξ ∈ k1Z/ε, and the existence time depends only on k1 (we have indeed
<e λ− > 0 for t . k1).

• One the other hand, if we consider a non-oscillating initial datum u0(x) (that
is, if relevant frequencies are of the order one), we expect solutions to expe-
rience an amplification after a time of the order O(ε): indeed, the positivity
of the symbol in (3) is maintained only for t . O(ε). Hence, in the small
viscosity limit ε → 0, the instability appears as soon as t > 0, as proved in
[3], an we expect only a short time existence for the solutions to (1).

In conclusion, equation (1) still experiences a transition from hyperbolicity to ellip-
ticity (as in the inviscid case) but this time it appears only after a delay in time (due
to the presence of a viscous regularizing term). Such transition translates at the
level of the PDE in the following dynamics: the solutions exhibit a stable behavior
(in some norm), and it is only after a delay in time, that varies depending on the
initial oscillations in the datum u0, that an amplification in time occurs.

To summarize, our guess is that, by adding a small viscous term to an equation
that experiences a transition from hyperbolicity to ellipticity as soon as t > 0 (as it
is for (2)), such transition will still appear but with a certain delay in time, leading
to the phenomenon described before.

2. Main results: existence and behavior of solutions. In this Section we
collect some results of [8, 10], and we rigorously prove that the aforementioned time
delayed instabilities occur for the solutions to the complex viscous Burgers equation
arisen from highly oscillating real initial data of amplitude O(1); hence we consider
the following problem





∂tu+ u∂xu− ε∂2xu = i x ∈ T, t ≥ 0,

u(0, x) = u0

(
k1 x

ε

)
x ∈ T,

(4)

where u0 depends on x through x/ε, and k1 ∈ Z is the smallest non zero frequency
in the initial datum. Showing that the instabilities in (4) appear only after a certain
delay in time would validate the apparently naive approximation of (4) by the linear
constant-coefficient equation (obtained formally by setting u = it + v into (4) and
by linearizing around t ∼ 0)

∂tv + it∂xv − ε∂2xv = 0, (5)

for which the growth is manifested only after a delay in time, as can be easily seen
in the Fourier side; indeed, for the solution v to (5) issued from v0(x) there holds,
by Fourier transform and direct time integration

|v̂(t, k)| = |v̂0(k)| exp
(

2πtk
( t

2
− 2πεk

))
, k ∈ Z, (6)

so that v̂(·, k) grows exponentially only for t ≥ 4πεk.
The approximation of (4) with (5) seems to be also validated by numerics, as

shown in Figure 1; we plotted the imaginary part of the numerical solutions of
both the equations (which are almost indistinguishable as the initial oscillations N
increase), and we can see that we have a growth in time only after a delay, which
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is higher as soon as N → ∞. In particular, it seems that the time for which the
instability is manifested only depends on the smallest nonzero mode in the initial
datum (as already predicted when studying the symbol associated with (4)).
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Figure 1. The imaginary part of the numerical solutions to (4) (black
lines) and to (5) (gray lines), for initial data a(x) = sin(N · 2πx), with
N = 8, 16 and 24 (from left to right). For N = 24, on the scales of the
picture the graphs are essentially indistinguishable. This indicates that
the approximation of (4) by (5) seems quite accurate for oscillating data,
even if their amplitude is of the order O(1).

2.1. Linear growth in time of the solution for times of the order one.
Our first result makes the numerical observations seen above rigorous, and shows
that no amplification occurs in times of order O(1); indeed, we prove the following
theorem.

Theorem 2.1. Given u0 ∈W 1,∞(T), for some t0 > 0, some
va1 ∈ L∞([0, t0],W 1,∞(T)) and va2 ∈ L∞([0, t0], L∞(T)) such that

|va1 (t)|W 1,∞ ≤ C, |va2 (t)|L∞ ≤ Ct,
with C > 0, there exists a unique solution u ∈ C0([0, t0], H1(T)) to the initial-value
problem (4) such that the following bounds

|(<e u− va1 )(t)|H1 ≤ Ct, |(=mu− va2 )(t)|H1 ≤ Ct2, (7)

hold. In particular, u is bounded in H1(T), uniformly in ε and t ∈ [0, t0].

Proof. For the proof of the Theorem we refer the readers to [8, Theorem 2.1]. We
also refer to [10, Theorem 1] for a proof of the same result in the more general setting
u0 ∈ Hs+1(T), which implies the existence of a solution u ∈ C0([0, T ], Hs(T)).
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2.2. Exponential growth in time. Theorem 2.1 shows that highly-oscillating
initial data generate solutions that are bounded uniformly in ε over times of the
order O(1), with a linear growth in time for the imaginary part (as seen numerically
in Figure 1). In order to prove the second part of the dynamics of the solutions
to (4) observed in Figure 1, that is the exponential growth in time, we make the
following observation: since there holds the conservation law

t =

∫

T
u2(t, x) dx, (8)

we get t ≤ |u2(t)|L∞(T). In particular, given the observation frequency ξ = k1/ε and
t > εξ = k1, if u is defined up to t, then there holds

<e λ−(ε, t, x, ξ) < 0 for some x ∈ T.
Hence, as stressed in the introduction, there is a change in the behavior of the equa-
tion: precisely the operator goes from being hyperbolic to be elliptic and we thus
expect an amplification (exponential growth in time) to hold for t > k1. Contrarily
to the inviscid case, here the transition from hyperbolicity to ellipticity occurs for
some positive time of order one, as expected. Also, we underline again that the
waiting time to recover an instability depends only on the leading mode of u(0, x).

Our first result that makes the above observation rigorous is the following:

Theorem 2.2. Let a such that Supp â ⊂ {k1, k1 + 1, ...} Then, for the solution to
(4) with u0(x) = ε2a(k1x/ε), there holds, for all T > 2k1

sup
0≤t≤T

|v̂|∞|ε∂̂xv|L1 >
1

2T
|ak1 |, v =

1

ε2
(u− it).

Such result shows that the solution to (4) experiences a growth after a delay
in time that depends only on the smallest non zero mode in the initial datum.
However, it holds only for small initial data (for the proof, see [8, Theorem 3.1]),
so it does not significantly extend the results contained in [10, Theorem 2].

As to improve the results contained in [10] we want to show that, for the solu-
tion to (4) arisen from an O(1) amplitude highly oscillating initial datum u0, an
exponential growth in time is recorded.

There are several difficulties that occur in the case of general data of amplitude
O(1): a first issue we have to deal with is the existence of the solution for larger
times than the ones described in Theorem 2.1. This is not an easy task and it is the
reason why the instability result presented here states that, if the flow described
in Theorem 2.1 can be continued, then an exponential growth in time is recorded.

Theorem 2.3. Let u be the solution described in Theorem 2.1. If for some t1 > t0
large enough there holds the uniform bound

|u(t)|L2 + |∂xu(t)|L2 ≤ C, 0 ≤ t ≤ t1 + C1ε| ln ε|, (9)

for some C > 0 and C1 > 0, then for some λ > 0, for any x1 ∈ T, and for any
δ > 0, there holds the lower bound

|u(t)|L2(B(x1,δ)) ≥ C(δ)etλ, t ∈ [t1, t1 + C ′1ε| ln ε|], (10)

for some C(δ) > 0 and some 0 < C ′1 < C1.

We point out that the assumed bound in (9) is precisely the one that is shown
to hold over [0, t0] in Theorem 2.1. Thus we are stating that if the flow can be
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continued beyond t0, precisely just beyond some t1 > t0 (that is, if a solution
exists for some t1 > t0), then an exponential growth in time is observed. We also
stress that we are able to describe such a growth only a little bit beyond t1, precisely
until t1 + Cε| log ε|.

As one can see in details in [8], the key ingredient of the proof of Theorem 2.3 is a
micro local analysis of the equation based on a precise description of the symbol and
the use of the G̊arding’s inequality. Precisely, one has to localize the equation in a
neighborhood of a point (x1, ξ1) such that the spectrum of the symbol is negative;
having done that, G̊arding inequality suffices in translating positivity of the symbol
(i.e. a finite dimensional property), into a growth for the solution of a PDE.

The results in Theorems 2.1 and 2.3 give a complete description of the dynamics
of the solutions to (4), at least until the time t1 described therein: indeed, they
show that, when starting with a highly oscillating initial datum (with no restriction
on its amplitude), then the solution arisen from such initial configuration indeed
experiences a growth in time (as predicted in [3] for the case ε = 0) but only after a
delay (measured by t0) that gets longer with the increasing of the initial oscillations.
In particular, the dynamics of (4) can be divided into two different and specific
stages: a first time scale of order one where no amplification is recorded (while it
is observed a linear growth in time, see estimates (7)), followed by an exponential
growth of the solution, described by (10).

3. Time delayed instabilities in hydrodynamical systems. We conclude this
paper with an attempt to extend the results previously described in the case of
the scalar complex Burgers equation to hydrodynamical systems; in particular, the
question we ask is whether, in the context of an instability, a regularization plays
in hydrodynamical systems the role it plays in Burgers. The first problem we deal
with is a regularization of the Euler equation (see [11]): we expect the analysis for
systems to be quite different from the analysis for scalar equations, such as Burgers.
Essentially, for scalar equations, G̊arding’s inequality suffices in order to translate
instabilities properties of the symbol, i.e., instability properties in finite dimensions,
into an exponential growth for the solution to the PDE (see [8]). For systems, this
is not true in general. The difference is that as soon as the symbol is not symmetric,
then G̊arding’s inequality (in his matrix form) will fail to produce sharp bounds.

3.1. Dispersive regularization of the Euler equations. We consider a disper-
sive regularization of the one-dimensional compressible Euler equations with a Van
der Walls pressure law p(u):

{
∂tu+ ∂xv = 0,

∂tv + ∂x(p(u)) = iε∂2xv.
(11)

Here ε > 0, (u, v) ∈ C2 depend on time t ≥ 0 and x ∈ R, and the pressure law is
given by

p(u) = (|u|2 − 1)u. (12)

Hence there holds

p′(u0) < 0, for some u0 > 0,

implying, in particular, that for specific volumes close to u0, the first-order operator
in (11) is not hyperbolic. Thus, the inviscid system (11) with ε = 0 (which cor-
responds to the compressible Euler equations in Lagrangian variables, with u > 0
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being the specific volume and v ∈ R the velocity) presents both hyperbolic and ellip-
tic zones, and it is possible to prove (see, for instance, [4] and [5]) that local-in-time
existence holds true a priori only for analytical data.

In order not to restrict to analytical data and solutions, we may regularize (11).
A viscous regularization as the one done in (4) (see [9]) has the effect of modifying
the following conservation law, that holds at the hyperbolic level ε = 0:

E(u, v) =

∫

R

1

2
|u(x)|4 − |u(x)|2 + |v(x)|2 dx ≡ constant. (13)

By contrast, the dispersive regularization leading to (11) allows for Sobolev solutions
to exist and the conservation law (13) to hold. In this sense, our regularization is
energy-preserving. The downside, of course, is that we lose the real character of u
and v.

Our hope is that the regularized system (11) is a good model system for the study
of phase transitions, and our goal is to prove that solutions to (11) display some
properties of its hyperbolic version (as, for instance, transition from hyperbolic to
elliptic zones).

The first step is of course to prove that system (11) is well posed (as opposite
to its hyperbolic counterpart); hence, we want to prove the existence of Sobolev
solutions defined over time intervals independent of ε. Our first partial result states
that this is true if considering high-frequency data with small amplitude:

Theorem 3.1. Given s sufficiently large, and given

u0(x) = ε3/4 a
( x
ε2

)
and v0(x) = ε3/4 b

( x
ε2

)
(14)

for some (a, b) ∈ Hs(R), there exists T > 0 such that, for ε small enough, the initial
value problem 




∂tu+ ∂xv = 0,

∂tv + ∂x(p(u)) = iε∂2xv,

(u, v)(x, 0) = (u0, v0)(x)

(15)

has a unique solution (u, v) ∈ C0([0, T ], Hs(R)).

We propose here only a sketch of the proof. For more details, we refer the readers
to [11].

Proof. The first step of the proof consists in a rescaling in space of system (15)
(that can be done since the initial data have a fast spatial variation). Momentarily
denoting by X the spatial variable and by (ũ, ṽ) the unknown in (15), we let

x = X/ε2, u(t, x) = ũ(t,X), v(t, x) = ṽ(t,X). (16)

Thus (ũ, ṽ) solves (15) with datum (14) if and only if (u, v) solves the initial-value
problem





∂tu+
1

ε2
∂xv = 0,

∂tv −
1

ε2
∂xu+

1

ε3/4
(
|u|2∂xu+ 2u<e

(
ū∂xu

) )
=

i

ε3
∂2xv,

(u, v)(0, x) = (a, b)(x).

(17)

We thus obtain a system that is singular in two distinct ways. First, the linearized
equations at u = 0 are not hyperbolic: this reflects the singular nature of the

655



MARTA STRANI

pressure law (12). Second, the nonlinear term comes in with a large (with respect
to ε) prefactor (which is however milder than the one in front of ∂xu, due to the
size of the data in the original system).

Using the vector of unknowns

U = (u1, u2, v1, v2) := (<e u, =mu, <e v, =mv) ∈ R4 ' C2,

system (17) can be rewritten as

∂tU +
1

ε2
A0∂xU +

1

ε3/4
A1(U)∂xU +

1

ε3
B∂2xU = 0, U(0) = (a, b), (18)

where

A0 :=

(
0 Id2

−Id2 0

)
, A1(U) :=

(
0 0

a21(U) 0

)
, B :=

(
0 0
0 −J

)
,

and

a21(U) :=

(
3u21 + u22 2u1u2

2u1u2 u21 + 3u22

)
, J :=

(
0 −1
1 0

)
. (19)

Again, we can observe two distinct singularities in (18): one in ε and one in ξ.
Indeed, negative powers of ε and positive powers of ξ are singular in the sense that
they prevent consistent estimates (i.e. estimates that do not involve Hs′ norms
with s′ > s) that are uniform in ε. Thus, in view of proving well-posedness in times
of the order O(1), we need to track simultaneously the orders of the operators and
their singular (with respect to ε) prefactors.

To do so, the second step in the proof is the use of a normal form reduction,
done in such a way the new variable satisfies an equation which is less singular (in
terms of powers of ξ, i.e. in terms of order of the differential operators) than (18);
in particular, the goal is to cancel out operators of the order one in (18). Hence,
we look for M ∈ S−1 (the space of classical symbols of order −1 ) such that

V := (Id + ε op(M))−1U (20)

satisfies an equation where no operators of the order one are present. By doing
all the computations and by paying attention to the remainders that come in the
compositions of operators arising from the normal form reduction, one can find an
explicit expression for M so that the equation solved by the new variable V reads
as:

∂tV +
1

ε3
B∂2xV =

1

ε2
RV +

1

ε
R0V, (21)

where R and R0 comprise all the remainders (respectively, the singular and the
non singular ones in ε). As one can see, the terms involving one space derivative
of the solution disappeared because of an appropriate choice of M (for the explicit
computations, see [11]).

Finally, the last step of the proof makes use of Strichartz estimates and of a
contraction principle in a suitable Banach space Y (in particular, we refer to the
strategy used in [1]) to prove the existence of a unique solution to (21) belonging
to Y .
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Abstract. This paper surveys the mathematical works [11, 12] investigating
the fundamental mechanism of gas discharge. Specifically, we first discuss

the time-local solvability of initial–boundary value problems of the Degond–
Lucquin-Desreux–Morrow model. Furthermore, we also study the stability
and instability of a trivial stationary solution whose electron and positive ion
densities are zero, and then see that there exists a sparking voltage at which
the trivial solution becomes from stable to unstable. This fact means that
gas discharge can occur and continue for a voltage greater than the sparking
voltage. Finally, we introduce results on bifurcation of non-trivial stationary
solutions.

1. Introduction. This short paper gives a survey on the mathematical results an-
alyzing the fundamental mechanism of gas discharge. Around 1900, Townsend con-
structed a theory for gas discharge. He experimented and considered what happens
in a chamber formed from two planar parallel plates and filled with a gas when a
direct current high-voltage is applied between these two plates. Then he discovered
α- and γ-mechanisms which are essential for the happening of gas discharge. The
α-mechanism is the collision of gas particles with electrons, and the γ-mechanism
is the secondary emission of electrons caused by impact of positive ions with the
cathode. If applied voltage is sufficiently high, these two mechanisms lead to the
electric multiplication which permit large current flow throughout the gas which is
an insulator. This phenomenon is called as gas discharge. Furthermore, he also de-
rived a threshold of voltage at which gas discharge can happen and continue. This
threshold is called as a sparking voltage. However, he used several simplification
in the derivation of sparking voltage (for more details, see [10]). Therefore, it is of
interest to analyze the sparking voltage by using a partial differential equation with
no simplification and then compare the results of analysis with Townsend’s theory.

Several models of gas discharge were proposed and used in [1, 3, 4, 5, 6, 7,
8]. In 1985, Morrow [9] was the first to provide a model including the α- and γ-
mechanisms. On the other hand, Degond and Lucquin-Desreux in 2007 gave the
formal derivation of the model, derived by Morrow, from Euler–Maxwell equations
(see [2]). At this point, it seems reasonable to analyze this model. We call it as the
Degond–Lucquin-Desreux–Morrow model or the DLM model in short.

2000 Mathematics Subject Classification. Primary: 35M33, 76X05, 82D10; Secondary: 74G20,
70K50, 93D20.

Key words and phrases. hyperbolic-parabolic-elliptic coupled system, solvability, stationary
solutions, nonlinear stability, nonlinear instability, bifurcation.
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Suzuki and Tani in [11] gave the first mathematical work. The typical shapes of
the cathode and anode are either a sphere or plate for the physical and numerical ex-
periments. Therefore, they showed the time-local solvability of an initial–boundary
value problem over domains of which boundaries are two of plates and spheres.
Their another paper [12] did detailed investigation for the case that the cathode
and anode are two planar parallel plates. The initial–boundary value problem has a
trivial stationary solution whose electron and positive ion densities are zero. They
proved that there exists a threshold of voltage at which the trivial solution becomes
unstable from stable. This fact means that gas discharge can occur and continue
for a voltage greater than the threshold. The remarkable point is that gas discharge
can occur even if γ-mechanism is not taken into account, whereas it cannot occur
without γ-mechanism in Townsend’s theory. In this paper, we survey these results.

The DLM model consists of two continuity equations for the densities of positive
ions and of electrons, adopting constitutive velocity relations, coupled with the
Poisson equation for the electrostatic potential:

∂tρi +∇ · (ρiui) = a exp
(
−b|∇Φ|−1

)
ρe |ve| , (1a)

∂tρe +∇ · (ρeue) = a exp
(
−b|∇Φ|−1

)
ρe |ve| , (1b)

ui = ki∇Φ, ue = ve − (ke∇ρe)/ρe, ve = −ke∇Φ, (1c)

λ∆Φ = ρi − ρe, x ∈ Ω, t > 0. (1d)

The unknown functions ρi, ρe, and −Φ denote the positive ion density, the electron
density, and the electrostatic potential, respectively. The ion and electron velocities
ui and ue are assumed to obey (1c). Furthermore, a, b, ki, ke, and λ are positive
constants. The right hand sides of (1a) and (1b) come from α-mechanism. In par-
ticular, α = a exp(−b/|∇Φ|) is the first Townsend ionization coefficient expressing
the number of ion–electron pairs generated per unit volume by the electron impact
ionization. We notice that this model is a hyperbolic-parabolic-elliptic coupled sys-
tem by substituting constitutive velocity relations (1c) into continuity equations
(1a) and (1b).

We consider the initial–boundary value problem of this model over domains Ω
which have two smooth disjoint boundaries Γa and Γc (these accurate definitions
will be given below) by prescribing the initial and boundary data

(ρi, ρe)(0, x) = (ρi0, ρe0)(x), ρi0(x) ≥ 0, ρe0(x) ≥ 0, x ∈ Ω, (1e)

ρi(t, x) = ρe(t, x) = Φ(t, x) = 0, x ∈ Γa, t > 0, (1f)

ρeue(t, x) · n(x) = −γρiui(t, x) · n(x), Φ(t, x) = Vc, x ∈ Γc, t > 0. (1g)

Here γ and Vc are positive constants and n(x) is the outer normal unit vector of
Ω. From physical point of view, it is reasonable to assume the non-negativity of
initial densities ρi0 and ρe0. The boundaries Γa and Γc correspond to the anode and
cathode, respectively, since −V is the voltage. Boundary condition (1f) means that,
in an instant, electrons are absorbed to the anode and ions are excluded near the
anode. We take γ-mechanism on the cathode in (1g), where the positive constant
γ is the second Townsend ionization coefficient expressing the average number of
electrons released from cathode by the secondary emission.
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For mathematical convenience, let us decompose the electrostatic potential as
Φ = V + Vext, where Vext satisfies

λ∆Vext = 0, x ∈ Ω, t > 0, (2a)

Vext(t, x) = 0, x ∈ Γa, Vext(t, x) = Vc, x ∈ Γc. (2b)

Then we have the rewritten problem for (ρi, ρe, V ):

∂tρi +∇ · (ρiui) = a exp
(
−b|∇(V + Vext)|−1

)
ρe |ve| , (3a)

∂tρe +∇ · (ρeue) = a exp
(
−b|∇(V + Vext)|−1

)
ρe |ve| , (3b)

ui = ki∇(V + Vext), ue = ve − (ke∇ρe)/ρe, ve = −ke∇(V + Vext), (3c)

λ∆V = ρi − ρe, x ∈ Ω, t > 0 (3d)

with the initial and boundary conditions

(ρi, ρe)(0, x) = (ρi0, ρe0)(x), ρi0(x) ≥ 0, ρe0(x) ≥ 0, x ∈ Ω, (3e)

ρi(t, x) = ρe(t, x) = V (t, x) = 0, x ∈ Γa, t > 0, (3f)

ρeue(t, x) · n(x) = −γρiui(t, x) · n(x), V (t, x) = 0, x ∈ Γc, t > 0. (3g)

Note that (ρi, ρe, V + Vext) is a solution to initial–boundary value problem (1) if
Vext and (ρi, ρe, V ) are solutions to problems (2) and (3), respectively. Since (2)
and (3) are decoupled essentially, one can regard Vext in (3) as a given function
without loss of generality.

Before closing this section, we give our notation. For 1 ≤ p ≤ ∞, a non-negative
integer k, and a domain Ω, Lp(Ω) is the Lebesgue space equipped with the norm |·|p;
W k,p(Ω) is the k-th order Sobolev space in the Lp sense; Hk(Ω) is the k-th order
Sobolev space in the L2 sense. In addition, Cm([0, T ];H) denotes the space of them-
times continuously differentiable functions on the interval [0, T ] with values in some
Hilbert space H. Hm(0, T ;H) denotes the space of Hm–functions on (0, T ) with

values in some Hilbert space H. Let the function space D1,2
0 (Ω) be the completion

of C∞
0 (Ω) with respect to the norm ‖f‖D1,2

0
:= ‖∇f‖L2. For an interval I = (0, L),

H1
0 (I) := {f ∈ H1(I); f(0) = f(L) = 0} and H1

0l(I) := {f ∈ H1(I); f(0) = 0}. We

also use the weight function 〈x〉 := (1 + |x|2)1/2.

2. Time-local solvability. In this section, we discuss the time-local solvability
of problem (3) over a domain Ω := R3

+\K, where R3
+ := {x ∈ R3;x1 > 0} and

K ⊂ R3
+ is a simply connected compact set of which boundary is smooth. Let us

set Γa := ∂R3
+ and Γc := ∂K, and also make assumptions for the given function

Vext.

Assumption 1. For some positive constants c and C, the function Vext satisfies

(H.1) ∇Vext ∈ H3(Ω);

(H.2) ‖∇Vext‖H3 ≤ CVc;

(H.3) cVc〈x〉−3 ≤ |∇Vext(x)| ≤ CVc〈x〉−3, x ∈ Ω;

(H.4) ∇Vext(x) · n(x) ≤ −CVc〈x〉−3, x ∈ Γa;

(H.5) ∇Vext(x) · n(x) ≥ cVc, x ∈ Γc.

We remark that there is a solution Vext to problem (2) satisfying Assumption 1
for some particular sets K (see Appendix in [11]).

On the basis of the Townsend theory, gas discharge can happen if the electron
density is positive somewhere and high-voltage is applied. Therefore, it is desirable
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from physical point of view to establish the unique existence of time-local solutions
to initial–boundary value problem (3) without any restrictions of initial data except
the non-negativity in (3e) and the compatibility condition. There appear several
difficulties when we solve hyperbolic equation (3a).

First, we need to keep the direction of the boundary characteristics of (3a) as

ui(t, x) · n(x) < 0, x ∈ Γa, (4)

ui(t, x) · n(x) > 0, x ∈ Γc (5)

in order to put one boundary condition on Γa and no boundary condition on Γc.
We should not control the initial data (ρi0, ρe0) by following the Townsend theory.
It is desirable to take the voltage Vc > 0 sufficiently large so that (4) and (5) hold
for any initial data. In the analysis of this situation, one can infer from a standard
theory of elliptic equations that the solution V to problem (3d) converges to zero
as |x| tends to infinity and so do ui owing to (3c). Therefore, we need to check
carefully the decay rate of ui at infinite distance for the treatment of the boundary
characteristic of (4). Let us call this kind of boundary characteristic as degenerate
boundary characteristic.

Even if we overcome this difficulty, we cannot find any general theory of non-linear
hyperbolic equations with degenerate boundary characteristics, although those with
non-degenerate boundary characteristics were established. In general, the regular-
ity of solutions to the linearized hyperbolic equations with degenerate boundary
characteristics may be lost near the boundary. This implies the possibility that loss
on the derivatives arises at each step of the inductive scheme to solve the non-linear
problem.

For the resolution of these difficulties, the paper [11] adopted the following
method. To construct a solution (ρi, ρe, V ) to problem (3) with the properties (4)
and (5), we employ a weight function 〈x〉4 which plays an essential role to obtain the
decay rate of V as |∇V (x)| ≤ C〈x〉−3. This decay rate together with Assumption
1 leads to the desired properties. For the regularity issue coming from the degener-
ate boundary characteristic, the main idea is to reduce the initial–boundary value
problem over Ω to the initial value problem over R3 by virtue of several extension
operators. This reduction enables us to avoid the loss on the derivatives. It is worth
pointing out that properties (4), (5) and compatibility conditions of the initial data
play important roles for the application of extension operators. We are now in a
position to state the main theorem in [11].

Theorem 2.1. Let (〈x〉4ρi0, 〈x〉4ρe0) belong to H2(Ω)×H2(Ω) and satisfy compat-
ibility conditions of the zero-th and first orders

ρi0(x) = ρe0(x) = (∂x1ρi0)(x) = 0, x ∈ Γa,

ρe0(x)ue(0, x) · n(x) = −γρi0(x)ui(0, x) · n(x), x ∈ Γc.

There exists some constant M > 0 such that for any Vc ≥ M , initial–boundary
value problem (3) has a unique time-local solution (ρi, ρe, V ), satisfying

〈x〉4ρi ∈ C([0, T ];H2(Ω)) ∩ C1([0, T ];H1(Ω)),

〈x〉4ρe ∈ C([0, T ];H2(Ω)) ∩ C1([0, T ];L2(Ω)) ∩H1(0, T ;H1(Ω)),

V ∈ C([0, T ];D1,2
0 (Ω)), ∇V ∈ C([0, T ];H3(Ω)) ∩ C1([0, T ];H1(Ω)),

(4), (5), and the non-negativity ρi, ρe ≥ 0, for some time T > 0.
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Suzuki and Tani [11] also discussed the solvability of the DLM model over other
domains of which boundaries are two of spheres and plates. Remarkable point is
that the difficulties mentioned above does not appear for other domains. For more
details, see Remark 2.3 in [11].

3. Sparking voltage. This section is devoted to the analysis on the sparking
voltage. We focus only on studying the DLM model over Ω = I := (0, L) without
γ-mechanism. In this case, Vext is explicitly written by Vc/L. Furthermore, let us
use the new unknown functions

Ri := ρie
− L

Vc
x, Re := ρee

Vc
2Lx

and the given functions

h(x) := a exp

(−b
|x|

)
|x|, g(Vc) := h

(
Vc
L

)
− V 2

c

4L2
.

In the end, we have the following rewritten problem

∂tRi + ki∂x

{(
∂xV +

Vc
L

)
Ri

}
+ kiRi = keh

(
Vc
L

)
e−

L
Vc

x− Vc
2LxRe + kifi, (6a)

∂tRe − ke∂xxRe − keg(Vc)Re = kefe, (6b)

V [Vc, Ri, Re] :=
1

λ

∫ L

0

G(x, y)
(
e

L
Vc

yRi(t, y)− e−
Vc
2L yRe(t, y)

)
dy, (6c)

(Ri, Re)(0, x) = (Ri0, Re0)(x), Ri0(x) ≥ 0, Re0(x) ≥ 0, (6d)

Ri(t, 0) = Re(t, 0) = Re(t, L) = 0, (6e)

where G(x, y) is the Green function of the Laplace operator with the Dirichlet zero
condition, and the nonlinear terms fi and fe are defined as

fi :=−Ri∂xV − ke
ki

{
h

(
Vc
L

)
− h

(
∂xV +

Vc
L

)}
e−

L
Vc

x− Vc
2LxRe,

fe :=∂xV ∂xRe −
Vc
2L
Re∂xV +Re∂xxV −

{
h

(
Vc
L

)
− h

(
∂xV +

Vc
L

)}
Re.

We remark that the boundary condition Re(t, L) = 0 comes from the lack of the
γ-mechanism. Furthermore, we notice that problem (6) has a trivial stationary
solution

(Ri, Re) = (0, 0).

Townsend defined the sparking voltage as a threshold of voltage at which gas
discharge happens and continues. In following his manner, it is reasonable to define
the sparking voltage by a threshold of voltage at which the trivial solution becomes
unstable from stable. For seeking the threshold, the function g plays an important
role. Suzuki and Tani [12] draw the graph of g subject to constants a, b, ki, ke, and
L. There are two cases as in Figures 1 and 2. They studied only case 1 in Figure 1
and defined uniquely the sparking voltage by

g(V ∗
c ) =

π2

L2
, g′(V ∗

c ) > 0. (7)

Furthermore, it was concluded that that gas discharge can happen even if γ-
mechanism is not taken into account, whereas it cannot happen without γ-mechanism
in Townsend’s theory. Let us mention several theorems in [12] validating these facts.
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O
Vc

g(Vc)

V ∗
c

π2

L2

Figure 1. case 1

O
Vc

g(Vc)

Figure 2. case 2

3.1. Nonlinear stability and instability. This subsection provides the stabil-
ity and instability theorems for the trivial solution. These theorems validate the
definition of the sparking voltage V ∗

c .

Theorem 3.1. Let g(Vc) < π2/L2. There exists ε > 0 such that if the initial data
(Ri0, Re0) ∈ H1

0l(I)×H1
0 (I) satisfies ‖Ri0‖H1 + ‖Re0‖H1 < ε, then problem (6) has

a unique time global solution (Ri, Re) as

Ri ≥ 0, Ri ∈ C([0,∞);H1
0l(I)) ∩ C1([0,∞);L2(I)), (8a)

Re ≥ 0, Re ∈ C([0,∞);H1
0 (I)) ∩ L2(0,∞;H2(I)) ∩H1(0,∞;L2(I)). (8b)

Moreover, it converges to zero exponentially fast in H1(I) × H1(I) as t goes to
infinity.

Theorem 3.2. Let g(Vc) > π2/L2 and (ψi, ψe) ∈ H1
0l(I)×H1

0 (I) satisfy

ψi, ψe ≥ 0, ‖ψi‖2H1 + ‖ψe‖2H1 = 1,

∫ L

0

ψe sin
π

L
xdx > 0. (9)

There exists ε > 0 such that for any sufficiently small δ > 0, problem (6) with
the initial data (Ri0, Re0) = (δψi, δψe) has a unique solution (Ri, Re) satisfying
‖Ri(T )‖H1 + ‖Re(T )‖H1 ≥ ε for some T > 0.

In this instability theorem, the last inequality in (9) is equivalent to that the
initial data Re0 is a non-zero function. One may ask what happens for the case
that Re0 is the zero function. Proposition 3.3 gives the answer that there exists a
unique time global solution, and it coincides the trivial stationary solution at finite
time.

Proposition 3.3. Let Vc > 0. There exists ε > 0 such that if the initial data
(Ri0, Re0) ∈ H1

0l(I) ×H1
0 (I) satisfies Re0 = 0 and ‖Ri0‖H1 < ε, then problem (6)

has a unique time global solution (Ri, Re) as (8). Furthermore, there exists T0 > 0
such that

(Ri, Re)(t, x) = (0, 0) for (t, x) ∈ [T0,∞)× I.

This proposition asserts that a set {(Ri0, Re0) ∈ H1
0l(I) ×H1

0 (I) ; Re0 = 0} is a
local stable manifold of system (6a)–(6c) for any Vc > 0.

3.2. Bifurcation. We are also interested in finding the asymptotic behavior of
solutions to problem (6) for the case Vc > V ∗

c . Then it is expected from Theorems
3.1 and 3.2 by regarding the voltage Vc as a bifurcation parameter that there is a
non-trivial stationary solution curve near the point (Ri, Re, Vc) = (0, 0, V ∗

c ). The
bifurcation results are summarized in Theorem 3.4 and Corollary 1.
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Theorem 3.4. For V ∗
c defined in (7), there exist η > 0, Vc ∈ C2([−η, η];R), and

z ∈ C2([−η, η];H1 ×H2) such that Vc(0) = V ∗
c , z(0) = 0, and stationary problem

to (6) with Vc = Vc(s) has a non-trivial solution (Ri, Re)(s) = s(ϕi, ϕe) + sz(s) for
s ∈ [−η, η], where

ϕi(x) :=
ke
ki

exp

(−bL
V ∗
c

)
e
− L

V ∗
c
x
∫ x

0

e−
V ∗
c

2L yϕe(y) dy, ϕe(x) := sin
π

L
x.

Moreover, V̇c(0) ⋚ 0 holds if and only if

−Lg′(V ∗
c )

∫ L

0

ϕ2
e∂xV [V ∗

c , ϕi, ϕe] dx− 1

2

∫ L

0

ϕ2
e∂xxV [V ∗

c , ϕi, ϕe] dx ⋚ 0.

Corollary 1. Let V̇c(0) 6= 0. For s 6= 0, it holds for any x ∈ (0, L) that

sV̇c(0)Ri(s) > 0, sV̇c(0)Re(s) > 0.

Furthermore, the positive non-trivial solution is linearly stable if V̇c(0) > 0, and the

positive non-trivial solution is linearly unstable if V̇c(0) < 0.

From Theorem 3.4 and Corollary 1, we can draw the bifurcation diagram of
stationary solutions as Figures 3 and 4. The both diagrams are truly possible for
some physical parameters ki, ke, a, b, and L. For example, one can have V̇c(0) > 0 by

letting ke/ki sufficiently small; one can have V̇c(0) < 0 by letting ke/ki sufficiently
large and assuming an additional condition for a, b, and L. For more details, see
Appendix B in [12].

VcV ∗
c

NLS

LS

NLU

Re

O

Figure 3. V̇c(0) > 0

VcV ∗
c

NLS

LU

NLU

Re

O

Figure 4. V̇c(0) < 0

REFERENCES

[1] I. Abbas and P. Bayle, A critical analysis of ionising wave propagation mechanisms in break-
down, J. Phys. D: Appl. Phys. 13 (1980), 1055–1068.

[2] P. Degond and B. Lucquin-Desreux, Mathematical models of electrical discharges in air at
atmospheric pressure: a derivation from asymptotic analysis, Int. J. Compu. Sci. Math. 1
(2007), 58–97.

[3] S. K. Dhali and P. F. Williams, Twodimensional studies of streamers in gases, J. Appl. Phys.
62 (1987), 4694–4707.

[4] P. A. Durbin and L. Turyn, Analysis of the positive DC corona between coaxial cylinders, J.
Phys. D: Appl. Phys. 20 (1987), 1490–1496.

[5] A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure
air, IEEE Trans. Plasma Sci. 30 (1997), 441–450.

[6] A. A. Kulikovsky, The role of photoionization in positive streamer dynamics, J. Phys. D:
Appl. Phys. 33 (2000), 1514–1524.

664



MASAHIRO SUZUKI

[7] A. Luque, V. Ratushnaya and U. Ebert, Positive and negative streamers in ambient air:
modeling evolution and velocities, J. Phys. D: Appl. Phys. 41 (2008), 234005.
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Abstract. We study the motion of isentropic gas in nozzles. These phe-

nomena are governed by the compressible Euler equations. In this paper, we
consider its unsteady flow and devote to proving the global existence of so-

lutions to the Cauchy problem for the general nozzle. Although the subject

is important in Mathematics, Physics and engineering, it remained open for
a long time. The problem seems to rely on a bounded estimate of approxi-

mate solutions, because we have only method to investigate the behavior with

respect to the time variable. To solve this, we first introduce a generalized
invariant region. Compared with the existing ones, its upper and lower bounds

are extended constants to functions of the space variable. However, we cannot

apply the new invariant region to the traditional difference scheme. Therefore,
we invent the modified Godunov scheme. The approximate solutions consist of

some functions corresponding to the upper and lower bounds of the invariant

regions. These methods enable us to investigate the behavior of approximate
solutions with respect to the space variable. In the final section, we state open

problem for inhomogeneous Euler equations.

1. Introduction. The present paper is concerned with isentropic gas flow in a
nozzle. This motion is governed by the following compressible Euler equations:




ρt +mx = a(x)m,

mt +

(
m2

ρ
+ p(ρ)

)

x

= a(x)
m2

ρ
, x ∈ R,

(1)

where ρ, m and p are the density, the momentum and the pressure of the gas,
respectively. If ρ > 0, v = m/ρ represents the velocity of the gas. For a barotropic
gas, p(ρ) = ργ/γ, where γ ∈ (1, 5/3] is the adiabatic exponent for usual gases. The
given function a(x) is represented by

a(x) = −A′(x)/A(x) with A(x) = e−
∫ x a(y)dy,

where A ∈ C2(R) is a slowly variable cross section area at x in the nozzle.
We consider the Cauchy problem (1) with the initial data

(ρ,m)|t=0 = (ρ0(x),m0(x)). (2)
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The above problem (1)–(2) can be written in the following form
{
ut + f(u)x = g(x, u), x ∈ R,
u|t=0 = u0(x),

(3)

by using u = t(ρ,m), f(u) = t

(
m,

m2

ρ
+ p(ρ)

)
and g(x, u) = t

(
a(x)m, a(x)

m2

ρ

)
.

Let us survey the related mathematical results for (1). The pioneer work in this
direction is Liu [4]. In [4], Liu proved the existence of global solutions coupled with
steady states, by the Glimm scheme, provided that the initial data have small total
variation and are away from the sonic state.

The motivations in the present paper is to construct solutions with large initial
data and including the sonic state. The physically interesting flow contains the
sonic state. Actually, when the Laval nozzle accelerate the subsonic flow to the
supersonic one, the flow attains the sonic state at the throat (see [14], [3, Section
5] and [5, Chapter 5]). Therefore, the objective of the preset paper is to establish
the global existence of solutions with the sonic state.

To state our main theorem, we define the Riemann invariants w, z, which play
important roles in this paper, as

Definition 1.1.

w :=
m

ρ
+
ρθ

θ
= v +

ρθ

θ
, z :=

m

ρ
− ρθ

θ
= v − ρθ

θ
(θ := (γ − 1)/2).

These Riemann invariants satisfy the following.

Remark 1.

|w| = |z|, w = 0, when v = 0. |w| 5 |z|, z 5 0, when v 5 0. (4)

v =
w + z

2
, ρ =

(
θ(w − z)

2

)1/θ

, m = ρv. (5)

From the above, the lower bound of z and the upper bound of w yield the bound
of ρ and |v|.

We assume the following.
There exists a nonnegative function b ∈ C1(R) such that

|a(x)| 5 µb(x), max

{∫ ∞

0

b(x)dx,

∫ 0

−∞
b(x)dx

}
5 1

2
log

1

σ
, (6)

where µ = (1−θ)2
θ(1+θ−2

√
θ)
, σ = 1−θ

(1−
√
θ)(2
√
θ+1+

√
θ−1) . Here we notice that 0 < σ < 1.

In addition, µ and σ shall be characterized by the values of a function f(k) in Figure
2. (6) means that ‖a‖L1(R) is small enough.

Then our main theorem is as follows.

Theorem 1.2 ([15]). We assume that, for b in (6) and any fixed nonnegative
constant M , initial density and momentum data u0 = (ρ0,m0) ∈ L∞(R) satisfy

0 5 ρ0(x), −Me−
∫ x
0
b(y)dy 5 z(u0(x)), w(u0(x)) 5Me

∫ x
0
b(y)dy (7)

in terms of Riemann invariants, or

0 5 ρ0(x), −Me−
∫ x
0
b(y)dy 5 v0(x)− {ρ0(x)}θ

θ
, v0(x) +

{ρ0(x)}θ
θ

5Me
∫ x
0
b(y)dy

in the physical variables.
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Then the Cauchy problem (3) has a global entropy weak solution u(x, t) satisfying
the same inequalities as (7)

0 5 ρ(x, t), −Me−
∫ x
0
b(y)dy 5 z(u(x, t)), w(u(x, t)) 5Me

∫ x
0
b(y)dy. (8)

Remark 2. In view of (6)2, (7) implies that we can supply arbitrary L∞ data. On
the other hand, if we consider only the Laval nozzle, we do not need the smallness
condition of ‖a‖1 such as (6) (see [9]). In addition, the above solution satisfies an
energy inequality (see [18]). Therefore, if the energy of initial data is finite, that of
the corresponding solution is also finite.

2. Difficult point. The most difficult point of this problem is to obtain the bounded
estimate of solutions. To observe this, we consider the diagonalization of (1). If
solutions are smooth, we deduce from (1)

zt + λ1zx = g1(x, z, w),

wt + λ2wx = g2(x, z, w),
(9)

where g1(x, z, w) = −a(x)ρθv, g2(x, z, w) = a(x)ρθv, λ1 and λ2 are the character-
istic speeds defined as follows

λ1 = v − ρθ, λ2 = v + ρθ. (10)

We assume that the following 1 order estimate holds

|g1(x, z, w)| ≤ C(|z|+ |w|), |g2(x, z, w)| ≤ C(|z|+ |w|). (11)

From the classical method, i.e., the invariant region (see [1]) and fractional step (see
[2]), we can obtain the exponential growth estimate

Mt ≤ kM, (12)

where M(t) = max{‖z(·, t)‖L∞(R), ‖w(·, t)‖L∞(R)} and k is a positive constant.
Here, the orders of |z| and |w| of the right hand side in (11) correspond to that of
M of the right hand side in (12). (12) yields the time dependent bounded estimate

|z(x, t)| ≤ Bekt, |w(x, t)| ≤ Bekt.

However, unfortunately, we cannot expect (11). In fact, since ρθv = θ(w2 − z2)/4,
we can obtain the only following 2 order estimate

|g1(x, z, w)| ≤ C(|z|2 + |w|2), |g2(x, z, w)| ≤ C(|z|2 + |w|2),

provided that a is uniformly bounded. We can deduce from this estimate only the
Mt ≤ kM2. This does not yields a time global bounded estimate.

Therefore, it is almost impossible to obtain the bounded estimate of solutions by
the classical method. This is the reason why this problem has been open for about
forty years.

To overcome this, we observe the estimate with respect to the space variable x.
Here, we notice that the classical method investigates the behavior with respect
to the only time variable t. In next section, we shall deduce some terms such as
relaxation ones from convection terms of (1) and deal with inhomogeneous terms.
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3. Outline of the proof. We grasp the point of the main estimate by a formal
argument. We thus assume that a solution is smooth and the density is nonnegative
in this section.

Now, the most difficult point in the present paper is to obtain the bounded
estimate of approximate solutions. To do this, we consider Riemann invariants to
use the invariant region theory. Then, the difficult point of this estimate is caused by
the inhomogeneous terms of (1). In fact, for a homogeneous system corresponding
to (1), we can obtain the bounded estimate by the Chueh, Conley and Smoller
invariant region theory. However, as we observe in Section 2, their theory is not
effective in our problem.

To solve this problem, we introduce the generalized invariant regions. We
consider the physical region ρ = 0 (i.e., w = z.). Recalling Remark 1, it suffices to
derive the lower bound of z(u) and the upper bound of w(u) to obtain the bound
of u.

We set

z = z̃e−
∫ x
0
b(y)dy, w = w̃e

∫ x
0
b(y)dy. (13)

Then, it follows from (9) that

z̃t + λ1z̃x = e
∫ x
0
b(y)dy

{
b(x)λ1z − a(x)ρθv

}
,

w̃t + λ2w̃x = −e−
∫ x
0
b(y)dy

{
b(x)λ2w − a(x)ρθv

}
.

(14)

In a subsequent argument, the terms b(x)λ1z and b(x)λ2w will play a role such as
relaxation terms, i.e., they neutralize the effect of the inhomogeneous terms. We
call these terms quasi relaxation terms.

First, from (6), we notice that

Lemma 3.1. The vertex A of the triangle in Fig.1 lies between lines `1 and `2
through the origin with the slopes −σ and −1/σ, where σ = 1−θ

(1−
√
θ)(2
√
θ+1+

√
θ−1) .

Proof. Since the slope of OA is −e2
∫ x
0
b(y)dy, it follows from (6) that −1/σ 5 the

slope of OA5 −σ.

Let us investigate the inhomogeneous term of (14)1 in Regions 1 and 2 (see Fig.
1). To apply the invariant region theory, we shall prove that the inhomogeneous
term of (14)1 is positive on line AB. Now, in these regions, z and w satisfy the
following.

−Me−
∫ x
0
b(y)dy 5 z, w 5Me

∫ x
0
b(y)dy, −1/σ 5 w/z 5 1, z 5 0. (15)

We set k = w/z. Then, from (5), we have

λ1 =
(1− θ)k + 1 + θ

2
z, v =

k + 1

2
z, ρθ =

θ(k − 1)

2
z, −1/σ 5 k 5 1. (16)

Moreover, we notice the following.

Lemma 3.2. We set f(k) =
2 {(1− θ)k + 1 + θ}

θ|k2 − 1| . Then, f(k) = µ on the closed

interval [−1/σ, 1], where µ and σ are defined in (6).
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Figure 1. The invariant region in (z, w)-plane

O

Figure 2. The graph of l = f(k)
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Then, from (6) and Lemma 3.2, in Regions 1 and 2, we obtain

z̃t + λ1z̃x =e
∫ x
0
b(y)dy

{
b(x)λ1z − a(x)ρθv

}

=e
∫ x
0
b(y)dyb(x)z2

{
(1− θ)k + 1 + θ

2
− µθ|1− k

2|
4

}

=e
∫ x
0
b(y)dyb(x)z2

θ|1− k2|
4

{f(k)− µ}
=0 (from Lemma 3.2). (17)

Since ρθv is a two variable function, it is difficult to prove that it is positive. How-
ever, considering along the line k = w/z, we can treat with the term such as one
variable function. We thus conclude that the inhomogeneous term of (14)1 is pos-
itive in Regions 1 and 2. Similarly we find that the inhomogeneous term of (14)2
is negative in Region 2 and 3. In particular, the inhomogeneous term of (14)1 is
positive on line AB and the inhomogeneous term of (14)2 is negative on line AC.

Therefore, if a solution is contained in Region 1–3, since z̃ = −M and w̃ 5M , it
follows from the invariant region theory (see [1] and [6, Chapter 14, §B]) that the
solution remains in the same triangle. This implies that the following region

∆x =
{

(z, w); ρ = 0, −Me−
∫ x
0
b(y)dy 5 z, w 5Me

∫ x
0
b(y)dy

}

is an invariant region for the Cauchy problem (3). Here we notice that the invariant
region ∆x depends on the space variable x. Our generalized invariant region quite
differs from the Chueh, Conley and Smoller one in this point. This is the key idea
to obtain the bounded estimate.

Let us review the above argument.

1. We recall that [4] cannot contain the sonic case, which means that char-
acteristic speeds are 0. This case is also difficult for our method, because
quasi relaxation terms are 0. However, for example, recalling the argument of
(17), we consider only Region 1–2. On the other hand, quasi relaxation term
b(x)λ1z is 0 in only Region 3. We thus prevent difficulty caused by the sonic
state.

2. We need Lemma 3.1. If this lemma does not hold, the above argument fails.
In fact, line AB is not contained in Region 1–2. Here, we notice that we supply
condition (6) to obtain Lemma 3.1.

We notice that the above argument is formal, because the solution of (1) is not
smooth in general. Therefore, we need to justify this argument by a approximate
solutions. However, we cannot do by the existing difference scheme such as the
Godunov or Lax-Friedrichs scheme. Therefore, we introduce the modified Go-
dunov scheme. Then, we must adjust our approximate solutions to the above
invariant region. In view of (13), by using the fractional step procedure, we adopt
the following functions

z∆(x, t) =z̄∆(x) + g∗1(x, ū∆(x))(t− n∆t),
w∆(x, t) =w̄∆(x) + g∗2(x, ū∆(x))(t− n∆t)

(18)

as the building blocks of our approximate solutions piecewisely in each cell, where
∆t is the time mesh length, n ∈ Z=0, z̄∆(x) = z̃e−

∫ x
0
b(y)dy, w̄∆(x) = w̃e

∫ x
0
b(y)dy
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with constants z̃, w̃, and

g∗1(x, ū∆(x)) = −a(x)v̄∆(x)(ρ̄∆(x))θ + b(x)λ1(ū∆(x))z̄∆(x),

g∗2(x, ū∆(x)) = a(x)v̄∆(x)(ρ̄∆(x))θ − b(x)λ2(ū∆(x))w̄∆(x).

We notice that (18) are solutions of (9) approximately. In fact, from (9), we have

zt − g∗1(x, u) = −λ1(zx + b(x)λ1z),

wt − g∗2(x, u) = −λ2(wx − b(x)λ2w).
(19)

Since z̄∆(x), w̄∆(x) are solutions to the right-hand side of (19), we find the following.

Remark 3. The approximate solution u∆(x, t) = (ρ∆(x, t),m∆(x, t)), which is
deduced from z∆(x, t), w∆(x, t) by the relation (5), satisfies

(u∆)t + f(u∆)x − g(x, u∆) = O(∆t) for t ∈ [n∆t, (n+ 1)∆t).

This means that z∆(x, t), w∆(x, t) are solutions of (1) approximately.

On the other hand, we recall that the existing approximate solutions of [4] consist
of steady state solutions of (1).

Now, when we construct our approximate solutions, two difficulties arise (P1)
along discontinuous lines and (P2) near the vacuum in each cell. (P1): Since our
approximate solutions consists of functions of x, they cannot satisfy the Rankine-
Hugoniot condition at every point of a discontinuous line. To overcome this problem,
the approximate solutions satisfy the Rankine-Hugoniot condition at the only center
of the discontinuous line, which makes the error from the discontinuity enough small.
(P2): It is difficult to use (18) as building blocks of our approximate solutions near
the vacuum. To handle this problem, we employ not (18) but Riemann solutions,
which are solutions of the corresponding homogeneous conservation law, because
the inhomogeneous terms are small near the vacuum. These ideas are essential
to deduce their compactness and convergence. In addition, the modified Godunov
scheme has the advantage of adjusting to not only the present invariant region but
also the other ones, by replacing (18).

Finally, we notice that the above methods are applicable to other inhomogeneous
conservation laws. For example, by applying the methods to the Euler equation
with an outer force, the author recently succeeded in proving the new existence
theorem and stability of solutions in [12], [16] and [17]. In addition, the method
is also used for the spherically symmetric flow (see [7]–[8]) and inhomogeneous
scaler conservation laws (see [11] and [13]). The ideas and techniques developed in
this paper will be applicable to not only conservation laws but also other nonlinear
problems involving similar difficulties such as reaction-diffusion equations, nonlinear
wave equations, the numerical analysis, etc.

4. Open problem: invariant regions for the bounded domain and space
periodic boundary condition. We can apply our generalized invariant region
(call GIR) to the Cauchy problem (see [8]–[13]) and initial-boundary problem for a
half space (see [7]). However, unfortunately, we cannot find a GIR for the bounded
domain and space periodic boundary problem. This is caused by the following
property of the GIR. For example, the upper and lower bound of (8) are strictly
increasing functions. On the other hand, for example, we must find a space peri-
odic GIR for the space periodic boundary problem. Therefore, we cannot find an
appropriate GIR in this case. It is thus difficult to prove the existence of a time
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periodic solution to the space periodic boundary problem for the Euler equation
with a time periodic outer force (see [12, Section 5]. The special case can be found
in [17].) Similarly, we cannot find a GIR of the boundary problem for a bounded
domain.
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ON A CLASS OF NEW GENERALIZED

POISSON-NERNST-PLANCK-NAVIER-STOKES EQUATIONS

Yong Wang

South China Research Center for Applied Mathematics and Interdisciplinary Studies,
South China Normal University,

Guangzhou, 510631, China

Abstract. We introduce a class of new generalized Poisson-Nernst-Planck-

Navier-Stokes equations, which can be used to model the transport of micro-
scopic charged particles in fluids. This kind of models can incorporate the

interactions between microscopic charged particles and macroscopic fluids as

well as cross-diffusion phenomenon. For two typical models, we study their
global well-posedness for the Cauchy problem in dimension three.

1. Introduction. Throughout this paper, we use the following symbols:

ρ mass density of fluid φ electrostatic potential
u velocity of fluid ε dielectric constant
v density of negative ions zv valence of negative ions
uv velocity of negative ions zw valence of positive ions
w density of positive ions e charge of one electron
uw velocity of positive ions p pressure
µ, µ′ viscosity coefficients Dv diffusivity of negative ions
D mobility Dw diffusivity of positive ions
kB Boltzmann constant T absolute temperature

The transport of the charged particles under the influence of self-consistent elec-
trostatic field is an important phenomenon in nature. Dating from the works of
Nernst and Planck [22, 27] in 1890’s, the motion of ions (anions and cations) in
chemical batteries was modeled by using the following





vt = div
[
Dv

(
∇v + zve

kBT
v∇φ

)]
,

wt = div
[
Dw

(
∇w + zwe

kBT
w∇φ

)]
,

−ε∆φ = zvev + zwew,

(1)

which is well-known as the Poisson-Nernst-Planck (PNP) equations [19]. It was
not until the 1930’s that purification techniques for semiconductor materials were
developed, people began to realize that semiconductors have many better properties
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than metallic conductors. For instance, their resistance decreases as temperature
increases, which is a behavior opposite to that of a metal. Because of this reason
(1) was also used to model the transport of electrons and holes in semiconductors
[28, 30]. The Poisson-Nernst-Planck model is often called the drift-diffusion (or
electro-diffusion) model [21, 29]. The model of form (1) is so important and useful
that it was also used to model the scenario of ions (say chloridion Cl−, sodion
Na+, etc.) passing in and out of biological cells through ion channels on the cell
membrane [2, 4]. In a word, the same model (1) can be applied to different situations
as mentioned above.

From an energetic point of view, the system (1) obeys the energy dissipation law

d

dt
Etotal :=

d

dt

∫

R3

[
kBT (v ln v + w lnw) + ε

2 |∇φ|2
]
dx

= −
∫

R3

(
kBT
Dv

v |uv|2 + kBT
Dw

w |uw|2
)
dx := −4, (2)

where Etotal is the total energy including thermo-fluctuations (Gibbs entropy) of the
ion species and the electric potential energy, 4 is the entropy production (energy
dissipation rate), respectively. The electrostatic potential φ is induced by the total
charge in view of Gauss’s law:

−ε∆φ = zvev + zwew.

The velocity uv/uw of the negative/positive ions satisfy the conservation equations

{
vt + div(vuv) = 0,

wt + div(wuw) = 0.
(3)

On the other hand, starting with the energy law (2) and (3), Hsieh et al. [14] derived
the above equations (1)1,2 by using an Energetic Variational Approach (henceforth

EVA). The EVA essentially comprises the Least Action Principle (or Hamilton’s
principle) [1, 11, 12] and the Maximum Dissipation Principle (or Onsager’s principle)
[23, 24, 25]. This is a very powerful method to derive a large class of important
mathematical models [8, 11, 15, 20].

In general, it is enough for us to use the above model (1) to describe the
dynamics of the dilute charged particles [9, 10, 21]. However, how about the
crowded case? Such a case often occurs in ion channels and electrodes of bat-
teries [5, 6, 7]. Biological plasmas outside cells contain chloride (≈ 102 mM/L) and
sodium (≈ 140 mM/L) ions, which corresponds to the dilute case (Pure water has
umber density 55 M/L or so, 1M ≈ 6.02 × 1023), however, the concentration of
ionic mixtures reaches about 20 M/L in ion channels embedded in cell membranes.
In such a dense case, the mutual friction between different ion species is inevitable
since it has an important impact on the dynamics of the species themselves. Then,
one needs to modify the model (1). Hsieh et al. [14] modified the above dissipation
as the following, however, keeping the total energy in (2) unchange,

4 =

∫

R3

(
kBT
Dv

v |uv|2 + kBT
Dw

w |uw|2 + kBT
D vw |uv − uw|2

)
dx,

where the above last term (the relative velocity differences) is responsible for the
dissipation arising from the friction between particles. Then, their modified PNP
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model is




vt = div

[
(D+Dwv)Dv

(
∇v+ zve

kBT
v∇φ

)
+DvDwv

(
∇w+

zwe
kBT

w∇φ
)

D+Dwv+Dvw

]
,

wt = div

[
(D+Dvw)Dw

(
∇w+

zwe
kBT

w∇φ
)
+DvDww

(
∇v+ zve

kBT
v∇φ

)

D+Dwv+Dvw

]
,

−ε∆φ = zvev + zwew.

Inspired by [14], my collaborators and me continue to modify the energy dissi-
pation law by considering the combination of microscopic (atomic) energy law and
macroscopic (hydrodynamic) energy law, which is reasonable since the microscopic
charged particles and the macroscopic flow interact with each other. Precisely, we
select the total energy

Etotal =

∫

R3

(
h(v, w) + ε

2 |∇φ|2
)
dx

︸ ︷︷ ︸
microscopic

+

∫

R3

(
ρ
2 |u|2 + ω(ρ)

)
dx

︸ ︷︷ ︸
macroscopic

, (4)

and the dissipation

4 =

∫

R3

(
kBT
Dv

v |uv − u|2 + kBT
Dw

w |uw − u|2 + kBT
D vw |uv − uw|2

)
dx

+

∫

R3

(
µ|∇u|2 + (µ+ µ′)|divu|2

)
dx. (5)

Then, by combing the EVA and (4)–(5) as in [33, 34], we can derive the following
closed model: for (x, t) ∈ R3 × R+,





ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ)

= µ∆u+ (µ+ µ′)∇divu− v∇hv − w∇hw + ε∆φ∇φ,
vt + div(vu) = div

[
v((1+v)(∇hv+zve∇φ)+w(∇hw+zwe∇φ))

1+v+w

]
,

wt + div(wu) = div
[
w((1+w)(∇hw+zwe∇φ)+v(∇hv+zve∇φ))

1+v+w

]
,

−ε∆φ = zvev + zwew,

(6)

where we set Dv = Dw = D = kB = T = 1 for brevity. Now, we can say that the
system (6) is called a class of new generalized Poisson-Nernst-Planck-Navier-Stokes
(PNP-NS) equations because of the flexibility of the function h = h(v, w). It is usual
to select h = kBT (v ln v+w lnw) as in (2) by neglecting the steric potential energy.
However, the function h has many other forms as in [3, 8], such as h = kBT (v+w)2,
etc. Such a form can take into account of the interactions between particles and
reveal size effects arisen from the shape of hard sphere of ion species. Notice that
the model (6) is a cross-diffusion type in most cases. The cross diffusion means that
there is one term of form f(v, w)∆w(f(v, w)∆v) appeared in the evolution equation
of v(w), as Eq. (6)3((6)4). As we know, the cross diffusion will cause some major
difficulties in solving problems since generally no maximum principle holds at this
time. In addition, the cross-diffusion induced instability happens, see [16, 32]. In
fact, the cross-diffusion has attracted lots of attention when people study some kinds
of parabolic equations. For example, the well-known Shigesada-Kawasaki-Teramoto
system, which was proposed to model the spatial segregation of two competing
species in [31]. There is another important system, called (Patlak-)Keller-Segel (K-
S) model which was proposed to model the chemotaxis in [17, 18, 26]. For the K-S
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system with cross-diffusion, we can refer to [13, 35]. However, the system (6) is a
new one which has more complicated structure since it is a hyperbolic-parabolic-
elliptic equations with the cross-diffusion under some proper assumptions on the
function h.

Remark 1. The microscopic internal energy ω occurred in (4) and the pressure
function p occurred in Eq. (6)2 have the following constitutive relation:

p(ρ) = ω′(ρ)ρ− ω(ρ).

For example, by solving the above ODE directly, we obtain

ω(ρ) =

{
ρ ln ρ, if p(ρ) = ρ,
ργ , if p(ρ) = (γ − 1)ργ , γ > 1,

which corresponds to the isothermal and isentropic case for ideal gases, respectively.

This paper is organized as follows. In Section 2, we consider the dilute case for
(6) by selecting a general internal energy h(v, w) = ϕ̃(v) + ψ̃(w) and then study its
global well-posedness for the Cauchy problem. In section 3, we consider the crowded
case for (6) by selecting h(v, w) = kBTv ln v+ kBTw lnw, where the cross-diffusion
phenomenon is induced by the mutual friction between dense particles. Our results
about its global well-posedness infer that the instability induced by cross-diffusion
will not happen. Lastly, we give a conclusion in Section 4.

2. The dilute case. In this section, we consider such a case that some dilute
charged particles transport under their self-consistent electrostatic field in com-
pressible fluids. Then, in (4), we select the microscopic internal energy

h(v, w) = ϕ̃(v) + ψ̃(w),

where the functions ϕ̃(·) and ψ̃(·) are given according to the actual situations. At
this time, we can neglect the mutual friction between charged particles since they
are dilute. So, the dissipation is given as

4 =

∫

R3

(
kBT
Dv

v |uv − u|2 + kBT
Dw

w |uw − u|2 + µ|∇u|2 + (µ+ µ′)|divu|2
)
dx.

Thus, the model (6) is reduced to




ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ)

= µ∆u+ (µ+ µ′)∇divu−∇ϕ(v)−∇ψ(w) + ε∆φ∇φ,
vt + div(vu) = div (∇ϕ(v) + zvev∇φ) ,

wt + div(wu) = div (∇ψ(w) + zwew∇φ) ,

−ε∆φ = zvev + zwew,

(7)

where ϕ and ψ satisfy ϕ(v) = ϕ̃′(v)v−ϕ̃(v) and ψ(w) = ψ̃′(w)w−ψ̃(w), respectively.

From this, we can say that ϕ,ψ are determined by ϕ̃, ψ̃. We supplement (7) with
the initial data

(ρ, u, v, w)(x, t) |t=0= (ρ0, u0, v0, w0)(x), x ∈ R3. (8)

We assume that the pressure function p(ρ) is a smooth one satisfying

p′(ρ) > 0 for ρ > 0, (9)
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and the far-field behavior is selected as

lim
|x|→+∞

(ρ, u, v, w, φ)(x, t) = (1, 0, 1, 1, 0). (10)

Without loss of generality, we set

µ = ε = e = zw = 1, µ′ = 0, zv = −1. (11)

We define the perturbations by

% = ρ− 1, u = u, V = v − 1, W = w − 1, φ = φ.

Then, the Cauchy problem (7)–(8) becomes




%t + div((%+ 1)u) = 0,

(%+ 1) (ut + u · ∇u) + p′(%+ 1)∇%−∆u−∇divu

= −ϕ′(V + 1)∇V − ψ′(W + 1)∇W + (V −W )∇φ,
Vt + div((V + 1)u)−∆ϕ(V + 1) = −div ((V + 1)∇φ) ,

Wt + div((W + 1)u)−∆ψ(W + 1) = div ((W + 1)∇φ) ,

φ = ∆−1(V −W ),

(%, u, V,W ) |t=0= (%0, u0, V0,W0).

(12)

The following local and global well-posedness were proved in [34]:

Theorem 2.1. Denote U(x, t) = (%, u, V,W )(x, t). Assume U0 := (%0, u0, V0,W0) ∈
H3 and infx∈R3 %(x, 0) > −1. Then the Cauchy problem (12) admits a local unique
solution satisfying %(t) ∈ C0(0, T ;H3) ∩ C1(0, T ;H2), (u, V,W )(t) ∈ C0(0, T ;H3) ∩
C1(0, T ;H1) ∩ L2(0, T ;H4) and %(t) > −1 for any t ∈ [0, T ].

Theorem 2.2. Assume that U0 ∈ Hk for an integer k ≥ 3. If the initial H3 norm
‖U0‖H3 is small, then the Cauchy problem (12) admits a unique global solution U(t)
for all t ≥ 0. If further we assume that ‖∇−1(V0−W0)‖L2 is sufficiently small and
U0 ∈ Lp with 1 ≤ p ≤ 2, then for all t ≥ 0,

‖∇`U(t)‖Hk−` ≤ C0(1 + t)−
`
2− 3

2 (
1
p− 1

2 ) for 0 ≤ ` ≤ k − 1 (13)

and

‖∇`∇φ(t)‖L2 ≤ C0(1 + t)−
`+1
2 − 3

2 (
1
p− 1

2 ) for 0 ≤ ` ≤ k − 2. (14)

Remark 2. The assumption ∇−1(V0−W0) ∈ L2 is equivalent to the initial electric
field ∇φ0 ∈ L2 since ‖∇−1(V0 −W0)‖L2 = ‖∇−1∆φ0‖L2 = ‖∇φ0‖L2 .

Remark 3. We claim that the smallness of ‖∇−1(V0−W0)‖L2 in Theorem 2.2 can
be removed by only assuming ∇−1(V0 −W0) ∈ L2. We can still prove that (13)
hold for ` = 0, 1. But, it is hard to obtain the higher-order decay in (13)–(14).

Remark 4. We say that all the decay rates (13) with p = 1 are optimal in sense
that it is consistent with the decay of the heat kernel.

3. The crowded case. In this section, we consider such a case that the crowded
charged particles transport under their self-consistent electrostatic field in com-
pressible fluids. The main purpose of this model is to characterize that the mutual
friction will give rise to the cross-diffusion phenomenon, so, in (4), we only choose
the simple microscopic internal energy

h(v, w) = kBTv ln v + kBTw lnw.

678



YONG WANG

Thus, the model (6) becomes




ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ)

= µ∆u+ (µ+ µ′)∇divu−∇v −∇w + ε∆φ∇φ,
vt + div(vu) = div

[
(1+v)(∇v+zvev∇φ)+v(∇w+zwew∇φ)

1+v+w

]
,

wt + div(wu) = div
[
(1+w)(∇w+zwew∇φ)+w(∇v+zvev∇φ)

1+v+w

]
,

−ε∆φ = zvev + zwew.

(15)

We supplement (15) with the initial data

(ρ, u, v, w)(x, t) |t=0= (ρ0, u0, v0, w0)(x), x ∈ R3, (16)

and assume that (9)–(11) hold. We define the perturbations by

% = ρ− 1, u = u, V = v − 1, W = w − 1, φ = φ.

Then, the Cauchy problem (15)–(16) becomes




%t + div((%+ 1)u) = 0,

(%+ 1) (ut + u · ∇u) + p′(%+ 1)∇%−∆u−∇divu

= −∇V −∇W + (V −W )∇φ,
Vt + div((V + 1)u) = div

[
(V+2)∇V+(V+1)∇W−(V+1)(V−W+1)∇φ

V+W+3

]
,

Wt + div((W + 1)u) = div
[
(W+2)∇W+(W+1)∇V+(W+1)(W−V+1)∇φ

V+W+3

]
,

φ = ∆−1(V −W ),

(%, u, V,W ) |t=0= (%0, u0, V0,W0).

(17)

Set Ũ = (V,W )T . The perturbed parabolic equations (17)3–(17)4 with the cross-
diffusion have the form

Ũt − div(A(Ũ)∇Ũ) = N (Ũ).

Here the diffusion matrix A(Ũ) is given as

A(Ũ) :=

(
A11 A12

A21 A22

)
,

where

A11 := V+2
V+W+3 , A12 := V+1

V+W+3 , A21 := W+1
V+W+3 , A22 := W+2

V+W+3 .

We claim that the matrix A(Ũ) is diagonally dominant in the linearized sense,

i.e., the linear part of A(Ũ), which is equal to

L(A) =

(
2
3

1
3

1
3

2
3

)
,

is diagonally dominant due to 2/3 > 1/3. This is a key point to derive the energy
estimates as in [33]. In fact, we develop a new approximation scheme to prove the
local solution, where the difficulties caused by the cross-diffusion could be overcome.

Moreover, since the matrix A(Ũ) is diagonally dominant in the above sense, we
manage to derive the refined a priori estimates which insure that the local solution
can be extended to the global one by using a continuous argument.

The following theorem was proved in [33]:
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Theorem 3.1. Under the same assumptions of Theorem 2.2, the Cauchy problem
(17) admits a unique global solution U(t) satisfying for 1 ≤ p ≤ 2 and all t ≥ 0,

‖∇`(%, u, V,W )(t)‖Hk−` ≤ C0(1 + t)−
`
2− 3

2 (
1
p− 1

2 ) for 0 ≤ ` ≤ k − 1 (18)

and

‖∇`∇φ(t)‖L2 ≤ C0(1 + t)−
`+1
2 − 3

2 (
1
p− 1

2 ) for 0 ≤ ` ≤ k − 2. (19)

Remark 5. Our results from the local solution (see Proposition 3.12 in [33]) to
the decay rates of solutions (18)–(19) in Theorem 3.1 can be applied to a class of
system with the cross-diffusion whose diffusion matrix is diagonally dominant in the
linearized sense. For example, it is applicable for more general PNP-NS system:





ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) +∇p(ρ)

= µ∆u+ (µ+ µ′)∇divu−∇ϕ(v)−∇ψ(w) + ε∆φ∇φ,
vt + div(vu) = div

[
(1+v)(∇ϕ(v)+zvev∇φ)+v(∇ψ(w)+zwew∇φ)

1+v+w

]
,

wt + div(wu) = div
[
(1+w)(∇ψ(w)+zwew∇φ)+w(∇ϕ(v)+zvev∇φ)

1+v+w

]
,

−ε∆φ = zvev + zwew,

where the functions ϕ(v), ψ(w) could be selected based on needs.

4. Conclusion. In this paper, we use the energetic variational approach to derive
a class of new generalized Poisson-Nernst-Planck-Navier-Stokes equations. Such a
model can be used to characterize the interactions between microscopic charged
particles and macroscopic fluids and to describe many important phenomena in the
transport of charged particles, such as, cross-diffusion, size effects, etc. In Sections
2 and 3, we consider the stability of a constant equilibrium solution for the dilute
and crowded cases, respectively. Under the condition that the initial perturbations
are small, we show that the perturbed solution tends to the constant equilibrium
solution with the optimal algebraic decay rates in time. In particular, the cross-
diffusion phenomenon happens for the crowded case, however, our results in Section
3 reveal that the instability induced by the cross-diffusion will not appear here.

REFERENCES

[1] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing

Co., Inc., Advanced Book Program, Reading, Mass., 1978.
[2] V. Barcilon, D. P. Chen, and R. S. Eisenberg, Ion flow through narrow membrane channels.

II, SIAM J. Appl. Math., 52 (1992), 1405–1425.
[3] M. Burger, M. Di Francesco, J. F. Pietschmann, and B. Schlake, Nonlinear cross-diffusion

with size exclusion, SIAM J. Math. Anal., 42 (2010), 2842–2871.

[4] D. P. Chen and R. S. Eisenberg, Charges, currents, and potentials in ionic channels of one
conformation, Biophys. J., 64 (1993), 1405–1421.

[5] B. Eisenberg, Crowded Charges in Ion Channels, John Wiley and Sons, 2011.

[6] B. Eisenberg, Mass action in ionic solutions, Chem. Phys. Lett., 511 (2011), 1–6.
[7] B. Eisenberg, A leading role for mathematics in the study of ionic solutions, SIAM News, 45

(2012), 11–12.

[8] B. Eisenberg, Y. Hyon, and C. Liu, Energy variational analysis of ions in water and channels:
Field theory for primitive models of complex ionic fluids, J. Chem. Phys., 133 (2010), 104104.

[9] R. S. Eisenberg, Computing the field in proteins and channels, Journal of Membrane Biology,

150 (1996), 1–25.
[10] R. S. Eisenberg, New Developments and Theoretical Studies of Proteins, World Scientific,

Philadelphia, 1996.

680



YONG WANG

[11] J. Forster, Mathematical Modeling of Complex Fluids, Master thesis, The University of
Würzburg, 2013.

[12] H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley Publishing, 1980.
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Abstract. We study the compressible isothermal Navier-Stokes-Korteweg sys-

tem governing viscous liquid-vapor fluid flows in one dimension, where the

pressure of the fluid is non-monotone. Firstly, we develop a local discontinuous
Galerkin scheme and provide an a posteriori analysis for the approximation

of the model. We apply weak entropic-strong stability theorems to compare

weak-entropic with strong solutions, introducing sufficiently regular interme-
diate functions called reconstructions. In addition, employing a variant of the

relative entropy technique we overcome the obstacle of the non-convexity of the

energy. Moreover, we obtain an a posteriori estimator for the difference be-
tween the reconstruction and the numerical solution and thus we can compare

exact with numerical solutions. What is more, we present numerical results for

the efficiency of the error estimator.

1. Introduction. In the present contribution we study compressible two phase
flows, meaning flows of one substance which is present as both liquid and vapor.
From a mathematical point of view sharp and diffuse interface (phase-field) models
are usually employed; see Fig. 1. On the former, fields such as density and velocity
are discontinuous across the interface Γ(t), which separates the liquid from the vapor
phase. Accordingly, jump conditions at Γ(t) need to be considered. However, this
description becomes difficult when droplet formation, coalescence or other topologi-
cal singularities take place. Thus, alternative models are examined, see [1, 2, 3] and
references therein. They are called diffuse interface models, where the interface is
represented by a narrow layer of width O(ε). Also, in this approach the fields vary
smoothly but with large gradients. We espouse a mathematical structure where the
dynamics of the flow is governed by the energy functional, which includes capillary
and viscous forces. Modeling these flows is an area of active research, though from
a numerical point of view only a few works are available when the pressure is non-
monotone [6]. Then, the first order part of the equations of interest is of mixed
hyperbolic-elliptic type.

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Compressible two-phase flow, Liquid-vapor flow, Diffuse interface

model, Relative entropy, Discontinuous Galerkin method, A posteriori error analysis.
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Ωliq(t)

Ωvap(t)

n

Γ(t)

Ω

ε

Figure 1. Sharp and diffuse inter-
face

At the same time, processes of practical in-
terest such as combustion, cryogenics, and cloud
formation motivate us to develop tools for the
simulation of such small scale models. In this
case, a posteriori analysis is crucial in deter-
mining how reliable a numerical scheme is and
it allows for error control of the exact and the
numerical solution. Then, based on the a poste-
riori error estimator mesh adaptive refinement
techniques can be applied. In practice, exact

solutions (global in time) may not be smooth and we need to define different classes
of them, such as entropy solutions. As mentioned before, the system at hand is
not hyperbolic but it can be seen as a perturbation of its first order part, which
is hyperbolic except close to the phase boundary. This motivates the use of “hy-
perbolic” methods for studying Navier-Stokes-Korteweg (NSK). One well known
stability framework for systems of hyperbolic conservation laws is the relative en-
tropy [4, 7]. For a general overview of its development in the last decades we refer
the reader to the references in [5, Sect. 5.7]. It is based on the fact that systems of
hyperbolic conservation laws are usually endowed with a convex entropy/entropy
flux pair, that can be used to define the notion of relative entropy between two
solutions. However, since we do not have a hyperbolic system, in our analysis we
employ a variant of the relative entropy technique [14], which considers only the con-
vex contributions of the energy and in particular was applied for the Euler-Korteweg
system [15, 16].

û

uh

u

Figure 2. Reconstruc-
tion of the discrete
solution

Furthermore, we introduce a reconstruction approach,
see Fig. 2, where the defined functions have a certain
amount of regularity. Broadly speaking, this means that
reconstructions are strong solutions of a perturbed sys-
tem. As soon as this holds, we can apply the reduced
relative entropy and bound the difference between the re-
constructions and the exact solutions of our system. To
illustrate, for the a posteriori estimates we split the differ-
ence between the exact u and the numerical solutions uh
into two parts; see Fig. 3. Additionally, we use a posteri-
ori results to compare the numerical solutions with the re-
constructions û. The former are computed through a dis-
continuous Galerkin (DG) method that approximates the
solution using discontinuous piecewise polynomial func-
tions. The latter are based on an elliptic reconstruction operator, which was studied
in [19, 20]. The elliptic reconstructions of our numerical solutions are the exact so-
lutions of elliptic problems. Consequently, we can achieve our goal to explicitly
bound the difference between the numerical and the exact solutions and test the
efficiency of the estimator numerically.
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Figure 4. Pressure function.

a1 a2vapor liquid
density

en
er

g
y

d
en

si
ty

Figure 5. Helmholtz
free energy density.

u− û
u− uh

û− uh

Figure 3. Splitting the
estimate

The paper is organized as follows: In Section 2 we
present the PDE system under consideration and the
notion of entropy solution. In Section 3 we introduce
the reduced relative entropy technique which is used to
prove a stability result in Theorem 3.1. In Section 4 we
present the numerical scheme and show the setup of the
a posteriori analysis. In Subsection 4.2 we derive an a
posteriori estimate for solutions using a combination of

reconstructions and finally in Section 5 we perform numerical experiments to test
the efficiency of the corresponding estimator.

2. Two phase flow model. We examine the following system in one dimension
(for simplicity)

ρt + (ρv)x = 0

(ρv)t +
(
ρv2 + p(ρ)

)
x

= µvxx + γρρxxx
in S1 × [0, T ), (NSK)

with the mass density ρ = ρ(x, t) > 0 and the velocity field v = v(x, t) ∈ R being
the unknown quantities and S1 denotes the unit interval with periodic boundary
conditions. The viscosity coefficient and a final time are parameters denoted as
µ > 0 and T > 0 respectively. Van der Waals, Korteweg, Cahn, Hilliard and
others contributed to the study of capillarity, which has an important role in the
interface between the two phases and effects of it were incorporated by including
density gradients in the energy; see [9]. Following this approach, we obtain the term
γρρxxx in (NSK), where γ > 0 is a capillarity constant. Furthermore, the pressure is
denoted by p. It is expressed via the Gibbs-Duhem equation p(ρ) = ρW ′(ρ)−W (ρ),
which gives p′(ρ) = ρW ′′(ρ). Here, W (ρ) is called Helmholtz free energy density
and has a double-well shape, in order to describe two phase flows; see Fig. 4. This
means that it is non-convex, which makes the pressure a non-monotone function.
We make the following assumption on W : ∃ a1, a2 ∈ (0,∞) such that a1 < a2
and W ′′ > 0 in (0, a1)

⋃
(a2,∞) and W ′′ < 0 in (a1, a2). We say a fluid is in

vapor phase if ρ ∈ (0, a1], in liquid phase if ρ ∈ [a2,∞) and in spinodal phase if
ρ ∈ (a1, a2); see Fig. 5.
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Lemma 2.1. (Energy Balance [12]) Let (ρ, ρv) be a smooth solution of (NSK).
Then it satisfies the energy balance

d

dt

∫

S1

E [ρ, ρv] :=
d

dt

(∫

S1

W (ρ) +
1

2
ρv2 +

γ

2
(ρx)2dx+

∫

S1

∫ t

0

µv2x ds dx

)
= 0.

Remark 1. (L∞ bound for ρ) Since Lemma 2.1 holds and the mean value of ρ
does not change in time, we notice that ‖ρ‖L∞(S1×(0,T )) is bounded in terms of the

initial data and we call this bound Cρ.

Remark 2 (Conservation of momentum). We can also write (NSK) in the form:

ρt + (ρv)x = 0

(ρv)t +
(
ρv2
)
x

= (µvx + S)x ,

where S := −ρW ′(ρ) +W (ρ) + γρρxx − 1
2γρ

2
x.

Definition 2.2. (Entropy solution) A function u = (ρ, ρv) with ρ ∈ C([0, T );L1(S1)),
ρv ∈ C([0, T );L1(S1,R)) with initial datum u0 = (ρ0, (ρv)0) is an entropy solution
of (NSK) if ρv2, vx, S ∈ L1

(
(0, T )× S1

)
with:

∫ T

0

∫

S1

ρψt + (ρv)ψx dxdt+

∫

S1

ρ0ψ(·, 0) dx = 0, ∀ψ ∈ C∞c ([0, T );C1(S1)),

∫ T

0

∫

S1

(ρv)φt +
(
ρv2 − S− µvx

)
φx dxdt+

∫

S1

(ρv)0φ(·, 0) dx = 0,

∀φ ∈ C∞c ([0, T );C1(S1)),

and
∫ T

0

∫

S1

E [u]ϑt dxdt+

∫

S1

E [u0]ϑ(0) dx ≥ 0,

∀ϑ ∈ C∞c ([0, T ), [0,∞)), with

∫

S1

E [u0] dx <∞

Definition 2.3. We consider strong solutions (ρ̂, ρ̂v̂) in the following spaces; see
[15]:

ρ̂ ∈ C0
(
[0, T ), H3(S1,R+)

)⋂
C1
(
[0, T ), H1(S1,R+)

)
,

v̂ ∈ C0
(
[0, T ), H2(S1,R)

)⋂
C1
(
[0, T ), H0(S1,R)

)
,

where R+ := {x ∈ R : x > 0}.

3. Weak entropic-strong stability for non-convex energies. The relative en-
tropy, defined in [11], is not suitable to measure the distance between solutions, since
our energy has non-convex parts. Therefore, we restrict to energies, which can be
written as W (ρ) = ω(ρ) + e(ρ), where ω is strictly convex and e ∈ C∞c (0,∞) is
smooth, compactly supported and contains the non-convexity. Then, the reduced
relative entropy considers only the convex parts and is defined as:

ηR

[
(ρ ρv)T

∣∣∣(ρ̂ ρ̂v̂)T
]

:=

∫

S1

ω(ρ)− ω(ρ̂)− ω′(ρ̂) (ρ− ρ̂) +
1

2
ρ (v − v̂)

2

+ γ ((ρ− ρ̂)x)
2
dx+

∫

S1

∫ t

0

µ (v − v̂)
2
x ds dx. (1)
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Theorem 3.1. (Stability) Let (ρ, ρv) be an entropy solution of (NSK) and let
(ρ̂, ρ̂v̂) be a strong solution to the perturbed system

ρ̂t + (ρ̂v̂)x = 0

(ρ̂v̂)t + ρ̂ (W ′(ρ̂))x +
(
ρ̂v̂2
)
x
− µv̂xx − γρ̂ρ̂xxx = R,

where R ∈ L2(S1×(0, T )) is some given function. Let there be a positive lower bound
for ρ̂ denoted by A. Then, the reduced relative entropy defined in (1) satisfies:

ηR
∣∣
t
≤
(
ηR
∣∣
0

+ ‖R‖2L2(S1×(0,t))

)
e(CρA

−2+C)t, ∀t ∈ [0, T ).

Proof. The proof will be given in [17].

4. Discretization and A Posteriori Setup. In this section, we follow the usual
DG formulation [8] for the discretization of (NSK). Firstly, we reformulate our
system introducing an auxiliary variable. Secondly, to approximate the solution we
define the finite element space Vq :=

{
Φ : S1 → R : Φ|Ki ∈ Pq (Ki)

}
, which consists

of discontinuous piecewise polynomials of degree less or equal than q ∈ N, where
we choose some x0 < . . . < xN and denote by Ki = [xi, xi+1] the ith subinterval.

0= x0 xi xi+1 xN−1 1= xN

hi := |Ki|

The set of all cells J = {Ki}N−1i=0 , the set of all common interfaces of J, namely E,

are all introduced accordingly. For xn ∈ E we define h−E (xn) := hn−1, h
+
E (xn) :=

hn, hE(xn) := 1
2 (hn−1 + hn) such that hE, h

−
E , h

+
E ∈ L∞ (E). In addition, we

introduce the broken Sobolev space

H1 (J) =
{
φ : φ|K ∈ H1 (K) ,∀K ∈ J

}
,

and define the jump operator for arbitrary scalar functions v ∈ H1 (J) as

[[v]] :=
(
v− − v+

)
:= lim

t↘0
v (· − t)− lim

t↘0
v (·+ t) .

Definition 4.1. (Discrete Seminorm) We introduce the broken H1 (J)-seminorm
as

|ρh|2dG :=
∑

K∈J
‖(ρh)x‖

2
L2(K)

+

∥∥∥∥
√
h−1E [[ρh]]

∥∥∥∥
2

L2(E)
.

Definition 4.2. (Discrete Gradient Operators) We define G±q : H1 (J)→ Vq, such

that for any ψ ∈ H1 (J) we have:
∫

S1

G±q [ψ]Φ dx =
∑

K∈J

∫

K

(ψx)Φ dx−
∫

E
[[ψ]]Φ±, ∀Φ ∈ Vq.

4.1. Semi-Discrete Scheme. Following the DG formulation as in [13], we test
the equations with functions in Vq and employ the discrete gradient operators to
account for the numerical fluxes. Then, choosing an upwind type flux we arrive at

∑

K∈J

∫

K

(ρh)t Φ = −
∫

S1

G−q
[
ρhvh

]
Φ, ∀Φ ∈ Vq.

Note that the right hand side is the projection of G−2q to Vq, i.e. Pq
[
G−2q

[
ρhvh

]]
=

G−q
[
ρhvh

]
where Pq : H1 (J) → Vq denotes the orthogonal projection; see [16].

686



JAN GIESSELMANN AND DIMITRIOS ZACHARENAKIS

Thus, we examine the following semi-discrete numerical scheme where, assuming
ρh > 0, we seek (ρh, vh, τh) ∈ C1(0, T ;Vq)× C1(0, T ;Vq)× C0(0, T ;Vq) such that

(ρh)t +G−q
[
ρhvh

]
= 0,

(vh)t +G+
q

[
τh
]
− Pq

[
µ

1

ρh
G+
q

[
G−q
[
vh
]]]

= 0,

τh + Pq

[
−W ′(ρh)− 1

2
v2h

]
+ γG−q

[
G+
q

[
ρh
]]

= 0.

(2)

4.2. A posteriori Setup. A key motivator of this work is the error control that a
posteriori estimates provide. However, the notion of weak-strong stability proposes
to compare a weak-entropic with a strong solution. While the exact solutions are
considered to be weak-entropic solutions, the numerical solutions can not be strong
solutions since we employ a DG formulation. At the same time, exact solutions
are not smooth in general. Thus, we split the difference between the exact and
the numerical solutions. We follow the reconstruction approach [20] to bound the
difference between the reconstructions and the exact solution of the PDE, where
obviously the reconstructions need to have a certain amount of regularity in the
sense of Definition 2.3. Moreover, we combine two reconstruction approaches to
obtain the desired regularity. While the discrete reconstruction is computable, the
elliptic one is not. Therefore, the “whole” reconstruction is not computable and
we need to make use of other (elliptic) a posteriori results, in order to estimate the
difference between the numerical solutions and the reconstructions and to bound
the residual in a computable way.

Definition 4.3. (Discrete Reconstruction Operators) We define D±q : H1 (J) →
Vq+1 by requiring the following equalities for all Ψ ∈ H1 (J):

∫

S1

(
D±q [Ψ]

)
x

Φ−G±q [Ψ]Φ dx = 0, ∀Φ ∈ Vq and
(
D±q [Ψ]

)±
= Ψ∓, on E.

Definition 4.4. (Elliptic Reconstruction Operators) We define reconstructions
R[ρh] ∈ H3(S1), R[ρhvh] ∈ H2(S1) as solutions of the following elliptic equations
respectively

γ (R[ρh])xx = D−α [W ′(ρh)]−D+
q [τh] +

1

2
D−2q[v

2
h],

(R[ρhvh])xx = − (R[ρh])xt ,

where in each case we impose the following normalization condition∫

S1

R[ρh]− ρh dx =

∫

S1

R[ρhvh]− ρhvh dx = 0.

Here, we choose α = 3q for experiments. However, how to choose α in general will
be discussed in [17].

Remark 3. The above reconstruction operators are well defined, since we have
unique solvability of the elliptic problems. Moreover, due to elliptic regularity there
exist computable upper bounds for the reconstructions.
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Remark 4. What is more, to compare the difference between the reconstruction
R[ρh] and the numerical solution ρh, we obtain, in a similar way as [18], an a
posteriori error estimator depending only upon ρh and the problem data which has
the form:

H1 [ρh, f ]
2

=
∑

K∈J
h2K ‖f − (ρh)xx‖

2
L2(K)

+
∑

ε∈E
hε ‖[[(ρh)x]]‖2

L2(ε)
+
∑

ε∈E
h−1ε ‖[[ρh]]‖2L2(ε) ,

with f := − 1
γ

(
τh −W ′(ρh)− 1

2v
2
h

)
.

Lemma 4.5. (Reconstructed PDE System) The reconstructions defined in Defini-
tion 4.4 satisfy a perturbed version of (NSK)

0 = (R[ρh])t + (R[ρhvh])x ,

E = (R[ρhvh])t +R[ρh] (W ′(R[ρh]))x +

(
R[ρhvh]2

R[ρh]

)

x

− µ
(
R[ρhvh]

R[ρh]

)

xx

− γR[ρh] (R[ρh])xxx ,

where E := A+B.

Remark 5. While in [16] we studied the Euler-Korteweg system with E := A, now
B term contains the viscosity. We show numerically that there is a computable
upper bound that goes to zero when the meshsize h goes to zero; see [17].

Corollary 1. (Reduced Relative Entropy Bound) Let (ρ, ρv) be an entropy solution
of (NSK), let (ρh, vh, τh) be the solution of (2) and let the reconstructions as in
Definition 4.4. Then, given the reduced relative entropy

ηR

[
(ρ ρv)T

∣∣∣(R[ρh] R[ρhvh])T
]

:=

∫

S1

ω(ρ)− ω(R[ρh])− ω′(R[ρh]) (ρ−R[ρh])

+
1

2
ρ

[
v − R[ρhvh]

R[ρh]

]2
+γ ((ρ−R[ρh])x)

2
dx+

∫

S1

∫ t

0

µ

∣∣∣∣v −
R[ρhvh]

R[ρh]

∣∣∣∣
2

H1(S1)

ds dx,

it holds

ηR
∣∣
t
≤
(
ηR
∣∣
0

+ ‖E‖2L2(S1×(0,t))

)
eCt, ∀t ∈ [0, T ).

where C is computable and depends on the numerical solution, T, γ and Cρ. Com-
putable upper bounds for ‖E‖L2(S1×(0,t)) are available.

Remark 6. As a final remark, we note that it should be possible to extend the
results to several space dimensions. Nevertheless, there should be appropriate def-
initions, for example for the reconstructions. On the contrary, we use ideas that
work only in one dimension, such as in Remark 1. Hence, we probably need to
follow a different direction in multi dimensions.

5. Numerical experiments. In this section, we present results for a benchmark
problem using different polynomial orders q and show the EOC of the error estima-
tor. All tests were conducted using a DG code on MATLAB. Since the PDE under
investigation contains higher order spatial derivatives, we circumvent explicit time
discretization methods, such as strong stability preserving Runge Kutta (SSP-RK),
with severe time step restriction. Thus, for the time discretization we use higher
order implicit methods such as implicit Runge Kutta of order 4, namely Gauss-
Legendre (GL) RK4. In order to compute the time derivatives of our piecewise
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polynomials, we implement a Hermite interpolation algorithm; see details in [10].
For simplicity, we fix the Helmholtz free energy W to have the following form

W (ρ) =
1

4
(ρ− 1)

2
(ρ− 2)

2

with minima at ρ = 1 and ρ = 2. Moreover, we use a fixed time step dt = 10−3

with final time T = 2 ∗ 10−2.
In our test case we benchmark the numerical algorithm for the following set of
parameters and initial data

ρ0 =
3

2
− 1

2
sin(πx)

v0 = 0
S1 = [−1, 1], γ = 0.001, µ = 0.002,

101 102 103

Number of cells

10-10

10-5

100

105

E
rr

or
 e

st
im

at
or

q=4
q=5
q=6

GL RK4 EOC
q=4 3.839
q=5 4.246
q=6 5.445

Figure 6. Loglog plot of the error estimator in y-axis vs number of cells
in x-axis and estimated order of convergence for GL RK4, q=4,5,6.

where the EOC is defined as

EOC(x, y, i) =
log
(
x(i+1)
x(i)

)

log
(
y(i+1)
y(i)

)

with given sequences x(i) and y(i). Given K = [16; 32; 64; 128; 256; 512; 1024] we
use 1

K as x(i) and ‖E‖L2(S1×(0,t)) as y(i). We expect EOC to be the same as

the polynomial order q, since
√
ηR bounds the H1-norm of the error. We stop

computations for a given q when error originating in the nonlinear problems that
need to be solved in every time step of (GL) RK4 start to dominate.
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